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Academic year: 2020/2021



I declare that I have prepared my thesis independently and that I used only the sources listed in the
Bibliography.

In Prague on 30th August 2021 Bc. Lukáš Heriban



Title:

Non–self–adjoint relativistic point interactions and their approximations by non–local potentials

Author: Bc. Lukáš Heriban

Program: Applied Algebra and Analysis

Type of work: Research project
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1 Introduction

The one–dimensional Dirac operator Hm acting like

Hmψ(x) = −i
d
dx
⊗ σ1ψ(x) + m ⊗ σ3ψ(x)

ψ ∈ Dom Hm = W1,2(R) ⊗ C2, m ≥ 0

perturbed at one point is an important exactly solvable model of quantum mechanics. Approximations
of this mathematical model were rigorously discussed for the first time by Šeba in [5] where he studied
exclusively the electrostatic and Lorentz scalar point interactions. More general definition of self–adjoint
relativistic point interaction HΛ was discussed by Benvegnu and Dabrowski in [7], where HΛ acts like
the free Dirac operator Hm on functions from the Sobolev space with transmission condition at the point
of interaction

ψ(0+) = Λψ(0−)

Λ = ω

(
α iβ
−iγ δ

)
,

ω = eiϕ, αδ − βγ = 1, ϕ, α, β, δ, γ ∈ R.

Non–self–adjoint models extending quantum mechanics have been studied since the beginning of
21st century and there are only few papers discussing non–self–adjoint non–relativistic point interaction
for example [1]. However, as far as I know, non–self–adjoint case of relativistic point interaction has not
been studied yet.

This work is focused on using not necessary self–adjoint non–local potential in the form of the
projection 1/ε2 |v(x/ε)〉〈v(x/ε)| on a fixed scaled function v in L2(R) ∩ L1(R) multiplied by a complex
matrix A ∈ C2,2 with the differential Dirac operator as an approximation to some unbounded operator.

HAε = −i
d
dx
⊗ σ1 + m ⊗ σ3 +

1
ε2 |v(x/ε)〉〈v(x/ε)| ⊗ A (1)

We already showed [2] that in the self–adjoint case the norm resolvent limit of (1) corresponds to the
relativistic point interaction discussed in [7]. We will show that also for non–self–adjoint matrices A the
norm–resolvent limit exists and we will call the limit the non–self–adjoint relativistic point interaction.

Idea of using non–local potential to study approximation of relativistic point interaction comes from
the paper [5], where two matrices A are studied explicitly. We will generalize this result to any complex
matrix A.

In [5] Šeba also discussed comparison of the formal limit and the operator limit. He showed that by
starting with the Dirac operator with local potential 1/ε h(x/ε) the formal limit will not correspond to the
proper operator limit. This phenomena is called renormalization of the coupling constant. More general
case of the local potential and its limit was already discussed by Hughes [8],[9] and by Tušek [6]. Šeba
also showed that in two special cases of self–adjoint matrix A using non–local potential will not lead to
the renormalization. We already showed that this property is preserved in the most general self–adjoint
case of non–local potential [2]. We will show that this property is also preserved in non–self–adjoint
case. Moreover, this approach extends naturally the definition of relativistic point interactions also to
non–self–adjoint case.

Furthermore, an expression for finding the spectrum of newly defined general relativistic point inter-
action will be derived. We will discussed remarkable spectral transition in the non–self–adjoint case. We
will also find an implicit equation for eigenvalues and eigenfunctions of non–local approximations of the
relativistic point interactions.

1



2 Notation

We denote by Lp(U;H) the Banach space of integrable functions in the pth power on the domain U
with values in a Hilbert space H . We denote the norm in Lp(U;H) by ‖.‖p. If Lp(U;C) we will simply
write Lp(U) and if U = R we will write Lp. For the scalar product on the Hilbert space L2 we will use
the symbol 〈·|·〉. We will also identify L2(U) ⊗ C2 with L2(U;C2). Abusing notation we will denote

〈 f |ψ〉 =

(
〈 f |ψ1〉

〈 f |ψ2〉

)
, 〈 f |B〉 =

(
〈 f |B11〉 〈 f |B12〉

〈 f |B21〉 〈 f |B22〉

)
for f ∈ L2(R), ψ ∈ L2(R;C2) and B ∈ L2(R;C2,2). For an integral operator K we will write its integral
kernel as K(x, y). We denote f ∗ g the convolution of two functions f and g. For bounded operators on
the Hilbert spaceH we will use the symbol B(H). For a matrix B ∈ Cn,m we will sometimes denote |B|
for the Frobenius norm of the matrix B

|B|2 = ‖B‖22 =

n,m∑
i, j=1

|Bi j|
2.

Note that the Frobenius norm is submultiplicative which can be proved using the Cauchy–Schwarz in-
equality

|AB|2 =

n∑
i=1

k∑
j=1

〈~ai|~b j〉
2 ≤

n∑
i=1

k∑
j=1

‖~ai‖
2
2‖
~b j‖

2
2 = |A|2|B|2.
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3 Relativistic point interactions

Let us start with the definition of our non–local potential as a projection on a scaled vector v from
L2(R;R) ∩ L1(R;R) multiplied by a 2 × 2 complex matrix. Using the bra–ket notation we can write the
Dirac operator with the non–local potential in the following way

HAε = Hm + Wε(x) ⊗ A

Wε =
1
ε2 |v(x/ε)〉〈v(x/ε)| =: |vε(x)〉〈vε(x)|,

(2)

where Hm is the free Dirac operator defined as

Hm = −i
d
dx
⊗ σ1 + m ⊗ σ3

Dom(Hm) = W1,2(R) ⊗ C2.
(3)

Here W1,2 stands for the Sobolev space, σi are the Pauli matrices and m is a non–negative constant.
Its resolvent is the integral operator with the integral kernel given by

Rz(x, y) =
i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|, (4)

where

Z(z) =

(
ζ(z) 0

0 ζ−1(z)

)
,

ζ(z) =
z + m
k(z)

and k(z) =
√

z2 − m2, Imk(z) ≥ 0.

We already found out [2] that for a self–adjoint matrixA the Dirac operator with the non–local poten-
tial converge in the norm–resolvent sense to the operator of the self–adjoint relativistic point interaction
HA [7] acting like

(HAψ)(x) = (Hmψ)(x), ∀x ∈ R \ {0}

ψ ∈ Dom(HA) = {ϕ ∈ W1,2(R \ {0}) ⊗ C2 | (2i − σ1A)ϕ(0+) = (2i + σ1A)ϕ(0−)}.
(5)

Recall that if we take the Dirac operator with a scaled potential Vε which goes to the delta potential

Hm + Vε ⊗ A, (6)

one can find a formal limit of this operator as Hm+Aδ. This formal limit can be rewritten as the free Dirac
operator with the transmission condition at the point of interaction. We will begin with the expression

(Hm + Aδ)ψ. (7)

If we define
ψ(0) :=

ψ(0+) + ψ(0−)
2

then to cancel singular parts in (7) the following condition must be true

(2iσ1 + A)ψ(0−) = (2iσ1 − A)ψ(0+).
3



Because of that we can see that the formal limit of (6) correspond the the operator (5).
This formal limit would seem as a good guess for the operator limit. However, it is now well known

[5],[6],[8] that for the special case of the potential Vε which is the local potential

Vε =
1
ε

h
( x
ε

)
the operator limit does not correspond to the formal limit. This phenomena is known as the renormaliza-
tion of the coupling constant.

We have already shown in the self–adjoint case [2], as one can see above, that for the non–local
potential (2) the renormalization of coupling constant does not occur. In other words, the formal limit
for the non–local potential is the same as the norm–resolvent limit of the operator.

We can extend these results also for the non–self–adjoint case of the matrix A. We will show that
the resolvent of the operator also converge to some bounded operator. We will show that the limit is the
resolvent of a unbounded operator also acting like Hm with certain boundary condition at the point of
interaction and we will call this operator the non–self–adjoint relativistic point interaction.

3.1 General relativistic point interaction and its non–local approximation

Let us firstly state one of the main results of this paper which is the existence of norm–resolvent limit
of the Dirac operator with scaled non–local potential multiplied by any complex matrix.

Theorem 3.1.1. Let the matrix A in the definition of the Dirac operator with the non–local potential (2)
be any complex matrix and z ∈ C \ {(−∞,−m] ∪ [m,+∞)} such that the matrix

(I +
i
2
AZ(z))

is invertible. Then the resolvent of the non–local potential converges in the operator norm to the bounded
integral operator

RAz (x, y) = Rz(x, y) − Rz(x, 0)(I +
i
2
AZ(z))−1ARz(0, y) (8)

as ε→ 0.

First, we recall the Minkowski integral inequality which plays the main role in the proof of the
theorem above.

Proposition 3.1.1 (Minkowski integral inequality). Let (U1, µ1) and (U2, µ2) be σ–finite measure spaces
and g : U1 × U2 → R is measurable, non–negative function. Let p ≥ 1 then(∫

U2

∣∣∣∣∣∣
∫

U1

g(x, y) dµ1(x)

∣∣∣∣∣∣p dµ2(y)
) 1

p

≤

∫
U1

(∫
U2

|g(x, y)|p dµ2(y)
) 1

p

dµ1(x) (9)

Proof. Denote F(y) =
∫

U1
g(x, y)µ1(x) then using the Fubini theorem and the Hölder inequality we obtain

‖F‖pLp(U2, dµ2) =

∫
U2

∣∣∣∣∣∣
∫

U1

g(x, y) dµ1(x)

∣∣∣∣∣∣ |F p−1(y)| dµ2(y) ≤
∫

U1

∫
U2

|g(x, y)||F p−1(y)| dµ2(y) dµ1(x) ≤

≤

∫
U1

(∫
U2

|g(x, y)|p dµ2(y)
) 1

p

dµ1(x)‖F‖p−1
Lp(U2, dµ2)

If ‖F‖Lp(U2, dµ2) < +∞ we get the wanted inequality. If ‖F‖Lp(U2, dµ2) = +∞ we can choose monotone
sequences V1

n ⊂ U1,V2
k ⊂ U2 such that ∀k, n ∈ N, µ1(V1

n ), µ2(V2
k ) < +∞ and V1

n → U1, V2
k → U2. Then

for every pair of V1
n and V2

k inequality holds and by letting k, n→ +∞ we obtain the result. �

4



Furthermore we will need following lemmas.

Lemma 3.1.1. (I + 〈vε|ARzvε〉)−1 u
→ (I + i

2AZ(z))−1

Proof. By [[12], theorem IV 1.16]

(I + 〈vε|ARzvε〉)−1 u
→ (I +

i
2
AZ(z))−1 if and only if

〈vε|ARzvε〉
u
→

i
2
AZ(z)

|〈vε|ARzvε〉 −
i
2
AZ(z)|2 =

∥∥∥∥∥∥aζ(z)(Eε −
i
2 ) bζ−1(z)(Eε −

i
2 )

cζ(z)(Eε −
i
2 ) dζ−1(z)(Eε −

i
2 )

∥∥∥∥∥∥2

2
≤

≤ ‖A‖22(|ζ(z)|2 + |ζ−1(z)|2)|Eε −
i
2
|2
ε→0+

→ 0

�

Lemma 3.1.2. supy∈R
∫
R
|Rz(x, y)|2 dx < +∞

Proof.

|Rz(x, y)| = ‖
i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|‖2 ≤
1
2

(‖Z(z)‖2 + ‖σ1‖2)|eik(z)|x−y|| ≤

≤
1
2

(‖Z(z)‖2 + ‖σ1‖2)e−Imk(z)|x−y|

This implies ∫
R
|Rz(x, y)|2 dx ≤

1
4

(‖Z(z)‖2 + ‖σ1‖2)2
∫
R

e−2Imk(z)|x−y| dx =

=
1
4

(‖Z(z)‖2 + ‖σ1‖2)2
∫
R

e−2Imk(z)|x| dx < +∞.

We can see that the estimate does not depend on y ∈ R. �

Lemma 3.1.3. limε→0
∫
R

(∫
R
|Rz(x, εs) − Rz(x, 0)||v(s)| ds

)2
dx = 0

Proof. Using the Minkowski integral inequality from Proposition 3.1.1 we get

∫
R

(∫
R
|Rz(x, εs) − Rz(x, 0)||v(s)| ds

)2

dx ≤

≤


∫
R
|v(s)|


∫
R
|Rz(x, εs) − Rz(x, 0)|2 dx︸                             ︷︷                             ︸

fε(s)


1
2

ds


2

.

Using Lemma 3.1.2 one can see that fε(s) is uniformly bounded by some constant C ≥ 0.

∀ε > 0,∀s ∈ R, | fε(s)| < C ∈ R
5



Because of that we can drag the limit into the outer integral.
Next, we will deal with the inner integral. Using Young´s inequality we get the following estimate

|Rz(x, εs) − Rz(x, 0)|2 ≤ 2|Rz(x, εs)|2 + 2|Rz(x, 0)|2

Then for a fixed s ∈ R, a fixed constant δ and a small ε such that |εs| < δ we get

|Rz(x, εs)|2 ≤
1
4

(‖Z(z)‖2 + ‖σ1‖2)2e−2Imk(z)|x−εs| ≤
1
4

(‖Z(z)‖2 + ‖σ1‖2)2m(x),

where m(x) is the dominating integrable function defined as

∀x ∈ R, m(x) = e−2Imk(z)(|x|−δ).

We can see that

2|Rz(x, εs)|2 + 2|Rz(x, 0)|2 ≤
1
2

(‖Z(z)‖2 + ‖σ1‖2)2m(x) + 2|Rz(x, 0)|2 ∈ L1(R).

Then by using the Lebesgue dominant convergent theorem two times we obtain the desired result. �

Now we can prove Theorem 3.1.1.

Proof. We will mimic the proof of the limit of the resolvent of the non–local potential from [2] but now
using any complex matrix A. We will assume that the potential is normalized to one.

From the resolvent formula and the form of the HAε we get

RAz,ε = (HAε − z)−1 = Rz(I + (|vε〉〈vε| ⊗ A)Rz)−1,

where Rz is the resolvent of the free Dirac operator.

1) We will find the inverse of the operator (I + (|vε〉〈vε| ⊗ A)Rz)

ψ + 〈vε|ARzψ〉︸     ︷︷     ︸
~k

vε = g⇒~k + 〈vε|ARzvε ⊗ ~k〉 = 〈vε|ARzg〉

~k + 〈vε|ARzvε〉~k = 〈vε|ARzg〉

~k = (I + 〈vε|ARzvε〉)−1〈vε|ARzg〉

If we substitute for the vector ~k and we assume that inverse of the matrix I + 〈vε|ARzvε〉 exists we
get

ψ = g − (I + 〈vε|ARzvε〉)−1〈vε|ARzg〉vε.

Existence of the inverse of the matrix I + 〈vε|ARzvε〉 will be proved further in the text by explicitly
inverting the matrix.

This yields
(I + (|vε〉〈vε| ⊗ A)Rz)−1 = I − (I + 〈vε|ARzvε〉)−1(|vε〉〈vε| ⊗ A)Rz.

Which means that we get the resolvent of the operator HAε in the following form

RAz,ε = Rz − Rz (I + 〈vε|ARzvε〉)−1︸                 ︷︷                 ︸
2)

(|vε〉〈vε|A)Rz.

6



2) Now we need to find the inverse of (I + 〈vε|ARzvε〉). If we set

A =

(
a b
c d

)
, a, b, c, d ∈ C

then we get

ARzvε =
i
2

(
a b
c d

) (
ζ(z)

∫
R

eik(z)|x−y|vε(y) dy
∫
R

sgn(x − y)eik(z)|x−y|vε(y) dy∫
R

sgn(x − y)eik(z)|x−y|vε(y) dy ζ−1(z)
∫
R

eik(z)|x−y|vε(y) dy

)
=

=

(
bS + aζ(z)E aS + bζ−1(z)E
dS + cζ(z)E cS + dζ−1(z)E

)
, where

E =
i
2

∫
R

eik(z)|x−y|vε(y) dy

S =
i
2

∫
R

sgn(x − y)vε(y)eik(z)|x−y| dy

〈vε|ARzvε〉 =

(
bS ε + aζ(z)Eε aS ε + bζ−1(z)Eε

dS ε + cζ(z)Eε cS ε + dζ−1(z)Eε

)
Eε =

i
2

∫
R2
vε(x)eik(z)|x−y|vε(y) dy dx

S ε =
i
2

∫
R2

sgn(x − y)vε(x)eik(z)|x−y|vε(y) dy dx

We can see that the integral S ε is equal to zero because its integrand is an antisymmetric function.
So the inverse of the matrix (I + 〈vε|ARzvε〉) = (I + EεAZ(z)) is

(I + 〈vε|ARzvε〉)−1 =
1

(1 + dζ−1(z)Eε)(1 + aζ(z)Eε) − bcE2
ε

(
1 + dζ−1(z)Eε −bζ−1(z)Eε

−cζ(z)Eε 1 + aζ(z)Eε

)
.

Employing the dominated convergence theorem we can see that the pointwise limit of Eε is

Eε
ε→0+
→

i
2

(∫
R
v

)2

=
i
2
,

which implies that the pointwise limit of the matrix (I + 〈vε|ARzvε〉)−1 is

(I + 〈vε|ARzvε〉)−1 ε→0+
→ (I +

i
2
AZ(z))−1. (10)

If we denote matrices above like

Mε = (I + 〈vε|ARzvε〉)−1

M = (I +
i
2
AZ(z))−1

we can rewrite kernels of the resolvent of the non–local potential and its pointwise limit as follows

RAz,ε(x, y) = Rz(x, y) −
∫
R2

Rz(x, εs)v(s)MεAv(t)Rz(εt, y) ds dt

7



RAz (x, y) = Rz(x, y) −
∫
R2

Rz(x, 0)v(s)MAv(t)Rz(0, y) ds dt

We will study a convergence of the operator RAε to the operator RA in the Hilbert–Schmidt norm which
will imply a convergence in the operator norm. Now we will tried to find the estimate for the Hilbert–
Schmidt norm of the difference of the operator RAε and RA. We will use the inequality (a+b)2 ≤ 2a2 +2b2

several times in the following inequalities.

∫
R2

∣∣∣∣∣∫
R2

Rz(x, εs)v(s)MεAv(t)Rz(εt, y) − Rz(x, 0)v(s)MAv(t)Rz(0, y) ds dt
∣∣∣∣∣2 dx dy =

=

∫
R2
|
∫
R2

(Rz(x, εs) − Rz(x, 0))v(s)MεAv(t)Rz(εt, y)+

+ Rz(x, 0)v(s)(MεAv(t)Rz(εt, y) − MAv(t)Rz(0, y)) ds dt|
2

dx dy ≤

≤

∫
R2

(
∫
R2
|(Rz(x, εs) − Rz(x, 0))v(s)MεAv(t)Rz(εt, y)|+

+ |Rz(x, 0)v(s)(MεAv(t)Rz(εt, y) − MAv(t)Rz(0, y))| ds dt)2
dx dy

≤ 2
∫
R2

(∫
R2
|(Rz(x, εs) − Rz(x, 0))v(s)MεAv(t)Rz(εt, y)| ds dt

)2

dx dy+

+2
∫
R2

(∫
R2
|Rz(x, 0)v(s)(MεAv(t)Rz(εt, y) − MAv(t)Rz(0, y))| ds dt

)2

dx dy ≤

≤ 2
∫
R2

(∫
R2
|(Rz(x, εs) − Rz(x, 0))v(s)MεAv(t)Rz(εt, y)| ds dt

)2

dx dy︸                                                                                 ︷︷                                                                                 ︸
a)

+

+4
∫
R2

(∫
R2
|Rz(x, 0)v(s)(Mε − M)Av(t)Rz(εt, y)| ds dt

)2

dx dy︸                                                                        ︷︷                                                                        ︸
b)

+

+4
∫
R2

(∫
R2
|Rz(x, 0)v(s)MAv(t)(Rz(εt, y) − Rz(0, y))| ds dt

)2

dx dy︸                                                                              ︷︷                                                                              ︸
c)

We will estimate each of the terms a),b) and c) separately.

a)

a) ≤
∫
R

(∫
R
|Rz(x, εs) − Rz(x, 0)||v(s)| ds

)2

dx︸                                               ︷︷                                               ︸
By lemma 3.1.3→0

∫
R

(∫
R
|MεA||v(t)||Rz(εt, y)| dt

)2

dy︸                                        ︷︷                                        ︸
=Kε

Since matrix Mε converge to the matrix M by Lemma 3.1.1 it is uniformly bounded by some
constant C ≥ 0. Then by using this, Lemma 3.1.2 and the Minkowski integral inequality 3.1.1 we
get following
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Kε ≤ C
∫
R

(∫
R
|v(t)||Rz(εt, y)| dt

)2

dy ≤ C

∫
R

(∫
R
|v(t)|2|Rz(εt, y)|2 dy

) 1
2

dt


2

=

= C

∫
R
|v(t)|

(∫
R
|Rz(εt, y)|2 dy

) 1
2

dt


2

≤ C̃

That yields a)→ 0 as ε→ 0.

b) Using Lemmas 3.1.1 and 3.1.2 and the Minkowski integral inequality we get

b) ≤
∫
R2

(∫
R2
|Rz(x, 0)v(s)(Mε − M)Av(t)Rz(εt, y)| ds dt

)2

dx dy ≤

≤

∫
R

(∫
R
|Rz(x, 0)||v(s)| ds

)2

dx|Mε − M||A|
∫
R

(∫
R
|Rz(εt, y)||v(t)| dt

)2

dy ≤

≤

(∫
R
|v(s)| ds

)2 ∫
R
|Rz(x, 0)|2 dx|Mε − M||A|

∫
R
|v(t)|

(∫
R
|Rz(εt, y)|2 dy

) 1
2

dt


2

≤

≤

(∫
R
|v(s)| ds

)2 ∫
R
|Rz(x, 0)|2 dx︸                                 ︷︷                                 ︸

<+∞

|Mε − M|︸    ︷︷    ︸
→0

|A|

(∫
R
|v(t)| dt

)2

sup
ι∈R

∫
R
|Rz(ι, y)|2 dy︸                                     ︷︷                                     ︸

<+∞

→ 0.

c) Similarly to a).

This means that we get the convergence in the Hilbert–Schmidt norm which implies RAz,ε
u
→ RAz . �

Thus we get the limit in the operator norm for the resolvent of the Dirac operator with non–local
potential but we do not know if it is a resolvent of some operator. In the self–adjoint case we had got
a candidate in a form of self–adjoint relativistic point interaction [7] which was also proved as norm–
resolvent limit of the operator. As we already mentioned the pointwise limit of the self–adjoint operator
HAε with a hermitian matrix A coincide with its norm resolvent limit. We can assume that this property
will be preserved in the general case of any complex matrix A.

For clarity purposes we will rewrite pointwise limit of HAε with any complex matrix A as the Dirac
operator with a transmission condition at the point of interaction. We can easily see that the pointwise
limit of HAε can be formally written as Hm +Aδ. Now we will find maximal domain of the latter operator
which, in particular, means that we need (Hm +Aδ)ψ ∈ L2(R;C2). In other words we need singular parts
to be cancelled out [2] which yields the following condition

−iσ1(ψ(0+) − ψ(0−)) + A
ψ(0+) + ψ(0−)

2
= 0

(2iσ1 + A)ψ(0−) = (2iσ1 − A)ψ(0+).

Therefore, our pointwise limit corresponds to the operator HA acting as the Dirac operator with the
transmission condition at the point of interaction.

(HAψ)(x) = (Hmψ)(x), x ∈ R \ {0}

ψ ∈ Dom HA = {ψ ∈ W1,2(R \ {0}) ⊗ C2 | (2iσ1 + A)ψ(0−) = (2iσ1 − A)ψ(0+)}.
(11)
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Definition 3.1.1. Let matrix A be any 2 × 2 complex matrix. Then we will call the operator HA given by
(11) the Hamiltonian of the relativistic point interaction.

Note that if matrix A is self–adjoint and (2iσ1 +A) is regular then this definition 3.1.1 coincides with
the definition of the relativistic point interaction introduced in [7] as the self–adjoint extension of the
Dirac operator perturbated in the point of interaction. Our definition includes all self–adjoint extensions
and of course also non–self–adjoint cases.

One can easily check that HA is a self–adjoint operator if and only if matrixA is self–adjoint. We can
try to find out if HA is at least closed operator in the most general case. For this recall the trace theorem.

Theorem 3.1.2 (Trace theorem). Let U be bounded open subset of Rn with C1–boundary and p ∈
[1,+∞). Then there exists operator Tr ∈ B(W1,p(U), Lp(∂U)) such that ∀ψ ∈ W1,p(U) ∩ C(U), Trψ =

ψ|∂U .

Proof. Can be found for example in [11]. �

Theorem 3.1.3. Let matrix A be any complex matrix. Then the operator of relativistic point interaction
HA (11) is densely defined closed operator.

Proof. We can see that HA is densely defined operator in L2(R;C2) because W1,2(R \ {0}) is a dense
subset of L2(R).

If we decompose a function from Dom HA into a sum of functions on a positive and negative half–line
of R respectively, and use the Trace theorem 3.1.2 the domain of HA can be written as follows

Dom HA = {ϕ = ϕ− ⊕ ϕ+ ∈ W1,2(R−;C2) ⊕W1,2(R+;C2) | (2i − σ1A) Trϕ+ = (2i + σ1A) Trϕ−}. (12)

By Trace theorem we get a bounded linear operator Tr ∈ B(W1,2(R±;C2),C2) and certain constant C ≥ 0
such that

|Trϕ±| ≤ C‖ϕ±‖W1,2(R±;C2). (13)

To prove that HA is closed we choose a convergent sequence from Dom HA with a convergent se-
quence of its images.

ϕn = ϕn,− ⊕ ϕn,+ ∈ Dom HA

ϕn → ϕ = ϕ− ⊕ ϕ+ ∈ L2(R;C2)

HAϕn → ψ = ψ− ⊕ ψ+ ∈ L2(R;C2)
(14)

Now we need to prove that ϕ ∈ Dom HA and ψ = HAϕ. Firstly, note that

HAϕn = (−iσ1ϕ
′
n,− + mσ3ϕn,−) ⊕ (−iσ1ϕ

′
n,+ + mσ3ϕn,+).

Then (14) gives us convergence of functions ϕn,± in W1,2(R±;C2). Spaces W1,2(R±;C2) are complete
spaces, that implies

ϕ± ∈ W1,2(R±;C2) and

−iσ1ϕ
′
± + mσ3ϕ± = ψ±.

10



Now we need to determine if ϕ± fulfils the transmission condition of Dom HA (12). Since functions
ϕ± converge in W1,2(R±;C2), (13) gives us convergence of their traces in C2 space. Because ϕn ∈

Dom HA we get

∀n ∈ N, (2i − σ1A) Trϕn,+ = (2i + σ1A) Trϕn,−.

Letting n→ +∞ we obtain
(2i − σ1A) Trϕ+ = (2i + σ1A) Trϕ−.

We conclude that ϕ ∈ Dom HA and HAϕ = ψ. This means that the operator HA is a densely defined
closed operator. �

Theorem 3.1.1 gives us the norm resolvent limit of the Dirac operator with a non–local potential.
Since we assume that the renormalization will not happen in the general case and the operator HAε most
likely converges to the relativistic point interaction HA, it is reasonable to state the following theorem.

Theorem 3.1.4. Let the matrix A be any complex matrix and z ∈ C \ {(−∞,−m]∪ [m,+∞)} be such that

(I +
i
2
AZ(z))

is a regular matrix. Then the operator

RAz = Rz − Rz(x, 0)(I +
i
2
AZ(z))−1ARz(0, y) (15)

is the resolvent of the operator HA given in (11).

Proof. Since the operator RAz is Hilbert–Schmidt, and thus it is a bounded operator, it is sufficient to
check following two statements

1.
Ran RAz ⊂ Dom HA and ∀ψ ∈ Dom RAz , (H

A − z)RAz ψ = ψ,

2.
∀ψ ∈ Dom HA,RAz (HA − z)ψ = ψ.

1. First let ϕ ∈ Ran RAz then we will check if ϕ ∈ Dom HA. Since ϕ ∈ Ran RAz then there exists
ψ ∈ Dom RAz such that

ϕ(x) = RAz ψ(x)

ϕ(x) =

∫
R

Rz(x, y)ψ(y) dy − Rz(x, 0)(I +
i
2
AZ(z))−1A

∫
R

Rz(0, y)ψ(y) dy.

That yields

ϕ(0+) =

∫
R

Rz(0, y)ψ(y) dy −
i
2

(Z(z) + σ1)(I +
i
2
AZ(z))−1A

∫
R

Rz(0, y)ψ(y) dy

ϕ(0−) =

∫
R

Rz(0, y)ψ(y) dy −
i
2

(Z(z) − σ1)(I +
i
2
AZ(z))−1A

∫
R

Rz(0, y)ψ(y) dy

We can see that the transmission condition

(2i − σ1A)ϕ(0+) = (2i + σ1A)ϕ(0−)
11



holds if and only if

(2i − σ1A)(I −
i
2

(Z(z) + σ1)(I +
i
2
AZ(z))−1A) = (2i + σ1A)(I −

i
2

(Z(z) − σ1)(I +
i
2
AZ(z))−1A)

2i−σ1A+ (2i−σ1A)(Z(z) +σ1)(2i−AZ(z))−1A = 2i +σ1A+ (2i +σ1A)(Z(z)−σ1)(2i−AZ(z))−1A

− σ1A + 2iσ1(2i − AZ(z))−1A − σ1AZ(z)(2i − AZ(z))−1A =

= σ1A − 2iσ1(2i − AZ(z))−1A + σ1AZ(z)(2i − AZ(z))−1A

−σ1A + σ1(2i − AZ(z))(2i − AZ(z))−1A = σ1A − σ1(2i − AZ(z))(2i − AZ(z))−1A

−σ1A + σ1A = σ1A − σ1A.

We conclude that for any complex matrix A and z ∈ C\ {(−∞,−m]∪ [m,+∞)} such that (I + i/2 AZ(z))−1

exists every ϕ ∈ Ran RAz fulfils the transmission condition of the Hamiltonian of the relativistic point
interaction.

Since Rz(x, y) is the resolvent of the Dirac operator and Rz(x, 0) standing alone is in W1,2(R\{0};C2,2)
we finally get

Ran RAz ⊂ Dom HA

Now let us check that RA is the right inverse of (HA − z).

(HA − z)RAz ψ(x) = ( − i
d
dx
σ1 + mσ3 − z)(

∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|ψ(y) dy+

+
1
4

(Z(z) + σ1sgn(x))eik(z)|x|(I +
i
2
AZ(z))−1A

∫
R

(Z(z) + sgn(−y)σ1)eik(z)|y|ψ(y) dy)
For x > 0 we get following

(HA − z)RAz ψ(x) =

= −i
d
dx
σ1

∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|ψ(y) dy− (16)

− i
d
dx
σ1

1
4

(Z(z) + σ1)(eik(z)|x|)(I +
i
2
AZ(z))−1A

∫
R

(Z(z) + sgn(−y)σ1)eik(z)|y|ψ(y) dy− (17)

−

(
z − m 0

0 z + m

) ∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|ψ(y) dy− (18)

−

(
z − m 0

0 z + m

)
1
4

(Z(z) + σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫
R

(Z(z) + sgn(−y)σ1)eik(z)|y|ψ(y) dy (19)

Since
ζ(z)k(z) = z + m and ζ−1(z)k(z) = z − m,
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we get the following

(16) =
1
2
σ1

d
dx

∫ +∞

x
(Z(z) − σ1)eik(z)|x−y|ψ(y) dy+

+
1
2
σ1

d
dx

∫ x

−∞

(Z(z) + σ1)eik(z)|x−y|ψ(y) dy =

= −
1
2
σ1(Z(z) − σ1)ψ(x) +

1
2
σ1

∫ +∞

x
(Z(z) − σ1)(−ik(z))eik(z)|x−y|ψ(y) dy+

+
1
2
σ1(Z(z) + σ1)ψ(x) +

1
2
σ1

∫ x

−∞

(Z(z) + σ1)(ik(z))eik(z)|x−y|ψ(y) dy =

= ψ(x) +

(
z − m 0

0 z + m

) ∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|ψ(y) dy

(17) = −
1
2

ik(z)(Z(z) − σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫
R

Rz(0, y)ψ(y) dy

(19) =
1
2

ik(z)(Z(z) − σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫
R

Rz(0, y)ψ(y) dy.

We finally get
(HA − z)RAz ψ = (16) + (17) + (18) + (19) = ψ(x),

and similarly for x < 0 we get the same result.

2. Now we need to check if RAz is also a left inverse of (HA − z).

RAz (HA − z)ψ(x) = (
∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|(−i
d
dy
σ1 + mσ3 − z)ψ(y) dy+

+
1
4

(Z(z)+sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫
R

(Z(z)+sgn(−y)σ1)eik(z)|y|(−i
d
dy
σ1 +mσ3−z)ψ(y) dy) =

=

∫
R

1
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y| d
dy
σ1ψ(y) dy− (20)

−
i
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫
R

(Z(z) + sgn(−y)σ1)eik(z)|y| d
dy
σ1ψ(y) dy− (21)

−

(
z − m 0

0 z + m

) ∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|ψ(y) dy− (22)

−

(
z − m 0

0 z + m

)
1
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫
R

(Z(z) + sgn(−y)σ1)eik(z)|y|ψ(y) dy (23)

Firstly, we consider x > 0. Using integration by parts we get the following

(20) =

∫ +∞

x

1
2

(Z(z) − σ1)eiζ(z)z|x−y| d
dy
σ1ψ(y) dy+

+

∫ x

0

1
2

(Z(z) + σ1)eik(z)|x−y| d
dy
σ1ψ(y) dy+

+

∫ 0

−∞

1
2

(Z(z) + σ1)eik(z)|x−y| d
dy
σ1ψ(y) dy =

13



=

[
1
2

(Z(z) − σ1)eik(z)|x−y|)σ1ψ(y)
]y→+∞

y→x
+

[
1
2

(Z(z) + σ1)eik(z)|x−y|σ1ψ(y)
]y→x

y→0+

+

+

[
1
2

(Z(z) + σ1)eik(z)|x−y|σ1ψ(y)
]y→0−

y→−∞

−

−

∫ +∞

x

1
2

(Z(z) − σ1)(ik(z))eik(z)|x−y|σ1ψ(y) dy−

−

∫ x

0

1
2

(Z(z) + σ1)(ik(z))eik(z)|x−y|σ1ψ(y) dy−

−

∫ x

−∞

1
2

(Z(z) + σ1)(−ik(z))eik(z)|x−y|σ1ψ(y) dy =

= ψ(x) +

(
z − m 0

0 z + m

) ∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|ψ(y) dy+

+
1
2

(Z(z) + σ1)eik(z)|x|σ1(ψ(0−) − ψ(0+))

Similarly for x < 0 we get

(20) = ψ(x) +

(
z − m 0

0 z + m

) ∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|ψ(y) dy+

+
1
2

(Z(z) − σ1)eik(z)|x|σ1(ψ(0−) − ψ(0+))

In other words for ∀x ∈ R \ {0}

(20) = ψ(x) +

(
z − m 0

0 z + m

) ∫
R

i
2

(Z(z) + sgn(x − y)σ1)eik(z)|x−y|ψ(y) dy+

+
1
2

(Z(z) + sgn(x)σ1)eik(z)|x|σ1(ψ(0−) − ψ(0+))

(21) = −
i
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

[
(Z(z) − σ1)eik(z)|y|σ1ψ(y)

]+∞
0
−

−
i
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

[
(Z(z) + σ1)eik(z)|y|σ1ψ(y)

]0

−∞
+

+
i
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫ +∞

0
(Z(z) − σ1)(ik(z))eik(z)|y|σ1ψ(y) dy+

+
i
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫ 0

−∞

(Z(z) + σ1)(−ik(z))eik(z)|y|σ1ψ(y) dy =

= −
i
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A ((Z(z) + σ1)σ1ψ(0−) − (Z(z) − σ1)σ1ψ(0+)) +

+

(
z − m 0

0 z + m

)
1
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A

∫
R

(Z(z) + sgn(−y)σ1)eik(z)|y|ψ(y) dy
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Results above imply

(20) + (21) + (22) + (23) =

= ψ(x) −
i
4

(Z(z) + sgn(x)σ1)eik(z)|x|2iσ1(ψ(0−) − ψ(0+))−

−
i
4

(Z(z) + sgn(x)σ1)eik(z)|x|(I +
i
2
AZ(z))−1A((Z(z) + σ1)σ1ψ(0−) − (Z(z) − σ1)σ1ψ(0+)) =

= ψ(x) −
i
4

(Z(z) + sgn(x)σ1)eik(z)|x| (2i + (I +
i
2
AZ(z))−1A(Z(z) + σ1))σ1︸                                              ︷︷                                              ︸

B−

ψ(0−)−

−
i
4

(Z(z) + sgn(x)σ1)eik(z)|x| (2i − (I +
i
2
AZ(z))−1A(Z(z) − σ1))σ1︸                                              ︷︷                                              ︸

B+

ψ(0+).

Matrix B− next to ψ(0−) is

B− = (2i + (I +
i
2
AZ(z))−1A(Z(z) + σ1))σ1 = (2i − 2i(I +

i
2
AZ(z))−1(

i
2
AZ(z) + I − I +

i
2
Aσ1))σ1 =

= (I +
i
2
AZ(z))−1(2iσ1 + A).

Similarly matrix B+ next to ψ(0+) is

(I +
i
2
AZ(z))−1(2iσ1 − A).

If we take the transmission condition into account

(2i − σ1A)ψ(0+) = (2i + σ1A)ψ(0−),

we finally get that

∀x ∈ R \ {0}, RAz (HA − z)ψ(x) = ψ(x).

�
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4 Spectral analysis

4.1 Spectrum of general relativistic point interactions

In this section we will study the spectrum of the operator HA. Since HA is not necessarily self–
adjoint it may happen that some points of its spectrum lie outside real numbers. We will find out if
conditions under which we do not get the resolvent RAz from Theorem 3.1.4 are superfluous due to our
procedure of finding the resolvent, or if they coincide with conditions for the spectral points.

Theorem 4.1.1. Let A be any complex matrix. Then

σ(HA) \ {(−∞,−m] ∪ [m,+∞)} = σp(HA) \ {(−∞,−m] ∪ [m,+∞)}

and z ∈ C \ {(−∞,−m] ∪ [m,+∞)} is in the spectrum of the operator HA give by (11) if and only if z
satisfies the following equation

4 + 2i tr(AZ(z)) − detA = 0. (24)

Proof. Let us take z ∈ C \ {(−∞,−m] ∪ [m,+∞)} then the eigenvalue equation is

−iσ1
d
dx
ψ + mσ3ψ = zψ, ψ ∈ Dom HA

d
dx
ψ = i

(
0 z + m

z − m 0

)
ψ.

(25)

Because the matrix on the right hand side of the equation is constant, it is easy to get its antiderivative.
Using (

0 z + m
z − m 0

)2

= (z2 − m2)I

we can compute the exponential of the antiderivative.

exp
(
i
(

0 z + m
z − m 0

)
x
)

=

+∞∑
n=0

inxn

n!

(
0 z + m

z − m 0

)n

=

=

+∞∑
n=0

(−1)nx2n

(2n)!
(z2 − m2)n

 I + i

+∞∑
n=0

(−1)nx2n+1

(2n + 1)!
(z2 − m2)n

 ( 0 z + m
z − m 0

)
=

= cos(k(z)x)I + i sin(k(z)x)
(

0 ζ(z)
ζ−1(z) 0

)
.

This yields that the general solution to the equation (25) can be written in the following form.

ψ(x) =

(
ψ1(x)
ψ2(x)

)
=

(
cos(k(z)x) iζ(z) sin(k(z)x)

iζ−1(z) sin(k(z)x) cos(k(z)x)

) (
C1
C2

)
Now we need to determine constants C1,C2 ∈ C. We will find ψ on the intervals (−∞, 0) and (0,+∞)

separately and then we will merge them via the transmission condition. Let us write k(z) = η + iγ, γ ≥ 0
then
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ψ1 = (C1 cosh(γx) −C2ζ(z) sinh(γx)) cos(ηx) + i(C2ζ(z) cosh(γx) −C1 sinh(γx)) sin(ηx)

ψ2 = (C2 cosh(γx) −C1ζ
−1(z) sinh(γx)) cos(ηx) + i(C1ζ

−1(z) cosh(γx) −C2 sinh(γx)) sin(ηx)

Therefore, to get a square-integrable solution we need C1 = ζ(z)C2 on (0,+∞) and C1 = −ζ(z)C2 on
(−∞, 0). We conclude that

ψ1(x) =

C1eik(z)x, x ∈ (0,+∞)
C̃1e−ik(z)x, x ∈ (−∞, 0)

and

ψ2(x) =

C1ζ
−1eik(z)x, x ∈ (0,+∞)

−C̃1ζ
−1(z)e−ik(z)x, x ∈ (−∞, 0)

Recall that the transmission condition for ψ ∈ Dom HA reads as

(2iσ1 − A)ψ(0+) = (2iσ1 + A)ψ(0−),

where A =

(
a b
c d

)
.

This implies

(2i − aζ(z) − b)C1 = (−2i + aζ(z) − b)C̃1

(2i − c − dζ−1(z))C1 = (2i + c − dζ−1(z))C̃1.
(26)

A non–trivial solution (C1, C̃1) of (26) exists if and only if

0 =
1
2

∣∣∣∣∣∣ 2i − aζ(z) − b 2i − aζ(z) + b
2i − dζ−1(z) − c −2i + dζ−1 − c

∣∣∣∣∣∣ = 4 + 2i tr(AZ(z)) − detA (27)

Recall that
z ∈ σ(HA) if and only if RAz = (HA − z)−1 < B(H).

So we can check under which condition Theorem 3.1.4 will not give us RAz . By Theorem 3.1.4 only
problem may occur if the matrix (I + i

2AZ(z)) is not a regular matrix. This is true if and only if

0 = det(2I + iAZ(z)) = 4 + 2i tr(AZ(z)) − detA. (28)

We can see that the condition under which z ∈ C \ {(−∞,−m] ∪ [m,+∞)} is in the point spectrum of
the operator HA (27) is the same as the condition (28). This proves the theorem. �

Theorems 4.1.1 and 3.1.4 gives us a full picture of the spectral problem. The operator HA has only
point spectrum in C \ {(−∞,−m]∪ [m,+∞)} which can be found by examining (24). If we got the matrix
A such that the condition (24) is not fulfilled for any z ∈ C \ R then we get the operator HA with purely
real spectrum.

We can deal with the remaining set (−∞,−m] ∪ [m,+∞) by using [Theorem XIII.14 [10]]. Since
(−∞,−m] ∪ [m,+∞) is equal to essential spectrum of the free Dirac operator this theorem implies that
this set is is also equal to essential spectrum of the operator HA.
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4.2 Spectral transitions

If the matrix A has a non–zero diagonal, the condition (24) is polynomial in z and that give us finite
number of points in the spectrum in C \ {(−∞,−m] ∪ [m,+∞)}. Nevertheless we can see remarkable
spectral transitions of our model if elements on the diagonal of the matrix A are equal to zero. Then (24)
reduces to

0 = 4 − detA.

This yields that if matrix A has zeros on the diagonal and detA , 4 then by the theorem 4.1.1 we have
no spectrum outside real numbers. However if A has zeros on the diagonal and its determinant is equal
to 4, the condition (24) holds for every z ∈ C \ {(−∞,−m] ∪ [m,+∞)}. This implies that if the matrix

A =

(
0 2b
− 2

b 0

)
, b ∈ C \ {0}

then the whole complex plane lies in the spectrum of the relativistic point interaction HA. Note that such
A is never hermitian.

Also choosing m = 0 we can observe another interesting spectral transitions. In this case, matrix Z(z)
takes a following form

Z(z) = sgn(Im(z))I.

Then (24) looks like this

4 + sgn(Im(z))2i tr(A) − det(A) = 0. (29)

We can further investigate (29) and find the exact expression for spectrum for the operator. Firstly discuss
trA = 0 then the condition will simplify into

4 − detA = 0.

This is a form of the condition we already discuss above. This means for matrices A such that trA = 0
and detA = 4 the whole complex plane will belong to the spectrum of the operator.

Let us now discuss trA , 0. Then we can (29) divide by trA.

sgn(Im(z)) =
detA − 4

2i trA

This yields that if the following condition holds

detA − 4
2i trA

= ±1

then the whole upper respectively lower complex half–plane will be in the spectrum of the operator and
the other one will not.

That gives us the following statement for the spectral transition of our model.

Theorem 4.2.1.

Let m , 0. If the matrix A fulfils that the elements of its diagonal are zeros and

detA = 4,

then σ(HA) = C.
18



Let m = 0. If the matrix A fulfils following conditions

detA = 4 and trA = 0

then σ(HA) = C.

If

trA , 0 and
detA − 4

2i trA
= ±1

then the whole upper respectively lower complex half–plane belongs to the spectrum of the opera-
tor HA and the latter does not.

4.3 Pseudospectrum of the relativistic point interaction

Now we would like to answer why this wild spectral transition, mentioned in section 4.2, appeared.
It is clear that the spectrum of the point interaction 3.1.1 will not be denser while approaching critical
transition condition because if we consider matrix

Aδ =

(
0 (δ + 2)b
δ−2

b 0

)
(30)

then for arbitrarily small δ > 0 the condition (28) does not hold for any z ∈ C \ {(−∞,−m] ∪ [m,+∞)}.
That implies that this operator does not have any new points in its spectrum. On the other hand, if δ = 0
then this condition holds for every z and this yields that the spectrum of this operator is a whole complex
plane.

We will explain this remarkable spectral transitions with the pseudospectrum of the operator. We
will show that for arbitrarily small ε by taking δ to zero the whole complex plane will eventually fall into
ε–pseudospectrum of the operator 3.1.1 with the matrix Aδ in its transmission condition define as

Aδ = A + δB,

where the matrix A is the critical matrix

A =

(
0 2b
−2
b 0

)
and B is any fixed non–zero complex matrix. Note that for the fixed matrix B matrix A + δB cannot be
in the critical form.

Definition 4.3.1 (ε–pseudospectrum). Let A be a linear operator and RA(z) is its resolvent at z ∈ C.
Then we will call the set

σε(A) = {z ∈ C | ‖RA(z)‖ > ε−1}

ε–pseudospectrum of the operator A. Here we use a convention that ‖RA(z)‖ = +∞ if z ∈ σ(A).

Our main goal is to prove that the norm of the resolvent of the operator 3.1.1 with the matrix Aδ will
go to infinity as δ tends to zero. This will prove that for any ε and any z ∈ C \ {(−∞,−m]∪ [m,+∞)} this
number z will eventually fall into ε–pseudospectrum.

Theorem 4.3.1. For any ε > 0 and any number z ∈ C \ σ(Hm) there exists δ0 > 0 such that for every
0 < δ < δ0, z ∈ σε(HAδ).
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Proof. Let us denote

K = Rz(x, 0)(I +
i
2
AδZ(z))−1AδRz(0, y).

Then from a formula for the resolvent RAδz of the operator HAδ from Theorem 3.1.4 we get

RAδz = Rz − K .

Rz is a bounded integral operator and because it is a resolvent of the free Dirac operator we explicitly
know the norm of this operator

‖Rz‖ =
1

dist(z, σ(Hm))
.

On the other hand, we expect that the norm of the operator K will go to infinity because the matrix
(I + i

2AδZ(z)) is going to a singular matrix as delta tends to zero.

K = Rz(x, 0)(I +
i
2
AδZ(z))−1AδRz(0, y) =

1
det(I + i

2AδZ(z))
Rz(x, 0)MδAδRz(0, y),

whereMδ = det(I + i
2AδZ(z))(I + i

2AδZ(z))−1 δ→0
→

(
1 −ibζ(z)−1

iζ(z)
b 1

)
.

Then we can finally write the norm of the RAδz as

‖RAδz ‖ =
1

| det(I + i
2AδZ(z))|

‖ det(I +
i
2
AδZ(z))Rz − Rz(x, 0)MδAδRz(0, y)‖ ≥

≥
1

| det(I + i
2AδZ(z))|

‖Rz(x, 0)MδAδRz(0, y)‖ − ‖Rz‖.

Because det(I + i
2AδZ(z))

δ→0
→ 0 we conclude that

‖RAδz ‖
δ→0
→ +∞

which proves the theorem. �

4.4 Eigenvalues and eigenfunctions of the Dirac operator with non–local potential

Question of a stability of the spectrum of the perturbation for self–adjoint operators is discussed
for example in [Theorems VIII.23,VIII.24 [10]]. For a self–adjoint case if we have a norm–resolvent
convergence at our disposal a spectrum of the limiting operator cannot expand nor contract rapidly. Even
though a sudden contraction cannot happen also in a non–self–adjoint case, the same is not true for a
sudden expansion as discussed in a paragraph after [Theorems VIII.23,VIII.24, [10]] and in [Section
IV., §3, 2nd subsection, [12]]. In a following section we will try to demonstrate a convergence of the
spectrum of the Dirac operator with not necessary self–adjoint non–local potential.

One can try to find a condition for eigenvalues of the operator Hm with the non–local potential (2)
similar to the condition for the spectrum of the limiting operator (28) and see how this condition will
behave while approaching its limit. Let us take z ∈ C \ {(−∞,−m] ∪ [m,+∞)}

HAε ψ = zψ, ψ ∈ Dom HAε = Dom Hm = W1,2(R;C2)

−i
d
dx
σ1ψ + mσ3ψ + A〈vε|ψ〉vε = zψ
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(Hm − z)ψ = −A〈vε|ψ〉vε ∈ L2(R;C2) (31)

For z ∈ ρ(Hm) the equation (31) is equivalent to the following

∃ψ ∈ Dom(Hm) \ {0}, ψ = −RzA〈vε|ψ〉vε. (32)

This implies that for a certain vector ~a ∈ C2 a function ψ is in the following form

ψ = RzA~avε. (33)

If we substitute the form (33) into the equation (32) we get another equivalent expression of the (31)

(∃~a ∈ C2)(A~a , 0 ∧ RzA~avε = −RzA〈vε|RzA~avε〉vε) (34)

which we can rewrite as

(∃~a ∈ C2)(A~a , 0 ∧ A~a = −A〈vε|Rzvε〉A~a). (35)

Finally, we get that (35) holds if and only if

(∃~a ∈ C2)(A~a , 0 ∧ (I + A〈vε|Rzvε〉)A~a = 0) (36)

which implies

det(I + 〈vε|ARzvε〉) = 0. (37)

For a regular matrix A the equivalence between (36) and (37) is easily seen. For a singular matrix A a
reverse implication still remains unproven.

Let us start with det(I + 〈vε|ARzvε〉) = 0. That implies

(∃~x ∈ C2, ~x , 0)((I + 〈vε|ARzvε〉)~x = 0).

We need to prove that there exists some vector ~a ∈ C2 such that A~a = ~x.

(I + 〈vε|ARzvε〉)~x = 0

~x + 〈vε|ARzvε〉~x = 0

~x + A〈vε|Rzvε〉~x = 0

~x = A (−〈vε|Rzvε〉~x)︸          ︷︷          ︸
:=~a

which concludes that (36) and (37) are indeed in equivalence for any matrix A.
For a clarity purpose only, if we consider detA , 0 then (34) can be simplified even more to the

following form

(∃~a ∈ C2, ~a , 0)(~a = −〈vε|RzAvε〉~a).

That is true if and only if

det(I + 〈vε|RzAvε〉) = 0.

Fortunately, due to the parity in integrals and the form of Rz this is the exactly the same condition as (37).
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Since determinant is a continuous function it is sufficient to check a limit of the matrix in the deter-
minant. Using (4) we obtain

〈vε|RzAvε〉 =
i
2
Z(z)A〈vε|eik(z)|x| ∗ vε〉 +

i
2
σ1A〈vε|(sgn(x)eik(z)|x|) ∗ vε〉 (38)

Since

〈vε|(sgn(x)eik(z)|x|) ∗ vε〉 =

∫
R2
vε(y)sgn(x − y)eik(z)|x−y|vε(x) dx dy = 0

we can simplify (38) into the form

〈vε|RzAvε〉 =
i
2
Z(z)A〈vε|eik(z)|x| ∗ vε〉. (39)

Note that

〈vε|eik(z)|x| ∗ vε〉 =

∫
R2
v(y)v(x)eik(z)ε|x−y| dx dy.

For the integrand we have an integrable majorant

|v(y)v(x)eik(z)ε|x−y|| ≤ |v(y)||v(x)|.

Then by the dominated convergence theorem we get

〈vε|eik(z)|x| ∗ vε〉
ε→0
→ 1

This yields that the matrix in the equation (39) converge to the following matrix

i
2
Z(z)A〈vε|eik(z)|x| ∗ vε〉

ε→0
→

i
2
Z(z)A.

Thus we can found the limit for the condition (37)

det(I + 〈vε|RzAvε〉)
ε→0
→ det(I +

i
2
Z(z)A) (40)

which is exactly the same result as we got in the previous section for the condition for points of spectrum
of the operator HA. The condition det(I + 〈vε|RzAvε〉) = 0 can be treated as an implicit relation for the
implicit function ε→ z(ε) ∈ σ(HAε ).

We can further examine an eigenequation by explicitly choosing a function v and exactly calculate
the matrix

(I + 〈vε|RzAvε〉)

to find a point spectrum of the operator HAε .
Let us take

v(x) =

ε−1, x ∈ (0, ε)
0, everywhere else

(41)

then
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〈vε|eik(z)|x| ∗ vε〉 =

∫ ε

0

∫ ε

0

1
ε2 eik(z)|x−y| dx dy = {x − y = t} =

1
ε2

∫ ε

0

∫ ε−y

−y
eik(z)|t| dt dy =

=
1
ε2

∫ ε

0

(∫ ε−y

0
eik(z)t dt +

∫ 0

−y
e−ik(z)t dt

)
dy =

1
ε2

∫ ε

0

[eik(z)t

ik(z)

]ε−y
0

+

[
e−ik(z)t

−ik(z)

]0

−y

 dy =

=
1
ε2

(
eik(z)(ε−y)

ik(z)
−

2
ik(z)

+
eik(z)y

ik(z)

)
dy =

2
ε2

(
iεk(z) + 1 − eik(z)ε

k2(z)

)
This means that for the projection on a function (41) every z ∈ C \ {(−∞,−m] ∪ [m,+∞)} that satisfies
following equation is an eigenvalue of the operator HAε

det
(
I +

i
ε2

(
iεk(z) + 1 − eik(z)ε

k2(z)

)
Z(z)A

)
= 0

By denoting fε(z) := i
ε2

(
iεk(z)+1−eik(z)ε

k2(z)

)
we can rewrite the condition as

det(I + fε(z)Z(z)A) = 0.

However, finding solutions to this equation or even question of existence of a solution remains as the
open problem.
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5 Conclusion

In this work we found the norm–resolvent limit of the free Dirac operator Hm with not necessary
self–adjoint non–local potential

HAε = Hm +
1
ε2 |v(x/ε)〉〈v(x/ε)| ⊗ A.

In the self–adjoint case the limit correspond to the relativistic point interaction described in [7]. As
Šeba pointed out in [5] the norm–resolvent limit of the operator HAε is the same as its formal limit. We
concluded that renormalization of coupling constant does not occur for non–local potential.

Because of this property we defined general relativistic point interaction HA as the limit of the oper-
ator HAε for all complex 2 × 2 matrices A.

(HAψ)(x) = (Hmψ)(x), ∀x ∈ R \ {0} on domain

ψ ∈ Dom HA = {ψ ∈ W1,2(R\{0}) ⊗ C2 | (2iσ1 + A)ψ(0−) = (2iσ1 − A)ψ(0+)}

Furthermore, we discussed a spectrum of the operator HA and found that z ∈ C\{(−∞,−m]∪[m,+∞)}
is in the spectrum of the operator HA if and only if following equation holds

0 = 4 + 2i tr(AZ(z)) − detA.

We conclude that usage of a non–local potential to approximate the relativistic point interaction is
more rewarding and natural in the case of the Dirac operator. We also see that the non–self–adjoint
generalization of the relativistic point interaction behave similarly as in the self–adjoint case, except for
the wild spectral transition from Section 4.2.
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[2] L. Heriban, Aproximace jednorozměrných relativistických bodových interakcí pomocí nelokálních
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