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COOPERATIVE GAME THEORY FOR
MACHINE LEARNING TASKS

Kooperativní teorie her pro úlohy strojového učení
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noty a porovnáme její výsledky k jinému konceptu teorie her, Banzhafově hodnotě, a to jak z teoretick-
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Abstract: The recent rise in popularity of complex machine learning models trained by numerical opti-
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reached by those models. One of the most common interpretation method, and the centerpiece of this
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Introduction

The rapid surge of interest in machine learning in recent years, both in academia and in the private
sphere, has been accompanied by an increasing demand for interpretation techniques capable of explain-
ing decisions of the often intricate and unintelligible models. Due to rising capabilities of contemporary
processors, popularization of cloud technologies, abundance of big data, and open-source software for
their processing, deep statistical models trained by advanced optimization algorithms have become com-
monplace in various areas ranging from retail and fintech to law and medicine. However, these models
have also become more and more obscure, essentially transforming into black boxes that provide the user
with a decision, but no means of comprehending the reasoning in the background.

In the last decade we have seen a push towards creating methods for interpretation of these black
boxes so that we can understand them better and prevent employing faulty models in crucial or sensitive
areas. The most important method for the purposes of this thesis comes from Štrumbelj and Kononenko
[57], who have used coalitional game theory, specifically the concept of Shapley value, to quantify the
impact each of a model’s features has on the model’s output. By stochastically perturbing the input values
of every possible subset of features and aggregating back from subsets to individual features through the
Shapley value, the authors provide intuitive graphical explanations for any particular decision made by
the model. Their work has been further expanded, for instance, by Frye, Feige, and Rowat [22] and
Lundberg and Lee [33], and it has become a benchmark for any other work in the area.

In this thesis we aim to further explore the connection between coalitional game theory and inter-
pretation methods by setting a firm theoretical foundation of game theory which we can then further
develop in the context of interpretable machine learning. The Shapley value, albeit perhaps the best
known solution, is by no means the only one – another promising concept is the Banzhaf value. Their
use in interpretation has thus far been only very scarcely explored and we wish to elaborate upon their
suitability further, both from a theoretical and practical perspective.

As far as we are aware, this thesis contains several contributions and novel ideas that have not yet
been included elsewhere:

• Rigorous definitions of both coalitional game theory and its use in interpretation. Through study-
ing the axiomatic properties of various concepts from game theory, we will be able to identify
their potential misuse in the way they are currently commonly applied to interpreting categorical
variables, provide a simple counterexample and come up with the correct solution. More about this
in Section 2.3.

• Thorough comparison of the Shapley and Banzhaf value and their use in the context of inter-
pretation. We will study their relation both from a theoretical perspective and mainly through an
extensive mathematical comparison of their results on several real world datasets and models. This
will be the topic of Chapter 3.
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• Extensive example of using the described interpretation methods on a dataset describing brain
activity with the goal of discovering substantial connections among regions of the human brain.
This will be covered in the final Chapter 4.

We will start this thesis with Chapter 1 where we shall introduce coalitional game theory in greater detail,
study its most common solutions, and compare their various axiomatic definitions. We will see why their
calculation requires exponential complexity and provide sampling algorithms that reduce the complexity
to a polynomial level.

Chapter 2 is devoted to the connection between coalitional game theory and model interpretation. We
will start with further expanding on the need for interpretation methods and delve into the vast literature
that has surrounded this topic. The use of Shapley value for interpretation will be thoroughly defined and
studied, and we will also adapt the sampling algorithms from the previous chapter.

The last two chapters form the practical core of this thesis where we shall apply the knowledge
obtained in the preceding chapters and interpret a number of nonlinear models. In Chapter 3 we will
compare the Shapley and Banzhaf value in the context of machine learning, while in Chapter 4 we will
train a complicated model for time series prediction and then use the Shapley value to gain meaningful
insights.



Chapter 1

Coalitional games and their values

As mentioned in the introduction, we make use of the framework of coalitional game theory for ana-
lyzing and interpreting opaque machine learning models. In this chapter we focus solely on game theory
and delve deep into its foundations, concepts, and solutions without heavily exploring their connection
to machine learning and interpretability. That will be the topic of the next chapter.

Game theory encompasses studies of various types of scenarios (games) where any number of ratio-
nal agents (players) is tasked with a decision making process. Its goals include questions such as finding
the optimal behavior of players yielding the biggest outcome, allocating cost of a shared project among
a group of players, or finding the most likely outcome given each player’s preferences. Many of its con-
cepts have become widely known even outside the field itself, these include for instance zero-sum games,
the prisoner’s dilemma, Nash equilibrium, and others.

However, for the purpose of this thesis, we are interested in one of its branches in particular, the
coalitional game theory.1 Here players do not oppose each other, but are given a choice to enter in a
coalition with any number of other players. The game then assigns a worth to every such coalition that
may emerge. This naturally gives rise to several questions that coalitional game theory is tasked with
answering: Which coalitions are most likely to occur? When assigned the final worth, how should it be
fairly distributed among members of the winning coalition with respect to each individual’s contribution?
Given a typical environment where coalitions are formed, such as parliament, what is the power of each
of its members?

To explore these topics further, we will first turn to fundamental definitions and theorems. We shall
define games and players mathematically, see some of their properties, and present simple examples.
This is the topic of the first section in this chapter.

In the next part we explore various ways of solving a game. First of all, in Section 1.2 we define what
we mean by finding a solution and introduce a straightforward example called the core. Several such
solutions exist, our main focus throughout this entire thesis will be on value operators. These are defined
in Section 1.3 and their axiomatic nature is studied. A standard set of axioms yields the most widely used
value operator, the Shapley value – this is the content of Section 1.4, while other operators, for example
the Banzhaf value, are presented in Section 1.5. In Section 1.6 we explore how the Banzhaf value differs
from the Shapley value through a different set of axioms studying mergers of players.

A solution is not worth much if it cannot be calculated in a reasonable amount of time. Thus, in the
last section of this chapter, we discuss computational demands of the preceding solutions and describe
algorithms for their approximation.

1coalitional game theory is also often referred to as cooperative game theory.
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This chapter is mainly inspired by books written by Maschler, Solan, and Zamir [34], Osborne and
Rubinstein [39], and Owen [40], that provide a great starting point as well as in-depth material for every
major subtopic of game theory. Other sources are cited wherever relevant.

1.1 Fundamentals of coalitional game theory

Here we lay down the mathematical groundwork and present fundamental definitions of coalitional
game theory together with two elementary examples of games.

Let us start by setting up notation for players and coalitions. In this text we limit ourselves to studying
finite games, i.e., games with a finite number of players.

Definition 1. Let N be a finite set such that |N | = n ∈ N.2 We call members of this set players and every
subset S ⊆ N a coalition. Furthermore, n is referred to as the game size. Naturally, 2N denotes the set of
all possible coalitions in N.

Now we can move on to defining the game itself, which is sufficiently accomplished by specifying
the resulting outcome of forming a coalition.

Definition 2. A coalitional game is a pair (N, v) where

• N is a group of players from Definition 1.

• v : 2N → R, such that v (∅) = 0, is a coalitional function assigning to each possible coalition its
worth.3

To simplify things we will refer to a coalitional game only by its coalitional function v whenever the
group of players N is understood.

By G we denote the linear space of all coalitional games where for every pair of games v, w ∈ G,
α ∈ R, and every coalition S ⊆ N, we define operations (+, ·,∧,∨):

(v + w) (S ) ≡ v (S ) + w (S )

(α · v) (S ) ≡ α · v (S )

(v ∧ w) (S ) ≡ min {v (S ) , w (S )}
(v ∨ w) (S ) ≡ max {v (S ) , w (S )} .

(1.1)

Coalitional game theory thus arises when we want to study systems where a set of agents (players)
can work together and form groups to achieve a common goal. Every such player contributes a differ-
ent amount towards solving the task at hand and, importantly, players’ contributions depend on other
members in their group.

This means that a pair of players might be efficient in solving the problem and generate larger worth
than the coalition of all players N, while another pair might not be able to work together well and
generate naught. This allows for an effective capture of their correlations, calculation of each player’s
overall strength, and fair distribution of the final outcome among the players.

To gain a clearer understanding of the concept, we take a look at several concrete examples of coali-
tional games.

2According to this definition, an empty set or a set containing only one player are also referred to as coalitions.
3Note that the worth of a coalition S does not depend on the actions of players outside of S .



Example 3 (Profit game). Let us imagine we are in charge of putting together a team of graduates and
we are considering three candidates denoted by α, β, and γ. We have tested their abilities thoroughly and
determined the resulting daily income their work would generate, both individually and while working
in teams.

Both α and β have strong technical background and their work alone would be well appreciated on
the market. α comes with previous work experiences and can work a bit faster, her results alone would
generate €10 per day. β needs a bit of time setting in and his work could for now be sold for €8 for a
day. Putting them together in a team would simply add their work together since they cannot cooperate
well, resulting in €18 every day.

On the other hand, γ lacks technical capabilities altogether and focuses on effective management and
motivation of other members in his team. This means that γ alone would not be able to come up with
meaningful outcomes and only generate €2. Bringing γ into an already existing team, however, results
in a considerable boost in productivity and faster work environment where synergies between the other
members are well leveraged. γ’s involvement thus causes the outcome to be not simply the sum of the
worth of the other members, but comes with an additional extra bonus.

The entire coalitional game is defined as

v ({∅}) = 0

v ({α}) = 10

v ({β}) = 8

v ({γ}) = 2

v ({α, β}) = 18

v ({α, γ}) = 14

v ({β, γ}) = 12

v ({α, β, γ}) = 25.

We will return to this example and solve the game in Section 1.4.

Example 4 (Simple games). Simple games are a special case of coalitional functions where v : 2N →

{0, 1}. A coalition is then described either as winning, or losing, depending on the outcome. One such
example might be majority voting games, defined as

v (S ) =

0 , |S | < n
2

1 , |S | ≥ n
2 ,

(1.2)

whose relation to, for instance, parliament voting is apparent.
Although simple games are a special example of general coalitional games, they are not, apart from

a couple of exceptions, treated differently. We will point out these exception whenever they arise.

There are two special classes of coalitional games that are worth highlighting.

Definition 5. A game v ∈ G is called superadditive if

v (S ) + v (T ) ≤ v (S ∪ T ) (1.3)

for every two coalitions S ,T ⊆ N such that S ∩ T = ∅.



In a superadditive game a union of any pair of disjoint coalitions receives a bigger or equal reward
than its members playing individually. This serves as a basis for assuming that the grand coalition N will
form since it can expect to have the largest worth. We can easily verify that the game in Example 3 is
superadditive.

Definition 6. A game v ∈ G is called monotonic if

v (S ) ≤ v (T ) (1.4)

for every two coalitions S ,T ⊆ N such that S ⊆ T .

1.2 Solving a coalitional game

Now that we have set down the fundamentals and seen a couple of examples, let us turn to defining
what it means to solve a game and presenting the most common ways of doing so.

There are two elementary types of questions to ask when analyzing a coalitional game: Which coali-
tion is the most likely to form?

How should we fairly distribute the worth of a coalition between its members? What is each player’s
power and impact on the game? In this text we will only be concerned with the second pair of questions
as the first one is rather hard to solve and will not be relevant for the following applications. In the
context of answering these questions we assume the grand coalition N forms, which is in line with the
assumption of superadditivity.

Definition 7. Let v ∈ G be a coalitional game. Any mapping φ : v ∈ G 7→ φ (v) ⊆ Rn is called a solution
to v.

A solution associates a coalitional game v with a set of vectors φ (v) ⊆ Rn. We can interpret any such
vector x ∈ φ (v) as a distribution of the game’s worth among its n players where player i receives the
amount xi.

With this definition in mind we can further impose a couple of additional intuitive properties that
constitute a well known type of a solution, the core.

Definition 8. Let v ∈ G be a coalitional game. Its core C (v) is defined as4

C (v) ≡

x ∈ Rn;

∑
i∈S

xi ≥ v (S ) ,∀S ⊂ N

 ∧  n∑
i=1

xi = v (N)


 . (1.1)

Note that the first condition also implies that xi ≥ v (i). Altogether this means that every coalition
S ⊂ N receives at least as much as is its worth, the worth of the grand coalition is fully distributed, and
each player gets at least her individual worth. Such a solution makes it rational for every player to enter
into coalitions as their worth does not decrease and the final worth can be distributed easily according to
x.

The set of inequalities defining the core might not, however, have a solution, resulting in an empty
set of vectors C (v). The most general theorem concerning the existence of a non-empty core comes from
Bondareva [7] and Shapley [49] who have both proven it independently of each other.

4We can easily see that the core is an example of a solution.



Theorem 9 (Bondareva, Shapley). The core of a coalitional game v is non-empty if and only if the game
satisfies

v (N) ≥
∑

S∈2N\{∅}

δ (S ) v (S ) (1.2)

for every function δ : 2N\ {∅} → R+ such that∑
S∈2N\{∅}

i∈S

δ (S ) = 1 ,∀i ∈ N. (1.3)

The core represents a set of stable solutions: if x ∈ C (v), then each player should be content with the
results and is not expected to leave the coalition. In our latter applications, however, we are not interested
in a stable state of equilibrium, but rather in a measure that uniquely distributes the worth of the game
among its players. That is why we prefer to use value operators, solutions yielding a single distribution
vector x.

1.3 Value operators

Whereas Definition 7 allows for a general solution linking a game to a set of vectors, from now on
we will only consider solutions resulting in a single vector and then impose axioms on these solutions to
obtain desirable properties.

Definition 10. A value operator is a mapping ϕ : G → Rn.

By analyzing a coalitional game v ∈ G we obtain a vector of payoffs ϕ (v) = (ϕ1, . . . , ϕn) describing
each player’s power or earnings from the game. This definition by itself is too general to be useful as any
arbitrary vector could be picked as a solution. To tie the value operator to the coalitional function and
allow for a simple interpretation of its results in the context of outcome distribution, we now introduce
four standard axioms for its properties.

Definition 11 (Dummy player axiom). A value operator ϕ satisfies the dummy player property if for
every coalitional game v ∈ G and any player i ∈ N such that v (S ∪ {i}) = v (S ) for every S ⊂ N,

ϕi (v) = 0. (1.1)

This axiom ensures that a player who does not contribute anything to any coalition will receive
nothing from the final share.

Definition 12 (Symmetry axiom). Let v ∈ G be a coalitional game and i, j ∈ N a pair of players that are
symmetric, i.e., v (S ∪ {i}) = v (S ∪ { j}) for every S ⊆ N\ {i, j}. A value operator ϕ is symmetric if for
any such game and pair,

ϕi (v) = ϕ j (v) . (1.2)

Two players contributing exactly the same to every coalition thus receive the same reward. Or, in
another words, two players differing only by their name are entitled to the same outcome.

Definition 13 (Efficiency axiom). A value operator ϕ is efficient if for any coalitional game v ∈ G,

n∑
i=1

ϕi (v) = v (N) . (1.3)



If we assume that the grand coalition N will form and we wish to distribute the resulting payoff,
this property makes it easy to do so and guarantees that the entire worth of the grand coalition will be
assigned.

Definition 14 (Additivity axiom). A value operator ϕ is additive if for any pair of coalitional games
v, w ∈ G defined on the same set of players N,

ϕ (v + w) = ϕ (v) + ϕ (w) . (1.4)

This axiom is not applicable to simple games (see Example 4), since we cannot automatically assume
that v + w will be simple as well5. For this reason, the additivity axiom is in the context of simple games
replaced by the following one defined by Dubey [18].

Definition 15 (Additivity for simple games). A value operator ϕ is additive for any two simple coalitional
games v, w ∈ G defined on the same set of players N, if

ϕ (v ∧ w) + ϕ (v ∨ w) = ϕ (v) + ϕ (w) . (1.5)

These four axioms are essential to the task of finding a value operator for the sake of distributing the
game’s worth as each of them provides the operator with an indispensable characteristic. Quite remark-
ably then, they are also enough to define one and only one such operator called the Shapley value.

1.4 The Shapley value

Shapley proved in his seminal article [48] that there exists only one value operator satisfying all of
the above axioms simultaneously. We will now construct this operator.

To determine the impact a player has on a game v ∈ G, we use the player’s marginal contributions to
arbitrary coalitions – how much his addition to a coalition changes the outcome of the game.

Definition 16. Let v ∈ G be a coalitional game and i ∈ N its player. i’s marginal contribution to
coalition S ⊆ N\ {i} is defined as

∆v
i (S ) ≡ v (S ∪ {i}) − v (S ) . (1.1)

To gain a player’s overall influence on the entire game, we now only have to weigh his marginal
contributions across every possible coalition. Shapley does this through calculating the expected value
of the player’s marginal contributions with respect to a uniform distribution across the set of all possible
permutations on the set of players N. This will be elaborated upon on in the subsequent paragraphs.

Let us first denote the set of all permutations – bijective functions from a set N onto itself – as Π (N)6.
Every permutation π ∈ Π (N) defines an order on the set of players N and when calculating the value of
player i we can imagine that this order determines the formation of a coalition: every player preceding i
in the permutation has already joined the coalition, whereas subsequent players will only join later. We
can calculate the marginal contributions of i’s arrival for every such permutation and, since there is no
preference of one permutation over another, weigh them with uniform weights.

To put this into mathematical terms, we will denote by Prei (π) the set of players preceding player i
in a permutation π:

Prei (π) = { j ∈ N; π ( j) < π (i)} . (1.2)

Note that i < Prei (π). Now we have everything prepared for the definition of the Shapley value.

5Refer back to for definitions of the (+,−,∧,∨) operators.
6Naturally there are n! possible permutations over N.



Definition 17. Let v ∈ G be a coalitional game and i ∈ N its player. The Shapley value of player i is the
value operator with the following definition:

ϕSh
i (v) ≡

1
n!

∑
π∈Π(N)

∆v
i

(
Prei (π)

)
(1.3)

(1.1)
=

1
n!

∑
π∈Π(N)

[
v
(
Prei (π) ∪ {i}

)
− v

(
Prei (π)

)]
.

Theorem 18 (Shapley [48]). The Shapley value is the unique value operator simultaneously satisfying
the dummy player property, symmetry, efficiency, and additivity.

We can also think of Equation (1.3) as an expected value of marginal contributions,

ϕSh
i (v) = IEIP

[
∆v

i

(
Prei (π)

)]
, (1.4)

where IP is a uniform probability distribution over Π (N) . Later we will encounter value operators with
different probability distributions.

There is a second equivalent way of defining the Shapley value that is often useful, this time using
marginal contributions of player i to all the explicitly given coalitions excluding the player, meaning

ϕSh
i (v) =

∑
S⊆N\{i}

wSh
S ∆v

i (S ) . (1.5)

To calculate the weights wSh
S from Equation (1.3), let’s imagine a coalition S ⊆ N\ {i} and count the

number of permutations whose order results in players in S being the predecessor of i. In other words,

wSh
S =

1
n!

∣∣∣∣{π; S = Prei (π) , i ∈ N
}∣∣∣∣ . (1.6)

There are |S |! ways to order players in S ahead of i and (n − |S | − 1)! ways to order the remaining players
behind i. This, multiplied by 1/n! gives the following equivalent definition of the Shapley value.

Remark 19. The Shapley value can be equivalently expressed as7

ϕSh
i (v) =

∑
S⊆N\{i}

|S |! (n − |S | − 1)!
n!

∆v
i (S )

=
∑

S⊆N\{i}

1

n
(
n−1
|S |

)∆v
i (S ) . (1.7)

Example 20. In Example 3 we’ve presented a profit game with players α, β, γ and studied their contri-
butions toward a team’s efficiency. Remember, that α and β are useful team members, both generating
valuable results, but they lack the ability to cooperate. On the other hand, γ’s abilities are best utilized
when put in a group where he can boost the productivity of other team members.

Straightforward calculations give us their Shapley values as

ϕSh
α = 11.3

ϕSh
β = 9.3

ϕSh
γ = 4.3.

7If we were to randomly draw coalitions S ⊆ N\ {i} for calculation of the Shapley value, we would first select the coalition’s
cardinality |S | with equal probabilities and then select one of the

(
n−1
|S |

)
coalitions with that cardinality.



Notice, that the values sum up to the value of the grand coalition (25) and that they correctly capture the
added efficiency resulting from cooperation, ascribing players with larger values than are their individual
worths (defined to be 10, 8, and 2 for players α, β, and γ respectively). Player γ receives the biggest
boost, as he is the one encouraging cooperation while not producing much value individually.

Example 21. For simple games, the Shapley value is more commonly referred to as the Shapley–Shubik
power index [50]. We say that a player i is pivotal to a coalition S ⊆ N whenever ∆v

i (S ) = 1, or,
in another words, whenever her arrival to a losing coalition turns it into a winning one. The player’s
Shapley value is then equal to the number of times this player is pivotal, with coalitions weighted with
the same weights as in eq: Shapley value equiv:

ϕS–S
i (v) ≡

∑
S∈N\{i}

i is pivotal

1

n
(
n−1
|S |

) . (1.8)

This index has been repeatedly used for analysis of voting power in the Council of the European
Union, see for instance Barr and Passarelli [5] and Varela and Prado-Domínguez [60]. It has been modi-
fied by Owen and Shapley [41] to account for player’s individual preferences toward joining coalitions.

A big advantage of using value operators for solving coalitional games is their axiomatic nature.
Here we have (for now) only introduced the standard set of axioms defining the Shapley value, but even
these could be changed to a different set, seemingly unrelated, and produce the same operator. For more
axioms concerning the Shapley value and other uniqueness theorems, see Winter [64] or Section 1.6
where we present several instances of other axioms.

A note on terminology Whenever we use the term Shapley value without highlighting a concrete
player, we refer to the operator ϕSh from Definition 17, i.e., a mapping from G toRn. The actual outcomes
of this operator ascribing each player with a single value –

(
ϕSh

i

)n

i=1
– are referred to as their Shapley

values. A single player’s outcome ϕSh
i is also referred to as his Shapley value, but the player has to be

mentioned. The same distinction holds for the Banzhaf value(s) which we shall introduce later.

1.5 Quasivalues and semivalues

The Shapley value is the unique value operator satisfying all of the axioms listed above, but in
many cases we might want to relax or change some of them. In this section we stick to using marginal
contributions as a measure of a player’s impact and study what happens when one of the axioms is not
met. More detail on this topic can be found in Monderer and Samet [35].

Definition 22. Let ϕ be a value operator and i ∈ N a player of a game v ∈ G. ϕ is called a probabilistic
value if there exists a probability distribution function pi : 2N\{i} → [0, 1] ,

∑
S⊆2N\{i} pi (S ) = 1 such that

ϕi can be written as
ϕi (v) = IEpi

[
∆v

i

]
=

∑
S⊆N\{i}

pi (S ) ∆v
i (S ) (1.1)

and ϕ (v) = (ϕi (v))i∈N .

It can be shown that a probabilistic value automatically satisfies the dummy player and additivity
axioms, the Shapley value is thus the unique probabilistic value that is both efficient and symmetric. We
will call efficient probability values quasivalues and symmetric probability values semivalues.



When we first introduced the Shapley value in Definition 17, it wasn’t in the form of a probabilistic
value, but rather as an expected value of marginal contributions with respect to a probability distribution
over the set of permutations of N – this is called a random-order value. Weber [61] actually proved that
a value operator is a quasivalue if and only if it is a random-order value. In our specific case we have
used a uniform distribution, drawing every permutation with probability 1/n!.

In much the same way, a value operator is a semivalue if and only if it is a probabilistic value whose
probability density function only depends on the coalition size,

pi (S ) = p j (T ) , ∀i, j ∈ N, ∀S ⊆ N\ {i} ,∀T ⊆ N\ { j} , |S | = |T | . (1.2)

Every player then receives equal treatment and the resulting operator is symmetric.
We know that the Shapley value is defined with probabilities

p (S ) =
1

n
(
n−1
|S |

) . (1.3)

Now is a good time to ask why we don’t use a uniform distribution weighing every coalition the same.
Seeing that there are

n−1∑
s=0

(
n − 1

s

)
= 2n−1 (1.4)

possible coalitions in N\ {i} ,we arrive at the definition of the Banzhaf value [4].

Definition 23. Banzhaf value is a probabilistic value defined as

ϕB
i (v) ≡

∑
S⊆N\{i}

1
2n−1 ∆v

i (S ) . (1.5)

The coalitions’ probabilities of the Banzhaf value are not player-dependent, hence it is a semivalue.
Since it doesn’t satisfy the efficiency axiom, it is not applicable in scenarios where one wishes to dis-
tribute a game’s outcome among the players, but can be used for determining a player’s power in a game.
We will study this distinction in latter chapters.

1.6 Alternative axiomatizations

In Section 1.3 we have presented the standard set of axioms that uniquely determine the Shapley
value. These are however not the only axioms useful for analyzing properties of a value function, we
will now study a different set that better describes the Banzhaf value.

Lehrer [31] studied the effect of merging players and the impact it might have on their values. He
wanted to know whether merging two players into one is profitable and how this is reflected by the
Shapley and Banzhaf value. To follow his steps, we first have to define a new game arising from the
aforementioned unification of players.

Definition 24. Let (N, v) be a coalitional game and T ⊆ N a group of players. In the amalgamated
T-game, players from T are grouped into a new player denoted by T̊ , and the game is defined as(

N\T ∪
{
T̊
}
, vT

)
, (1.1)

where for each S ⊆ N\T ∪
{
T̊
}

vT (S ) ≡

v (S ) , T̊ < S
v
(
S \

{
T̊
}
∪ T

)
, T̊ ∈ S .

(1.2)



Thus, players in T only enter coalitions together through the new amalgamated player T̊ . We can
then inspect the value of player T̊ in the new T-game and study how it relates to values of the original
individual players.

We now limit ourselves to amalgamating pairs of players, i.e., |T | = 2, and introduce a new axiom
for value operators.

Definition 25 (Superadditivity axiom). A value operator ϕ is superadditive if for any coalitional game
v ∈ G and a pair of its players {i, j} = T ,

ϕi (v) + ϕ j (v) ≤ ϕT̊

(
vT

)
. (1.3)

This means that a superadditive operator ascribes bigger value to the merged pair than is the sum of
its parts and makes merging profitable8. Lehrer than goes on to prove the following theorem that states
that the Banzhaf value is the only operator satisfying this axiom and the ones introduced before.

Theorem 26 (Lehrer [31]). The Banzhaf value is the unique value operator simultaneously satisfying
the dummy player property, symmetry, additivity, and superadditivity.

Casajus [9] studied superadditivity further and found redundancy in the set of axioms of Theorem 26.
He proposed yet another axiom, replacing the inequality of the superadditivity axiom with an equality,
creating a restricted version of the efficiency axiom for groups of two players.

Definition 27 (2-efficiency axiom). A value operator ϕ satisfies the 2-efficiency axiom if for every coali-
tional game v ∈ G and a pair of its players {i, j} = T ,

ϕi (v) + ϕ j (v) = ϕT̊

(
vT

)
. (1.4)

He further shows that the additivity and superadditivity axioms automatically imply 2-efficiency, and
this in turn implies symmetry. Theorem 26 can thus be restated only with the dummy player axiom,
additivity, and superadditivity.

Moreover, 2-efficiency in itself is enough to characterize the Banzhaf value and distinguish it from
others:

Theorem 28 (Casajus). The Banzhaf value is the unique value operator that satisfies both the dummy
player property and 2-efficiency.

Interestingly enough, we have arrived at a property that discriminates between the Shapley and
Banzhaf values: whereas the Shapley value is efficient when all players are amalgamated into one and
their values are summed up, ∑

i∈N

ϕSh
i (v) = ϕSh

N

(
vN

)
= v (N) , (1.5)

the Banzhaf value is efficient for every pair of players,∑
i∈T

ϕB
i (v) = ϕB

T̊

(
vT

)
, ∀T ⊆ N, |T | = 2. (1.6)

8This is especially useful for superadditive games. The interpretation of this axiom is less clear for other types of games, or
games with both positive and negatives values.



Algorithm 1.1 Approximate sampling of a random-order value

INPUT: coalitional game v; # of samples m ∈ N; probability distribution p over
Π (N)

OUTPUT: estimates of players’ values (ϕ̂1 (v) , . . . , ϕ̂N (v))

ϕ̂i (v)← 0 ∀i ∈ N
for sample in m:

randomly draw π from Π (N) according to p
for player i in N:

determine Prei (π)
calculate ∆v

i

(
Prei (π)

)
= v

(
Prei (π) ∪ {i}

)
− v

(
Prei (π)

)
ϕ̂i (v)← ϕ̂i (v) + ∆v

i

(
Prei (π)

)
end

end
ϕ̂i (v)← ϕ̂i(v)

m ∀i ∈ N

1.7 Calculation via sampling

Calculating marginal contributions for every possible coalition in N soon proves to be impossible
as their number grows exponentially and these calculations would have to be carried out for each player
individually. It is therefore advantageous to resort to approximate sampling techniques.

Castro, Gómez, and Tejada [10] proposed two unbiased sampling algorithms for approximating the
Shapley value and a general semivalue. These operate in polynomial time and their speed hinges on the
complexity of computing values of the coalitional function v.

We will slightly improve their algorithm for sampling of the Shapley value to extend its functionality
to any random-order value ϕ defined as

ϕi (v) =
∑

π∈Π(N)

p (π) ∆v
i

(
Prei (π)

)
, (1.1)

where p : Π (N) → [0, 1] is a probability distribution function over Π (N). In each step of the sampling
procedure we randomly draw a permutation π from Π (N) and for each player calculate her marginal con-
tribution to Prei (π). The sample mean of the calculated contributions gives us the desired approximation.
The algorithm is summarized in pseudocode in Algorithm 1.1.

This is a simple procedure for approximating the sample mean and thus, due to the central limit
theorem, several of its properties are evident: it yields estimators that, for each i ∈ N, tend to the normal
distribution, are unbiased (IE

[
ϕ̂i (v)

]
= ϕi (v)), consistent in probability,

lim
m→+∞

IP (|ϕ̂i (v) − ϕi (v)| > ε) = 0, ∀ε > 0, (1.2)

and their variance is given by σ2
i/m, where σ2

i is the variance of the original population. The referenced
article also shows that the estimates are efficient (in terms of ax: efficiency) as well as the random-order
value,

n∑
i=1

ϕ̂i (v) = v (N) . (1.3)

The algorithm for approximating semivalues is a bit more complex, as the set of coalitions a player



Algorithm 1.2 Approximate sampling of a semivalue

INPUT: coalitional game v; player i, # of samples m ∈ N; probability density
function p over 2N\{i}

OUTPUT: estimate of player i’s value ϕ̂i (v)

ϕ̂i (v)← 0
for sample in m:
randomly draw S from N\ {i} according to p
calculate ∆v

i (S ) = v (S ∪ {i}) − v (S )
ϕ̂i (v)← ϕ̂i (v) + ∆v

i (S )
end
ϕ̂i (v)← ϕ̂i(v)

m

can enter is different from those of every other player (whereas before we used permutations, which
create these coalitions using the preceding players). This means that we have to use n independent
sampling procedures, one for every player. This however proves not to be a big issue, as the calculation
of v (S ) in the latter examples is more computationally demanding than the sampling procedure itself.

Algorithm 1.2 shows the pseudocode for approximating a semivalue

ϕi (v) =
∑

S⊆N\{i}

p (S ) ∆v
i (S ) . (1.4)

The resulting estimates are, again, unbiased and consistent in probability.



Chapter 2

Interpreting nontransparent models

In recent years we have witnessed a surge of interest in machine learning and its applicability in
industry. In their annual 2019 AI Index Report1, Stanford Institute for Human-Centered Artificial Intel-
ligence has calculated that “between 1998 and 2018, the volume of peer-reviewed AI papers has grown
by more than 300%, accounting for 3% of peer-reviewed journal publications and 9% of published con-
ference papers”, while the global machine learning industry was estimated by Zion Market Research2 at
US$ 1.58 billion in 2017 and expected to reach US$ 20.83 billion by 2024.

Models’ performance has risen as well in the past decade, for instance, the accuracy of the best
model in the famous annual image classification challenge ILSVRC [47] increased from 71.8% to 97.3%
between 2010 and 2017.

However, accuracy has often come hand in hand with model complexity arising from nonlinear mod-
els trained via numerical optimization. The associated lack of interpretability and intuitive understanding
of the model’s underlying functionality has produced strong calls for development of interpretation meth-
ods capable of extracting comprehensible rules that the model follows.

We are warned against ascribing omnipotent power to black-box algorithms and uncritically accept-
ing their decisions without further investigation [21]. Nonlinear models might erroneously discover
spurious correlations and use them as a basis for prediction or amplify historical biases implicitly con-
tained in the data [38]. On the other hand, being able to understand the model is advantageous in most
scenarios and crucial in several high-risk areas such as medicine, self-driving cars, finance, justice, or
science.

By understanding the model’s performance, we are able to increase trust and justify its deployment
and use in production. Discovering errors in its reasoning can lead to corrections and development of a
better model that produces results we understand and better achieves its goals.

Furthermore, in May of 2018, the European Union General Data Protection Regulation (GDPR) took
effect, whose Recital 713 states that “[every data subject has the right to] obtain an explanation of the
decision reached” when the subject’s data are used in an automated decision making process and, more-
over, “[the controller should] prevent ... discriminatory effects on natural persons on the basis of racial
or ethnic origin, political opinion, religion or beliefs, trade union membership, genetic or health status or
sexual orientation.” This has created an even bigger demand for interpretation techniques meeting these
goals.

This chapter is organized as follows: we start in Section 2.1 with a short review of current inter-
pretability methods together with their systematization. One such method uses the framework of coali-

1Available at https://tinyurl.com/ai-index19.
2The report and its summary can be found at https://tinyurl.com/zion-report.
3Available at https://tinyurl.com/gdpr-explain.

15



tional game theory developed in the previous chapter and we inspect this method in detail in Section 2.2.
In Section 2.3 we propose a new way of interpreting categorical variables built upon the axioms presented
above. Exact calculation of results is once again computationally infeasible and we must resort to Monte
Carlo sampling: we describe the algorithms and their properties in Section 2.4. Finally, Section 2.5 is
devoted to recent articles that have extended the capabilities of this method and that further analyzed its
results.

2.1 Interpretation methods in current literature

The field of Explainable AI is still highly fractured, without a clear systematization or rigorous
definition of goals and metrics for comparison of different approaches. In recent years we have seen a
couple of surveys collecting various methods and attempts to set a firm foundation for the field. These
include Doshi-Velez and Kim [15], Došilović, Brčić, and Hlupić [14], Guidotti et al. [25], and Murdoch
et al. [36] – all of them comprehensive reviews summarizing the progress in this area.

There are several models generally considered interpretable by their very construction, for instance,
linear or logistic regression, decision trees, or rule-based models. The rest of them need additional
analysis to obtain intuitively understandable explanations. Most of the explanation techniques work post
hoc, i. e., they use an already trained model and test its performance in various ways to reveal the
underlying mechanisms. There are several possible outcomes of these methods, ranging from feature
metrics, where each feature receives a score describing its impact on the model, to bags of rules or
saliency mask for image recognition. Kopp, Pevný, and Holeňa [30] have created anomaly detectors
which return a random forest explaining how the anomaly differs from majority.

The interpretation methods can be divided into two groups. Global methods provide explanations
for the entire model, usually in the form of an approximation that is both understandable and faithful to
the original model. Our main focus, however, will be on local methods. These take a model and explain
its decisions for a single specific datapoint, without considering the behaviour on other datapoints.

Another line of division is between methods that are model-specific and those that are model-agnostic.
Model-specific methods are, as the name suggests, tuned to work with a single class of models and use
their specifics. A prominent model-specific interpretation technique is DeepLift by Shrikumar, Green-
side, and Kundaje [51], which analyzes neural network through perturbing the input values and com-
paring the outputs to a reference value. Model-agnostic methods, on the other hand, treat the analyzed
model as a black-box and are thus capable of interpreting an arbitrary model.

Two interpretation methods in particular have received wide attention: LIME and Shap. We will
study Shap in great detail over the following sections, it is, however, important to include LIME in the
discussion as well, due to their connection explored later in Section 2.5.

LIME, first described by Ribeiro, Singh, and Guestrin [45], creates locally accurate understandable
approximations to the underlying model. If L (f, g, πx) denotes a distance measure between functions f
and g in the area defined by πx, where f is the function we wish to approximate and g is the approximation,
Ω (g) denotes a measure of complexity (or interpretability) of function g, LIME then searches for an
approximation that minimizes both its distance from f and its complexity:

ξ (x) = arg min
g

(L (f, g, πx) + Ω (g)) (2.1)

If we, for instance, choose for g to be a hyperplane in the feature space, we obtain a linear approx-
imation to the model f which is locally accurate and intuitively understandable thanks to its connection
to linear regression. LIME has been widely used due to its simple nature and model-agnosticism, the



authors have provided an open source library for Python at https://github.com/marcotcr/lime. Guo et al.
[26] have further developed LIME, making it suitable for security applications.

Our focus for the rest of this chapter will be on a different local and model-agnostic method. We will
employ foundations of cooperative game theory described in the previous chapter to obtain interpreta-
tions through feature importances.

Before we move on to game theory; however, it is important to acknowledge that interpretation
methods have also been met with criticism. Most notably, Rudin [46] argues that by incorporating models
for interpretation, we create another layer of complexity that makes it harder to intuitively understand our
data. She asks whether a black-box opened by an inaccurate interpretation method counts as valid under
the current legislation and presents several compelling arguments for using easily interpretable models
whenever possible.

2.2 Using Shapley values for model interpretation

In their article, Štrumbelj and Kononenko [57] propose an interpretation technique that is of special
interest for us in this text. It works, to put it shortly, by defining a coalitional game over a set of features
of a model and then perturbing their values, hence calculating the Shapley value for each of the features.
Here we analyze this technique in detail and provide algorithms for its calculation.

2.2.1 Definition of the coalitional game

The authors have originally used a different approach to arrive at this concept, where they implicitly
define interactions among a subset of features, split them between the members of this subset and then
they prove that this leads to the formulation of the Shapley value. Here we have decided to take a more
straightforward road and define the coalitional function and its Shapley value explicitly instead.

Before we do that, however, we have to set up basic notation and concepts used throughout this
chapter. We consider a feature space comprising of n random variables (features) X1, . . . , Xn whose
sample spaces are X1, . . . ,Xn, respectively. As we did in the previous chapter, we use N = {1, . . . , n} to
denote the set of indices of all features. Y is the target variable with sample space Y, for now assumed
to be one-dimensional Y ⊆ R. We deal with the extension to multivariate target spaces later.

We further define Z = X × Y, where X = X1 × · · · × Xn, and use IPZ to denote a joint probability
distribution of a random vector Z = (X1, . . . , Xn,Y). A datasetD is then the set of m ∈ N random samples
from Z, each drawn independently according to IPZ:

D =

((
xi, yi

) iid
∼ IPZ (x, y)

)m

i=1
(2.1)

As Fokoué puts it in [19]: “one of the most pervading goals in both theoretical and applied statistical
machine learning is to find the function f∗ : X → Y that best captures the dependencies between the xi’s
and the yi’s in such a way that, given a new random (unseen) observation znew = (xnew, ynew) ∼ IPZ (x, y)
with znew < D, the image f∗ (xnew) provides a prediction of ynew that is as accurate and precise as possible,
in the sense of yielding the smallest possible discrepancy between ynew and f∗ (xnew).”

Finding this function is beyond the scope of this text. We refer the reader to a plethora of excellent
textbooks covering the topic, such as those by Bishop [6], Goodfellow, Bengio, and Courville [24], and
Murphy [37]. We assume that this function has already been found and trained on the dataset and from
now on we denote it simply by f. We will often refer to this function as the model.

We wish to analyze this function through perturbing some of the features’ values and observing the
changes in its output. In order to do this, we define an extension of the standard indexing of vectors,

https://github.com/marcotcr/lime


where for each set of indices S ⊆ N, we consider the following vector and subspace, respectively:

XS ≡ (Xi)i∈S ,

XS ≡ (Xi)i∈S ,

and xS = (xi)i∈S for any x ∈ X. Let IPS ≡ IPXS denote the marginal probability distribution of features in
S .

Finally, we denote the complement of S ⊆ N relative to N with S c

S c ≡ N\S (2.2)

and we use fxS to denote a section of f through xS , i.e., fxS : XS c → Y such that

fxS (xS c) ≡ f (xS , xS c) . (2.3)

This allows us to randomly sample features in S c while keeping others fixed to the values xS .
Everything is now ready for the definition of the coalitional game, we do so for an arbitrary datapoint

x ∈ X in the following way. A coalitional game is defined by

1. a set of its players N, and

2. a coalitional function v : 2N → R.

Here, since we define a different coalitional game for every x, we specify so in the notation and use vx.
We consider N to be the set of the model’s features and for each coalition S ⊆ N we wish to calculate

the change in f’s output when features in S are known and equal to their values in xS compared to the
situation when they are not. Ideally we would not reveal the values of xS c to the model at all, but that is
not possible for most of the available machine learning methods, we thus have to use the data distribution
to calculate the expected value of the change.

The coalitional function for interpreting model f at datapoint x is defined for any coalition S ⊆ N as

vx (S ) ≡ IEIPS c

[
fxS (XS c)

]
− IEIPN [ f (XN) ] . (2.4)

In the first expected value we fix features in S to be equal to their real values in x and consider values
of features in S c to be unknown, following the marginal probability distribution. We then subtract the
expected value when none of the features are known, this difference quantifies the impact of knowing the
values of features in S .

Marginal contributions for this game can now be calculated from Equation (1.1) as

∆x
i (S ) = vx (S ∪ {i}) − vx (S ) , (2.5)

describing the change in the output obtained by disregarding feature i’s value. The resulting coalitional
game’s Shapley value is defined, according to Equation (1.3), by

ϕSh
i

(
vx) =

∑
S⊆N\{i}

1

n
(
n−1
|S |

)∆x
i (S ) . (2.6)

We will refer to this value in the context of explaining a model f as the Shapley interpreter.
In the above, we have made an important assumption that the target space is one-dimensional. When

f is a multivariate model, we define a different coalitional game for every dimension in Y and calculate
each feature’s contribution toward the output in this dimension independently.



2.2.2 The game’s properties

This interpretation method is, if we follow the taxonomy laid out in Section 2.1, model-agnostic and
local. The underlying model needs to be trained only once at the beginning of the process, the subsequent
analysis uses this model only as a black-box for prediction at arbitrary datapoints. The calculations can
easily be parallelized, because Shapley values for different features can be calculated independently of
each other.

Notice that this concept takes into account all possible subsets of the feature set, thus perturbing
multiple features at once. This results in exponential complexity; however, perturbing only one feature
at a time, although it might seem intuitive, does not consider interactions between features and leads to
faulty results. So, in an example in [56], the authors show how this easier approach gives values equal to
0 for both features when considering the OR model fOR (x1, x2) = x1∨ x2 and interpreting it for datapoint
x = (1, 1) when the data is uniformly distributed, i.e. each feature is equal to 1 with probability 1/2 .

We see that changing one feature at a time does not change the outcome of fOR and would ascribe
zero importance to features x1, x2, albeit both are clearly significant for the model’s output of 1. On
the other hand, using the Shapley interpreter and perturbing features in every possible coalition yields
values equal to 1/8 for both features, capturing their contributions better. The unfortunate increase in
computational complexity will be dealt with in the next section of this chapter.

The theoretical groundwork for coalitional games from previous chapter gives us three important
properties of the Shapley interpreter:4

1. It satisfies the dummy player property, i.e., a feature irrelevant to the model is assigned zero value.

2. It is symmetric, hence two different features contributing exactly the same are assigned equal
values.

3. It is efficient, the sum of players’ values is equal to the worth of the grand coalition N.

Specifically, efficiency tells us that

n∑
i=1

ϕSh
i

(
vx) = vx (N)

(2.4)
= f (x) − IEIPN [ f (XN) ]

and thus each feature’s Shapley value describes its portion in the offset between the model’s actual
prediction and the prior prediction averaged across the whole feature space.

We can inspect this visually in Figure 2.1 on page 20, an explanation drawn from the SHAP Python
package5 created by Lundberg and Lee [33]. This figure interprets a support vector machine trained on
the Iris flower data set and explains how each feature contributes to the difference between the model’s
average (base) value and the outcome class prediction for a particular flower and its characteristics. For
this instance, each of the four features’ values lower the model’s probability estimate that this instance
belongs to a specific species of Iris, setosa, resulting in the output probability of 0.01, with petal length
being the most decisive factor.

Another way of understanding the results of the Shapley interpreter is through its relation to additive
linear models of the form

g (x) =

n∑
i=1

gi (xi) + β0, (2.7)

4See Axiom 11, Axiom 12, and Axiom 13.
5Available at https://github.com/slundberg/shap.

https://github.com/slundberg/shap


Figure 2.1: Example of local model explanation created by SHAP.

where gi : Xi → R and β0 ∈ R is a bias term. If we define β0 to be equal to IEIPN [ f (XN) ] and gi (xi) =

ϕSh
i (vx) for every i ∈ N, we have transformed f into its additive form that is locally accurate, i.e.

f (x) = g (x) . (2.8)

This means that we locally approximate f with a linear regression model which is easily understandable
and explainable. If we do this for every x, we can then calculate the output of any arbitrarily chosen
model by summing up n + 1 terms. This is exploited in [58] where the authors create so-called nomo-
grams, essentially reducing the calculations of a multilayered perceptron into a diagram that fits onto a
piece of paper.

A largely unanswered question is the aggregation of local Shapley values for every data point into
a global interpretation framework. In their original article, Štrumbelj and Kononenko use the standard
deviation of

{
ϕSh

i (vx) ; x ∈ X
}

as a proxy of feature i’s importance on the model. Another, perhaps more
straightforward, definition of the global value is

IEIPN

[
ϕSh

i

(
vXN

)]
. (2.9)

This value better considers the distribution of data and could help investigate the feature’s overall impact
on the population. A thorough analysis and comparison of global Shapley value aggregation is, to the
best of our knowledge, missing in the literature.

2.3 Interpreting dummy-encoded categorical variables

The specific treatment of categorical features in machine learning models creates a potential issue for
their interpretation via the Shapley interpreter. Here we propose a better way of dealing with them build
upon the axioms presented in the previous chapter and show its desirable results on a simple example.

Categorical features are defined by having a finite number of discrete values. An apparent example
of such a feature might be education with values such as elementary, graduate, doctorate, etc. A number
of commonly used machine learning models can only work with numerical features – regression and
support vector machines, to name a few – categorical features are thus transformed to be processable by
them. A widespread solution is transforming every categorical variable into a group of dummy features,
each of those indicating the presence or absence of a particular categorical feature’s value [16].

For instance, a categorical random variable c with K ∈ N possible values from the set {1, . . . ,K} gets
replaced by K dummy binary variables Dc =

{
c(k)

}
k∈{1,...,K}

, where

c(k)
≡

1 , c = k
0 , c , k

, k ∈ {1, . . . ,K} . (2.1)

This method of transformation, however, brings about issues with the implementation of the Shapley
interpreter as presented in the previous section. The interpreter cannot distinguish that the group of



dummy features is in fact one feature and treats them all separately, calculating a value for every one of
them.

Let’s take another look at the coalitional function from Equation (2.4):

vx (S ) ≡ IEIPS c

[
fxS (XS c)

]
− IEIPN [ f (XN) ] (2.2)

Under this framework a strict subset of Dc might be a part of coalition S – this subset is then considered
as known – while the rest is not and its values are randomly estimated. This approach entirely omits the
information, that the features in Dc constitute one single feature, and should thus enter coalitions all at
once.

In Section 1.6 we have defined the amalgamated T -game, where players from a group T ⊆ N are
merged together to form a single new player denoted by T̊ . The coalitional function is then redefined to
assure that all players in T enter coalitions simultaneously:

vT (S ) ≡

v (S ) , T̊ < S ,
v
(
S \

{
T̊
}
∪ T

)
, T̊ ∈ S ,

(2.3)

where S ⊆ N\T ∪
{
T̊
}
. To employ this idea and solve the problem of categorical variables described

above, we define groups of dummy features for every categorical feature and then amalgamate each
of these groups into one player describing the corresponding categorical feature as a whole through its
Shapley value ϕSh

T̊
.

We have seen through the study of game theory axioms that summing up Shapley values of individual
dummy features – as is often the recommended practice – will not produce this result, since we cannot
generally claim that ∑

i∈T

ϕSh
i (v) = ϕSh

T̊

(
v(T )

)
. (2.4)

The Shapley value is generally only efficient when T = N, which is a pointless case of only one categor-
ical feature without the need for interpretation. We thus cannot use the old approach to obtain the value
ϕSh

T̊
. Moreover, it would not be advantageous, as the amalgamated T -game can greatly reduce the number

of features for the interpreter and speed up the calculation. The Banzhaf value is efficient when |T | = 2,
which is, again, an uninteresting case of a binary variable that does not need to be dummy encoded.

Example 29. An often used approach to interpreting categorical features is summing up the individual
Shapley values of their dummy features. We have argued above why this is not ideal, here we present a
simple example showing that this method produces wrong results and compare it with the newly proposed
method.

Table 2.1: Dataset, model, and their dummy encoded counterparts

x1 x2 f (x1, x2)

1 A 1
1 B 1
1 C 1
0 A 1
0 B 0
0 C 0

_

x1 x(A)
2 x(B)

2 x(C)
2 f′

(
x1, x

(A)
2 , x(B)

2 , x(C)
2

)
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0



Table 2.1 shows a dataset with 2 features, binary x1 and categorical x2 with values {A,B,C}, and the
outcome of a classification function

f (x1, x2) ≡ (x1 == 1) ∨ (x2 == A) . (2.5)

The second table shows the same dataset, but with dummy encoded features
{
x(A)

2 , x(B)
2 , x(C)

2

}
. For sim-

plicity, we denote Shapley values of features in the first dataset as ϕx1 and ϕx2 , and as ϕ′x1
, ϕ′

x(A)
2

, ϕ′
x(B)

2

, and

ϕ′
x(C)

2

for the second dataset.

Let us focus on the first datapoint where x1 = 1, x2 = A and find Shapley values for the two features.
It can easily be shown that the two players are symmetric and their values are equal to

(
ϕx1 , ϕx2

)
=

(1/6, 1/6) .
We’d expect symmetry to hold between the features in dummy encoded dataset as well, since this is

just a natural extension and should not affect the way they are interpreted in any way. However, Shapley

values for this set are equal to
(
ϕ′x1

, ϕ′
x(A)

2

, ϕ′
x(B)

2

, ϕ′
x(C)

2

)
= (1/8, 1/8, 1/24, 1/24), and if we calculate the value

for ϕ′x2
the usual way by summing up the values of dummy players, we get

ϕ′x2
=

∑
k∈{A,B,C}

ϕ′
x(k)

2
=

5
24
, (2.6)

which does not equal ϕ′x1
. We would hence be mislead and conclude that features x1 and x2 have a

different impact on the output of the function.
On the other hand, using the T -game and grouping dummy features x(A)

2 , x(B)
2 , x(C)

2 into T̊ , we get(
ϕ′x1

, ϕ′
T̊

)
= (1/6, 1/6) – the correct answer.

2.4 Sampling Shapley values

We have already discussed the problems of exponential complexity, here we propose an algorithm to
deal with this issue. We will return back to the previous chapter and use Algorithm 1.1 for sampling of
the Shapley interpreter, adjusting it to our needs.

First, let us transform the Shapley value from Equation (2.6) into its random-order form:

ϕSh
i

(
vx) =

1
n!

∑
π∈Π(N)

∆x
i

(
Prei (π)

)
, (2.1)

where Π (N) is the set of all permutations of N and Prei (π) denotes the set of features preceding i in
permutation π – the equivalence of this definition was discussed in Section 1.4.

The following algorithm differs from the formerly introduced Algorithm 1.1 in two main ways.
Firstly, we have to take into account the concrete nature of the coalitional function in this example,
which is itself an expected value,

vx (S ) ≡ IEIPS c

[
fxS (XS c)

]
− IEIPN [ f (XN) ] (2.2)

with respect to the underlying distributions of features in X. Computing this value precisely would soon
prove to be computationally infeasible as well, forcing us to turn to yet another sampling procedure. We
deal with this issue in subsec:sampling-kononenko.

Secondly, whereas in the above algorithm we took advantage of the fact that a single permutation
π is capable of determining marginal contributions of every one of the features in N, here we have to



Algorithm 2.1 Sampling the Shapley interpreter for one feature

INPUT:
-model f
-feature i
-data point x
-# of samples m ∈ N
-probability density functions of features in X

OUTPUT:
-estimate ϕ̂i of i’s value in the Shapley interpreter

ϕ̂i ← 0
for sample in m:

randomly draw π from Π (N) with uniform probabilities
randomly draw y from X

construct z+, z−: z+
k = z−k =

xk , k ∈ Prei (π)

yk , k ∈
(
Prei (π)

)c

specify value of feature i: z+
i = xi

calculate marginal contribution of feature i:

∆̂π,y
(
Prei (π)

)
= f

(
z+) − f (z−

)
ϕ̂i ← ϕ̂i + ∆̂π,y

(
Prei (π)

)
end
ϕ̂i ←

ϕ̂i
m

consider that the calculation of marginal contributions involves evaluating f, the most computationally
difficult part of the algorithm. It is therefore advantageous to choose cautiously which feature’s value
should be calculated in order to maximize accuracy of the estimates with a given number of samples.
This is the topic of 2.4.2.

2.4.1 Sampling one feature

Algorithm 2.1 describes, in pseudocode, sampling of feature i’s Shapley value. In each sample
we draw a random vector y from the feature space together with a permutation π and set y’s elements
in indices from Prei (π) to be equal to corresponding elements of x. We then estimate the marginal
contribution of i to this permutation.

In another words, the sampling population in this case is the set of marginal contributions

Px =
{
∆̂π,y; π ∈ Π (N) , y ∈ X

}
(2.3)

and we draw m samples P1, . . . , Pm from Px at random with replacement according to the probability
distributions of X and Π (N)6. The final estimate is then calculated as the sample mean, 1/m

∑m
k=1 Pk.

Štrumbelj and Kononenko [55] analyze the properties of this approximation. They use datasets with
a small number of features (enabling them to calculate their true Shapley values) and show that sufficient
accuracy is achieved with less than 10000 samples per feature while using 1000 samples brings the
absolute error down to around 0.05.

6In the case of Shapley value, this is, of course, a uniform distribution.



As we have seen in Section 1.7, the algorithm creates estimates that approximately follow the normal
distribution with mean ϕSh

i (vx) and variance σ2
i/m, where σ2

i is the population variance – these facts allow
us to develop a second algorithm for distributing the total number of samples in a way that minimizes
the expected error of the approximation.

2.4.2 Adaptive sampling

For a complete interpretation we need to repeat Algorithm 2.1 for every feature in N. Let us suppose
that the maximum number of samples at our disposal is M ∈ N: distributing this number naively and
allocating M/n samples to every feature could cause redundant calculations, for instance, in the case of
features not contributing to the model. We will now present a better criterion for distributing M, adaptive
sampling. To simplify the notation in the following paragraphs, let us for now denote i’s Shapley value
from Equation (2.1) simply as ϕi and its approximation from Algorithm 2.1 as ϕ̂i, our goal is to minimize
the sum of their squared differences. By mi we denote the number of samples used for approximating the
Shapley value of feature i.

In the preceding discussion we have seen that

ϕ̂i ≈ N

ϕi,
σ2

i

mi


and thus the following holds:

ϕ̂i − ϕi ≈ N

0, σ2
i

mi

 (2.4)

We know from probability theory that IE
[
Z2

]
= Var [Z] + IE [Z]2 for any random variable Z and so, if we

take Z B (ϕ̂i − ϕi), use the linearity property of IE [·], and substitute values from Equation (2.4), we can
write

IE

 n∑
i=1

(ϕ̂i − ϕi)2

 =

n∑
i=1

σ2
i

mi
. (2.5)

From now on, we distribute samples one by one and use Algorithm 2.1 with m = 1. We first take
a portion of M and use it to calculate initial approximations for all the features7, obtaining estimates of
their variances σ̂2

i as well. Then, in each step we wish to determine which feature should be selected
to minimize the expected error of the approximation – the sum on the right hand side of Equation (2.5).
To do so, let us suppose that up until the current iteration we have assigned (m1, . . . ,mn) samples to the
features 1, . . . , n. The sum

∑n
i=1

σ̂2
i/mi will be minimized by selecting feature j ∈ N that satisfies

j = arg max
k∈N

 σ̂2
k

mk
−

σ̂2
k

mk + 1

 , (2.6)

or, in another words, whose contribution to the error will decrease the most before the next step. This is
summarized in Algorithm 2.2.

This approximation decreases the exponential time complexity to O (n ·T (f)), where T (f) is the
time complexity of evaluating model f at an arbitrary datapoint.

7In all of the examples in this thesis, this portion was arbitrarily set to M/5.



Algorithm 2.2 Adaptive sampling of all the features

INPUT:
-model f
-data point x
-total # of samples M ∈ N
-# of samples mmin ≤ M before adaptive sampling starts

OUTPUT:
-estimates {ϕ̂i; i ∈ N} for prediction at x

ϕ̂i ← 0, mi ← 0, ∀i ∈ N
while

∑N
i=1 mi ≤ M:

if
∑N

i=1 mi ≤ mmin :
choose feature j s.t. m j ≤ mmin/n

else:
choose feature j that maximizes σ̂2

j/m j − σ̂2
j/m j+1

∆̂ j =result of Algorithm 2.1 for feature j with m = 1
ϕ̂ j ← ϕ̂ j + ∆̂ j

calculate new estimate of σ̂2
j

m j ← m j + 1
end

ϕ̂i ← ϕ̂i/mi, ∀i ∈ N

Estimating variance The last remaining question is that of estimating the variances σ̂2
i for each feature

i. For the sake of text clarity, in the following paragraphs we consider m samples (x1, . . . , xm) and we
wish to compute their population variance σ2

m. Let x̄m denote the sample mean: x̄m = 1/m
∑m

i=1 xi.
As Chan, Golub, and Leveque [11] and Knuth [29] note, using the naive calculation

σ2
m =

1
m

m∑
i=1

(xi − x̄m)2 ,

or equivalently

σ2
m =

1
m

 m∑
i=1

x2
i −

1
m

 m∑
i=1

xi

2 ,
could lead to computational rounding errors due to subtracting two large numbers, especially when m is
large and variance is small. As it happens, this is the case for the Shapley interpreter, where we use many
samples and the algorithm converges quite quickly.

Welford [62] suggested a different iterative approach, updating the quantity

S m =

m∑
i=1

(xi − x̄m)2 = m · σ2
m (2.7)

through recurrence relations

x̄m = x̄m−1 +
1
m

(xm − x̄m−1)



and

S m = S m−1 + (xm − x̄m−1) (xm − x̄m)

with initial values set naturally as

x̄1 = x1,

S 1 = 0.

This method is less likely to fail due to numerical errors and, since we estimate our approximations
iteratively one by one, it is also convenient for our use.

2.5 Follow-up work

Several authors have taken up the Shapley interpreter and used it as a basis for further interpretation
methods. Here we provide their short survey.

Notably, Lundberg and Lee[33] defined a class of additive feature attribution methods (similarly to
Equation (2.7)) and showed that both LIME and the Shapley interpreter fall under this class. This allowed
them to state that there is only one unique solution within this class of methods – the Shapley value –
satisfying three desirable properties. They then provide a concrete definition of LIME (see Equation
(2.1)) whose outcome is identical to that of the Shapley interpreter, but estimates values for all features
simultaneously resulting in a faster approximation.

Frye, Feige, and Rowat [22] propose relaxing the symmetry axiom and using quasivalues for inter-
preting a model instead. They call this framework ASV – Asymmetric Shapley Values. The argument
against symmetry lies in the fact that it can conceal important influences on the model and relaxing this
axiom helps with incorporating knowledge of any causal relations among the features.

For instance, we can order features into two groups so that those with a causal precedence before
the latter come in the first group and the rest in the second (one such example might be age which
largely determines marital status). Through this we can discover the true effect the features in the first
group have on the model without incorporating their implicit impact on the latter features. We can also
gain interesting insights into the model by ordering the features the other way around: allowing only
permutations where, e.g., sex comes before test scores while interpreting a model for college admission,
answers the question of how much does candidates’ sex matter after their test results are known.

Implementing ASV is simple, in Section 1.7 we have presented Algorithm 1.1 for sampling of general
quasivalues. The only difference from the implementation of the Shapley interpreter is then specifying
a concrete probability distribution over Π (N) that encompasses any causal knowledge we might have
about the data.

Another contribution of the article lies in suggesting a data generating process that creates data “on
manifold”. The authors note that the Shapley interpreter (see Algorithm 2.1) places no constraints on
the perturbed data points, causing them to be unrealistic and forcing the model to predict on vectors that
have no true relation to the training dataset.

This fact is further developed by Slack et al. [52], who have realized that data points used for
interpreting a model are fundamentally different from those used in real scenarios and trained a neural
network discerning between the two. This effectively allowed them to create a model that behaves fairly
when it judges it is being evaluated in an interpretation environment, whilst hiding an unfair model used
otherwise.

Aas, Jullum, and Løland [1] have tried to counter this issue and came with a novel process for data
generation that takes dependencies among features into account. They provide several possibilities for



improvement of sampling from the marginal distribution in Equation (2.6), ranging from fitting a Gaus-
sian distribution to the data to Monte Carlo methods. This however further increases the computational
complexity of the Shapley interpreter, as conditional probability distributions have to be calculated, or at
least approximated, at every step of the sampling procedure.



Chapter 3

Correlation analysis of value operators

In the previous chapter we defined the Shapley interpreter, an interpretation technique built upon
coalitional game theory and its Shapley value. In Chapter 1, we saw that the Shapley value is not the
only possible solution and we examined properties of other value operators. Here we compare the results
of the standard Shapley value with the Banzhaf value on several benchmark datasets.

Banzhaf value, defined in Definition 23 by

ϕB
i (v) ≡

∑
S⊆N\{i}

1
2n−1 ∆v

i (S ) , (3.1)

are a special case of semivalues where each coalition is drawn with the same probability. It satisfies the
dummy player axiom and it is additive and symmetric, however, contrary to the Shapley value, it is not
efficient. This explains its common use as index of power describing the size of each player’s impact on
the game.

The use of the Banzhaf value in the context of machine learning explainability has thus far been only
sparsely explored. In an article by Somol, Grim, and Pudil [53], the authors propose a method for fea-
ture selection by averaging marginal contributions across a random subsample of coalitions: essentially
employing the Banzhaf value, albeit the connection to game theory is not explicitly emphasized in the
article. Recently in an article by Patel, Strobel, and Zick [42], Banzhaf value and its interaction indices
are proposed as the optimal solution minimizing approximation error between the model and k-degree
polynomials of the form

gk (x) = I0 +
∑

S⊂N;|S |≤k

I (S )
∏
j∈S

x j. (3.2)

The Shapley and Banzhaf value operators differ in the way they ascribe probabilities to coalitions
S ⊆ N\ {i}. Whereas the Banzhaf value uses a uniform distribution over 2N\{i}, the Shapley value uses a
probability distribution defined by

IP (S ) =
1

n ·
(
n−1
|S |

) . (3.3)

We see that this is equal to first choosing a cardinality of S from {0, . . . , n − 1} with uniform probabilities
1/n, and then picking a random coalition with that cardinality out of the

(
n−1
|S |

)
possibilities. Coalitions

with small or large (close to n) cardinalities are thus picked more often and they play a large role when
calculating the final value. This can be closer seen in Figure 3.1, where the probabilities of picking a
concrete coalition of a given cardinality are compared.

Freixas [20] theoretically analyzed the ordinal equivalence of semivalues (i.e. whether the resulting
players’ values have the same order – more about this later) and defined subclasses of games where they

28



Figure 3.1: Comparison of IP (S ) for S of a given cardinality for two games with n = 11, 61. Notice that
the probabilities differ in many orders of magnitude.

are equivalent. Nevertheless, we cannot generally use his results to an arbitrary interpretation game de-
fined in Section 2.2 and we have therefore carried out an extensive comparison described in the following
sections.

We have trained and tested several models on several datasets, these are all presented and described
in Section 3.1. In Section 3.2 we introduce the chosen method of comparison, the final results and their
discussion are in Section 3.3.

In Section 2.4 we presented an algorithm for sampling the results of the Shapley interpreter, its
extension to the Banzhaf value is straightforward with the use of Algorithm 1.2. We have implemented
all of the algorithms using the standard libraries of Python version 3.7.6.

3.1 Datasets and models

We have prepared 3 datasets and trained 3 models on each of them. Here we first present and describe
the datasets, then we turn to the models, their hyperparameters, and their performance.

3.1.1 Datasets

We have used 3 datasets from the classic UCI Machine Learning Repository [17] with an increasing
number of features:

Titanic Dataset contains information about 891 passengers of the Titanic with the goal of predicting
their survival. The dataset includes 8 features, among those are, for instance, age, sex, ticket class, and
number of relatives on board. We also include the title of each passenger as a feature. The dataset
contains three categorical features, we have treated these via dummy encoding and amalgamation as
described in Section 2.3.

Breast Cancer Wisconsin (Diagnostic) Dataset describes characteristics of cell nuclei present in im-
ages of fine needle aspirates of breast mass. It contains 569 instances with 30 features, all numeric, for
instance radius, symmetry, etc. The task is to classify the instances as either malignant or benign.



Optical Recognition of Handwritten Digits Dataset contains 1797 images of handwritten digits from
0 to 9 with the task of correctly classifying these digits. Each image is a matrix of 8x8 where each element
is an integer between 0 and 16. All of the 10 classes roughly contain the same number of instances.

3.1.2 Models

Each of the aforementioned datasets has been randomly split into a training set and a test set, the
latter one containing 20% of the overall number of instances and we have trained 3 nonlinear models
on the training sets. These models and their settings are described in the following paragraphs while the
obtained performance on the test sets is summarized in Table 3.1. we have implemented the models with
the help of Python’s open source scikit-learn library version 0.22.1 [43] and XGBoost library version
1.0.2 [12]. For hyperparameters not explicitly mentioned, we use their default setting.

Feedforward neural network (NN) A multilayered perceptron with 4 hidden layers containing 50,
50, 50, and 30 neurons, respectively. We use adaptive learning rate and ReLU activation functions in
each of the hidden layers. The network is optimized with the adam solver.

Gradient boosted decision trees (GBDT) An ensemble of 100 gradient boosted decision trees, each
at most 5 layers deep. The learning rate is set to 0.1.

Support Vector Machine (SVM) A support vector machine with a Gaussian kernel, regularization
parameter set to 1, and gamma equal to 1/# features.

3.2 Framework for comparison

With the prepared datasets and trained models, we are ready to define the corresponding coalitional
games, compute their Shapley and Banzhaf values, and analyze the values’ similarities/differences. For
each of the dataset/model pairs we randomly pick 200 instances, hence defining 200 coalitional games,
and perform the following analysis.

We use the algorithms described above to obtain the Shapley and Banzhaf values for each of these
games, here denoted with vectors ϕS and ϕB. The i-th elements of these vectors then describe feature i’s
impact on the model.

Since the Banzhaf values are not normalized, we opt for rank correlations and compare the order of
features under the two different solutions, rather than comparing the magnitudes of the vectors’ elements.
We first calculate two rank vectors, rS and rB, where rS

i is equal to the rank of ϕS
i in ϕS and identically

for rB. In case of ties, we assign distinct ranks to each of the elements based on their order in the vector.
We then use two nonparametric measures of rank correlation describing the similarity between rS and
rB.

Table 3.1: Models’ accuracy on training and test sets.

NN GBDT SVM
train test train test train test

titanic 85.7% 87.7% 91.3% 87.2% 82.7% 86.0%
breasts 92.7% 96.5% 100.0% 95.6% 91.4% 93.9%
digits 100.0% 98.3% 100.0% 96.1% 99.6% 98.9%



Spearman’s ρ is calculated via the standard formula of Pearson’s correlation coefficient, where we
substitute the rank variables rS and rB for x and y, respectively:

ρ ≡

∑
i
((

xi − x
) (
yi − y

))(∑
i
(
xi − x

)2 ∑
i
(
yi − y

)2
)1/2

. (3.1)

Kendall’s τ is “based on the principle that if there is association between the ranks in rS and rB, then
if we arrange ranks rS in ascending order (so that rS

i = i) the rB
i should show an increasing trend if there

is positive association and a decreasing trend if there is negative association”. (Cited from Sprent and
Smeeton [54] with modified symbols for variables) For each i ∈ {1, . . . , n − 1} and j > i, we count the
number of positive and negative differences rB

j − rB
i and denote them with n+ and n− respectively. The

Kendall correlation coefficient is then calculated by

τ ≡
n+ − n−

1
2 n (n − 1)

. (3.2)

Since the denominator is equal to the total number of possible pairs, hence equal to n+ + n−, Kendall’s
τ gives values from [−1, 1] and their interpretation is identical to that of the standard correlation coeffi-
cients.

3.3 Results

We have calculated Spearman’s ρ and Kendall’s τ for each of the 200 instances of every model/dataset
pair from Table 3.1. The results are summarized in Tables 3.2, 3.3, and 3.4 for datasets Titanic, breast,
and digits, respectively. For each dataset and model, the tables show distributions of the 200 correlation
coefficients between the Shapley and Banzhaf values.

Quite expectedly, the correlations are lower when we interpret datasets with a larger number of
features. The Titanic dataset, containing 8 features, achieves high correlations falling mostly between
0.9 and 1.0. The breast and digits datasets, containing 30 and 64 features, respectively, achieve similar,
somewhat smaller, correlations with means around 0.8.

Overall the results are not supportive of the claim, that the Shapley and Banzhaf values yield sig-
nificantly different interpretations. Correlations between them are consistently high across all the tested
datasets and models.

This, we believe, justifies further research into the use of Banzhaf values (or any other value oper-
ator) in the context of model interpretation. It has been suggested by Lundberg and Lee [33] that the
Shapley values are the optimal solution due to their efficiency property, however, lately this claim has
been challenged by Patel, Strobel, and Zick [42], where the 2-efficiency property described in Section 1.6
is upheld as desirable for interpretation. We have shown, that the two values are closely linked together,
albeit with slightly differing results. This small difference is something that is yet to be fully understood
by the underlying theory and axiomatization.

Furthermore, whereas the Shapley value is usually used for its efficiency property allowing for a
fair distribution of the game’s value, the Banzhaf values is used as a measurement of power. The above
similarities essentially permit the use of the Shapley value as a method for feature selection, and similarly,
allow for the Banzhaf value to be viewed as an approximation of the Shapley interpreter.

These are, of course, nonconclusive results, as different datasets or different models could show big-
ger differences between the two values. We also acknowledge that artificial environments with synthetic
datasets and models could be created, where the outcomes of the above comparison would be signifi-
cantly different and suggest a wide contradiction between the Shapley and Banzhaf values. However,



this was not the goal of this chapter as we have preferred to test the hypothesis on datasets that resemble
those standardly used in real-life applications.

Table 3.2: Percentiles of correlation coefficients for the Titanic dataset.

NN GBDT SVM
ρ τ ρ τ ρ τ

mean 0.96 0.91 0.98 0.95 0.96 0.91
min 0.61 0.50 0.76 0.57 0.67 0.50
5% 0.86 0.78 0.90 0.79 0.78 0.64
10% 0.90 0.79 0.95 0.86 0.83 0.71
25% 0.95 0.86 0.98 0.93 0.95 0.86
50% 0.98 0.93 1.00 1.00 0.98 0.93
75% 1.00 1.00 1.00 1.00 1.00 1.00
90% 1.00 1.00 1.00 1.00 1.00 1.00
95% 1.00 1.00 1.00 1.00 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 1.00



Table 3.3: Percentiles of correlation coefficients for the breasts dataset.

NN GBDT SVM
ρ τ ρ τ ρ τ

mean 0.82 0.77 0.89 0.81 0.94 0.94
min 0.46 0.43 0.35 0.39 0.70 0.71
5% 0.60 0.57 0.65 0.58 0.80 0.81
10% 0.68 0.63 0.70 0.65 0.84 0.86
25% 0.76 0.71 0.88 0.78 0.88 0.89
50% 0.84 0.78 0.93 0.84 0.99 0.97
75% 0.90 0.84 0.96 0.88 1.00 1.00
90% 0.94 0.89 0.97 0.91 1.00 1.00
95% 0.97 0.91 0.98 0.92 1.00 1.00
max 0.99 0.97 0.99 0.94 1.00 1.00

Table 3.4: Percentiles of correlation coefficients for the digits dataset.

NN GBDT SVM
ρ τ ρ τ ρ τ

mean 0.83 0.71 0.84 0.74 0.80 0.69
min 0.67 0.54 0.67 0.56 0.57 0.44
5% 0.74 0.60 0.75 0.63 0.68 0.57
10% 0.75 0.61 0.76 0.65 0.70 0.59
25% 0.79 0.65 0.80 0.69 0.75 0.64
50% 0.85 0.72 0.85 0.75 0.81 0.69
75% 0.89 0.77 0.89 0.78 0.85 0.75
90% 0.91 0.79 0.92 0.82 0.90 0.79
95% 0.92 0.82 0.93 0.84 0.91 0.81
max 0.95 0.85 0.97 0.91 0.94 0.86



Chapter 4

Brain activity analysis

In this final chapter we present an extensive illustration of using the Shapley interpreter for analyzing
a real-world medical dataset. We have obtained measurements of brain activity from a group of patients
and use this data for discovering connections among major brain regions.

We start out by a closer description of the data, then use Section 4.2 to talk about our model and how
it is trained. We analyze this model through the Shapley interpreter in Section 4.3 and summarize the
results in Section 4.4. Due to the similarities between the Shapley and Banzhaf values described in the
previous chapter, we have decided not to include the Banzhaf value in the analysis.

4.1 Data

The dataset contains measurements of brain activity by functional magnetic resonance imaging
(fMRI). In short, fMRI measures activity by detecting changes in blood flow in various regions of the
brain, a method based on the fact that “when an area of the brain is in use, blood flow to that region also
increases.” [63]

In total 84 subjects were studied, each being measured for 240 time steps. The dimensionality of
the sample was reduced by averaging the signal within 90 known anatomical regions of the brain. We
have concatenated the data from individual subjects in order to obtain longer time series, resulting in a
dataset with 90 features and 20160 instances. We have further normalized the data so that each feature
has mean equal to zero across all the instances and standard deviation equal to one. The time series for
brain region number 1 can be seen at Figure 4.1.

We set out to use this data to discover and describe connections among the 90 regions, or, in other
words, how strongly do the regions influence each other as the time series develops. In order to do this
we will train a model predicting the evolution of the series, described in more detail in the following
section.

4.2 Model

The goal of the data analysis is finding a model that best predicts the next step in the time series. To
avoid a common pitfall of time series modelling, where the model simply predicts the next step to be
exactly the same as the current one (which is, indeed, a passable solution constituting a local minimum
out of which it might prove difficult to escape), we have turned the problem from regression into binary
classification. Instead of predicting the exact value of the time series, we changed the task to predicting
whether the series will rise or drop in value between the current and the next step (hence predicting the

34



Figure 4.1: Example time series for region nr. 1. Only every 30th instance is shown for better readability.

sign of the first order derivative w.r.t. time). We believe that this crude approximation is still sufficient
for our task of finding connections among the regions.

Let us set up some basic notation. We denote our dataset byD =
(
xt, yt)m

t=1, where m = 20160 is the
total number of instances, and xt ∈ Rn is a vector describing the n = 90 regions in each time step t. The
target vector yt ∈ Rn is defined as

yt
i ≡

1 , xt+1
i ≥ xt

i

0 , xt+1
i < xt

i

(4.1)

for each region i ∈ {1, . . . , n}. The last vector ym, where the true target value is unknown, has been
arbitrarily set to be a vector of ones. The target variable is evenly distributed with 50.45% of samples
being positive when averaged across all regions and instances, with similar numbers for each region
individually.

We have used the first 17660 instances as a training set for estimating the model’s parameters and the
following 1500 instances as a validation set that has been held out from the training process and used to
approximate the model’s performance on previously unseen data. To prevent accidentally tailoring the
model to the validation set, we have hidden the last 1000 instances altogether and only used them for the
final verification once the best model has been found. We call these 1000 instances the test set.

As a metric of performance we have used estimates of binary cross entropy. For two probability
distributions p and q, cross entropy is defined by

H (p, q) ≡ − IEp
[
log (q)

]
,

which, if we assume discrete probabilities, can be rewritten as

−
∑

x

p (x) log q (x) .

Let us denote by p
(
yt

i

)
a model’s prediction for any datapoint fromD. Since we are dealing with a binary

problem, cross entropy can be rewritten in a simpler form, hence defining our loss function:

L ≡ −
1
N

m∑
t=1

n∑
i=1

[
yt

i · log
(
p
(
yt

i

))
+

(
1 − yt

i

)
· log

(
1 − p

(
yt

i

))]
. (4.2)



This represents the loss value across the entire dataset D, scope of the sums is adjusted for its subsets.
We wish to find a model that minimizes loss on the validation set.

4.2.1 Model architecture

Due to the time series nature of our data, we have found it suitable to use recurrent neural networks
(RNNs). These differ from the simpler feedforward neural networks (FFNNs) by also including feed-
back connections among the layers, making them better at processing sequences. Our sources for this
section were reviews of RNNs by Lipton, Berkowitz, and Elkan [32] and Sutskever [59], and a detailed
description of LSTM networks by Gers, Schmidhuber, and Cummins [23].

Whereas FFNNs do not incorporate the concept of time and assume all the datapoints to be inde-
pendent of each other, RNNs contain a hidden state that is combined with new observations through an
intricate nonlinear function. This can, to put it simply and perhaps somewhat misleadingly, be likened to
the concept of memory, making RNNs especially useful in contexts where the temporal dimension plays
an important role.

Long short-term memory (LSTM) networks are a particular type of RNNs first introduced by Hochre-
iter and Schmidhuber [27] that are easier to train. Explaining the mathematics behind these models is
beyond the scope of this text, we refer the interested reader to references in the margin.

After an initial period of trial-error testing, we have settled on the following architecture with promis-
ing results to be explored further in finer detail. The network consists of 4 layers:

1. An LSTM layer with ReLU activation function and sigmoid activation function for the recurrent
step.

2. A second LSTM layer with configuration identical to the first one.

3. A densely connected feedforward layer with ReLU activation function.

4. An output layer with sigmoid activation function returning probabilities of the target variable being
equal to one for each output feature.

Due to the two back-to-back LSTM layers, the first one is set to return whole sequences instead of only
their last member.

There is a number of hyperparameters that need to be specified before the training can start, here we
highlight them and use the next subsection to talk about them in concrete numbers. Firstly the width
of each of the first three layers needs to be set. We shall refer to the number of units in the two LSTM
layers by lstm1_units and lstm2_units respectively, and to the number of units in the dense layer
by dense_units.

We use a dropout hyperparameter to constrain overfitting on the training data. The LSTM layer
allows for two kinds of dropout: one for the layer’s input units – which is similar to the standard dropout
layer – and one for the connections among the layer’s recurrent units. We use both of these dropouts on
both of the LSTM layers, however, to simplify the model we use a single number for all of them. We
will refer to this number as dropout.

For training the network and minimizing the loss function, we use the Adaptive Moment Estimation
(Adam) algorithm [28] for stochastic gradient descent. Adam iteratively adapts its learning rate based
on estimates of first and second order moments of the loss function, we have fixed its β1 and β2 decay
parameters to be equal to 0.9 and 0.999 respectively. The initial learning rate is another hyperparameter
of our model, we will refer to it by lr_init.
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Figure 4.2: Bayesian optimization schema for maximization

batch_size refers to the number of datapoints we use simultaneously for training of the network
at each step. We stop the training process whenever validation loss hasn’t decreased for 50 consecutive
epochs and restore the weights from the epoch with the best performance.

Last but not least, we wanted to test the dependence of the model’s performance on its input shape.
We set a discrete hyperparameter time_steps, controlling the number of steps back in time that are
included in the input data. In other words, we wanted to see how far back in time do we need to look to
be able to achieve a good prediction for the next time step.

We have implemented all of the above with the help of the Keras deep learning API [13] version
2.2.4 and the TensorFlow library [2] version 1.14.0. Any of the parameters not explicitly mentioned
have been set to their default values.

4.2.2 Hyperparameter tuning

This gives us in total 7 hyperparameters to tune. To find their optimal setting we have employed the
powerful framework of Bayesian optimization via Gaussian processes.

4.2.2.1 Theory

Bayesian optimization is useful for finding the optima of a function whenever the function itself is
expensive to enumerate and we wish to minimize the number of times we do so. In our context, the
function to optimize is the performance of the network, where we set the hyperparameters defined in the
previous section to specific values and observe the resulting loss from Equation (4.2) on the validation set,
which serves as our metric for minimization. In each iteration of the optimization process, the function
is estimated based on its previous evaluations, and a new point (hyperparameter setting) of inquiry is
specified. We have demonstrated this process schematically for a function with one parameter in Figure
4.2. For more information about Gaussian processes we recommend a comprehensive monography by
Rasmussen and Williams [44], Bayesian optimization is neatly summarized in an article by Brochu,
Cora, and Freitas [8].



Let us denote the function to optimize as f (x) : Rp → R, where p ∈ N denotes the dimensionality of
our input space (7 in our case). To estimate the function, we interchange it with a Gaussian process with
mean and covariance functions (undetermined for now) µ (x) and C (x, x′) respectively. This gives us a
distribution over the set of functions: for a set of M ∈ N datapoints x1, . . . , xM we can draw a random
function from the Gaussian process via

( f (x1) , . . . , f (xM)) ∼ N (µ,C) , (4.3)

whereN stands for the normal distribution, µ = (µ (x1) , . . . , µ (xM)) , and C ∈ RM×M is a matrix defined
by Ci j = C

(
xi, x j

)
.

The mean function of the process is standardly set to be equal to zero for all inputs to reflect our lack
of knowledge without any measurements. There are many possibilities for the covariance function, we
have used the exponential function

C
(
x, x′

)
≡ σ2 exp

[
−

1
2s2

∥∥∥x − x′
∥∥∥2

]
. (4.4)

Here the parameters σ and s control the magnitude and scale of the estimate and ‖·‖ is the L2 norm.
Equation (4.3) tells us how to create prior estimates. To incorporate any already existing measure-

ments of f (x), we have to calculate several multivariate integrals. Luckily, in the case of regression,
these integrals are analytically tractable and thus easy to evaluate. Here we only present the final result
and refer the reader to the literature in margins for a greater detail.

Let us again use a set of M datapoints X = {xi}
M
i=1, now together with their known function values

f = { f (xi)}Mi=1. To create posterior estimates of function value for a new datapoint x∗, we calculate
matrix C in the same way as before, vector C∗ ∈ RM of covariances among x∗ and datapoints from X,
and use the following result:

f
(
x∗

)
| f , X, x∗ ∼ N

(
C∗T C−1 f ,C

(
x∗, x∗

)
− C∗T C−1C∗

)
(4.5)

This gives us a probability distribution of function values for every input vector (hyperparameter
setting). Moreover, this distribution is by definition Gaussian, hence for every x ∈ Rp we obtain estimates
of the expected value and variance for f (x), further denoted as m (x) and s (x) respectively. We use these
estimates to find the most promising point for the next measurement.

We do this by defining an acquisition function that quantifies the potential of improvement for every
x and evaluate f (x) in the point of biggest potential – this is represented by the orange line in Figure 4.2.

Once again, there are many possibilities – we chose to measure the expected improvement:

EI (x) ≡ IE
[
max {τ − f (x) , 0}

]
, (4.6)

where τ = minx∈X f (x) denotes the current minimum and the expected value is calculated w.r.t. the
distribution of f (x). This can be rewritten as

EI (x) =

(τ − m (x)) Φ
(
τ−m(x)

s(x)

)
+ s (x) φ

(
τ−m(x)

s(x)

)
s (x) , 0

0 s (x) = 0,
(4.7)

where Φ (·) stands for cumulative distribution function of the standard Gaussian distribution and φ (·)
is its density. This form of the acquisition function compactly shows, that it takes into account both
the expected mean value and the uncertainty of each estimate – this is referred to as the exploration-
exploitation compromise.

In each step of the optimization we thus have to inverse the matrix C. By doing so, we however
create a powerful Bayesian estimate through which we can find the function’s optimum faster than by
using the much easier random search.



Figure 4.3: Dependence of validation loss on time_steps

4.2.2.2 Praxis

We used Bayesian optimization to find the optimal hyperparameter setting when predicting future
values for region nr. 1. Table 4.1 summarizes constraints of the hyperparameter space with minimal and
maximal possible values for each hyperparameter and shows optimal values of the best model, which has
achieved loss of 0.240 and 89.9% accuracy on the validation set, loss 0.275 and 88.4% accuracy on the
test set, and loss 0.273 and 88.2% accuracy on the training set.

We started by evaluating the function for 15 randomly selected hyperparameter settings and then ran
the optimization for 60 iterations, evaluating the function twice in each of them before producing a new
estimate. We have implemented the algorithms for optimization with help of the GPyOpt library [3]
version 1.2.6.

Given the nature of our data, we find these results to be sufficient. We have achieved similar per-
formance on all of the three datasets, thus avoiding overfitting and finding genuine relations among the
features.

The most interesting hyperparameter is time_steps, controlling the number of steps back in time
available to the model. Figure 4.3 shows a scatterplot containing all the trained models and showing
dependence of validation loss on the hyperparameter. The loss decreases constantly until time step t − 6,
where it seems to have reached a plateau. To constrain the total number of features, we chose not to
increase the number of time steps any further.

Table 4.1: Hyperparameter ranges and their optimal values

time_steps lstm1_units lstm2_units dense_units dropout lr_init batch_size

min 1 150 150 200 0.4 1/10000 1500
max 7 500 500 400 0.9 4/1000 3000
best 6 152 414 368 0.549 1/1000 1854



4.2.3 Model performance

Rather than training a single model encompassing predictions for all the 90 regions, we have decided
to train 90 unique models, one for predicting the next step in each region individually. We believe this
will help with creating diverse models that are tuned specifically to their corresponding regions and
effective at discovering connections among them.

We have not repeated the Bayesian optimization to find optimal hyperparameters for each of the 90
models individually – that would prove to be too computationally expensive – but we have used the
optimum for region nr. 1 from Table 4.1. This rests on the assumption that all of the regions are similar
and that the same architecture can be used to model all of them. This assumption is, we believe, justified
by low variance of achieved loss and accuracies of the models.

The performance is summarized in Table 4.2. We have constantly achieved satisfactory results with-
out overfitting the models on either the training or the validation set.

4.3 Using the Shapley interpreter

With the models prepared, we turn to the Shapley interpreter to analyze them and search for the
connections among regions. There are, however, a couple more things we need to specify before we can
run the final analysis.

In each step of the interpretation, we generate random datapoints for out-of-coalition features based
on their marginal distribution (remember Equation (2.4)). Here we have assume independence among
the features, mainly for simplicity and a substantial decrease in computational complexity. To further
decrease variance in our sampling, we approximate each feature’s distribution by its mean (which is
zero, due to the normalization described above). That is, out-of-coalition features are set to be equal to
zero, while the rest keeps their values from the original datapoint.

We have sampled datapoints from D using a uniform distribution and ran the interpreter for each
of the 90 models. In total, we have obtained local Shapley values for 750 datapoints, where for each
of them we have run the interpreter for 54000 iterations, using adaptive sampling. Each of the Shapley
values tells us the impact its corresponding feature has on prediction for the next time step, for one
particular datapoint. However, we are interested in a global estimation of the impact – hence we define
the following aggregation, further referred to as global Shapley values.

Let us for any given datapoint x ∈ D denote its local Shapley values by a vector (ϕi (x))540
i=1 , where

540 is the total number of features (90 regions times 6 steps back in time). We then calculate the global
aggregation as an average of absolute values of the local Shapley values,

ϕG
i ≡

1
|D|

∑
x∈D
|ϕi (x)| (4.1)

Table 4.2: Performance of the 90 models

train set validation set test set
loss accuracy loss accuracy loss accuracy

best 0.227 90.5% 0.205 91.5% 0.215 92.0%
mean 0.275 87.9% 0.250 89.0% 0.257 88.9%
worst 0.310 86.0% 0.294 86.9% 0.322 85.6%



4.4 Results & discussion

With the framework for analysis complete, we can finally move on to see its results and conclusions.

4.4.1 Connections of regions nr. 1, 57, and 50

First we want to look for regions that influence the state of brain activity for region nr. 1 (picked
without any particular reasons). Figure 4.4a shows a graphical representation of its global Shapley values.

We will encounter this type of figures repeatedly, it is thus worth taking a bit of time to understand
this one thoroughly. The rows discern between the n = 90 regions of the brain, while each column
belongs to a particular step in time. For instance, the cell in the 6th row and 2nd column describes the
influence the brain activity in time step t − 2 of region nr. 6 has on the prediction for region nr. 1. The
color of the cell then describes the magnitude of this influence.

Now back to Figure 4.4a. We can readily obtain a couple of interesting observations:

• Quite expectably, it is region nr. 1 itself that has the biggest predicting power.

• The influence grows with increasing time lag, with time steps t − 4 and t − 5 achieving the largest
values. Time step t − 6 does have a big influence, but stops the increasing trend. This is in accord
with Figure 4.3.

• Next to region nr. 1, there are several other regions with a strong connection. Here we list regions
with average influence (mean global Shapley values when averaged across all time steps) larger
than 0.02, in decreasing order: 1, 57, 2, 19, 11, and 68.

In their seminal article, Štrumbelj and Kononenko[57] suggest using the standard deviation of samples
for aggregation of local Shapley values. We have tested this approach as well and the results are almost
identical to those above, hence we have decided to stick with our definition of the aggregation due to its
easier interpretability.

The connection between regions nr. 1 and 57 seems promising, we wanted to explore this finding
further and verify it by reversing the direction: next we look at important predictors for region nr. 57 in
Figure 4.4b.

Similar inferences can be drawn from this side of the figure. Once again, the region itself is the
biggest predictor with time steps t−4 and t−5 being the most influential. The list of regions with largest
values is 57, 58, 1, 2, and 69.

The significant connection between regions nr. 1 and 57 has thus been confirmed: on average, region
nr. 57 changes the prediction for region nr. 1 by 0.06 (in absolute value) and, the other way around,
region nr. 1 changes the prediction for region nr. 57 by 0.05. To put this into context, the average value
of region nr. 1 for prediction there is 0.20, while for region nr. 57 this value is 0.17.

We carried out analogous analysis for region nr. 50, again picked arbitrarily. The results are shown
in Figure 4.5. Here we see a group of strong predictors surrounding the region, namely these are, in
descending order of importance, regions nr. 50, 49, 52, 46, 48, 51, and 45.

This has led us to the idea of discovering all such interconnected groups of regions.

4.4.2 Connected groups

So as not to overwhelm the reader, we show the rest of the results in a shorter format, creating an
encompassing clustered graph containing all of the regions.



(a) Region nr. 1 (b) Region nr. 57

Figure 4.4: Means of absolute Shapley values



Figure 4.5: Means of absolute Shapley values for region nr. 50
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Figure 4.6: Clustered groups of interconnected regions.

We have used the 90 models from Subsection 4.2.3 and repeated the above analysis to discover
groups of regions that influence each other. For every region we have noted every other region whose
average influence is at least 25% as big as the influence of the original region onto itself.

The results can be seen in Figure 4.6. We have decided not to use directed edges to make the figure
easier to read, we include an edge whenever at least one of its ends has a large influence on the other one.
Loops are also omitted as they would have to be at every vertex and hence make the graph overfull. Note
that the distance among vertices plays no particular role.

We see that the regions are quite neatly clustered into a couple of disjoint groups. Often these groups
contain regions with similar numbers (73-74-75), there are however many connections between regions
with numbers far from each other (3-65, 24-66, or the aforementioned 1-57). A large number of the
regions show only one, or none at all, significant influence. Here the influence of each of the regions
onto itself is too strong and it pushes all the other regions below the specified threshold of 25%.

The use of the Shapley value comes with an important advantage of model-agnosticity. We could use
an arbitrary model, run the analysis described above, and obtain analogous results. The same framework
could be used for any other data, however complex or nonlinear.



Conclusion

This thesis revolves around coalitional game theory and primarily its use for interpreting statistical
models that are otherwise difficult to comprehend.

By rigorously defining the interpretation method and studying the axioms of coalitional game theory,
we have been able to suggest a novel approach to interpreting models with categorical features. More-
over, we have shown on a simple counterexample that the current method of doing so yields erroneous
results.

After implementing the presented sampling algorithms, we have set out to compare the now standard
Shapley value with a different solution concept from coalitional game theory, the Banzhaf value. Neither
in theory, nor in our comprehensive applied comparison on real world datasets, were we able to find
any significant disparities. These results, although preliminary, suggest that the two values can be used
interchangeably in the context of interpretation.

In the last chapter we have thoroughly analyzed a dataset describing the brain activity of a group
of human subjects. We have used Bayesian optimization to train an intentionally complex model for
predicting the evolution of the time series and then used the interpretation techniques to gain insights
into connections among brain regions.

In conclusion, we believe that the Shapley value forms a powerful framework for interpretation and
see potential in future research. We hope that this text is one of many that will attempt to connect the
interpreter with the foundations of coalitional game theory, out of which new ideas and methods could
emerge. There are interesting unanswered questions concerning specific definitions of the coalitional
game, comparison of results for classification and regression (i.e. simple vs. normal games), or incorpo-
ration of the Shapley value for interactions among features.
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