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Abstrakt / Abstract

Tato práce představuje inovativní
přístup v oblasti interiérové lokalizace
pro autonomní pozemní vozidla se
zaměřením na její dlouhodobou přesnost
a spolehlivost.

Systém je založený na fúzi ultra
wide-band technologie, inerciální měřící
jednotky a odometrie. Realizace je
uskutečněna jako inerciální navigační
systém zpětnovazebně řízený rozšířeným
Kalmanovovým filtrem s oddylkovým
modelem.

Navržený systém je implementován
na robotickou platformu CART2 a
experimentálně ověřen na několika
testovacích scénárií ve dvou různých
vnitřních prostředích. Výsledky ukazují,
že systém dosahuje přesnosti v pozici
až 10 cm a v orientaci jednotek stupňů.
Systém splňuje požadavky pro jeho
využití v praktických nasazeních,
kde je vyžadována vysoká přesnost
a spolehlivost.

Klíčová slova: ultra-wideband, imu,
ins, localizace, vnitřní prostředí, ekf,
rozšířený kalmanův filtr, odchylkový
model rozšířeného kalmanova filtru

Překlad titulu: Interiérový lokalizační
systém pro autonomní prostředky s
využitím technologie Ultra-Wideband

This thesis proposes a novel approach
in indoor real-time localization of au-
tonomous ground vehicles and aims to
ensure its accuracy, repeatability and re-
liability in the long term.

The system is based on Ultra Wide-
Band technology, an Inertial Mea-
surement Unit and odometry. An
integration scheme using an Error state
Extended Kalman filter in a closed-loop
fashion is employed for the realization
of this approach.

Evaluation is based on real data
obtained from various testing scenarios
in two different environments using the
proposed aided inertial navigation sys-
tem integrated on the CART2 robotic
platform. The results show that the
system can achieve a positioning pre-
cision within 10 cm and a few degrees
in attitude. The system meets the re-
quirements for practical conditions and
seems viable for indoor localization with
high accuracy and precision demands.

Keywords: ultra-wideband, imu, ins,
localization, indoor, kalman-filter, ekf,
indoor localization, error state extended
kalman filter
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Chapter 1
Introduction

Indoor real-time localization is a crucial component in autonomous mobile robotics, and
nowadays, the interest for precise localization is growing due to the fourth industrial
revolution influencing all industries. There are existing approaches and technologies to
deal with indoor localization in the industry but do not fully meet all of the requirements
of the fourth industrial revolution.

One of the requirements is to keep as few manual interventions as possible for the
technology to work reliably for a long period of time. An example is autonomous
ground vehicles (AGV) manufactured by the company Ceit in Škoda factories, which
are localized by continuous magnetic tapes physically mounted on the factory’s ground.
The AGV follows these magnetic tapes, which often can be damaged by moving AGVs
or people and can not be autonomously replaced or modified.

Another possible requirement is the modularity of the factory environment. Today’s
trend is to create a factory that consists of modular parts, and the entire production
process is assembled according to its current needs. Therefore, approaches based on
localization relying heavily on landmarks or contours from cameras or lidars may fail.
These approaches must address long-term sustainability, and this topic is not straight-
forward and can lead to difficulties.

The demand is also for a localization that will be universally applicable to various
robotic platforms, whether ground vehicles of different shapes and constructions or
flying drones. These requirements are currently being met in the outdoor environment
by the Global Navigation Satellite System (GNSS), which unfortunately is not suitable
for use in indoor environments. The use of external beacons seems to be a reasonable
solution because it has similar properties as GNSS. These beacons can be based, for
example, on ultrasound or radio waves as ultra wide-band or Wi-Fi.

A single technology cannot meet all of these requirements, but an appropriate fusion
of carefully chosen approaches can.

1.1 Aims and requirements
This thesis is assigned by the Czech company Datavision s. r. o. and is a part of a
project called Guidance and Localization upgrade creating Autonomous Mobile Robots.
The abbreviation for this project is REX, and it is also used in this thesis.

REX aims to create fleet management of autonomous mobile robots, including
their localization, control, navigation and planning. The project is co-financed by
the Technology Agency of the Czech Republic (TACR) under the TREND Programm
FW03010020 and aims to satisfy the fourth industrial revolution requirements.

This thesis aims to propose an indoor real-time localization system, which includes
both the position and orientation of AGV. This aim is closely connected with the spec-
ification of localization in the REX system but is simplified into 2D. The fundamentals
need to be applicable in 3D with a few modifications.

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The essential aim is to design a localization system based on ultra wide-band technol-

ogy and onboard dead reckoning sensors, which should improve the UWB localization
itself.

1.2 Structure of the thesis
This thesis is organized into six major parts. The following Chapter 2 describes the fun-
damentals of the sensors used and the concept of inertial navigation systems. Chapter 3
discusses existing data fusion algorithms for pose estimation algorithms and their pros
and cons. The proposed localization and its implementation are described in Chapter
4. In Chapter 5, the proposed localization is experimentally evaluated in two environ-
ments. The thesis is concluded in Chapter 6, where the usage of this system in the
industrial environment is given, followed by a summary of the thesis output and a few
proposals for improving and extending the work.

2



Chapter 2
Sensors

In Chapter 2, an overview of the sensors used and their properties is given. The main
aim is to describe localization methods based on ultra-wideband technology(UWB), an
inertial measurement unit (IMU) followed by inertial navigation systems (INS), and
odometry.

The section dedicated to UWB localization briefly introduces the UWB signals follows
with three most used localization techniques: Two-Way Ranging, Time Difference of
Arrival, and Reverse Time Difference of Arrival.

The IMU section mainly focuses on the unit overview, a short description of gy-
roscopes and accelerometers used in it, the errors of these sensors, its analysis and
outcomes for the localization unit. This section is closely related to the INS section,
where principles of INS are explained and a strap-down implementation example is
given.

The last section includes basic information about odometry and its benefits as well as
which odometry is used during the experimental verification of the proposed localization
system.

2.1 Localization based on ultra-wideband
Ultra-wideband is an emerging wireless personal area network (PAN) radio technology
with a wide range of uses. The most promising usage in the field of robotics is accurate
indoor localization because its benefits include

. high data rates,. high time resolution,. low power consumption,. multipath immunity,. low costs,. small size. and simultaneous ranging communication [1].

The UWB signal is defined as a signal with an absolute bandwidth (𝐵) of at least 500
MHz, defined as

𝐵 = 𝑓𝐻 − 𝑓𝐿, (1)

where 𝑓𝐻 is the upper frequency and 𝑓𝐿 is the lower frequency, or with a fractional
bandwidth of larger than 20 % given by

𝐵𝑓𝑟𝑎𝑐 = 𝐵
𝑓𝑐

= 𝐵
𝑓𝐻+𝑓𝐿

2

[2]. (2)

Since the bandwidth of the signal is wide, the power spectral density is low. It
means that even if the UWB signals share a spectrum with some narrowband signals

3



2. Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
such as WiFi, it essentially behaves as environmental noise and does not affect any
other narrowband signals much [2]. Also, since the length of each pulse is small, the
possibility of overlapping the original pulse is reduced. Thus, it should be robust against
multipath problem [2].

For precise communication, a direct line of sight should be established between the
transmitter and the receiver. However, as UWB signals consist of many frequencies,
some of them can reflect well off of some objects, while others can penetrate through
them [2].

A few localization techniques exist based on UWB signals which are exchanged be-
tween a tag and several reference anchors with known positions [2]. The more accurate
results in the line of sight environments are based on measuring the signal’s time of
flight from several devices, namely Two-Way Ranging (TWR), Time Difference of Ar-
rival (TDoA) and Reverse Time Difference of Arrival (RTDoA). The overview of these
technologies follows.

Two-Way ranging (TWR) is a simple method where the tag and anchors exchanges
message in both ways. Thus, the updated rate of the tag’s position is limited and
decreased with a higher number of tags asking for their positions. The synchronization
of the messages is provided with one anchor declared as an initiator of the network. The
communication between the tag and anchors is illustrated in Figure 2.1. This method
is the most used nowadays, as it is the simplest [2].

Figure 2.1. Two way ranging communication [3].

In Time Difference of Arrival (TDoA) technology, the tag only transmits information
and the anchors only receive data. The tag sends a message to all available anchors.
They estimate the time difference of the delivered messages, and the tag’s position is
calculated accordingly. With this technology, a higher update rate can be achieved even
with more tags than TWR [2].

In Reverse Time Difference of Arrival (RTDoA), the tag listens and anchors transmit
into the environment. The position is directly computed in the tag. This technology
has no upper limit for tags and also promises the highest update rates. Thus, it is well
suited for flying drones or for similar applications where this high update rate and low
latency are needed [2]. This mode is comparable to the localization algorithm used in
GNSS. Unfortunately, this technology is not yet commonly available on the market.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Inertial measurement unit

This article [4] proves the similarity of the usage of GNSS and UWB. The authors
demonstrate the possibility of switching from GNSS to UWB while a pedestrian user
moves from an outdoor space to an indoor environment.

Despite all of the mentioned benefits, in practice, UWB localization faces errors
caused by surrounding factors, leading to coordinate jitters or outlying results [5].

2.2 Inertial measurement unit
An inertial measurement unit (IMU) is a device that utilizes measurement systems
such as gyroscopes and accelerometers to estimate the relative position, velocity and
acceleration of a vehicle in motion [6]. The unit is typically integrated with an onboard
computational system and may contain more sensors acting as a magnetometer or
thermometer.

The gyroscopes measure angular velocities and accelerometers specific forces which
can be easily transformed into linear accelerations [6]. The IMU typically contains
three orthogonal accelerometers and three orthogonal gyroscopes. Because of that, it
can measure angular velocities and specific forces in each axis to maintain a 6-DOF
estimate of the pose of the vehicle (position (𝑥, 𝑦, 𝑧) and orientation (𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤).
The process of the computation can be seen in Figure 2.2.

Rate gyros

Accelerometers

Integrate to get 
orientation

Transform to 
local-level 

navigation frame

Subtract g from 
vertical 

acceleration

Integrate to get 
velocity

Integrate to get 
position

Initial velocity Initial position

Accelerations Velocity Position

Figure 2.2. IMU block diagram [6].

There are two basic ways to mount the IMU to a vehicle, also called mechanization
architectures [6–7].

. In gimbaled systems, the IMU is attached to a stabilized platform that maintains
its inertial orientation as the vehicle maneuvers.. In strap-down systems, it is rigidly attached to the vehicle.

The mechanization determines the conversion between measurements of IMU and es-
timation of linear accelerations and angular velocities of the vehicle. It means the
transformation of the IMU body frame to the local frame. The conversion is closely
related to inertial navigation systems described in Section 2.3.

IMU’s are extremely sensitive to measurement errors. The way in which the gy-
roscopes and accelerometers are mounted, along with their properties, play a major
factor in how accurate their results are. As the data are once or twice integrated, any
error in measurement causes a linear or quadratic error in the pose estimation. Even
with a small measurement error, the IMU’s drift becomes significant, and it needs to

5



2. Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
be externally compensated. The IMU provides a short-term stable solution, which is
not affected by the external environment [7], and it has a high data rate (100 Hz -
200 Hz). That makes the IMU measurement complementary to the UWB localization
measurement.

IMU’s are extremely sensitive to measurement errors given by properties of used gy-
roscopes, accelerometers and their mounting. As the data are once or twice integrated,
any error in measurement causes a linear or quadratic error in the pose estimation.
Even with a small measurement error, the IMU’s drift becomes significant and it needs
to be externally compensated for. The IMU provides a short-term stable solution,
which is not affected by the external environment [7] and it has a high data rate (100
Hz - 200 Hz). This is what makes the IMU measurement complementary to the UWB
localization measurement.

2.2.1 Accelerometers

Accelerometers can measure external forces acting on the vehicle. They measure a
specific force relatively to a non-rotating inertial space in a specific direction. They are
sensitive to all forces, including gravity and fictitious forces [6].

Mechanical accelerometers use a spring-mass-damper system. When a force acts on
the mass, it causes a displacement of the spring. The system is limited by the physical
properties of the actual spring.

Microelectromechanical systems (MEMS) based accelerometers are made of at least
three components, namely a proof mass, a suspension to hold the mass and a pickoff,
which relays an output signal to the induced accelerations [8]. MEMS accelerometers
are then classified by converting the mechanical displacement of the proof mass to
an electrical signal. The most common principles belong to piezoresistive, capacitive
sensing, piezoelectric, optical sensing and tunneling current sensing. Unlike the others,
the piezoelectric MEMS sensors can not be used for navigation because their output
rate is too low [8].

The current accelerometers use technology according to an application that is sum-
marized in Figure 2.3.

2.2.2 Gyroscopes

Gyroscopes are used for estimating a rotational motion of a body. Each gyroscope
measures angular rate 𝜔 (inertial angular rotation) relatively to a non-rotating inertial
space in one axis. There are three main categories of gyroscopes [6].

Mechanical gyroscopes have a mass spinning steadily with respect to a free movable
axis, they are not often used anymore, but they can be found in very old submarines.

Optical gyroscopes are based on the Sagnac effect, which states that frequency/phase
shift between two waves counter-propagating in a rotating ring interferometer is pro-
portional to the loop angular velocity. As a light source, a laser is typically used.
Currently, this technology gives the best performance. Examples can be ring laser
gyroscopes (RLG) or fibre optic gyroscopes (FOG).

Vibrating gyroscopes are based on the Coriolis effect that induces a coupling between
two resonant modes of a mechanical resonator. Typically, vibrating gyroscopes are
based on MEMS technology [8], and they play a significant role in robotics because
of their simplicity. They are small, cheap, have no rotating parts and have low power
consumption.

The performance and application of each technology are demonstrated in Figure 2.4.
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Figure 2.3. Accelerometers technology plotted by bias instability and scale factor stability
[9].

Figure 2.4. Gyroscopes technology plotted by bias instability and scale factor stability [9].

2.2.3 IMU’s errors and Allan variance analysis

IMU errors IMUs faces several error sources which are always related to the specific
sample unit and its technology. In this thesis, the main focus is given to MEMS-
based IMUs as they are used in the experiments. These sensors are typically small and
inexpensive. This section summarises the most significant errors for MEMS sensors and
analyzes these errors with the Allan variance. This analysis is applied to a specific IMU
which is subsequently used during the experiments.

Errors can be divided into two categories [8]
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. stochastic errors, which can be described as random processes,. and systematic errors, which are caused by manufacturing imperfections or handling

issues with IMU. These errors can be corrected by proper calibration.

Nevertheless, errors need to be analyzed and reduced according to the application’s
requirements. The next following subset of errors is the most significant according to
the topic of this thesis.

Biases of accelerometers and gyroscopes used in IMU are examples of systematic
errors and can be divided into

. bias instability1, which represents drift of the sensor over time,. and initial bias2 a static offset, which can vary when starting up the device each
time, but during the run, it remains static.

Biases are typically represented in ∘/ℎ𝑟 or ∘/𝑠 for gyroscopes and 𝑚𝑔 for accelerometers.
A scale factor and a misalignment error, both systematic errors, could also prove to

be significant. The scale factor is connected to imperfections while converting the real
measurement input value and output value. The nonorthogonality of all sensors gives
the misalignment error in IMU, and it is caused during production.

Angle or velocity random walks belong to stochastic errors. The measurement of
gyroscopes and accelerometers is subject to white noise (the noise represented by Gaus-
sian distribution). During the estimation of angles and velocities, integration needs to
be done. Then the white noise starts to manifest itself by angle or velocity random
walk, (∘/𝑠/

√
𝐻𝑧) and (𝑚2/𝑠/

√
𝐻𝑧) respectively.

Allan variance(AVAR) is widely used to analyze a random error of inertial sensors in
the time domain and is the most common time-domain measure of frequency stability.
AVAR’s brief introduction and important outcomes are given in [10].

The AVAR 𝜎2
𝐴(𝜏) is a function of the averaging time 𝜏, computed as

𝜎2
𝐴(𝜏) = 1

2(𝑁 − 1)

𝑁−1
∑
𝑖=1

(𝑦𝜏(𝑖 + 1) − 𝑦𝜏(𝑖))2, (3)

where 𝑁 represents the number of clusters in the dataset (𝑁 = 𝑓𝑙𝑜𝑜𝑟(𝑀/𝑛)), 𝑛 is the
number of samples in the cluster, 𝑀 is the total number of samples in the dataset, 𝜏 is
the time length of the cluster (𝜏 = 𝑚 × 𝑇𝑠), 𝑇𝑠 is the sampling period, 𝑦𝜏(𝑖 + 1) and
𝑦𝜏(𝑖)) are mean values of certain cluster of 𝑖 + 1-th and 𝑖-th cluster respectively [11].

Figure 2.5. The difference between non-overlapping and overlapping sample [12].

1 also called in-run bias
2 repeatability bias

8
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The samples in a cluster can be both non-overlapping and overlapping. The difference
is illustrated in 2.5. The overlapping samples improve the confidence of the resulting
estimate. That is why this method is generally the most common for measuring time-
domain frequency stability [10].

The process of measuring AVAR consist of collecting 24-48 hour long datasets when
the inertial sensor is not moving and the environment is not vibrating (no trains or
subways that would cause vibration). The sampling values are angular rates or accel-
erations.

If the dataset is valid and the AVAR is correctly computed, the plot copies the
example plot seen in Figure 2.6. It is typically plotted on a log/log scale. A different
slope of the graph describes each noise component by that the chart can be easily
divided into specific parts.

Figure 2.6. An example of Allan variance plot [13].

The most significant outcome for navigation is when the bias instability is reached
(slope is zero). At this time, the sensor model contains only a white (Gaussian) noise
[14]. After that period, an external reset needs to be done.

2.2.4 Performance of IMUs according to their application
IMUS can be used in various applications, which differs by IMUs performance. Fig-
ure 2.7 summarises the overview of each sensor’s precision for a given application is
summarized in Figure 2.7.

2.3 Inertial navigation systems
The fundamental idea behind Inertial navigation systems (INS) is integrating a linear
acceleration into a position. Because of that, this topic is closely connected with the
IMU, as it measures current linear acceleration [16]. The integration of IMU measure-
ment is given by navigation equations.

Since INS is typically used for navigating aircraft, the principle of INS is introduced
in this example. The plane is moving in a navigation coordinate frame. This frame can
be specified as

. a local-level frame (as North-East-Down or East-North-Up),. as a reference to a specific point on planet Earth. or an Earth-fixed frame as ECEF [8], and these frames are demonstrated in Figure
2.8.
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Figure 2.7. A performance of IMU per application [15].
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e ... earth centered earth fixed coordinate system (ECEF)

Figure 2.8. Example of coordinate frames
used in INS3.

x - for ENU y

y - for ENU x

z ⊗ - for ENU ⊙ (up)

roll

pitch

yaw Body frame

Sensor frame

⊙

Figure 2.9. Example of body and sensor
frame.

An IMU is mounted on an aircraft and its gyroscopes and accelerometers measure
in its sensor frame. The aircraft’s frame is called the body frame, so the measurement
needs to be transformed into the body frame (see Figure 2.9). The output of the
INS is given in the navigation frame. Thus, the last transformation is from the body
frame into a navigation frame.

The navigation equations describe exactly what the transformation is between the
sensor and navigation frames as well as the integration of IMU measurements. For
example, navigation signal processing in strap-down INS can be seen in Figure 2.10.
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Figure 2.10. Schema of strapdown INS [17].

2.4 Odometry
Odometry is an example of a dead reckoning system. It estimates the pose and
velocity of a device based on internal relative measurements of its motion. It can be
obtained from various sources as IMU, lidars, cameras or wheel encoders [6].

Both IMU and wheel encoders are used in the suggested localization system since
they can counter each other’s negative characteristics since wheel encoders drift over
traveled distance and IMU drift over time [6]. In this thesis, the term odometry is
used to refer to wheel encoders unless stated otherwise.

The details of odometry information vary with vehicle design, and during experi-
ments, the differential type is used (illustrated in Figure 2.11).

Figure 2.11. A differential drive kinematics scheme [6].
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Chapter 3
Data fusion principles in pose estimation

The localization is estimating a robot’s coordinates in an external reference frame
from the sensor data. This is called state. In the state estimation algorithms, more
states from different sensors are fused to counter sensors’ negative attributes and
help support the positive ones.

There are many approaches to data fusion. In particular, probabilistic methods are
typically more robust in the face of sensor limitations, sensor noise or environment
dynamics [18]. Moreover, they often scale much better to complex and unstructured
environments, where the ability to handle uncertainty is of even greater importance
[18]. Thus, this Chapter is dedicated to probabilistic methods for state estimation
based on the Bayes filter [18].

The first section discusses the difference between the Kalman and Particle filter for
state estimation. The following section introduces advanced concepts derived from
the Kalman filter algorithm, such as the extended Kalman filter and the unscented
Kalman filter. The third and fourth sections go deeply into the Error state Extended
Kalman filter and introduce the benefits of using it, as it is the core of the localization
system of this thesis.

3.1 Kalman and particle filter
Both Kalman and particle filters are the first implementations of Bayes filters in
continuous time [18], and in both filters, the state is represented by belief, which
corresponds to a distribution. For the Kalman filter, it is a multivariate normal
distribution, but for the particle filter, the distribution is represented by all particles
[18–19].

Both algorithms work with a prediction and correction step, which works with
the system and sensor model, respectively. Firstly, it predicts the state based on
the internal system model, and secondly, it corrects itself by external measurements
and sensor model. Kalman and particle filter algorithms for localization are well
described in a referenced Probabilistic robotics [18].

There are a few limitations for both algorithms. For the Kalman filter, the state
transitions and measurements must be linear with added Gaussian noise, and the
initial state must have normal distribution [18]. There is no such requirement for
linearity for the particle filter, and it works fine with nonlinear or multi-modal systems
too [18]. But the algorithm can be more computation demanding as a high number
of particles needs to be generated in each sample time for a robust estimation [18].

I decided to use an algorithm based on the Kalman filter for several reasons. First,
the localization system will be used for the navigation of vehicles. For these kinds
of tasks, the update rate has to be relatively high. Second, the state transition and
measurements are approximately linear. And third, these algorithms are typically
used in the fusion of IMU and GNSS [20–23].

12
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3.2 Algorithms based on the Kalman filter
There have been many modifications and extensions of the standard Kalman filter
since the 1950s, when the filter was first invented. The linear system and sensor
model assumptions with added Gaussian noise are rarely fulfilled in practice [18]. In
these cases, the state transition or sensor model are described by nonlinear functions.

There exist many techniques for linearizing nonlinear functions. The most popular
tool, called the Extended Kalman filter, use (first-order) the Taylor expansion [18].
This approximation has its limitations, which correspond to a degree of nonlinearity
of the functions and a degree of uncertainty. The higher these degrees are, the further
the approximation deviates from true belief. In general, the Extended Kalman filter
has its benefits in simplicity, optimality and robustness [18], but in practice, it is
reliable for the system, which is almost linear in one-time step [24]. The usage of this
algorithm in similar cases to this thesis is illustrated in [25–26]. In [25], the EKF is
used for estimating 3D position of drones, and in [26] to track a test subject in 2D
walking in a room.

The Unscented Kalman filter is a tool that appears superior to the EKF lineariza-
tion [18, 24]. Carefully selected sample points give the linearization from nonlinear
functions. Also, this approach does not assume that the distribution of noise source
is Gaussian [24].

In conclusion, the degree of nonlinearity of the system is critical for the state
estimation by algorithms based on the Kalman filter. Thus, the relatively recent but
promising tool Error state Extended Kalman filter was introduced. In this concept,
the error of the state is estimated as it is more likely correctly modeled by a linear
function [27–29].

3.3 Error state Extended Kalman filter
Error state Extended Kalman filter belongs to a group of Indirect Kalman filters
because it does not estimate the state itself, but the error of the state [27].

The main idea is that the true state, which should be the output of the system, is
computed as a suitable composition of nominal state and the error state

𝘅𝘁 = 𝘅𝗻 ⨁ 𝝳𝘅 (1)

where. ⨁ is a suitable composition as linear sum or matrix product,. 𝘅𝘁 is the true state,. 𝘅𝗻 is the nominal state. and 𝝳𝘅 is the error state.
The nominal state is considered a large signal that can be integrated in its nonlinear

form and the error state as a small signal that is a nearly linear function, ideal for
Extended Kalman filtering [28].

The algorithm can be illustrated in the following equations in prediction, correc-
tion, injection and resetting steps. In the prediction step, the nominal state and its
covariance is estimated by following the equation [27–28]

𝘅𝘁 = 𝑓(𝘅𝘁−𝟭, 𝘂𝘁)
𝗣𝘁 = 𝗙𝗣𝘁−𝟭𝗙𝗧 + 𝗕𝗤𝗕𝗧 (2)

where
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. 𝑓(𝘅𝘁−𝟭, 𝘂𝘁) is the nonlinear function that describes the current state of the system

based on the previous state and current input,. 𝘅𝘁 is the nominal state in time 𝑡,. 𝘅𝘁−𝟭 is the true state in time 𝑡 − 1,. 𝘂𝘁 is the input of the system,. 𝗣𝘁 is the state covariance matrix (also called system covariance),. 𝗙 is the state transition matrix given by 𝐹 = 𝛿𝑓(𝑥𝑡−1,𝑢𝑡)
𝛿𝑥𝑡−1

,. 𝗕 is the input matrix,. and 𝗤 is the input noise covariance matrix.
In the correction step, the state is corrected based on measurements according to

equations [27–28]

𝗞 = 𝗣𝘁−𝟭𝗛𝗧(𝗛𝗣𝗛𝗧 + 𝗥)−1

𝗲𝘁 = 𝗞(𝘆𝘁 − ℎ(𝘅𝘁−𝟭))
𝗣𝘁 = (𝗜 − 𝗞𝗛)𝗣𝘁−𝟭(𝗜 − 𝗞𝗛)𝑇 + 𝗞𝗥𝗞𝑇

(3)

where. 𝗞 is the Kalman gain,. 𝗛 is the measurement transition matrix given by 𝗛 = 𝝳𝗵(𝘅𝘁)
𝝳𝘅𝘁

,. 𝗥 is the covariance of the measurement,. 𝗲𝘁 current estimated error of the state,. 𝘆𝘁 is the measurement in time 𝑡,. and ℎ(𝘅𝘁−𝟭 is the measurement model based on the previous state 𝘅𝘁−𝟭.
In the injection and resetting step, the state is compensated by error, and the

error state and state covariance matrix need to be reset [27–28]. The injection of the
error is given by

𝘅𝘁 = 𝘅𝘁−𝟭 + 𝗲𝘁 (4)

and the resetting can be illustrated

𝗲𝘁 = 𝑔(𝗲𝘁)
𝗣𝘁 = 𝗚𝗣𝘁𝗚𝗧 (5)

where. 𝑔(𝗲𝘁) is the resetting function of the error state. and 𝗚 is the Jacobian matrix defined as 𝗚 = 𝛿𝑔(𝗲𝘁)
𝛿𝗲𝘁

.

3.4 Chosen approach for the state estimation
This thesis aims to design a prototype of the localization system of vehicles based on
the fusion of the UWB positioning system and onboard dead-reckoning sensors. As
I already mentioned in Chapter 1, the system should be used for the localization of
indoor vehicles in an industrial environment. However, each such vehicle (and terrain,
where it is moving) can differ in its dynamics. Because of that, I decided to use
an approach that can replace these dynamics. The inertial navigation system(INS)
meets these requirements and gives us the state independent of a specific vehicle and
specific terrain where it is moving. The estimation is accurate for a short time (see
Section 2.2). Thus, it needs to be corrected via other measurements using the UWB
localization system and odometry. I decided to estimate the error of the INS in the
Error state Extended Kalman filter for the following reasons.
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. The correction of INS can be done at a lower rate than the state estimation for
localization purposes itself [27–28],. The unscented Kalman filter or Particle filter algorithms have a high computational
load that usually prevents them from being used in a real-time system [30].. The model for estimation of the error is near-linear, as the error is. close to the origin,. and small, so higher orders can be neglected [27–28],. numerical stability of the solution [27],. even if the error estimation has a temporary computer failure, the INS is not
affected, and some emergency procedures can come into account [27].
To summarize, the state estimation is given by INS, and the ES-EKF estimates

the errors in the state using the difference between the INS and external sources of
data, which are odometry and the UWB positioning system. The INS can estimate
high-frequency motions of the vehicle accurately, so these dynamics are not in the
filter explicitly modeled. The ES-EKF uses a model of error propagation in INS,
which is at low frequency and very well modeled by linear functions [27, 31, 29]. This
approach is also known as Aided Navigation systems and is briefly described in Aided
Navigation: GPS with high rate sensors [29]. This algorithm is usually used to fuse
INS and GNSS, but this article [32] shows its usage for INS and UWB fusions. In the
article [32], they sucessfully tracked the position xy of a man walking in the room.

The following Chapter 4 introduces the localization system design and its imple-
mentation in detail.
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Chapter 4
Localization system design and
implementation

In this chapter, the design of the architecture is described along with the tools used
in its solution.

The first part proposes the system architecture design and the system kinematics
equations follow in the second part. In the third part, the equations for the Error
state extended Kalman filter are introduced. The fourth part is dedicated to injecting
the estimated error into the estimated state and resetting the injected error. In the
fifth and final part, the implementation tools are discussed.

To sum up, this chapter gives the reader a detailed introduction to the proposed
localization system with all of the equations and tools used in the final implementa-
tion.

4.1 System architecture design
Various approaches for state estimation were introduced in Chapter 3. The chosen
approach is the Error state extended Kalman filter (ES-EKF). According to ES-
EKF, the states’ error is estimated using a Kalman filter rather than the state itself.
The benefits of this approach are briefly summarized in Chapter 3.

The system consists of three crucial steps. The first is the inertial navigation
system (INS), where the state is estimated based on IMU measurements. This state
estimation leads to a dead-reckoning system, where the drift grows with time and
needs to be corrected.

The second step is the ES-EKF itself. The error of the state is calculated and is
then corrected using measurements from UWB localization and odometry. Measure-
ments from UWB localization and odometry observe the error. The UWB localization
gives the absolute position, which can reduce the drift in step one.

The third part is injecting the error into INS estimation and resetting the ES-EKF
while the injection is done. Finally, the output of the whole system is given by the
INS solution. The system requires initial states with covariances for INS and ES-EKF
set up first. The simplified architecture is illustrated in Figure 4.1 and described in
the following section in detail.

For navigation purposes, the usual rate of pose estimation is hundreds of Hertz
[33]. The INS provides a full state estimate with the IMU update rate, which usually
satisfies this requirement. Furthermore, it gives us the state estimation independent
of external factors, such as wheel slippage [33].

UWB localization and odometry measurements cannot give us a much higher rate
than tens Hertz, and they are used only in the correction step.

In other words, the most dynamic part of the estimation is somehow indepen-
dent of Kalman filtering. On the one hand, the state estimation in INS is fast and
straightforward. On the other hand, the error estimation can be more computation-
ally demanding as the computation of Jacobians needs to be done. Therefore, the
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Figure 4.1. The proposed architecture of the localization system.

separation of the state estimation and the error estimation makes the calculation
of the state sufficiently fast enough for our purposes. The error state is estimated
separately in ES-EKF and is injected into the state only if another measurement
other than IMU comes in. The only requirement is that the correction must be ap-
plied before non-Gaussian noise in IMU measurement is significant. That correction
compensates for the drift of the dead-reckoning system.

In conclusion, the benefit of this architecture is state estimation at a high rate,
independent of external events. The state is corrected at a lower rate but faster than
the non-Gaussian noise becomes significant in state estimation. That brings the best
aspects of all of the types of sensors, which are used in the architecture.

In the following sections, the output of the system is called the navigation state
(i.e., position, linear velocity, and attitude).

4.2 System kinematics
For a more detailed introduction to system architecture, the system kinematics equa-
tions need to be announced. Equations are taken from [28], but instead of using
GNSS, it uses UWB localization and linear velocity from odometry.

But before I enter that itself, let me describe an important topic, which represents
attitude and rotation in 3D space.

4.2.1 Representation of 3D attitude and rotation in space
There are many ways to represent 3D attitude and rotation in space. The most
commonly used representations in the field of robotics are. rotation matrices,. Euler angles,

17



4. Localization system design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . .
. axis-angle. and quaternions [6].
To not go into too much detail, each representation has its pros and cons and ap-
plications, where it has its purpose. The rotation matrix is chosen as the internal
representation of orientation and the quaternion as an output.

There are several reasons to pick this representation [34–35]. Firstly, quaternions
and rotation matrices do not suffer from singularities as Euler and fixed angles do
[34]. Secondly, quaternion gives us a compact representation. And finally, these
two are the most recommended representation in ROS standard rep-103 [35]. As
quaternions have many internal models in different libraries (Eigen library in C++
[36], geometry messages library [37] or the transform library tf2 in ROS [38]) and
the representation is not easy to imagine, I decided to use the quaternions only as
an output and rotation matrix as the internal representation.

4.2.2 The kinematic equations in continuous time
The kinematics formulas in continuous time, that relate the inertial sensor measure-
ments to the true navigation state, are well-known [28–29, 8, 7]. Therefore, I did not
have to derive equations myself and used the one derived in [28] equation 235.

The only difference is that orientation is in the rotation matrix and not quaternion.
Equations are

̇𝗽𝘁 = 𝘃𝘁

̇𝘃𝘁 = 𝗥𝘁(𝗮𝗺 − 𝗮𝗯𝘁 − 𝗮𝗻) + 𝗴𝘁
̇𝗥𝘁 = 𝗥𝘁(Ω𝘁)
̇𝗮𝗯𝘁 = 𝗮𝘄

̇𝞈𝗯𝘁 = 𝞈𝘄

̇𝗴𝘁 = 𝟬,

(1)

where. 𝗽𝘁 is the true position in 3D [𝑚],. 𝘃𝘁 is the true linear velocity in 3D [𝑚 ⋅ 𝑠−2],. 𝗥𝘁 is the true rotation matrix of orientation,. 𝗮𝗺 is the specific force given by accelerometers [𝑚 ⋅ 𝑠−2],. 𝗮𝗯𝘁 is the true accelerometer bias [𝑚 ⋅ 𝑠−2],. 𝗮𝗻 is the accelerometers white Gaussian noise [𝑚 ⋅ 𝑠−2],. 𝗮𝘄 is the white Gaussian noise accelerometers bias [𝑚 ⋅ 𝑠−2],. 𝗴𝘁 is the true gravity vector [𝑚 ⋅ 𝑠−2],

. Ω𝘁 = [(𝞈𝗺 − 𝞈𝗯𝘁 − 𝞈𝗻)×] = [
0 −(𝜔𝑚3−𝜔𝑏𝑡3−𝜔𝑛3) 𝜔𝑚2−𝜔𝑏𝑡2−𝜔𝑛2

𝜔𝑚3−𝜔𝑏𝑡3−𝜔𝑛3 0 −(𝜔𝑚1−𝜔𝑏𝑡1−𝜔𝑛1)
−(𝜔𝑚2−𝜔𝑏𝑡2−𝜔𝑛2) 𝜔𝑚1−𝜔𝑏𝑡1−𝜔𝑛1 0

] is

the true skew-symmetric matrix (a tensor of angular velocity) [ 𝑟𝑎𝑑
𝑠 ],. 𝞈𝗺 is the angular rate given by gyroscopes [ 𝑟𝑎𝑑

𝑠 ],. 𝞈𝗯𝘁 is the true bias of gyroscopes [ 𝑟𝑎𝑑
𝑠 ],. 𝞈𝗻 is the gyroscope’s white Gaussian noise [ 𝑟𝑎𝑑

𝑠 ],. and 𝞈𝘄 is the white Gaussian noise gyroscope’s bias [ 𝑟𝑎𝑑
𝑠 ].

The state 𝘅𝘁, is governed by IMU noisy reading 𝘂𝗺 and perturbed by the white
Gaussian noise 𝘄, defined by

𝘅𝘁 = [𝗽𝘁, 𝘃𝘁, 𝗥𝘁, 𝗮𝗯𝘁, 𝞈𝗯𝘁, 𝗴𝘁]
𝑇

𝘂𝘁 = [𝗮𝗺 − 𝗮𝗻]𝑇

𝘄𝘁 = [𝗮𝘄, 𝘄𝘄]𝑇 .

(2)
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The output of the localization system is navigation state (also called nominal),
which corresponds to the system kinematics, but does not take into account the noise
terms 𝑤𝑡 and other possible model imperfections (see equation 237 in [28], hence it
is simplified to

𝗽̇ = 𝘃
̇𝘃 = 𝗥(𝗮𝗺 − 𝗮𝗯) + 𝗴

𝗥̇ = 𝗥(Ω)
̇𝗮𝗯 = 𝟬
̇𝞈𝗯 = 𝟬,
̇𝗴 = 𝟬,

(3)

where. 𝗽 is the position in 3D [𝑚],. 𝘃 is the linear velocity in 3D [𝑚 ⋅ 𝑠−2],. 𝗥 is the rotation matrix of orientation,. 𝗮𝗺 is the specific force given by accelerometers [𝑚 ⋅ 𝑠−2],. 𝗮𝗯 is the accelerometer bias [𝑚 ⋅ 𝑠−2],. 𝗴 is the gravity vector [𝑚 ⋅ 𝑠−2],

. Ω = [(𝞈𝗺 − 𝞈𝗯)×] = [
0 −(𝜔𝑚3−𝜔𝑏3) 𝜔𝑚2−𝜔𝑏2

𝜔𝑚3−𝜔𝑏3 0 −(𝜔𝑚1−𝜔𝑏1)
−(𝜔𝑚2−𝜔𝑏2) 𝜔𝑚1−𝜔𝑏1 0

] is the skew-symmetric

matrix (a tensor of angular velocity) [ 𝑟𝑎𝑑
𝑠 ],. 𝞈𝗺 is the angular rate given by gyroscopes [ 𝑟𝑎𝑑

𝑠 ],. 𝞈𝗯 is the bias of gyroscopes [ 𝑟𝑎𝑑
𝑠 ].

The linearized dynamics (see equation 238 in [28]) of the error state are
̇𝝳𝗽 = 𝝳𝘃
̇𝝳𝘃 = −𝗥[𝗮𝗺 − 𝗮𝗯]×𝝳Θ − 𝗥𝝳𝗮𝗯 + 𝝳𝗴 − 𝗥𝗮𝗻
̇𝝳Θ = −[𝞈𝗺 − 𝞈𝗯]×𝝳Θ − 𝝳𝞈𝗯 − 𝞈𝗻
̇𝝳𝗮𝗯 = 𝗮𝘄
̇𝝳𝞈𝗯 = 𝞈𝘄
̇𝝳𝗴 = 𝟬,

(4)

where. 𝝳𝗽 is the position error in [𝑚],. 𝝳𝘃 is the linear velocity error in [𝑚 ⋅ 𝑠−2],. 𝝳Θ is the orientation error,. 𝝳𝗮𝗯 is the acceleration bias error [𝑚 ⋅ 𝑠−2],. 𝝳𝞈𝗯 is the gyroscope bias error [ 𝑟𝑎𝑑
𝑠 ],. 𝝳𝗴 is the gravity vector error [𝑚 ⋅ 𝑠−2],. 𝗥 is the rotation matrix given by the nominal state,. 𝗮𝗺 is the specific force given by accelerometers [𝑚 ⋅ 𝑠−2],. 𝗮𝗯 is the accelerometer bias [𝑚 ⋅ 𝑠−2],. 𝗮𝗻 is the accelerometers white Gaussian noise [𝑚 ⋅ 𝑠−2],. 𝗮𝘄 is the white Gaussian noise accelerometers bias [𝑚 ⋅ 𝑠−2],. 𝞈𝗺 is the angular rate given by gyroscopes [ 𝑟𝑎𝑑

𝑠 ],. 𝞈𝗯 is the bias of gyroscopes [ 𝑟𝑎𝑑
𝑠 ],. 𝞈𝗻 is the gyroscopes white Gaussian noise [ 𝑟𝑎𝑑

𝑠 ],. and 𝞈𝘄 is the white Gaussian noise gyroscopes bias [ 𝑟𝑎𝑑
𝑠 ].
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Note that higher orders in linearization are neglected since the error state is small
compared to the navigation state.

During the filter correction phase, measurements from UWB localization and
odometry come into account. Usual, the sensor delivers measurements that depend
on the state, such as

𝘆 = ℎ(𝘅𝘁) + 𝞀, (5)
where. ℎ(𝑡) is a general nonlinear function of the system state (the true navigation state). and 𝞀 is a white Gaussian noise with covariance. For UWB localization, the func-

tion is simple as it is
𝘆𝟭 = 𝗽𝘁 + 𝞀𝟭, (6)

with covariance 𝗥𝟭. But for odometry, it is a little bit complicated

𝘆𝟮 = 𝗥−𝟭
𝘁 𝘃𝘁 + 𝞀𝟮 (7)

with covariance 𝗥𝟮. This difference is important in the computation of Jacobian
for the ES-EKF algorithm.

4.2.3 The kinematic equations in discrete time
As the equations in continuous time are derived from book [28], where their repre-
sentation in discrete time is also presented, I decided to write down only the parts
that are different. For more detail, see equations 260 in [28]. The equation 260c is
slightly different since I am using a rotation matrix for orientation representation
and not quaternion. This equation is changed to

𝗥 ← 𝗥 + (𝗥Ω)Δ𝘁), (8)

where. 𝗥 is the rotation matrix of orientation,

. Ω = [(𝞈𝗺 − 𝞈𝗯)×] = [
0 −(𝜔𝑚3−𝜔𝑏3) 𝜔𝑚2−𝜔𝑏2

𝜔𝑚3−𝜔𝑏3 0 −(𝜔𝑚1−𝜔𝑏1)
−(𝜔𝑚2−𝜔𝑏2) 𝜔𝑚1−𝜔𝑏1 0

] is the skew-

symmetric matrix (a tensor of angular velocity) [ 𝑟𝑎𝑑
𝑠 ],. 𝞈𝗺 is the angular rate given by gyroscopes [ 𝑟𝑎𝑑

𝑠 ],. 𝞈𝗯 is the bias of gyroscopes [ 𝑟𝑎𝑑
𝑠 ].

This integration is happening in the INS box in Figure 4.1.

4.3 Error state extended Kalman filter
implementation

The algorithm and equations for the general extended Kalman filter are briefly
described in Chapter 3. In this section, these equations are concretized.

The error state system is now

𝝳𝘅 ← 𝑓(𝘅, 𝝳𝘅, 𝘂𝗺, 𝗶) = 𝐹𝑥(𝘅, 𝘂𝗺) ⋅ 𝝳𝘅 + 𝗙𝗶 ⋅ 𝗶, (9)

where 𝗶 is a perturbation vector (usually modeled as white Gaussian noise).
The Es-EKF prediction part is given by

̂𝝳𝘅 ← 𝗙𝘅(𝘅, 𝘂𝗺) ⋅ ̂𝝳𝘅

𝗣̂ ← 𝗙𝘅𝗣𝗙𝗧
𝘅 + 𝗙𝗶𝗤𝗙𝗧

𝗶

, (10)

where
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. 𝗣 is a process covariance matrix,. 𝗙𝘅 is a transition matrix,. 𝗙𝗶 is the Jacobian of error state system by impulses,. 𝗤 is the covariances of process noise,
The transition matrix1 𝗙𝘅 is error state Jacobian and it is simply determined

by error state kinematics equations 𝑓(𝝳𝘅𝘁) in discrete time in Section 4.2.3,

𝗙𝘅 = ∂𝑓(𝝳𝘅, 𝘂𝗺)
∂𝝳𝘅

𝗙𝘅 =

⎡
⎢
⎢
⎢
⎢
⎣

𝗜 𝗜Δ𝑡 0 0 0 0
0 𝗜 −𝗥[𝗮𝗺 − 𝗮𝗯]×Δ𝑡 −𝗥Δ𝑡 0 𝗜Δ𝑡
0 0 𝗥{𝞈𝗺 − 𝞈𝗯}𝗧Δ𝑡 0 −𝗜Δ𝑡 0
0 0 0 𝐼 0 0
0 0 0 0 𝐼 0
0 0 0 0 0 𝐼

⎤
⎥
⎥
⎥
⎥
⎦

.
(11)

𝗙𝗶 is given by

𝗙𝗶 = ∂𝑓
∂𝑖

∣
𝘅,𝘂𝗺

=

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0
𝐼 0 0 0
0 𝐼 0 0
0 0 𝐼 0
0 0 0 𝐼
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

, (12)

The covariances matrix is given by random impulses applied to the velocity,
orientation and bias estimates, modelled by white Gaussian noise [28]

𝗤 =
⎡
⎢
⎢
⎣

𝞂𝟮
𝗮𝗻

Δ𝑡2𝗜 0 0 0
0 𝞂𝟮

𝞈𝗻
Δ𝑡2𝗜 0 0

0 0 𝞂𝟮
𝗮𝘄

Δ𝑡2𝗜 0
0 0 0 𝞂𝟮

𝞈𝘄
Δ𝑡2𝗜

⎤
⎥
⎥
⎦

, (13)

where. 𝞂𝗮𝗻
is the standard deviation of accelerometers [𝑚 ⋅ 𝑠−2],. 𝞂𝞈𝗻
is the standard deviation of accelerometers [ 𝑟𝑎𝑑

𝑠 ]. 𝞂𝗮𝘄
is the velocity random walk [ 𝑟𝑎𝑑

𝑠
√

𝑠 ],. 𝞂𝞈𝘄
is the angular random walk [ 𝑟𝑎𝑑

𝑠
√

𝑠 ].
This information can be obtained from the datasheet or AVAR (see Section 2.2.3).

The ES-EKF correction part is given by
𝗞 ← 𝗣𝗛𝗧(𝗛𝗣𝗛𝗧 + 𝗥)−𝟭

𝝳𝘅 ← 𝗞(𝘆 − ℎ( ̂𝘅))

𝗣 ← (𝗜 − 𝗞𝗛)𝗣̂(𝗜 − 𝗞𝗛)𝑇 + 𝗞𝗥𝗞𝗧

, (14)

where. 𝗞 is the Kalman gain,. 𝗛 is an observation matrix,. 𝗥 is covariances of observation noise,. 𝗣 is process covariance,. 𝘆 is an observation,. ℎ( ̂𝘅) is an observation model,. 𝝳𝘅 is an error state.
1 Called system matrix in some literature
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The observation matrices differ for UWB localization (𝗛𝟭) and odometry (𝗛𝟮)

𝗛𝟭 = [ 𝗜 0 0 0 0 0 ]
𝗛𝟮 = [ 0 𝗥𝗧

𝘁 −𝗥𝗧
𝘁 [𝘃𝘁]×𝗝𝗿(Θ) 0 0 0 ] ,

(15)

where. 𝗥𝘁 is the orientation in navigation state,. 𝘃𝘁 is the linear velocity in navigation state,. Θ is the orientation 𝗥𝘁 in rotation vector form,. 𝗝𝗿 is the right Jacobian of rotation group 𝗦𝗢(𝟯) (see equation 183 in [28]).
To obtain 𝗛𝟮 from Equation (7), a reader should notice a Jacobian with respect
to the rotation vector in section 4.3.4 and equation 188 in [28].

4.4 Injection of the error state into the navigation
state

While the correction phase is done, the estimated error state comes into account
in the navigation state

𝘅 ← 𝘅 ⨁ 𝝳𝘅, (16)

where ⨂ appropriate composition of sums or rotation product.
The equations are

𝗽 ← 𝗽 + 𝝳𝗽
𝘃 ← 𝘃 + 𝝳𝘃
𝗥 ← 𝗥 ∗ 𝗥{𝝳Θ}
𝗮𝗯 ← 𝗮𝗯 + 𝝳𝗮𝗯

𝞈𝗯 ← 𝞈𝗯 + 𝝳𝞈𝗯

𝗴 ← 𝗴 + 𝝳𝗴

(17)

where 𝗥{𝝳Θ} orientation error in rotation matrix.
The injection of the error state is essential, but the resetting of the error state

must also be done. The ES-EKF error reset operation is

𝝳𝘅 ← 𝟬
𝗣 ← 𝗚𝗣𝗚𝗧 (18)

where 𝗚 is the Jacobian matrix defined as

𝗚 = ⎡⎢
⎣

𝗜𝟲 0 0
0 𝗜 − [ 1

2 𝝳Θ]𝘅 0
0 0 𝗜𝟵

⎤⎥
⎦

. (19)

4.5 Implementation tools
This section briefly introduces tools used for implementation: the ROS2 [39] frame-
work, C++ and Python languages.

ROS2 [39] is a set of software libraries and tools for building robot applications.
It is open-source, and it consists of drivers for hardware, state-of-the-art algo-
rithms, tools for debugging, visualization, simulation and communications over all
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of the processes. All applications created in ROS2 are easy to share and are used
in the community. It supports the most known and most used programming lan-
guages like C++, Python, Java, Lua or Lisp. ROS2 distributions are released to
work on operating systems like Ubuntu, MacOs or Windows. Nevertheless, as it
is open-source, users usually use it with one Ubuntu distribution, such as 20.04 or
18.04.

The newest version of ROS is ROS2, which was introduced in 2014 at the con-
ference ROSCon 2014 in Chicago [39], but the first distribution was released in
May 2019. There are several distributions of ROS2 yet, the localization system
and experiments are implemented using Foxy Fitzroy2 which was released in June
20203.

ROS2 has a defined code style and a set of language versions which are recom-
mended to use. The implementation sticks to these rules and uses C++17 and
Python3. As the localization needs to be implemented as a real-time application,
it is implemented in C++17. Python3 is used for the visualization of experiments
results and supporting scripts.

2 The documentation to ROS2 Foxy Fitzroy https://docs.ros.org/en/foxy/index.html
3 The list of all distributions of ROS2 https://docs.ros.org/en/galactic/Releases.html
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Chapter 5
Experiments

This chapter is dedicated to the experimental evaluation of the proposed local-
ization system. Firstly, the description of evaluation approaches is given. As the
system is tested in real experiments, the second section is dedicated to implement-
ing the localization system on the robotic platform CART2. This section contains
a brief introduction to specific IMU, UWB network and wheel encoders, and the
robotic platform itself.

The following two sections are dedicated to experiments done in two different
experimental environments. The first set of experiments, described in the third
section, were realized in a lab at Datavision s.r.o. company1 with an external
localization system based on an AprilTag detection with a camera. This AprilTag
localization system was set up specifically for evaluation of localization system
proposed in this thesis. Additional experiments took place at the Intelligent and
Mobile Robotics lab at the Czech Technical University in Prague - Czech Institute
of Informatics, Robotics, and Cybernetics, where the Vicon reference system is
used for the evaluation. These experiments are summarized in the fourth section
of this chapter.

5.1 Description of the evaluation
First, it is necessary to determine which variables exhibit the performance of the
system well. Then choose the appropriate test scenarios on which to evaluate
the behaviour of the individual variables. It is good to select a suitable reference
system and perform the entire evaluation on a set of predefined metrics.

The evaluation is focused on the following states. position x,. position y. position in 2D space (xy). and angle of rotation (Euler angle yaw).
It is worth noting that the output of the proposed system is the position in a

3D space. However, this work aimed to design a localization in a 2D space, and
therefore an accent is put on these four states.

For system evaluations, it is advisable to have an external reference system,
which will provide us with reference data with which we can compare the results
of the evaluated system. The data from the reference and evaluated systems must
have unified timestamps to compare their outputs easily.

Experimental scenarios are chosen in the way that their difficulty increases. The
first tests are performed in a smaller area. Experiments start with a stationary
test and simple movements at shorter distances (moving in one axis, rotating an
one spot). Then, more complex trajectories are approached, such as following

1 To find out more about the company follow link: https://datavision.software/
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rectangular and infinity shape trajectories. Further experiments are performed in
a larger space where more complex trajectories are tested.

Data from both reference and evaluated systems are then processed as follows.
Each reference measurement’s timestamp is taken according to which the nearest
measurement can be found in the evaluated data. This filtering is vital for reference
systems that have a lower frequency than the proposed localization.

The criteria that interest us are. the evolution of individual variables over time,. the visualization of the trajectories from both systems. and the errors of variables versus the reference.
These metrics are used to analyze whether the proposed system converges or

diverges from reality and whether the system is subject to drift. The root mean
square (RMSE), average, median, lower and upper quantile, minimum and maxi-
mum metrics define the system’s resulting accuracy and precision.

Error is usually defined as a difference between reference and reality measure-
ment. It is pretty straightforward for one variable but can be a little bit tricky.
The error in position in 2D space [𝑥, 𝑦] is defined as the Euclidian distance be-
tween reference [𝑥, 𝑦]𝑅𝐸𝐹 and the output of the proposed localization system [𝑥, 𝑦]
written in the following equation

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥𝑅𝐸𝐹 − 𝑥)2 + (𝑦𝑅𝐸𝐹 − 𝑦)2. (1)

The root mean square error (RMSE) is defined as

𝑟𝑚𝑠𝑒 = √∑𝑡=𝑛
𝑡=1 (𝑥𝑅𝐸𝐹

𝑡 − 𝑥𝑡)2

𝑛
, (2)

where. 𝑡 is the index of the current sample of measurement,. 𝑛 is the number of samples in the dataset,. 𝑥𝑅𝐸𝐹
𝑡 is the current reference measurement. and 𝑥𝑡 is the current measurement.

The rmse for euclidian distances then

𝑟𝑚𝑠𝑒 = √∑𝑡=𝑛
𝑡=1 [(𝑥𝑅𝐸𝐹

𝑡 − 𝑥𝑡)2 + (𝑦𝑅𝐸𝐹
𝑡 − 𝑦𝑡)2]

𝑛
. (3)

All these testing scenarios and metrics are further applied in two test environ-
ments.

5.2 Used hardware description

This section presents an overview of used sensors for the proposed localization and
a description of the CART2 robotic platform used during experiments.
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Figure 5.1. IMU used in experiments Ep-
son M-G365PDF1.

Figure 5.2. Experimental setup for static
data acquisition of Epson M-G365PDF1.

5.2.1 Sensors specification

The onboard sensors of interest are the Inertial Measurement Unit, ultra-wideband
localization tag, April tag and encoders on motors.

The inertial measurement unit used during the experiments is the Epson M-
G365PDF1 (loaner sample). The Epson M-G365 is used in various applications
ranging from stabilization systems (as a camera gimbal) to navigation systems.

The IMU has six degrees of freedom and measures angular rates and linear
accelerations in three axes. It is factory calibrated and the calibration data are
stored in the memory of the unit. Technical specifications of the Epson M-G365
can be found at [40], while the summary is included in Table 5.1

Specification Value

Triple gyroscopes ± 450 °/sec
Gyroscopes bias instability 1.2 °/hr
Gyroscopes initial bias error 0.1 °/s
Angular random walk 0.08 °/√hr
Tri-axis accelerometers ± 10 G
Accelerometers bias instability 16 𝜇G
Accelerometers initial bias error 3 mG
Velocity random walk 0.033 (m/s)/√hr

Table 5.1. Technical specifications of Epson M-G365PDF1 [12].

As I already mentioned in Chapter 2.2.3, the AVAR analysis of IMU sensors
can give us a brief overview of IMU’s specifications. The experimental setup for
static data acquisition can be seen in Figure 5.2. The sensor is mounted on two
sponges and fixed with cardboard. The static data were recorded for 48 hours at a
frequency of 30.0 Hz. The experiment took place in a village without any subways,
trams or trains to reduce the external vibrations (to reduce potential outliers) and
at standard room temperature (about 23 °C).

For the AVAR computation, I used a python library named AllanTools [41]. For
the purposes of this thesis, the overlapping Allan deviation function is used.
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a) AVAR for accelerometers b)AVAR for gyroscopes
Figure 5.3. Overlapping Allan variance plot for Epson M-G365PDF1.

As shown in Figure 5.3, the external reset for the integration of IMU measure-
ment should be performed at least every 100 seconds for the results not to be
corrupted by the non-Gaussian noise. The UWB localization system works at 10
Hz, which should be frequent enough.

The IMU is set up for the final experiments to publish the delta angle and the
delta velocity at 100 Hz with a moving average filter with tap 64. Because of that,
higher frequencies above 10 Hz are filtered, as shown in Figure 5.4.

Figure 5.4. Moving average filter characteristics for Epson M-G365PDF1 [12].

The UWB localization system is provided by Qorvo’s MDEK1001 ultra-
wideband development kit. This kit includes 12 DWM1001-DEV development
boards completely enclosed in plastic, see Figure 5.5.

Each board can be configured as an anchor, tag or bridge node. The system
is installed with six fixed anchors that are mounted and one tag which can move.
The anchors are higher than the tag. In the network, the initiator anchor provides
the synchronization of transmitted data. The example setup of the system can be
seen in Figure 5.6.
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Figure 5.5. DWM1001-DEV development boards [42].

Figure 5.6. Positioning of UWB anchors and tags [42].

The anchors should all be mounted at the same height and higher than the
operating area of the moving tag. They also should not be mounted close to any
metal to get the best accuracy possible. There is a mobile application available to
configure the network. The positions of the anchors are estimated manually and
set in the network configuration.

Technical specifications of the MDEK1001 and the DWM1001-DEV can be
found in documents [42], the summary is listed in Table 5.2.

Specification Value

Localization technology Two-way ranging
Maximum tag location rate 10 Hz
X-Y location accuracy < 10 cm
Point to point range up to 60 m in line of sight conditions
Scheme range 25 - 30 m between anchors

Table 5.2. System performance of MDEK1001 [42].

The odometry is computed according to the measurement of encoders in Maxon
EPOS4 positioning controllers for Maxon brushless DC motors.

AprilTag serves as a global reference for the pose of the CART2 platform. The
AprilTag detection software computes the precise 3D position, orientation, and
identity of the tags relative to the camera [43]. This tag is similar to QR codes (a

28



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Used hardware description

type of two-dimensional bar code), but it encodes smaller data payloads (between
4-12 bits), and it can be detected more robustly.

The camera used to detect the AprilTag was the Niceboy Stream Pro with Full
HD (1920 x 1080) resolution, 30 FPS, 90 ° field of vision and a f/1.8 lens aperture
[44].

Figure 5.7. AprilTag used for detection of
CART2 position at Datavision s.r.o.

Figure 5.8. Camera used for AprilTag de-
tection Niceboy Stream Pro [44].

5.2.2 CART2 platform description and sensors placements
An image of the utilized CART2 platform can be seen in Figure 5.9. The coordinate
frame of CART2, called baselink, is illustrated in all Figures 5.9 and 5.10. The
CART2 used for various robotic competitions is a differential drive equipped with
the ADlink MXE-210 computer.

 z 

 x 

 Computer 

IMU

 y 

 Motor units 

 y  x 

 z 

 Computer 

a) Top view b) Side view

Figure 5.9. A photo of the utilized CART2 platform.

The onboard sensor placements are illustrated in Figure 5.10. The vehicle uses
a Maxon brushless DC motor (Maxon EC-imotor) controlled by Maxon EPOS4
control units.

The UWB tag is mounted on a wooden stick approximately one meter above
the CART2 platform to reduce any reflections of the UWB waves from surfaces
and the negative influence of any metal parts. The AprilTag is mounted below
the UWB tag not to become a barrier in the UWB wave. When the AprilTag is
mounted on top of the CART2 platform, the wooden stick obstructs the camera
from detecting the AprilTag. Thus, I decided to mount it as high as possible to
reduce any of these situations from happening.
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Figure 5.10. A photo of sensors place-
ments on CART2.
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Figure 5.11. Illustration of coordinate sys-
tems at CART2.

Coordinate systems of CART2 and the placement of the sensors are illustrated
in Figure 5.11 and are described in Table 5.3. Note that the world, the camera
and the uwb_base frames are fixed within the environment and are explained in
Section 5.3. This work aims to localize the position and orientation of the baselink,
i.e., to estimate the position of the baselink expressed in the world frame and the
orientation of the baselink with respect to the world frame.

Transform Translation [x, y, z] in [m] Rotation in quaternion [x, y, z, w]

uwb_tag to baselink [0.0, 0.0, 1.192] [0.0, 0.0, 0.0, 1.0]
april_tag to baselink [0.0, -0.171, 1.071] [0.707107, -0.707107, 0.0, 0.0]
imu to baselink [0.0, 0.0, 0.05] [0.0, 0.0, -0.7071068, 0.7071068]

Table 5.3. Summary of transforms for experiments with CART2.

5.3 Experiments in the lab at Datavision s.r.o.

5.3.1 Experimental lab description

For the first experiments, I created an experimental setup at Datavision s.r.o. with
the global reference given by the camera detection from the AprilTag mounted on
the CART2 platform. The address of the building is Ukrajinská 1487/2a, 101
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Figure 5.12. Experimental setup at Datavision s.r.o..

00 Prague 10 - Vršovice. The dimensions of the room for the experiments are
approximately 4 x 6 [m], and the camera view area is approximately 2.5 x 4.5 [m].
The setup can be seen in Figure 5.12.

Firstly, UWB anchors need to be mounted and measure their poses according to
the world coordinate system. These poses need to be set in the mobile application
for the configuration of the UWB network. The world frame coincides with the
uwb_base frame in rotation and only differs in z coordinate in translation.

Transform Translation [x, y, z] in [m] Rotation in quaternion [x, y, z, w]

world to uwb_base [0.0, 0.0, 2.58] [0.0, 0.0, 0.0, 1.0]
world to camera [1.089, 2.024, 2.625] [0.707107, -0.707107, 0.0, 0.0]

Table 5.4. Summary of transforms for experiments setup at Datavision s.r.o.

Secondly, the camera needs to be mounted and measure its position according
to the world coordinate system. It was not possible to estimate transformation
between the world and the camera precisely enough to use to evaluate the exper-
iments. Because of that, I decided to use the transformation mentioned in Table
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5.4 and then computed a homography transformation according to a few posi-
tions measured by camera detection and also by hand. The homography defines
the transformation between a planar surface (ground) and a camera image plane.
The camera homography is then applied to the detected AprilTag pose, which is
considered a global reference. These frames are illustrated in 5.11.

5.3.2 Description of experiments

The area for experiments is not big. The distance between anchors is 2.5 or 5.0
m, and such setup with nearby anchors significantly downgrades the performance
of the UWB localization system. However, I decided that these experiments serve
as a proof of concept of the localization idea.

Experiments can be divided based on six simple trajectories of CART2 into. stationary test (stationary test),. rotation above 360 degrees in one direction at one place test (rotation test),. moving in x direction (x test),. moving in y direction (y test),. moving in rectangle shape (rectangle test). and moving in infinity shape (infinity test).
I picked a specific initial pose for each testing trajectory to repeatedly make these
tests in very similar conditions. Also, rotation, rectangle, and infinity tests ran
several times in a row without start/stop of the system to see how it behaves in a
long term.

Trajectories of these tests and the starting and ending positions of CART2
performing the movement are illustrated in Figure 5.13. CART2 platform was
controlled via keyboard and joystick during experiments. The controlling via key-
board has the benefit of control velocity in each direction easily. Thus I used it
for constant speed during simple moving in single-axis and simple rotation around
a single axis. With that, I controlled all tests, except the infinity test, where the
movement is complex. During the rectangle test, CART2 drove forward (moving
in single-axis) then stopped and turned at one place above 90 degrees (rotating
above single axis). I controlled the CART2 platform with the joystick in infinity
shape movement and tried to move similar velocities as in constant movements.
The summary of velocities during experiments is given in Table 5.5.

Test Description Speed [m/s] Turn [rad/s]

stationary Constant velocities 0.0 0.0
rotation Constant velocities 0.0 0.1094
x Constant velocities 0.0750 0.0
y Constant velocities 0.0750 0.0
rectangle Constant velocities 0.0750 or 0.0 0.0 or 0.1094
infinity non constant (control via joystick) approx. 0.0750 approx. 0.1094

Table 5.5. Velocities during experiments in Datavision s.r.o..

5.3.3 Evaluation of experiments

Most of the experiments were performed in this environment. However, I select
only the most interesting ones for the evaluation in the thesis. The most attractive
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Figure 5.13. Trajectories for experiments at Datavision s.r.o..

experiments are stationary, rectangle and infinity shape tests, which are presented
bellow.

Stationary test
During the stationary test, the CART2 is not moving, and the experiment lasts

about 16 minutes. As shown in Figure 5.14, the precision of the position does not
change significantly over time. The position in the proposed system is determined
mainly by the absolute localization of the UWB, but it can be seen that our
system can further refine the UWB localization. There is a significant drift in the
orientation angle yaw caused by the INS. The orientation error is corrected by the
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Figure 5.14. Stationary test, evaluation of trajectory at Datavision s.r.o.

linear velocities given by odometry measurement, but because the CART2 is not
moving, the error is not corrected, and the drift slowly grows.

In general, box plots show the five-number summary of a set of data: including
the minimum, first (lower) quartile, median (interquantile), third (upper) quartile,
and maximum. I added a visualisation of the RMSE, to keep these information
together.

In Figures 5.15 and 5.16 are all these metrics for the position in 2D error and
the orientation error during the stationary test shown. Sufficient information from
Figure 5.16 is that maximum orientation error during 16 minutes long stationary
test is not bigger than ten degrees. The position error is small and does not increase
in Figure 5.15. It is worth noticing that the external reference frequency is not
high (1-2 Hz). When filtering the corresponding measurement samples for external
reference timestamp, closer values may be favoured if the localization fluctuates.
Thus, there may be a slight deformity here.

Rectangle-shaped test
During the experiment, nine repetitions of the rectangle-shaped trajectory were

performed to define the localization’s accuracy, precision, and repeatability. The
course of one such passage is shown in Figure 5.17. The waves in the left part of
Figure 5.17a can be caused by reflections of the UWB signal as CART2 moves close
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Figure 5.15. Stationary test: boxplot,
rmse, min and max analysis of the posi-

tion 2D error, at Datavision s.r.o.
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Figure 5.16. Stationary test: boxplot,
rmse, min and max analysis of the orien-

tation error, at Datavision s.r.o.
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Figure 5.17. Rectangle-shaped test, analysis of trajectory, Datavision s.r.o.

to different furniture and boxes. This phenomenon can be seen in all reproductions
of testing scenarios. However, despite this fact, the system manages to locate
CART2 with sufficient precision. The static offset at the bottom of Graph 5.17a
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Figure 5.18. Rectangle-shaped tests: box-
plot, rmse, min and max analysis of the

position 2D error, at Datavision s.r.o.
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Figure 5.19. Rectangle-shaped test: box-
plot, rmse, min and max analysis of the

orientation error, at Datavision s.r.o.

is possibly given by a short line of sight between the localization anchors or the
transformation inaccuracies in the external reference.

Figures 5.18 and 5.19 show that the localization results are well repeatable.
RMSE in position is held at 7 cm and in the orientation is not higher than 3 degrees.
The maximum errors in the position are about 15 cm and in the orientation 8
degrees. More than 50 % of the errors are kept below 10 cm in the position and 3
degrees in the orientation.

Infinity-shape test
Evaluating the infinity-shaped trajectory brings the most complex view because

the CART2 here moves simultaneously in linear and angular velocity (Figure 5.20).
Ten repetitions of such a trajectory demonstrate how the system behaves in the
most realistic scenario.

1 2 3 4 5 6 7 8 9 10
Iteration

0.01

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

Eu
cli

d 
di

st
an

ce
 [m

]

boxplot
sample

median
mean

rmse
min

max

Figure 5.21. Infinity-shaped: boxplot,
rmse, min and max analysis of the posi-

tion 2D error, at Datavision s.r.o.
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Figure 5.22. Infinity-shaped: boxplot,
rmse, min and max analysis of the orien-

tation error, at Datavision s.r.o.

As can be seen in Figures 5.21 and 5.22, the errors are small. RMSE of position
is lower than 10 cm, and RMSE of orientation is below 2 degrees. There are
maximum errors of 16 cm in position and 7 degrees in orientation, but most do
not exceed 10 cm and 1 degree, respectively.

Notice that the precision of the proposed localization system meets the limits
of the precision of the external reference system.
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Figure 5.20. Infinity-shaped test, analysis of trajectory, Datavision s.r.o.

5.4 Experiments at CIIRC

5.4.1 Experiments at CIIRC description

The next experimental environment was placed at the Czech Technical Univer-
sity in Prague – Czech Institute of Informatics, Robotics, and Cybernetics (CIIRC)
in the Intelligent and Mobile Robotics lab. The localization system was evaluated
using the VICON external camera localization system [45]. The VICON defines
the world frame. UWB localization is installed with six anchors and their positions
are defined in a world frame. The setup is illustrated in Figure 5.23. The benefit
of this environment is the size of the laboratory. The minimal distance between
two anchors is larger than 3,5 meters; thus, the accuracy of the UWB localization
should be increased.

Experiments here are more complex because they are longer both in terms of du-
ration and distance. These experiments promised to evaluate possible drift caused
by using two relative localizations based on IMU and odometry. As I already men-
tioned in previous chapters, IMU’s drift increases over time and odometry’s drift
grow larger over distance travelled. Performed experiments can be divided based
on three simple trajectories of CART2 into
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Figure 5.23. Experimental setup at the Intelligent and Mobile Robotics lab (CIIRC).

. moving in the shape of a rectangle (rectangle test),. moving in the shape of an infinity symbol (infinity test). and so-called joy ride, where CART2 tries to move as long-distance as possible
without crossing its trajectory (joy ride test).

I picked a specific initial pose for each testing trajectory to repeatedly make these
tests in very similar conditions. Also, the rotation, the rectangle and the infinity
tests ran several times in a row without starting or stopping the system to see how
it behaves under longer time durations.

5.4.2 Evaluation of experiments at CIIRC
Rectangle-shaped test

In Figure 5.24, there is no major problem with estimating the position, which
is close to the external reference even at greater distances travelled. There is no
drift in the position on a longer trajectory, and the filter continuously converges
to the correct solution. It can be seen that the position estimation accuracy is
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closely related to the positioning accuracy from the UWB localization, and thus
when CART2 passes very close to the initiator anchor, the position estimation get
worse. Unfortunately, in all experiments, there was a problem with determining
the orientation. The results do not very much correspond to the results of the
experiments in the Datavision s.r.o. Laboratory, I propose that the problem may
have occurred during the actual measurement in the IMR CIIRC during the setup
of the CART2 platform. But unfortunately, I was not able to analyze it properly
by the deadline for submitting this thesis.
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Figure 5.24. Rectangle-shaped test, analysis of trajectory, at IMR CIIRC

The experiment was repeated a total of three times. Analysis of error is given in
Figure 5.25. At the beginning of each iteration, the system rebooted. The system’s
errors turn out to be. repeatable, as the error values do not differ significantly from each other,. and accurate, as the RMSE was less than 10 cm for all three passes.
The maximum values here could exceed 40 cm. However, these extremes are caused
by outliers in the external reference.

Another interesting experiment was to go through several iterations of the same
rectangle-shaped trajectory without shutting down the system. As can be seen in
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Figure 5.25. Rectangle-shaped tests: boxplot, rmse, min and max analysis of the position
error, at IMR CIIRC

the Figure 5.26, the individual iteration does not differ from each other. It can
therefore be seen that there is no significant drift in the position estimation.

Infinity-shaped test
During the infinity-shaped test in Figure 5.27, the position estimation is also

sufficient. However, the detection from the global reference sometimes failed and
created a few outliers. Thus, the results are a bit skewed.

Joy ride test
As shown in Figure 5.28, the position estimation worsens if the CART2 manip-

ulates close to the initiator anchor. Also, it is worth to mention, that there is a
wide column at [1.8, 1.0] m, which can cause signal reflections.

Sumarize of experiments errors
Comparison of position errors in individual experiments in Figure 5.29 shows

interesting conclusions. Errors are similar for different test scenarios, not bigger
than 30 cm, but usually, RMSE is close to 10 cm. Based on the result of the
experiments, the proposed localization system seems viable for indoor localization
with high accuracy and precision demands.
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Figure 5.26. Multiple rectangle-shaped test without shut down, analysis of trajectory, at
IMR CIIRC
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Figure 5.27. Infinity-shaped test, analysis of trajectory, at IMR CIIRC
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Figure 5.28. Joy ride test, analysis of trajectory, at IMR CIIRC
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Figure 5.29. Summary of errors in the position during experiments at IMR CIIRC
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Chapter 6
Conclusion and future work

6.1 Usage of the system in the industry
As I already mentioned in Chapter 1, the key features for industrial usage of
localization are. reliability of the system in the long term while keeping the number of manual

interventions at a minimal,. reduce the influence of the industrial environment on the system,. ability for the system to be deployed on different robotic platforms,. precision and repeatability.
The localization system proposed in this thesis is designed as an aided navigation

system. The main component is the inertial navigation system which provides
short term accurate relative location but is affected by drift. The estimated INS
error removes the drift based on the absolute localization from the UWB beacon
and the linear velocity from the AGV’s odometry.

The proposed implementation reduces the influence of the structure of the vehi-
cle or the morphology of the ground. Also, the localization principle is not based
on any external landmarks or environment contours, reducing the requirement for
a static environment to make the localization reliable in the long term without any
manual interventions. From this point of view, the system architecture satisfies
the industrial requirements quite well.

The discussion about accuracy is directed mainly to UWB performance because
the accuracy of the UWB localization defines the accuracy of the whole system.
UWB localization is relatively accurate and functions well when the robot is mov-
ing. On the contrary, when standing still, it is necessary to reduce the effect of
UWB localization on the results. This effect can be very well ensured by the so-
called virtual sensors when an artificially created signal enters the filtering at a
suitable moment. For example, when the vehicle is not moving, the virtual sensor
produces zero velocity. This approach is suggested in a possible future improve-
ment of the system.

The accuracy of the UWB system is also reduced in No-Line-of-Sight environ-
ments, and therefore, it is necessary to have a relatively dense beacon network
so that such phenomenas do not occur. The location of the beacon and the pre-
cise estimation of their positions are significant for the entire system’s resulting
accuracy.

Another important aspect is the actual mounting of sensors on the robotic plat-
form. The placement of the UWB tag especially affects the resulting precision of
UWB localization. Two positions of the UWB tag on the CART2 platform were
evaluated during the experiments. The first position is near the metal parts of the
robot and 0.2 m above the ground. The second is 1.0 m above the robotic platform
without any metal part around. The 6.1 graph shows that possible signal reflec-
tions from the ground or metal parts on the robot distort the UWB localization.

45



6. Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
3.5
3.7
3.9 uwb tag at CART2 platform uwb tag at wooden stick

Figure 6.1. Comparison of the influence of two different mounted UWB tags on UWB
localization.

Experiments should be performed in a larger industrial environment to evaluate
the precision and repeatability of the system properly. Unfortunately, it was not
possible to provide such an environment because installing anchors themselves
and providing an external localization system is costly. However, the accuracy
and repeatability of the localization are illustrated in Figures 5.18, 5.19, 5.25 and
5.29, where it can be seen that similar results are obtained with repeated passes
from the same starting position and with the same control displays.

As shown in this section, this system meets the latest requirements for use in
industry, and therefore, it would be appropriate to test it in more realistic scenarios
directly in an industrial environment.

6.2 Conclusion
This thesis aims to design an indoor real-time localization system for autonomous
ground vehicles based on ultra wide-band technology.

To properly understand the topic, it was necessary to study the properties of
the sensors used to select individual components for implementation on the AGV
platform CART2. Namely, ultra wide-band technology, inertial measurement unit,
very closely related inertial navigation systems and odometry.

Furthermore, it was necessary to study the latest algorithms commonly used to
estimate state based on the sensors mentioned above, such as the Kalman and the
Particle filter algorithms. The whole state fusion is then based on the Error state
Extended Kalman filter, which seems most suitable.

The proposed system’s architecture is based on an inertial navigation system
aided with measurements from absolute localization given by the UWB localization
system and odometry of the AGV. Results show a significant decrement of the
positioning error compared to the UWB localization and reliable attitude and
position estimation without significant drift. The system was evaluated following a
standardized testing method, considering the horizontal position error and the yaw
angle as the primary performance metrics. The experimental results reported in
this thesis demonstrate the possibility to employ the proposed localization system
in industrial indoor environments.

46



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3 Future work

The whole system was implemented in ROS2 and C++ and deployed on a real
robotic platform, CART2. For a successful deployment, it was necessary to focus
on the specific sensors used, such as the UWB localization system MDEK1001
from Qorvo, the IMU in the M-G365PDF1 model from Epson the odometry read
from the Maxon Epos4 wheen encoder.

The system was then experimentally validated in two test environments using
two different external references. The test scenarios were appropriately selected to
verify the behavior of the system in all possible situations.

And the last part summarizes the possible use of the system in the industry,
where it was shown that the system’s design meets the latest requirements and
then presented several proposals for improving and expanding the existing system.

6.3 Future work
This thesis shows that the proposed localization system can be successfully used
to estimate the pose of autonomous ground vehicles. Future work is divided into
two main categories.. Possible improvements of the algorithms and hardware specifics. and testing the system in more complex scenarios.

6.3.1 Possible improvements of the system
Multiple possible improvements have been identified during work on this thesis,
namely. using Reverse Time Difference of Arrival localization mode,. implementing virtual sensors. and suggest a suitable calibration process.
The first possible improvements are aimed at using UWB localization in RTDoA
mode. This mode offers a higher update rate and the ability to use the system on
multiple AGVs at once, as mentioned in section 2.1.

Another option is to use virtual sensors that improve the precision of the entire
system and are commonly used in similar applications [46–47].

For a long-term reliable localization system, it is also possible to design cali-
bration processes. The calibration enables obtaining the most precise data from
sensors and is valid for sensors such as IMU or odometry. In present systems, cal-
ibrations are typically applied before the entire system is switched on and during
the ride. A suitable calibration process should be part of the final localization
product.

6.3.2 Experimental verification in the complex testing
scenario

The initial experiments evaluated in this work look promising. The next step is to
verify the system in a more complex test environment. The test scenarios should
include. testing the system on multiple AGVs at once,. experimentally verifying whether the proposed system works for localization in

3D, especially on flying drones,. verifying functionality in an industrial environment under the demand of indus-
trial partners,. finding out the possible influence of moving people in the environment (the
human body could be a significant obstacle for UWB signals).
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Extensive testing is planned to evaluate localization system performance thor-
oughly. This will allow the final product to be robust and reliable for use in the
target environment.

48



References

[1] V. Lakkundi. Ultra Wideband Communications: History, Evolution and
Emergence. Acta Polytechnica. 2006, 46 DOI 10.14311/844.

[2] Zafer Sahinoglu, Sinan Gezici, and Ismail Gvenc. Ultra-Wideband Position-
ing Systems: Theoretical Limits, Ranging Algorithms, and Protocols. USA:
Cambridge University Press, 2011. ISBN 0521187834.

[3] Sewio Networks. Two way ranging illustration.
https://cdn.sewio.net/wp-content/uploads/2016/04/TWR-Scheme.jpg.

[4] Vincenzo Di Pietra, Paolo Dabove, and Marco Piras. Loosely Coupled GNSS
and UWB with INS Integration for Indoor/Outdoor Pedestrian Navigation.
Sensors. 2020, 20 (21), DOI 10.3390/s20216292.

[5] Qigao Fan, Biwen Sun, Yan Sun, and Xiangpeng Zhuang. Performance
Enhancement of MEMS-Based INS/UWB Integration for Indoor
Navigation Applications. IEEE Sensors Journal. 2017, 17 (10), 3116-3130.
DOI 10.1109/JSEN.2017.2689802.

[6] Bruno Siciliano, and Oussama Khatib. Springer Handbook of Robotics.
Springer-Verlag, 2007.

[7] Peter Teunissen, and Oliver Montenbruck. Springer handbook of global navi-
gation satellite systems. Springer, 2017.

[8] Priyanka Aggarwal. MEMS-based integrated navigation. Artech House, 2010.
[9] N. Barbour, and G. Schmidt. Inertial sensor technology trends. IEEE Sensors

Journal. 2001, 1 (4), 332-339. DOI 10.1109/7361.983473.
[10] William Riley, and David Howe. Handbook of Frequency Stability Analysis.

2008.
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505.

[11] Shuvra S Bhattacharyya, Ed F Deprettere, Rainer Leupers, and Jarmo
Takala. Handbook of signal processing systems. Springer, 2018.

[12] Seiko Epson Corporation. Inertial Measurement Unit (IMU) : M-G365.
https://global.epson.com/products_and_drivers/sensing_system/
imu/g365/.

[13] Agnieszka Szczęsna, Przemysław Skurowski, Ewa Lach, Przemyslaw
Pruszowski, Damian Pęszor, Marcin Paszkuta, Janusz Słupik, Kamil
Lebek, Mateusz Janiak, Andrzej Polanski, and Konrad Wojciechowski.
Inertial Motion Capture Costume Design Study. Sensors. 2017, 17 612.
DOI 10.3390/s17030612.

[14] Wikipedia®. Wikipedia - white noise definition.
https://en.wikipedia.org/wiki/White_noise.

[15] © Thales group. Performance of IMU per application.
https://www.thalesgroup.com/sites/default/files/database/d7/

49

http://dx.doi.org/10.14311/844
https://cdn.sewio.net/wp-content/uploads/2016/04/TWR-Scheme.jpg
http://dx.doi.org/10.3390/s20216292
http://dx.doi.org/10.1109/JSEN.2017.2689802
http://dx.doi.org/10.1109/7361.983473
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505
https://global.epson.com/products_and_drivers/sensing_system/imu/g365/
https://global.epson.com/products_and_drivers/sensing_system/imu/g365/
http://dx.doi.org/10.3390/s17030612
https://en.wikipedia.org/wiki/White_noise
https://www.thalesgroup.com/sites/default/files/database/d7/assets/images/thales_topaxyz_imu_infographie_copyright_thales_light_0.png


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
assets/images/thales_topaxyz_imu_infographie_copyright_thales_l
ight_0.png.

[16] B. Barshan, and H.F. Durrant-Whyte. Inertial navigation systems for mobile
robots. IEEE Transactions on Robotics and Automation. 1995, 11 (3), 328-
342. DOI 10.1109/70.388775.

[17] Inertial Navigation Systems. In: Global Positioning Systems, Inertial
Navigation, and Integration. John Wiley and Sons, Ltd, 2007. 9.
ISBN 9780470099728.
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470099728.
ch9.

[18] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
Cambridge, Mass.: MIT Press, 2005 . ISBN 0262201623 9780262201629.

[19] Nak Yong Ko, and Tae Gyun Kim. Comparison of Kalman filter and particle
filter used for localization of an underwater vehicle. In: 2012 9th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI). 2012.
350-352.

[20] Mushfiqul Alam, Ginés López, Martin Sipos, and Jan Rohac. INS/GNSS
Localization Using 15 State Extended Kalman Filter. In: 2016.

[21] M. Petovello. Real-time integration of a tactical-grade IMU and GPS for high-
accuracy positioning and navigation. In: 2003.

[22] Gianluca Falco, Marco Pini, and Gianluca Marucco. Loose and Tight
GNSS/INS Integrations: Comparison of Performance Assessed in Real
Urban Scenarios. Sensors. 2017, 2017 27. DOI 10.3390/s17020255.

[23] Shubham Godha. Performance Evaluation of Low Cost MEMS-Based IMU
Integration with GPS for Land Vehicle Navigation Application. 2006,

[24] Simon J. Julier, and Jeffrey K. Uhlmann. New extension of the Kalman filter
to nonlinear systems. In: Ivan Kadar, eds. Signal Processing, Sensor Fusion,
and Target Recognition VI. SPIE, 1997. 182 – 193.
https://doi.org/10.1117/12.280797.

[25] Jiaxin Li, Yingcai Bi, Kun Li, Kangli Wang, Feng Lin, and Ben Chen. Accu-
rate 3D Localization for MAV Swarms by UWB and IMU Fusion. In: 2018.
100-105.

[26] Jeroen D. Hol, Fred Dijkstra, Henk Luinge, and Thomas B. Schon. Tightly
coupled UWB/IMU pose estimation. In: 2009 IEEE International Conference
on Ultra-Wideband. 2009. 688-692.

[27] S.I. Roumeliotis, G.S. Sukhatme, and G.A. Bekey. Circumventing dynamic
modeling: evaluation of the error-state Kalman filter applied to mobile robot
localization. In: Proceedings 1999 IEEE International Conference on Robotics
and Automation (Cat. No.99CH36288C). 1999. 1656-1663 vol.2.

[28] Joan Solà. Quaternion kinematics for the error-state KF. 2015,
[29] Jay Farrell. Aided navigation: GPS with high rate sensors. McGraw-Hill, Inc.,

2008.
[30] Alessandro Benini, Adriano Mancini, and Sauro Longhi. An

IMU/UWB/Vision-based Extended Kalman Filter for Mini-UAV
Localization in Indoor Environment using 802.15.4a Wireless Sensor
Network. Journal of Intelligent and Robotic Systems. 2013, 70
DOI 10.1007/s10846-012-9742-1.

50

https://www.thalesgroup.com/sites/default/files/database/d7/assets/images/thales_topaxyz_imu_infographie_copyright_thales_light_0.png
https://www.thalesgroup.com/sites/default/files/database/d7/assets/images/thales_topaxyz_imu_infographie_copyright_thales_light_0.png
https://www.thalesgroup.com/sites/default/files/database/d7/assets/images/thales_topaxyz_imu_infographie_copyright_thales_light_0.png
http://dx.doi.org/10.1109/70.388775
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470099728.ch9
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470099728.ch9
http://dx.doi.org/10.3390/s17020255
https://doi.org/10.1117/12.280797
http://dx.doi.org/10.1007/s10846-012-9742-1


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[31] Venkatesh Madyastha, Vishal Ravindra, Srinath Mallikarjunan, and Anup

Goyal. Extended Kalman Filter vs. Error State Kalman Filter for Aircraft
Attitude Estimation. In: 2011. ISBN 978-1-60086-952-5.

[32] Lukasz Zwirello, Xuyang Li, Thomas Zwick, Christian Ascher, Sebastian Wer-
ling, and Gert Trommer. Sensor data fusion in UWB-supported inertial nav-
igation systems for indoor navigation. In: 2013. 3154-3159. ISBN 978-1-4673-
5641-1.

[33] Jay A. Farrell, and Paul F. Roysdon. Advanced Vehicle State Estimation: A
Tutorial and Comparative Study. IFAC-PapersOnLine. 2017, 50 (1), 15971-
15976. DOI https://doi.org/10.1016/j.ifacol.2017.08.1751. 20th IFAC World
Congress.

[34] M. D. Shuster. Survey of attitude representations. Journal of the Astronautical
Sciences. 1993, 41 (4), 439-517.

[35] Mike Purvis ROS, Tully Foote. Standard Units of Measure and Coordinate
Conventions.
https://www.ros.org/reps/rep-0103.html.

[36] Gaël Guennebaud, Benoît Jacob, and others. ”Eigen”, a C++ template library
for linear algebra: matrices, vectors, numerical solvers, and related algorithms.
http://eigen.tuxfamily.org. 2010.

[37] Michel Hidalgo ROS, Tully Foote. ROS geometry messages package.
http://wiki.ros.org/geometry_msgs.

[38] Tully Foote. tf: The transform library. Open-Source Software workshop. 2013.
[39] Dirk Thomas, William Woodall, and Esteve Fernandez. Next-generation ROS:

Building on DDS. In: ROSCon Chicago 2014. Mountain View, CA: Open
Robotics, 2014.
https://vimeo.com/106992622.

[40] Seiko Epson Corporation. Datasheet of Epson M-G365.
https://global.epson.com/products_and_drivers/sensing_system/
download_hidden/pdf/m-g365pd_datasheet_e_rev20201007.pdf.

[41] Anders E. E. Wallin Revision dd987cf3 © Copyright 2014-2019. Allantools
python library.
https://allantools.readthedocs.io/en/latest/index.html.

[42] Inc © 2021 Qorvo. Qorvo’s MDEK1001 ultra-wideband (UWB) development
kit.
https://www.qorvo.com/products/p/MDEK1001.

[43] Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2011. 3400-3407.

[44] Niceboy®. niceboy ® STREAM PRO camera.
https://niceboy.eu/en/products/stream-pro.

[45] Pierre Merriaux, Yohan Dupuis, Rémi Boutteau, Pascal Vasseur, and Xavier
Savatier. A Study of Vicon System Positioning Performance. Sensors. 2017,
17 (7), DOI 10.3390/s17071591.

[46] Yueyang Ben, Guisheng Yin, Wei Gao, and Feng Sun. Improved filter estima-
tion method applied in zero velocity update for SINS. In: 2009 International
Conference on Mechatronics and Automation. 2009. 3375-3380.

51

http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2017.08.1751
https://www.ros.org/reps/rep-0103.html
http://wiki.ros.org/geometry_msgs
https://vimeo.com/106992622
https://global.epson.com/products_and_drivers/sensing_system/download_hidden/pdf/m-g365pd_datasheet_e_rev20201007.pdf
https://global.epson.com/products_and_drivers/sensing_system/download_hidden/pdf/m-g365pd_datasheet_e_rev20201007.pdf
https://allantools.readthedocs.io/en/latest/index.html
https://www.qorvo.com/products/p/MDEK1001
https://niceboy.eu/en/products/stream-pro
http://dx.doi.org/10.3390/s17071591


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[47] Rahul P Suresh, Vinay Sridhar, J Pramod, and Viswanath Talasila. Zero

Velocity Potential Update (ZUPT) as a Correction Technique. In: 2018 3rd
International Conference On Internet of Things: Smart Innovation and Us-
ages (IoT-SIU). 2018. 1-8.

52



Appendix A
Abbreviations and symbols

A.1 A list of abbreviations
All abbreviations used in this thesis are listed below.

AGV Autonomous ground vehicles.
AVAR Allan variance.
CIIRC Czech Institute of Informatics, Robotics and Cybernetics.

CTU Czech Technical University in Prague.
DOF Degrees of freedom.

ES-EKF Error state Extended Kalman filter.
GNSS Global Navigation Satellite System.

IMU Inertial measurement unit.
INS Inertial navigation system.

MEMS Microelectromechanical systems.
ROS2 Robot Operating System 2.
TACR Technology Agency of the Czech Republic.
TWR Two-way ranging.
TDoA Time Difference of Arrival.
RMSE Root mean square error.

RTDoA Reverse Time Difference of Arrival.
UWB Ultra-wideband.

A.2 A list of symbols

⨁ is a suitable composition as linear sum or matrix product.
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