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Abstrakt

Pii syntéze obrazu na pocitaci je nutné simulovat transport svétla ve scéné.
Simulace transportu svétla je vak ¢asové velmi ndro¢éna. Jak naznacuji neddvno
publikované teoretické préce, klicem k urychleni této simulace je vyuziti koherent-
nich vlastnosti svétla, které prochézi scénou. V této dizertacni préci se zabyvame
ndvrhem efektivnich algoritmi pro syntézu obrazu, které odhaluji a pouzivaji
pravé zminéné koherence transportu svétla.

Navrhujeme novy algoritmus nazvany prostorove- wd tischova radiance
(SDRC) pro urychleni simulace transportu svétla ve scénéch s lesklymi povrchy.
Algoritmus SDRC vyuzivé toho, ze nepfimé osvétleni se v realnych scéndch méni
spojité a relativné pomalu vzhledem k pozici. To ndm dovoluje vypocitavat ne-
piimé osvétleni pouze v nékterych, vhodné zvolenych mistech ve 3D scéné, a v
ostatnich mistech jej nasledné zrekonstruovat z okolnich dfive vypoctenych keSo-
vanych zaznami radiance. V préci ukazujeme, Ze SDRC piekondva nejen ptivodni
algoritmus keSovani radiance navrzeny Kfivankem a kol. [KGPB05], ale i obecné
numerické metody Monte Carlo zaloZzené na vzorkovani s dilezitosti podle odra-
zivé funkce (BRDF).

V dalsi ¢asti prace navrhujeme efektivni a presnéjsi algoritmus pro lokdlni
analijzu hlavnich komponent (LPCA), ktery se pouzivé pro redukei dimenziona-
lity a kompresy rozsahlych datovych souboriu. Efektivity algoritmu dosahujeme
predévanim nékterych vysledki mezi jednotlivymi iteracemi LPCA algoritmu. K
zlepSeni presnosti algoritmu slouzi lepf inicializace LPCA, kterd predchazi uvdz-
nuti LPCA ve Spatném lokalnim minimu. Navrzeny algoritmus pouzijeme pro
kompresy matic pfenosu osvétleni pouzivané v metoddch souhrnné oznacovanych
jako metody s predpocitanym pienosem radiance.

V posledni ¢éasti dizertace popisujeme ndvrh algoritmu pro interaktivni
nasvétlovani animovanych sekvenci s globdlnim osvétlenim. Problém nasvétlovani
formulujeme pomoci 3D tenzoru, ktery popisuje propagaci svétla ve scéné napiic
animovanou sekvenci. Pro urychleni pfed-vipoc¢tu tenzoru navrhujeme adaptivni
algoritmus, ktery vyuziva koherenci obsazenou v transportu svétla. Navrh naseho
algoritmu dosud nebyl implementacné ovéfen a tuto tilohu ponechavame jako
namét pro budouci praci.

Kli¢ova slova. Pocitacova grafika, rendering, koherence, globalni osvétlent, si-

mulace transportu svétla, klovani radiance, analyza hlavnich komponent, PCA,
k-means, predpocitany ptenos radiance, kinematografické znovu nasvétlovani.
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Abstract

Simulation of light transport in a scene is an essential task in realistic image
synthesis. However, an accurate simulation of light as it bounces in the scene is
time consuming. It has been shown that a key to speeding up light transport
simulation algorithms is to take advantage of the high degree of spatial, angular,
and temporal coherence. In this thesis we make three contributions in this area.

First, we propose spatial directional radiance caching (SDRC) for accelerating
the light transport simulation in scenes with glossy surfaces. The SDRC algorithm
takes advantage of the smoothness of shading on glossy surfaces by interpolating
the indirect illumination from a set of sparsely distributed radiance samples that
are both spatially and directionally close. We show that SDRC outperforms the
original radiance caching proposed by Kfivdnek et al. [KGPB05] and also the
Monte Carlo-based methods based on BRDF importance sampling.

In the next part of the thesis, we propose an efficient and accurate local
principal component analysis (LPCA) algorithm for dimensionality reduction and
data compression of large data sets. To achieve efficiency our new algorithm,
called SortCluster-LPCA, passes various information from previous iteration to
the next, showing a speed up of up to 20. Improved accuracy is achieved through
better initial seeding of cluster centroids in LPCA, producing substantially better
data approximation.

Finally, we describe a work in progress focusing on the development of
an algorithm for interactive relighting of animation sequences with indirect
illumination. We formulate the relighting problem as a large 3D array expressing
light propagation in a scene over multiple frames. We suggest an adaptive
algorithm to make the pre-computation tractable exploiting coherence in light
transport. Since our approach has not been implemented yet we leave its
practical verification as a future work.

Keywords. Computer graphics, rendering, coherence, global illumination, light
transport simulation, radiance caching, principal component analysis, PCA, k-
means, precomputed radiance transfer, cinematic relighting.
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Résumé

One of the important problems in the field of computer graphics is to generate
an image of a scene in such a way that the difference between a photograph of a
real scene and the computer-generated image of the corresponding virtual scene
is not noticeable. Generating such photorealistic images is called Realistic Image
Syn and has a number of applications in the film industry, archite
lighting design, etc.

1 Global lllumination Problem

The input of any realistic image synthesis system is a complete description of
a virtual world. It consists of the objects’ geometry, the material properties of
those objects, and the geometry and emission characteristics of light sources. In
order to create an image of the virtual world we need to calculate the amount
of light entering a virtual camera which is positioned in the scene. Light enters
the camera directly from the light sources and also indirectly as it is reflected
or refracted off the objects in the scene. The effects of light as it bounces in
the scene are referred to as global illumination (GI); this is the main objective of
realistic image synthesis. Some examples of global illuminated scenes are given
in Figure 1.

The fundamental mathematical foundation for realistic image synthesis is the
rendering equation [KajS86]. The rendering equation describes the energy balance
in the scene. One approach to solve the rendering equation is the finite element
method that the radiosity algorithms are based on [CW93, SP94]. The radiosity
algorithms have been shown to be very efficient, especially for relatively simple
scenes with diffuse surfaces. For complex environments with a lot of materials
with different reflectance functions, however, radiosity algorithms are impractical
in terms of memory space and computation time.

Other approaches to solve the rendering equation are based on Monte Carlo
methods. Instead of solving the rendering equation directly they calculate it
in an explicit form: they expand the equation into an infinite series of finite-
dimensional integrals that can be evaluated numerically. The pioneering work
in solving the finite-dimensional integrals using Monte Carlo was distributed ray
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(a) Refraction (b) Color bleeding (c) Caustic

Figure 1 — Global illumination effects. Tmages courtesy were borrowed
from [KG09].

tracing [CPC84] and path tracing [Kajs6], as well as the follow-up algorithms
like bi-directional path tracing [LW93, VG97], etc. Such methods are general and
robust. But it can take hours to generate artifact-free images.

The main source of inefficiency of above Monte Carlo algorithms is that
they reuse no (or just very little) information about the contributions of pre-
viously calculated light paths, essentially ignoring any coherence of light trans-
port in the scene. To speed up the global illumination calculation other al-
gorithms trade generality of provided solution for restrictions imposed on the
scene configuration and/or make use the coherence of light transfer in the
scene [WRCS8, KGPB05, GBP07, HPBOT7]. Irradiance and radiance caching al-
gorithms [WRCSS, KGPBO5] are efficient methods for solving global illumination
in scenes with diffuse and low-gloss surfaces, respectively, using the observation
that indirect lighting changes slowly over surfaces. Another observation is that
lighting changes smoothly whenever the camera and/or objects in the scene move
slowly [GBP07, HPBO7].

Mathematical foundation for light transport coherence was presented
in [DHST05, MSRBO7, PML"09]. These works show that light transport has
a high degree of coherence over directional, spatial, and temporal domains. As
suggested in these works, the use of light transfer coherence can play the key role
in further acceleration of global illumination algorithms. In the thesis we focus
on the very goal of speeding-up global illumination algorithms by exploiting the
coherence of light transfer in the scene.
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Contributions

2 Contributions

A huge amount of calculation must be performed to provide a high-quality im-
age with global illumination. To reduce the amount of calculation it is custom-
ary to simplify the problem in an application-specific manner. In the thesis we
develop three algorithms of different applications making use of light transfer
coherence for efficient calculation of GI: one for general computation of GI on
glossy surfaces, another for the acceleration of local principal component analy-
sis (LPCA) used for compression of large data matrices in precomputed radiance
transfer (PRT) [SKS02, SHHS03] and image databases of Bi-directional texture
function (BTF) [FH09], and the last one which is a work in progress extending
PRT for animation sequences. In the following, we shortly introduce these three
algorithms.

2.1 Spatial Directional Radiance Caching

As we mentioned above, computing full global illumination in virtual scenes is
very time-consuming. Monte Carlo importance sampling [Coo86, LF97, LRR04],
Metropolis light transport [VG97] or photon mapping [Jen01] are examples of
very general techniques for solving GI. Irradiance caching [WRCSS] delivers fast
GI solution in scenes with diffuse surfaces. Radiance caching [KGPB05] includes
the support for caching in the scenes with low-glossy surfaces. But effective algo-
rithms for computing GI on shiny surfaces are missing. We focus on generalizing
caching approaches to shiny surfaces. We propose a novel efficient algorithm that
we call spatial directional radiance caching (SDRC), for computing GI effects on
these surfaces. We use both spatial and angular coherence of light transport in
the scene to make our algorithm efficient.

2.1.1 Algorithm Overview

Our algorithm is built on the fundamental idea behind the original irradiance
caching, the “lazy evaluation procedure™: query the cache, perform interpolation
if possible, otherwise compute a new illumination value and store it in the cache
for later reuse.

When we evaluate a new record (if none is available for interpolation), we
generate random directions using BRDF importance sampling and compute in-
coming radiance for each direction by ray tracing. We then map such directions to
a phi-theta space and build a kd-tree over them. The whole L-tree (how we called
the kd-tree) is then stored in the cache as a single spatial record. The cached
L-trees may later be selectively updated during the interpolation as described in
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(SHRC)

Figure 2 — Renderings of the chess scene. Images were rendered at a resolution
of 1024 x 768 in approximately the same time, 468 seconds. The indirect term
computation on glossy surfaces took 365 seconds. Note the sharper glossy reflec-
tion of black pieces on the white chess piece in the details. Chess pieces courtesy
of T. Hachisuka.

the following paragraph. To determine the area over which the new record can
be reused, we estimate the upper bound on the illumination gradient from the
radiance samples. The gradient formula takes the BRDF into account, hence the
record spacing is automatically adapted to the surface reflectance properties.

The major novelty of our caching algorithm consists in performing the “lazy
evaluation procedure” not only in the spatial but also in the directional domain:
To compute indirect illumination at a point, we first collect existing nearby cache
records, or L-trees, (in space) and we attempt to use them for interpolation.
However, for each sample direction (generated by BRDF importance sampling at
the point of interpolation), we check if there is a nearby radiance sample stored in
the L-tree and possibly reuse it. If not, we shoot a ray to obtain a new radiance
sample and update the L-tree. The process is applied to all contributing L-
trees separately. Finally, outgoing radiance is computed as a weighted average of
the contributions from individual L-trees. The major benefit of the directional
caching is that it ensures a smooth integration of the view-dependent BRDF
importance sampling with the view-independent overall caching algorithm.
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Contributions

2.1.2 Results

We compare our algorithm (spatial directional radiance caching, SDRC) with the
original radiance caching algorithm as described in [KBPv06] (spherical harmon-
ics radiance caching, SHRC) and Monte Carlo importance sampling (MC). Our
new caching algorithm outperforms the original radiance caching for scenes with
shiny surfaces, where radiance caching produces blurring of reflections or band-
ing artifacts. Compared to Monte Carlo importance sampling, our algorithm
produces less noisy images in the same time. The main disadvantages of our
algorithm are a higher memory demand and potentially difficult parallelization
due to the continual updates of cache records. Equal-time comparison of the
rendering quality achieved using the MC, SHRC and SDRC is in Figure 2.

2.2 Improving Performance and Accuracy of Local PCA

Precomputed radiance transfer (PRT) [SKS02] and image databases of Bi-
directional texture function (BTF) [MMIK03, FH09] are the main applications in
computer graphics where the local principal component analysis (LPCA) [KLI7]
is largely used. PRT refers to a group of methods used for interactive re-
lighting of a virtual scene with GI effects while dynamically changing some
parameters of the scene. The original PRT application was used for im-
age relighting of a scene lit by an environment map. In the many follow-
up papers [SHHS03, LSSS04, NRH03, FPJY07, HR10] the PRT has been im-
proved, lifting some restrictions on the scene configuration. The PRT meth-
ods have been shown to be very popular for lighting design in cinematogra-
phy [KAMJ05, HPBOG]. They have also been used in computer games because of
their ability to deliver GI effects at real-time frame rates. To achieve these goals,
PRT techniques precompute and compress light transfer in the scene expressed
as a large transfer matrix. Precomputation and compression of the light trans-
fer matrix, however, is very time-consuming and is a serious bottlenecks of PRT
methods. Huang and Ramamoorthi [HR10] address the slow precomputation
of light transfer matrix by exploiting spatial and angular coherence of the light
transfer. Nevertheless they still use the slow LPCA for the light transfer matrix
compression. Our goal is to accelerate the LPCA by exploiting the coherence in
the compressed data.

2.2.1 Algorithm Overview

Having a set of high-dimensional data vectors and a number of clusters k, the
goal of LPCA is to find an approximation of these vectors in k low-dimensional
affine subspaces minimizing an error criterion. The original LPCA starts with

ot
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(c) Walt Disney

(d) Dragon (e) Happy: 16x Err-img (f) Disney: 16x Err-img
Figure 3 — Scenes used in our experiments. We tested our SortClusters LPCA
(SC-LPCA) for compression of transfer matrices for the enes. The models
in 3a, 3b, and 3d are made of glossy materials represented using Phong’s BRDF
with exponent from 10 to 30. The model in 3¢ is represented using Ward’s BRDF
with the roughness of 0.1. Compared to LPCA, we achieve a 5x to 20x speed-up
using SC-LPCA, while providing identical output. For the sake of completeness,
Figure 3¢ and 3f show a 16x amplified difference between images rendered using
the original and compressed transfer matrix.

a random initialization of affine subs) After that it alternately performs
classification of the data vectors into nearest clusters as well as clusters’ update.
But there are serious bottlenecks with this simple LPCA algorithm. First it is
inefficient: When classifying a data vector to the nearest cluster, distances to all
clusters must be computed. The data vector is then assigned to the cluster for
which the distance is minimal. A second problem is low accuracy since the LPCA

is prone to get stuck in a local minimum of the objective function that guides the
clustering.

fast test
fication

To improve the efficiency of the LPCA we propose to use a very
which allows us to eliminate unnecessary distance calculations in the class
stage. Before calculating the true distance of a data vector to a tested cluster
(represented by affine subspace) we check, whether the data vector can be closer to

Conclusion

In Contribution 1 we developed spatial directional radiance caching (SDRC)
to speed up GI sulation in scenes with glossy surfaces. Efficiency of SDRC is
achieved by reusing cached radiance samples calculated adaptively on demand.
In Contribution 2 we deal with local principal component analysis (LPCA) used
for data compression in data-driven approaches. We developed an accelerated
algorithm, SortCluster-LPCA (SC-LPCA), thal
as the original LPCA but more quickly by exploiting coherence in the compressed
em for cinematic

produces exactly the same result

data-set. In Contribution 3 we presented an interactive

relighting of animation sequences.

In future research it would be interesting to explore other possibilities how
to utilize coherence for fast GI calculation proposing more efficient algorithms.
In addition, we expect that data-driven approaches— fast estimation of the light
transfer tensor in our interactive system used data-driven approach—will cement
their key position in modern computer graphics. Powerful algorithms for process:
ing and compression of large databases that exploit the coherence therein will be
of foremost importance.
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Figure 5 — Conceptual overview of our offline algorithm. (a) We use a light
transfer tensor to describe direct-to-indirect light transfer from one set of samples
to another set of samples over multiple frames of an animation sequence. The
solid line depicts the contributions of all gather samples at some frame to one
view sample at the same frame. (b) We start by exploring structure of the light
transfer. (c) Then we run a modified version of local principal component analysis
(LPCA) to find lincar subspaces that fit the light transfer tensor. (d) Finally
we refine the structure of the light transfer tensor and approximate it in linear
subspaces found in the previous step.

2. Run a modified version of the local principal component analysis (LPCA)
to find linear subspaces that closely approximate light transfer vectors of
the parts of the tensor explored so far.

3. Reconstruct light transfer in other unexplored parts of the light transfer
tensor and approximate them in the previously computed linear subspaces.

Currently we have been developed our system for animation sequences. How-
ever, as it has not been implemented yet we do not provide any results. This is
left as a subject for future work.

3 Conclusion

Realistic rendering of complex virtual scenes is demanded by number computer
graphics applications. Accurate material and lighting models must be used for a
faithful reproduction of a scene. This necessitates fast and accurate algorithms for
realistic image synthesis. It has been shown that coherence of light transport can
be exploited [DHS 05, MSRBO7, PML*09] to accelerate these algorithms. This
thesis describes three new algorithms for realistic image synthesis and shows how
the coherence was used to make these algorithms efficient.
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the tested cluster than to the nearest cluster found so far. We use our generalized
triangle inequality to perform this test. If the data vector can be closer to the
tested cluster we calculate its true distance to the tested cluster. Otherwise
we simply skip the computationally costly distance calculation knowing that the
tested cluster lies farther than the current nearest one. For more details about our
algorithm see the thesis. To address the inaccuracy we propose a fast algorithm
called SortMeans++ that produce better initialization for the LPCA, i.e. the
distribution of initially guessed clusters are closer to the final distribution after
convergence.

2.2.2 Results

‘We tested our SC-LPCA for compression of radiance transfer matrices used in pre-
computed radiance transfer (PRT) and for compression of bi-directional texture
function (BTF) image databases. Examples of scenes in which we precompute the
radiance transfer matrices and used them as an input for our compression algo-
rithm are in Figure 3. Overal performance and timings achieved by our SC-LPCA
and the original LPCA algorithm are in table 1. The original LPCA spent from 3
to 6 hours to compress the PRT matrices. Our SC-LPCA require from 15 minutes
to one hour, achieving speed-up of 20 for a simple scene with horse model and
speed-up of 5 for a complex model of the Walt Disney Concert Hall. Concerning
the data approximation accuracy, we consistently achieve a lower approximation
error in our tested data sets compared to simple random initialization.

vertices | PRT Classification [s] PCA| ¢

scene [#] [s] | LPCA SC-LPCA speedup | [s] [-]
Horse 67.6k | 22.5 | 13 700 674 20.3 146 | 0.029
Dragon | 57.5k | 25.5 | 10 900 1700 6.38 155 | 0.174
Buddha | 85.2k | 31.6 | 16 700 3020 5.55 170 | 0.316
Disney | 106.3k | 46.5 | 20 900 4080 5.12 170 | 0.394

Table 1 — Summary results and timings for the example scenes. The columns
list the total number of vertices in the scene, transfer matrix computation time
(PRT) and the total classification time using original LPCA and our SC-LPCA
algorithm. The rightmost two columns shows the time spent on the PCA approx-
imation evaluation and the value of the objective function ¢. Transfer matrices
were computed on a Geforce GTX 580 GPU, while the Classification and PCA
computation we performed on 4 CPU cores.
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(a) Spot-light source (b) Spot and area-light sources
Figure 4 — Renderings of a scene with a hair ball relit using different configura-
tions of light sources. Images were rendered by our implementation of cinematic
relighting system [HPBO6].

2.3 Relighting of Animation Sequences.

One of the important problems in computer cinematography is lighting design in
a scene. Lighting design usually proceeds as follows: a lighting designer places
light sources in the scene, sets their parameters and renders the scene; then he
adjusts the parameters of the light sources and renders the scene again, ... and
so on until he obtains the desired lighting. Screenshots of a scene as illuminated
by different lights is in Figure 4.

Several relighting systems for lighting design in computer cinematography
have been proposed, mostly based on precomputed radiance transfer [KAM.J05,
HPBO06, KTHS06, LZT08]. They are restricted, however, for relighting of static
scenes as observed from a static view point. Instead of relighting in static scenes
we focus on relighting animation sequences with GI. Some existing works deal
with relighting for articulated characters [NSK 07, FPJY07] but these approaches
do not scale to the requirements needed for our application domain, the cinematic
lighting design: they mostly deal with simple characters and also deliver less ac-
curate GL. On the other hand we aim at robust cinematic system for relighting
in complex scenes while providing a high-quality rendering of the animation se-
quence. We believe that animation relighting would be extremely useful in com-
puter cinematography. A designer will be able to design lighting in any frame
of the animation sequence while having the possibility to play back the whole
sequence with the updated lighting.

Technically we build on the idea of direct-to-indirect light transfer [HPBOG]
but instead of precomputing light transfer for one frame we precompute it for
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the entire animation sequence. We develop an efficient algorithm to make the
calculation efficient by leveraging directional, spatial, and temporal coherence of
light transport.

2.3.1 Algorithm Overview

To make our relighting system useful for lighting design in computer cinematog-
raphy we must deliver high-quality rendering of the animation sequence with
indirect lighting. But high-quality indirect lighting is time-consuming and can-
not be rendered in real-time even on the latest graphic hardware. To achieve
this goal, our relighting system is split into two parts: an off-line part for pre-
computing the direct-to-indirect (DTI) light transfer tensor, and a run-time part
for high-quality rendering of the animation sequence with indirect lighting.

Run-time phase. The run-time part of our relighting system uses the pre-
computed DTT light transfer to interactively render global illumination in the
predefined animation sequence.

1. Calculate direct lighting at frame ¢ on a set of points (gather samples)
distributed uniformly in the scene.

N

. Use the precomputed light transfer tensor to transform the direct lighting on
gather samples to indirect lighting at points (view samples) visible through
camera at frame ¢.

w

. Calculate direct lighting on the view samples and add it to indirect lighting,
obtaining final rendering of the scene at frame ¢.

'S

. Shift to the next frame, i.e. ¢ ¢+ 1, and repeat all steps until the end of
the animation sequence is reached.

Pre-computation phase. In the off-line part we pre-compute the light transfer
tensor. Since the tensor is huge, containing several Tera (i.e. 10'2) elements, a
problem arises: how to make its pre-computation feasible in terms of memory
space and computation time. But as we mentioned above the light transfer tensor
contains a high degree of coherence that can be exploited to make the evaluation
practical. We use the following strategy to evaluate the light transfer tensor in a
compressed form while keeping the memory requirements tractable. See Figure 5
for a conceptual overview of our off-line algorithm.

1. Explore the structure of the light transfer tensor; elements of the light
transfer tensor in which the light transfer is likely to change rapidly are
sampled more densely than other elements.



