
Instructions

The aim of this thesis is to design and implement an extension of multi platform application which is

capable to visualize EEG curves.

Functional requirements:

 Visualization of EEG data using a topographical EEG scalp map.

 Ability to perform a time-frequency analysis and visualize the results.

 Other requirements:

 Capability to visualize up to 256channels with sampling frequency 2048Hz.

 Support of Microsoft Windows 7, 8, 10 and Linux Ubuntu 14 and 16.

 Ability to run the application on a virtual machine.

 The implemented expansion must be appropriately documented and tested.

Electronically approved by Ing. Michal Valenta, Ph.D. on 21 January 2021 in Prague.

Assignment of master’s thesis

Title: Extension of Multiplatform Software for EEG Visualization

Student: Bc. Marek Papinčák

Supervisor: Ing. Petr Ježdík, Ph.D.

Study program: Informatics

Branch / specialization: Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

Master’s thesis

Extension of Multiplatform Software for
EEG Visualization

Bc. Marek Papinčák

Department of Software Engineering
Supervisor: Ing. Petr Ježd́ık, Ph.D.

June 27, 2021

Acknowledgements

I would like to thank my supervisor Mr. Ježd́ık for his guidance and my mom
for her support in these strange pandemic times.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on June 27, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Marek Papinčák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Papinčák, Marek. Extension of Multiplatform Software for EEG Visualization.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstrakt

Táto diplomová práca popisuje rozš́ırenie programu na vizualizáciu a analýzu
EEG dát. Rozš́ırenie zahrňuje vizualizáciu topografickej mapy povrchu skalpu
použit́ım viac rozmernej interpolácie a časovo-frekvenčnú analýzu vykonanú
pomocou krátkodobej Fourierovej transformácie vyzualizovanú pomocou spek-
trogramu. Obe vizualizácie použ́ıvajú hardvérovú akceleráciu.

Kĺıčová slova EEG, hardvérová akcelerácia, OpenGL, OpenCL, biologické
signály, spracovávanie digitálneho signálu, topografická mapa, spektrogram

Abstract

This thesis describes the extension of a program for the visualization and anal-
ysis of EEG data. The extension includes visualizing a topographic map of
the scalp surface using spatial interpolation, and time-frequency analysis per-
formed with short-time Fourier transform visualized as a spectrogram. Both,
the spectrogram and topographic map, are visualized using HW acceleration.

Keywords EEG, hardware acceleration, OpenGL, OpenCL, biological sig-
nals, digital signal processing, topographic map, spectrogram

vii

Contents

Introduction 1

1 Analysis 3
1.1 Alenka . 3
1.2 Topographic Scalp Map . 4

1.2.1 Spatial Interpolation . 5
1.2.2 OpenGL Interpolation 6
1.2.3 Electrode Positions . 7
1.2.4 Requirements Formalization 7

1.3 Time-frequency Analysis . 8
1.3.1 The Short-Time Fourier Transform 8
1.3.2 Spectrogram . 9
1.3.3 Requirements Formalization 10

2 Design 11
2.1 Topographic Scalp Map . 11

2.1.1 Loading Electrode Positions 11
2.1.2 Projection of Electrode Positions 12
2.1.3 Mesh Generation . 13
2.1.4 EEG Sample Data . 13
2.1.5 Visualization of EEG Data 14
2.1.6 The User Interface . 14
2.1.7 Visualization Design . 15
2.1.8 Class Structure . 15

2.2 Time-frequency Analysis . 16
2.2.1 Data Acquirement . 17
2.2.2 Data Processing . 18
2.2.3 Mesh Generation . 18
2.2.4 Visualization . 18

ix

2.2.5 User Interface . 18
2.2.6 Class Structure . 19

2.3 Graphics Objects . 20

3 Realization 23
3.1 Technologies . 23
3.2 Topographic Scalp Map . 23

3.2.1 Electrode Positions . 24
3.2.2 Electrode Projection . 25
3.2.3 Mesh Generation . 25
3.2.4 Amplitude Update . 27

3.3 Time-Frequency Analysis . 29
3.3.1 Sample Processing . 29
3.3.2 Fast Fourier Transform Processor 31
3.3.3 Mesh Generation . 32

3.4 User Interface . 32
3.5 Visualization . 33

3.5.1 Colormap . 33
3.5.2 OpenGL Resources . 34
3.5.3 OpenGL Visualization 35
3.5.4 Graphics Objects . 37

3.6 Maintenance . 37
3.6.1 Combining the Previous versions 37
3.6.2 Deployment . 37
3.6.3 Documentation . 38

Testing 39
Cross-platform Testing . 39
GUI and Functionality Testing . 40

Discovered Problems . 42
Benchmarks . 42

Window Benchmark . 44
Platform Benchmark . 45
File Benchmark . 46

Conclusion 49

Bibliography 51

A Acronyms 55

B Controls 57
B.1 Main Window Controls . 57
B.2 Manager Side Windows Controls 58
B.3 Gradient Controls . 58

x

B.4 ScalpMap Controls . 58
B.5 TFA Controls . 58

C Alenka Help 59

D Build Instructions 61
D.1 Linux . 62
D.2 Windows . 62

D.2.1 Qt Creator Project . 62
D.2.2 Visual Studio Solution 62

E Contents of enclosed DVD 65

xi

List of Figures

1.1 Alenka example. 4
1.2 Topographic scalp map example 6
1.3 Spectrogram example . 9

2.1 Scalp map pop-up menu design . 15
2.2 Topographic scalp map design . 16
2.3 UML of Alenka scalp map class structure 17
2.4 Wireframe of the TFA GUI . 19
2.5 UML of Alenka TFA class structure 20
2.6 UML of Alenka graphics objects class structure 21

3.1 The final version of the topographic scalp map 24
3.2 Comparison of the implemented projections 25
3.3 The final version of the TFA . 30

3.4 Graph of the window benchmark 45
3.5 Graph of the platform benchmark 46
3.6 Graph of the file benchmark . 47

D.1 Setup project in Virtual Studio . 63

xiii

List of Tables

3.1 Testing Environments . 39
3.2 The TFA configuration used in all tests 43
3.3 The scalp map configuration used in all tests. 43
3.4 Configuration of the high-end pc. 43
3.5 Configuration of the mid-end pc. 44

xv

List of Listings

2.1 Electrode file example . 12
3.1 Implementation of the electrode projection 26
3.2 Implementation of the spatial coefficients computation 28
3.3 Implementation of the STFT inside of TfModel 31
3.4 Implementation of the color palette interpolation 34
3.5 Triangle vertex shader . 35
3.6 Triangle fragment shader . 36
3.7 Vertex shader used to draw electrode positions 36

xvii

Introduction

ISARG[1] is a research group consisting of technically educated researchers
from the Czech Technical University in Prague and medical doctors from
Charles University in Prague. They analyze electrical signals produced by
the nervous system. Their primary focus is studying the brains of epileptic
patients.

Electroencephalography(EEG[2, p. 258]) is a measuring method used to
record the electrical field on the scalp. A special cap with electrodes is placed
on a patient’s head that measures the electrical field and produces EEG sig-
nals. These continuous signals are then reduced into discrete signals and
analyzed with various software tools. One of such tools used by the research
groups is the in-house application Alenka.

Alenka is an EEG signal visualization software that was developed by
students over the years. There are many complex commercial and open-source
solutions on the market. Alenka strives to complement them, not replace
them. The main point of the application is to be as simple and as fast as
possible. The goal of this thesis is to expand the visualization capabilities of
this student’s project.

The main goal of this thesis is to design and implement an extension of
the aforementioned EEG visualization application Alenka. The main two
functional requirements of the extension, as specified in the thesis assignment,
are:

• Topographic scalp map

• Time-frequency analysis

In the former requirement, the goal is to take irregularly distributed data
points stored in a three-dimensional form in a shape of a cap. Then transform
them into two-dimensional coordinates in such a way that the coordinates
don’t overlap and keep their distances. Then visualize a continuous stream of
changing values at said points in a form of a 2D topographical map.

1

Introduction

In the latter requirement, the goal is to process sets of data and visualize
them in a form of a spectrogram.

There are also non-functional requirements:

• Ability to process files with 256 electrodes and 2048 Hz sampling fre-
quency

• Compatibility with Windows 7, 8, 10, and Linux ubuntu 14 and 16
systems

• Documentation and testing

Alenka already provides support for the first two mentioned. This means
that this goal translates to not introducing new elements into the application
that could break this status. As this is my first contact with Alenka, the
unmentioned goal is to familiarize myself with the project to provide the best
solutions possible.

2

Chapter 1
Analysis

1.1 Alenka

Alenka takes sampled EEG data and visualizes them in a form of a graph,
either in filtered or raw form. The application utilizes hardware acceleration
to be able to quickly process and visualize massive amounts of data. Sampled
EEG data are stored in files with various sampling frequencies and electrode
formations with a different number of electrodes. These formations can go up
to 256 electrodes with a 2048 Hz sampling frequency. Alenka accepts EDF,
GDF, and MAT file types.

After loading, data are processed and filtered before being visualized. The
researcher has the ability to use various basic filters including high pass, low
pass, and notch filter. There is also a possibility to write a custom frequency
multipliers. The processed data are visualized in the main window with the
x-axis being time, the y-axis being the amplitudes, and each electrode having
its own continuous wave. Only part of the file is visualized at a time, by
moving the bottom scroll bar, the user is able to move through the file and
observe all of the data. The amount of visualized data can be adjusted by
changing the resolution, zooming in and out based on time and amplitudes.
It is possible to interact with the signal waves, changing their amplitudes and
creating special zones of interest. Picture of the main window and two side
windows can be seen here 1.1.

Alenka provides various tools that amplify the analysis process. User is
able to create custom montages by combining multiple electrodes. It is possible
to perform a Fourier transform on a single electrode. There is an integrated
video player that allows the user to watch a recording of a patient and observe
his mental state. Alenka synchronizes the visualized data with the time step
in the video. The application also provides a spike detector. This feature
goes through the whole file and automatically detects zones of interest so that
researcher doesn’t have to. It is also possible to run multiple instances of the
application on the same pc with a shared context, visualizing the same file.

3

1. Analysis

Figure 1.1: Alenka main window with two side windows.

You can read more about this and spike detector in the master thesis written
by Martin Bárta[3]. Read more about introducing hardware acceleration into
the project in his bachelor thesis[4].

Alenka[5] is a cross-platform application written in c++. It uses the Qt
framework[20] as its main engine behind the graphical user interface(GUI) and
to ensure compatibility across different systems, mainly Windows and Linux.
Qt provides native-looking GUI based on the platform it is being run on. The
application utilizes OpenCL and OpenGL for hardware acceleration. OpenCL
is being used mainly during the processing and filtering of read sample data,
while OpenGL is utilized in the visualization of the main window.

1.2 Topographic Scalp Map

The term topographic map is usually connected with the world of geology and
its discipline topography. Topography generally studies terrain, the shape of a
planet’s surface, and its characteristics such as plains, mountains, rivers, and
oceans. To best show the varying elevation of these characteristics, topography
uses topographic maps, where areas with low elevation such as canyons are
shown with a different color than high areas such as mountains. Since the
color is based on the particular height of a coordinate on the map, a reader
can quickly discern the steepness of hills, deepest and highest points, and the
overall variability of the studied terrain. This idea also translates somewhat
well into Electroencephalography(EEG), although the data measured in EEG
do not provide complete information and are often misleading.

In Electroencephalography, several electrodes are put on top of the pa-

4

1.2. Topographic Scalp Map

tient’s head to monitor his brain activity. The brain contains billions of neu-
rons that produce electric potential which can undergo an important change
in milliseconds. The potential oscillates in time. This electric activity is usu-
ally recorded in the form of waveforms. A skilled technician or doctor can
observe well-known patterns in these waveforms and tell what kind of activity
was patient performing at the time. The observer can identify sleep stages,
depth of anesthesia, seizures but also abnormalities[6, p. 3].

Another method of observing electric activity in the brain is a topographic
map. There are 2D and 3D topographic maps. In this thesis, I focus on the
former which is sometimes also called a topographic scalp map. The map
shows one step of the electric potential oscillation in time. The method could
be regarded as a “pseudo imaging method”[7, p. 7]. This can cause accuracy
issues with the distribution of surface potential as we have a small number of
spatial samples, but a relatively large area between them[8, p. 194]. The most
exact topographic scalp map would be a set of points blinking in different
colors. The interpolation adds substance and helps the observer. An example
topographic scalp map can be seen in this picture 1.2

1.2.1 Spatial Interpolation

Spatial interpolation is a method where known points are used to estimate
the values of unknown points in multi-dimensional space. There are often
situations where resources and measuring points are limited. A typical ex-
ample would be weather, there is a finite number of weather stations that do
not cover the whole area. Various interpolation and approximation methods
are then used to create complete rain or temperature maps[9]. Some of the
methods are triangle interpolation[10] and inverse distance weighted.

Triangle interpolation generates spatially continuous surfaces using the
triangulated irregular network(TIN[11]). Given irregularly distributed data
points, a triangulation algorithm constructs nonoverlapping triangles such
that every point from the grid is a vertex of at least one triangle. The in-
terpolation of the given points is then simple, every point inside a triangle is
a linear interpolation of the values observed at the triangle’s vertices. A prob-
lem with this method is the assignment of the values to triangles. Also, the
result inherits some artifacts from the triangular pattern, it is advised to use
triangle interpolation at high observation densities to limit its influence[10].

Inverse distance weighted(IDW) is a simple spatial interpolation method
where sample points are weighted based on the distance to the unknown point.
This means that the further the sample point is from the unknown point, the
less influence it has on its value. Not all points are used for a particular
unknown point, either n closest points or points closer than a certain distance
are selected. The result value is the weighted average of the considered points.
The Disadvantage of the method is that it does not often produce the local

5

1. Analysis

Figure 1.2: Example topographic scalp map plotted by EEGLAB

shape implied by data and produces local extrema at the sample points[9,
p. 482].

1.2.2 OpenGL Interpolation

OpenGL[12] is a cross-platform API used to write hardware accelerated ap-
plications. OpenGL communicates with a graphics processing unit(GPU) to
render complicated graphics objects in real-time. It is commonly used in
computer games, computer-aided design, and scientific visualization. Mod-
ern GPUs have hundreds, or sometimes, thousands of cores, OpenGL takes
advantage of this and runs parallel processes on all of the cores.

A graphics scene consists of multiple objects, each being made up of mul-
tiple primitives, each consisting of multiple vertices. One scene can contain
thousands and even millions of vertices. To render such a scene, every object
must first go through the graphics pipeline[13, p. 35]. Four major steps in the

6

1.2. Topographic Scalp Map

pipeline are:

1. Vertex processing

2. Clipping and primitive assembly

3. Rasterization

4. Fragment processing

During the pipeline, each primitive is rasterized, turned into fragments, each
containing interpolated values attached to the vertices of the primitive[14].
Every Fragment is then colored based on the fragment shader. For triangle
primitives, OpenGL uses interpolation based on barycentric coordinates[13,
p. 35]. If one of the parameters of the primitive vertex is color and we use a
correct fragment shader, we get a simple and fast color interpolation inside
the triangle.

1.2.3 Electrode Positions

Electrodes are used to measure the electric potential of the brain. They are
placed on top of the patient’s head according to internationally recognized
systems. Systems used by ISARG[1] include 10-5, 10-20, and duke 256. These
systems can have up to 256 electrodes. These electrodes sometimes referred to
as channels, are placed on the patient’s head based on well-known brain areas
which are also reflected in their naming. Measurements done on different
patients results in different electrode positions based on their skull shapes.
Electrodes are supplied in a simple text file with each electrode having its
three-dimensional cartesian coordinates.

1.2.4 Requirements Formalization

During the meetings with ISARG[1], several requirements on the scalp map
were stated. The scalp map should be added as a new window in the windows
section. The user should be able to pull it from the original position and move
it around the screen, it should be easily resizable and turned off/on. It should
visualize the same data as being shown in the main window of the application.
This means that the data should have the same filters applied to it as selected
in the main window toolbar. It should be possible to select between the local
and customizable extrema. There should be electrode position indicators with
their specific labels. Electrode positions should be customizable and there
should be an option to load them from a file. There should be a customizable
color gradient with customizable contrast and brightness.

7

1. Analysis

1.3 Time-frequency Analysis

Time-frequency analysis(TFA) is one of the methods used in signal processing.
It allows the researcher to study the signal in both the time and frequency
domains simultaneously. Standard Fourier analysis assumes that signals are
infinite in time or periodic. However, many types of signals in practice are
rather short and significantly change over their lifespan. In TFA small time
intervals, windows, of the signal are defined and separately transformed to
the frequency domain. Results are then visualized in a form of a spectrogram,
sometimes also called a sonogram. There are several different methods to
perform TFA such as the short-time Fourier transform(STFT), the Wigner
transform, the discrete wavelet(Haar) transform, and the continuous wavelet
transform. In this thesis, I focus on the STFT.

Research has shown that the STFT can be used to analyze EEG signals
successfully. Tzallas et.al.[15] compared STFT and various time-frequency
distributions in the analysis of EEG recordings of epileptic patiens[15]. Hussin
et.al. studied the EEG recording of normal and autistic children[16]. Zabidi
et. al. used the STFT to compare the EEG recordings measured during
relaxation to the recordings attained during writing.

1.3.1 The Short-Time Fourier Transform

Short-time Fourier transform is, simply put, the Fourier transform operating
on small segments of a signal in the time domain. The results of the transforms
are then stacked together and visualized in a form of a spectrogram.

In the discrete-time STFT, a sampled signal is divided into several, usually
overlapping segments. Each segment is tapered with a window function(e.g.
hamming) to avoid edge artifacts. The Discrete Fourier Transform(DFT) is
then performed on the tapered segments. Often, the Fast Fourier Transform
is used as a fast implementation of the DFT. The FFT is much faster for
the powers of two. If this condition doesn’t hold for the segment’s size, it is
padded with zeroes after it is tapered and before it enters the FFT.

Mathematically, the STFT would be described as follows[17]: Let x[n] be
a discrete signal and xl[m] be signal frames extracted at regular time intervals
using a finite window function w[m], expressed as

xl[m] = x[m + lH]w[m], (1.1)

where m ∈ {1, 2, ..., M} is the local time index, M ∈ N is the analysis window
length, l ∈ {0, 1, ..., L − 1} is the frame index, L ∈ N is the total number of
frames, H ∈ N is the hop size (i. e., the time advance, expressed in samples,
from one signal frame to next). Further, DFT is performed on every frame
xl[m], given a localized two-sided spectrum

X[k, l] = 1
M

K∑
m=1

Xl[m]e−j2π
mk
K (1.2)

8

1.3. Time-frequency Analysis

Figure 1.3: Example spectrogram plotted by MATLAB made by The Math-
Works, Inc.

where k ∈ 1, 2, ..., K is the frequency bin index and K ∈ N is the DFT size.
The term X[k, l] is called STFT of x[n] and corresponds to the local time-
frequency behavior of the signal around the time index lH and the frequency
bin k.

1.3.2 Spectrogram

The spectrogram can be defined as an intensity plot of the STFT magnitude.
The spectrograms horizontal axis represents the time spectrum and the ver-
tical axis shows the frequency spectrum. The third dimension is indicating
the amplitude of a particular frequency at a particular time by the intensity
or color of each pixel. What color represents which amplitude can be seen in
the accompanying gradient. In STFT the frequency spectrum is divided into
frequency bins and time is divided into frames. Each pixel of the spectrogram
is a representation of the nth frequency bin and the mth time frame. An
example spectrogram with clearly distinguishable pixels can be seen in this
picture 1.3.

9

1. Analysis

1.3.3 Requirements Formalization

During the meetings with ISARG[1], several requirements on the time-frequency
analysis were stated. The time-frequency analysis should be added as a new
side window. The TFA should be calculated from the samples currently ob-
served in the main window. The middle of the TFA spectrogram’s time axis
should be the time step selected by the position in the main window. The
frequency axis should be configurable, the researchers are not always inter-
ested in the whole frequency spectrum. There should be a 1/f and logarithm
compensation.

10

Chapter 2
Design

2.1 Topographic Scalp Map

The scalp map is added as a new window in the windows section. It visualizes
the signal amplitude at the current time step in the main window. This means
that it has to be updated every time the position indicator in the main window
moves. Thus, the update has to do the least amount of calculations required
and be as fast as possible. The whole process required for the visualization of
EEG data as a topographical scalp map could be summed into the following
steps:

• Load electrode positions from electrode file

• Project positions from three-dimensional Cartesian coordinates to two
dimensional

• Generate a mesh around electrode positions

• Obtain EEG sampled data to be visualized

• Visualize the EEG data

2.1.1 Loading Electrode Positions

Alenka manages electrodes through the track manager. The electrodes are
loaded when a new file with samples is loaded. The track manager contains
data about the electrodes that can be edited by the user. Edited data is saved
after discarding the sample file and is restored upon opening it again. The
track manager already contains prepared empty fields for three-dimensional
Cartesian coordinates. That’s why I added an option to load electrode po-
sitions here. The positions are loaded from a simple text ELC file. Each
position has its label which is compared to already existing labels in the track
manager table. The matching electrodes are updated with coordinates from

11

2. Design

Listing 2.1: An example elc file with electrode positions and labels.
NumberPositions= 5
UnitPosition mm
Positions
FP1 : 101.538 32.38 40.252
FPZ : 110.049 2.569 40.179
FP2 : 101.84 -27.588 41.343
AFP3H : 105.688 20.856 57.759
AFP4H : 105.472 -18.184 58.19
Labels
FP1 FPZ FP2 AFP3H AFP4H
NumberHeadShapePoints= 5
UnitHeadShapePoints mm
HeadShapePoints
96.694 -2.084 1.205
98.834 -15.204 11.905
78.65 -53.17 13.188
63.894 -56.713 -16.333
87.749 -13.982 -12.454

the file. Example ELC file can be seen here 2.1. Alenka loads the information
from the five lines after the Positions line, as the NumberPositions is 5.

2.1.2 Projection of Electrode Positions

Electrode positions are loaded in a form of three-dimensional Cartesian coor-
dinates. To use them in this form would mean that electrodes that are on the
side of the head would overlap and the information from these parts of the
skull would be very hard to decipher. It is thus vital to project these coordi-
nates onto a two-dimensional plane. For this, I use stereographic projection
as presented in here[18]. The sphere equation in Cartesian coordinates is:

x2 + y2 + z2 + ax + by + cz + d = 0. (2.1)

The first step is to use the least-squares method to fit a sphere inside the
electrode positions. The sphere has a center (xc, yc, zc) and R expressed as:

(xc, yc, zc) = (−a/2,−b/2,−c/2), R =
√

(a2 + b2 + c2)/4− d. (2.2)

The electrode positions are then projected onto the sphere surface P = (xp, yp, zp)
and mapped to a plane by stereographic projection:

(x′, y′) = (xp
R− zp

,
yp

R− zp
). (2.3)

Projecting of the electrodes happens only when new electrodes are loaded, or
some electrode’s coordinates are updated in the track manager. It doesn’t
interfere with the scalp map main update.

12

2.1. Topographic Scalp Map

2.1.3 Mesh Generation

Graphical objects are constructed from primitives, such as points, lines, and
triangles. To visualize the topography of the head, it first has to be broken
down into these primitives, in this case into triangles. There were two options
that I was considering:

• Two-dimensional square grid, where each square is represented by two
triangles

• Two-dimensional triangle mesh created by triangulation of the area be-
tween the electrode positions

The former option, as described in the bachelor’s thesis written by Petr
Dobeš[19], involves creating a simple square grid and mapping the electrodes
to it. This has the advantage that the grid doesn’t have to be regenerated ev-
ery time the electrode positions are changed. The disadvantage is that it has
a square shape. It would either require to be cropped after the mapping for
better readability or be overpainted by a sphere frame in every paint update.

The second option comprises of using Delaunay triangulation to create
a triangle mesh that fits the electrode positions in such a way, that no po-
sition would be inside a triangle[18]. Triangles would then have to be split
into smaller triangles based on distances between positions to avoid visual
artifacts generated by triangle interpolation[10]. This process would have to
be repeated every time that any electrode is changed. Although, slower al-
gorithms performing Delaunay can have overall runtime of O(n2), electrode
positions change doesn’t happen that often and usually happens only once
when adding a new electrode file.

Overall, both options are viable, but I decided to use the Delaunay tri-
angulation as it didn’t require the extra step of cropping and created a neat
spherical mesh.

2.1.4 EEG Sample Data

EEG sample data are loaded from the sample file, processed, and visualized
in the main window. After being processed they are stored in caches, so they
don’t have to be reloaded and processed every time the time step is changed
in the main window. The data processing happens during the paint call in the
main window. Visualization of the main window has to happen and can’t be
turned off in the current implementation of Alenka. Data visualized by the
scalp should be already processed and filtered using the filters selected for the
main window. I considered two options:

• Load raw data from files, process them, and visualize them

• Store data at the current time step during the visualization in the main
window

13

2. Design

Both options are not optimal, the first option does the job that was already
done in the main window. The second option creates a new dependency on
the main window. As there is already a dependency on the position indicator
in the main window, I decided to use the latter option. The main window is
an integral part of the application and can’t be turned off so it will always
be present besides the scalp map. The cleanest solution would be to refactor
the main window in such a way that the visualization wouldn’t be tied to the
processing of the data. There would be a single processing unit from which
all visualizers would receive the data.

2.1.5 Visualization of EEG Data

In the visualization step, the prepared mesh is colored based on the currently
loaded EEG sample data. Scalp map mesh is created using Delaunay tri-
angulation and then split into smaller triangles. The color of every pixel in
each triangle is interpolated from the vertices of the triangle. By changing
the time step in the main window, the amplitude at each electrode position
is updated. This means that only the vertices located at the electrode posi-
tions have the current amplitude. Other vertices, from the smaller triangles,
have to be calculated. This is done with the Inverse distance weighted(IDW)
algorithm.

IDW is a simple spatial interpolation method. Given the N amplitudes
zj , j = 1, ..., N measured at electrode points rj = (x, y), j = 1, ..., N . Let
m be the amount of nearest points, r be the unknown point, and p being a
parameter that amplifies the influence of the closer points, then:

F (r) =
m∑
i=1

wiz(ri) =
∑m
i=1 z(ri)/|r− ri|p∑m
j=1 1/|r− rj |p

(2.4)

is the estimator of the amplitude value at the unknown point r[9]. Updated
data are then visualized in the paint step. After that small circles can be
visualized at the electrode points to indicate their position, and after that
their labels.

2.1.6 The User Interface

The scalp map GUI is rather minimalistic. Most of the window controls can
be found in the pop-up menu that gets triggered by the right-mouse click. The
menu can be seen in its wireframe 2.1. Most of the options are resolved by
a single click. Clicking on custom extrema triggers a new window where the
user can set up desired values. The only feature that is controlled outside the
pop-up is the brightness and contrast values. These can be altered by clicking
on the gradient and dragging the mouse. I chose this approach as the window
will be mostly viewed simultaneously with the main window. This means that

14

2.1. Topographic Scalp Map

Figure 2.1: Proposed design of the Alenka scalp map pop-up menu

if the user doesn’t have a second monitor, the scalp window will be small, and
adding permanent toolbars would only make it smaller.

The electrode loading is added as an option into the pop-up menu in the
track manager since it is changing the data in the track table. Also, the
electrode positions might be used elsewhere in the future. Clicking on the
load electrode position option brings up the standard file system browser tied
to the used platform, where the user can select the ELC file from its location.

2.1.7 Visualization Design

The scalp map window mock-up can be seen here 2.2. Most of the window is
filled with the topographic map.I chose a black background as the white and
light colors vastly outnumber black color in the color interpolation. Also a
large part of the gradient can be white if the contrast is increased. There is a
small gradient with electrode voltage values on the right side, so the observer
can understand which colors belong to what values.

2.1.8 Class Structure

Picture 2.3 shows the class structure that needed to be implemented or ex-
tended for the scalp map visualization.

Electrodes are loaded in the TrackManager using the ElcFileReader and
stored inside the track table. ScalpMap is the base window class. It communi-
cates with the global context through the OpenDataFile class.The ScalpMap
class servers as a controller for the calculations that happen in the ScalpModel
class and for the visualization that happens in the ScalpCanvas. ScalpMap
receives impulses from the SignalBrowserWindow to generate electrode posi-
tions or to update the amplitudes at its positions. Both are then calculated
in the ScalpModel. After that, they are sent to the ScalpCanvas class to be
processed and visualized.

15

2. Design

Figure 2.2: Proposed desing of the Alenka topographic scalp map

ScalpCanvas appropriates the data for visualization. It generates the scalp
mesh when positions are updated and interpolates the amplitudes. It contains
multiple graphics helper classes: Colormap that manages the color pallete used
for visualization, Gradient for color pallete manipulation and RectangleText
for rendering the gradient text and labels of electrode positions.

2.2 Time-frequency Analysis

The TFA is added as a new side window on the right side of the main window
that visualizes a single electrode’s EEG data in a form of a spectrogram. The
data is processed with the STFT and turned into a square mesh where each
vertex is assigned a specific color based on the STFT results. The whole

16

2.2. Time-frequency Analysis

Figure 2.3: UML of Alenka scalp map class structure

process of computing and visualizing the STFT could be summarized into:

• Data acquirement

• Data processing

• Mesh generation

• Visualization

2.2.1 Data Acquirement

The TFA visualizes signal samples of a single electrode. The amount of sam-
ples is specified by the user in seconds and is independent of the amount shown
in the main window. The data are loaded from the file as the STFT works
with raw sample data. The loaded data are padded with zeroes if the required
amount of samples is out of the range of samples stored in the file.

17

2. Design

2.2.2 Data Processing

Loaded samples are processed with the STFT as described in the analysis
section. Samples are split into the required amount of frames. This amount is
calculated from values specified by the user, the frame size, hop size, and the
time to be shown. First, a windowing function is applied to the frame. Then
if the frame size is not a power of two, the frame is padded with zeroes. The
FFT is applied to the frame and the result magnitudes are filtered. Only the
frequency bins desired to be shown are selected. Finally, the 1/f compensation
and log compensation is applied if required.

2.2.3 Mesh Generation

The STFT is visualized in form of a spectrogram. To visualize the spectro-
gram, a square grid mesh is generated. The mesh is regenerated every time the
STFT result array is resized. This happens when the user changes the STFT
parameters or sets the minimum and maximum frequencies to be shown.

2.2.4 Visualization

There are multiple elements that need to be visualized:

• Static graph elements - window frames, axis lines, and axis names

• Dynamic graph elements - axis numbers and gradient numbers

• Spectrogram mesh

• Gradient

Not all elements need to be redrawn all the time. The static graph ele-
ments should be repainted only when the window is resized. The Frequency
axis numbers and the time axis numbers need to be repainted when they are
updated by the user or a new file loaded. The gradient should be repainted
when the color spectrum is changed or morphed. The gradient numbers and
the spectrogram should be repainted every time the STFT data is updated.

The color of the spectrogram is determined by the STFT data. Each square
in the grid mesh has a single color based on the magnitude in the STFT data
array. The user can see what color corresponds to what magnitude in the
gradient.

2.2.5 User Interface

Most of the TFA’s GUI is concentrated in the top toolbar, where the user can
regulate the STFT and resolution of the resulting spectrogram. Then there
is the gradient, the user can change the brightness and the contrast of the
colors by clicking on the gradient and dragging the mouse. There is also a

18

2.2. Time-frequency Analysis

Figure 2.4: Wireframe of the TFA GUI

minimalistic popup menu where the user can change the colormap used in the
spectrogram. Wireframe of the GUI can be seen in this picture 2.4.

The main idea behind the GUI is that the user should always be able to see
the options that he has to regulate the STFT process. These options should
be also easily and quickly changeable. Users shouldn’t have to do multiple
clicks to change the fundamental attributes.

2.2.6 Class Structure

The TFA’s class structure is very similar to that of the topographic scalp map
visualization. The TfAnalyser is a controller class that hosts the TfModel and
the TfVisualizer. The TfAnalyser is a part of SignalFileBrowserWindow
and communicates with the global context through OpenDataFile. The re-
quired samples are loaded and processed in the TfModel. It does that with
the help of the FftProcesser that contains the calculations of the FFT. The
TfVisualizer draws the processed data. It contains the graphics classes -
Colormap and GObject with its derivates to divide the visualization process.
UML diagram of the class structure can be seen in this picture 2.5.

19

2. Design

Figure 2.5: UML of Alenka TFA class structure

2.3 Graphics Objects

Both, the scalp map and the TFA use various common objects. Apart from the
main colored meshes, the visualization could be deconstructed into multiple
objects. I use a series of helper classes for the visualization of these elements
as can be seen in this UML diagram 2.6. The GObject contains the coordi-
nates for the area where the object is supposed to appear. The Rectangle
renders a simple rectangle, used for frames. Gradient inherits the rectangle
render but also takes part in the control of the color palette. RectangleText
renders text inside of a rectangle area with the desired alignment and ori-
entation. RectangleChain renders multiple rectangle objects in a row or a
column. NumberRange renders a series of numbers from the specified minimum
to maximum.

20

2.3. Graphics Objects

Figure 2.6: UML of Alenka graphics objects class structure

21

Chapter 3
Realization

3.1 Technologies

Alenka is a project developed by several people over the years. It is built
on the Qt framework[20], which provides solutions for GUI development and
OpenGL[12] integration. Martin Bárta reworked the project to utilize hard-
ware acceleration through OpenGL and OpenCL[4]. I continue in this tra-
dition and work with technologies already introduced into the project. I use
OpenGL for the visualization of the main components in the added windows.
I also use Qt’s low-level painting solution QPainter[21] for minor parts such as
text and lines used in graphs. I use clFFT library[22] that contains OpenCL
functions for fast computing of a fast Fourier transform(FFT).

3.2 Topographic Scalp Map

I implemented the scalp map as explained in the design chapter. The ScalpMap
is part of the SignalFileBrowserWindow. The QDockWidget is used to lock
it in place or “dock” it in the side panel, similarly to other side windows.
ScalpMap is implemented as an extension of the QWidget. This means that it
can receive Qt signals emitted from the other widgets in the application. These
signals trigger class-specific actions such as updating the electrode positions or
amplitudes. ScalpMap can access the global context of the application through
the OpenDataFile.

The visualization updates every time the position in the main window is
changed. Whenever ScalpMap receives the time position update Qt signal,
the amplitudes in ScalpCanvas are updated which is an operation with time
complexity of O(n). After that, the data are visualized with an OpenGL
paint call as explained further in the text. If ScalpMap receives the electrode
positions update, the mesh needs to be regenerated which is an operation with
a time complexity of O(n2log(n)).

The final result can be seen here 3.1.

23

3. Realization

Figure 3.1: The final version of the topographic scalp map with electrode
positions and jet color pallete

3.2.1 Electrode Positions

Loading of the electrode positions was implemented in the TrackManager and
AlenkaFile. There are two ways to add new electrode positions:

• Editing the track table

• Loading from ELC file

The former was already partly present as there were editable coordinate
columns in the track table. The latter was implemented as a loadCoords()
method that is part of TrackManager that triggers a QDialog with file system
explorer where the user can select the ELC file. The file is then read with the
ElcFileReader::read() method. Read data are then inserted into the track
table based on matching labes. There was a problem that each insert emits a
Qt signal that triggers the whole electrode projecting and visualization pro-
cess. I solved this by the QObject::blockSignal() method that suppresses
the signal emitting and blocked all but the last of the inserts.

24

3.2. Topographic Scalp Map

Figure 3.2: Comparison of the implemented projections. Left is the complete
stereographic projection and right is fitting the points into a sphere.

3.2.2 Electrode Projection

The Electrode projection is implemented in the ScalpModel. The sphere fit-
ting and the stereographic projection are used as presented in the design sec-
tion. I reimplemented a sphere fitting least-squares method from pseudocode
written by David Eberly[23]. During the implementation and testing, a ver-
sion without the final step of stereographic projection was proposed. ISARG
liked this version so I included both projections in the final window. The pro-
jection selection has been added to the pop-up window. This image compares
the two types of projections 3.2. The implementation can be seen here 3.1.

The time complexity of the whole process is O(n), where n is the number
of electrodes. First, a sphere is fitted inside of the 3D coordinates with a
complexity of

(O(3n) = O(n). (3.1)

After that, the electrode positions are projected onto the sphere with a com-
plexity of O(n). Then, the positions are transformed from 3D to 2D space
which is O(n) as well. Finally, the 2D coordinates are normalized with a
complexity:

O(2n) = O(n) (3.2)

Together, the complexity of electrode projection is

O(4n) = O(n). (3.3)

3.2.3 Mesh Generation

Projected coordinates are sent to ScalpCanvas, where a triangle mesh is gener-
ated using the Delaunay triangulation computed by the Delaunator-cpp[24].

25

3. Realization

Listing 3.1: Implementation of the electrode projection inside of ScalpModel
if (!fitSpehere(positions, sphereCenter, radius)) {

return resultPositions;
}

QVector3D fittedSphere = sphereCenter / -2.0f;

float r = std::sqrt((sphereCenter.x() * sphereCenter.x() +
sphereCenter.y() * sphereCenter.y() +

sphereCenter.z() * sphereCenter.z()) / 4.0f - radius * 2);

std::vector<QVector3D> positionsProjectedOnSphere;
for (size_t i = 0; i < positions.size(); i++) {

positionsProjectedOnSphere.push_back(projectPoint(positions[i],
fittedSphere, r));

}

for (size_t i = 0; i < positions.size(); i++) {
QVector2D newVec = { 0, 0 };

if (useStereographicProjection) {
newVec.setX(positionsProjectedOnSphere[i].x() / (r -

positionsProjectedOnSphere[i].z()));
newVec.setY(positionsProjectedOnSphere[i].y() / (r -

positionsProjectedOnSphere[i].z()));
}
else {

newVec.setX(positionsProjectedOnSphere[i].x());
newVec.setY(positionsProjectedOnSphere[i].y());

}

resultPositions.push_back(newVec);
}

scaleProjected(resultPositions);

26

3.2. Topographic Scalp Map

The library is a c++ reimplementation of a robust JavaScript library[25].
The Delaunator is inspired by a sweep-hull algorithm which has a O(nlog(n))
time complexity[26]. The total time complexity of triangle grid generation is

O(2n + nlog(n)) = O(nlog(n)). (3.4)

Let n be the number of vertices and b be the number of vertices on the con-
vex hull. The maximum of triangles generated by the Delaunay triangulation
is

t = 2n− 2− b (3.5)

The next step is splitting the triangles in the mesh. Each triangle is divided
into 4 smaller triangles with the same area. This has a time complexity of
O(t). I divide the mesh twice as dividing more causes a massive strain on
visualization computation time and the results are not much better.

Standard 10-20 system of electrode placement with 128 electrodes has 14
electrodes in the convex hull, this means that the resulting maximum amount
of triangles would be

(2 ∗ 128− 2− 14) ∗ 4 ∗ 4 = 3840. (3.6)

The final step is a computation of the spatial coefficients used in spatial
interpolation. Although this step is tied to the color interpolation and up-
date of the amplitudes, I do it here as it only has to be done once when the
coordinate positions change. The code can be seen here 3.2. The variable pa-
rameters are the nearest neighbor count and the p parameter, the amount of
influence that distant positions should have on the color. 3 nearest neighbors
and p of 1 produces the best results. Both adding more neighbours and using
bigger p parameter creates artifacts in the resulting visualization. The time
complexity of the computation is

O(t(n + nlog(n)) + 3) = O(4 ∗ 4 ∗ (2n− 2− b) ∗ (n + nlog(n))) (3.7)

which can be simplified into

O(n2log(n)). (3.8)

Together, the time complexity of the mesh generation is

O(nlog(n) + O(n) + O(n2log(n))) = O(n2log(n)). (3.9)

3.2.4 Amplitude Update

Whenever the position indicator in the main window is changed, the Canvas
stores the amplitudes in the current time step into the InfoTable which sends

27

3. Realization

Listing 3.2: Implementation of the spatial coefficients computation
for (int i = 0; i < triangulatedPoints.size(); i +=

OPENGL_VERTEX_SIZE) {
std::vector<std::pair<float, int>> distances;
std::vector<PointSpatialCoefficient>

singlePointSpatialCoefficients;

for (int j = 0; j < originalPositions.size(); j++) {
float distance = getDistance(triangulatedPoints[i],

triangulatedPoints[i + 1], originalPositions[j].x,
originalPositions[j].y);

distance = (distance == 0) ? 0.0001f : distance;
distances.push_back(std::make_pair(1.0f / (distance *

distance), j));
}

std::sort(distances.begin(), distances.end());

for (int j = distances.size() - 1; j > distances.size() -
SPATIAL_NEAREST_NEIGHBOUR_COUNT - 1; j--) {

float pDist = distances[j].first;
for (int s = 1; s < SPATIAL_P; s++) {

pDist = pDist * distances[j].first;
}

singlePointSpatialCoefficients.push_back(PointSpatialCoefficient(pDist,
distances[j].second));

}

pointSpatialCoefficients.push_back(singlePointSpatialCoefficients);
}

a Qt signal received by the ScalpMap. This triggers an update of the ampli-
tudes in the ScalpCanvas. This is a simple O(n) operation, as everything
needed is already precalculated. First, the amplitudes on the original elec-
trode positions get updated. Then, the amplitudes at every mesh vertex get
recalculated. ScalpCanvas has information about every vertex, amplitudes
at its e nearest electrode positions A, and e spatial coefficients S that they
should be multiplied with. The performed operation on every vertex is

a =
∑e
i=1 A[i]S[i]∑e
i=1 S[i] (3.10)

where a is the new vertex amplitude. The next step is the OpenGL paint
update which is explained further in the text.

28

3.3. Time-Frequency Analysis

3.3 Time-Frequency Analysis

The TFA is implemented according to the class structure described in the de-
sign chapter. TfAnalyser is implemented as an extension of the QWidget[27].
It is connected to the global Qt context and receives Qt signals that trigger
the TFA process. TfVisualizer is an extension of the QOpenGLWidget.

Data processed in TfModel and sent to the TfVisualizer to be prepared
before paint call. The processing in the TfModel happens every time the
position is changed in the main window and has a complexity of

(O(f ∗ n ∗ log(n)) (3.11)

for f frames with n samples per frame. The result is an array with

f ∗ (n/2 + 1) (3.12)

values that is then sent to the TfVisualizer. TfVisualizer either updates
its already existing mesh which is an O(f ∗ n) operation or generates a new
mesh if the resolution is different. The mesh generation has the same time
complexity of O(f ∗ n). The mesh is then visualized in paint call explained
further in the text.

3.3.1 Sample Processing

The sample processing happens in the TfModel. The implementation of the
STFT can be seen here 3.3. First, data are prepared for the FFT. A window
function with a time complexity of O(n) is applied to the frame samples.
Then, if the frame size is not a power of two, the samples are padded with
zeroes. This has a time complexity:

O(n− 1) = O(n). (3.13)

Together, the sample preparation has a complexity:

O(f ∗ (n + n)) = O(f ∗ n), (3.14)

where f is the frame count and n is the frame size. The frame count is
expressed as:

frameCount = totalSamples− frameSize

hopSize + 1 , (3.15)

totalSamples = secondsToDisplay ∗ samplingFrequency. (3.16)

The next step is the FFT, which is calculated using the FftProcessor.
The FFT has a complexity of O(n∗ log(n)) since the zero-padded frame size is

29

3. Realization

Figure 3.3: The final version of the TFA with inferno color pallete.

the power of two. The FFT is computed on f frames so the result complexity
is

O(f ∗ n ∗ log(n)). (3.17)

FftProcessor takes all of the frames in a bulk and returns

frameCount ∗ (n/2 + 1) (3.18)

complex numbers. n/2 + 1 is the count of the frequency bins.
The results are then filtered based on selected filers. This has a complexity:

O(f ∗ (n/2 + 1)) = O(f ∗ n). (3.19)

The final complexity of the sample processing is

O(f ∗ n + f ∗ n ∗ log(n) + f ∗ n) = O(f ∗ n ∗ log(n)). (3.20)

30

3.3. Time-Frequency Analysis

Listing 3.3: Implementation of the STFT inside of TfModel
std::vector<float> fftInput;
int zeroPaddedFrameSize = 0;
for (int f = 0; f < frameCount; f++) {

auto begin = signal.begin() + f * hopSize;
std::vector<float> frameSamples(begin, begin + frameSize);

applyWindowFunction(frameSamples);

//pad with zeroes
zeroPaddedFrameSize = frameSize;
while ((zeroPaddedFrameSize & (zeroPaddedFrameSize - 1)) != 0) {

frameSamples.push_back(0.0f);
zeroPaddedFrameSize++;

}

fftInput.insert(fftInput.end(),
std::make_move_iterator(frameSamples.begin()),

std::make_move_iterator(frameSamples.end()));
}

std::vector<std::complex<float>> spectrum =
fftProcessor->process(fftInput, globalContext.get(),

frameCount, zeroPaddedFrameSize);

3.3.2 Fast Fourier Transform Processor

The FftProcessor is implemented as a part of the AlenkaFile library. It’s
used as a part of the STFT implementation to calculate the hardware acceler-
ated FTT. The FftProcessor utilizes the clFFT[22] library with OpenCL
functions to compute the FFT. FftProcessor is connected to the global
OpenCL context. To efficiently use the clFFT on multiple FFTs, it is required
to send it the data in baches[28]. This is why the FftProcessor::process
function accepts all of the frames required to be processed simultaneously.

First, the clFFT needs to be set up. An OpenCL queue is created in the
global context. Next, a default plan for one dimensional FFT is created with
layout set to CLFFT REAL and CLFFT HERMITIAN INTERLEAVED. This means
that the input buffer will be real numbers with no corresponding imaginary
components and the output buffer will contain real and imaginary components
without complex conjugates stored in the same array. The result location
is set to be the same buffer as the input, the input values get overwritten.
The plan needs to be updated every time the input batch size or the FFT
size changes. Meaning that the frame count or the frame size input into the
FftProcessor::process changes.

31

3. Realization

With the destruction of the FftProcessor object all plans, buffers, and
queues have to be released.

3.3.3 Mesh Generation

The mesh generation process happens in the TfVisualizer. The processed
data are received in a form of a float array with the frame count f , the x-axis,
and the frequency bins count b, the y axis. The goal is to create a square grid
with f ∗ b squares. First, a x-axis array with f + 1 and y-axis array with b + 1
equally distributed vectors is created. Both are then transformed and scaled
into the desired mesh position. This has a time complexity:

(O(2(f + 1) + 2(b + 1))) = O(f + b) (3.21)

The next step is generating the square grid from the x and y-axis arrays which
has O(f ∗ b) time complexity.

3.4 User Interface

The GUI is implemented as stated in the design with a small addition of
projection interpolation choice put into the scalp map pop-up menu. In both
windows, the GUI in both windows is implemented with Qt framework[20] and
various QObjects are utilized for the individual GUI elements. The side win-
dows are extensions of the QWidget class that receives specific QMouseEvents
whenever a user clicks inside of the side window. A QMouseEvent contains
information about the clicked button and the clicked position. Depending on
the implementation of the side window, the QMouseEvent triggers a specific
action such as opening a pop-up menu.

The pop-up menu is created with the QMenu object which is connected to
the global Qt context. Each menu item is implemented using the QAction
object. Whenever the menu item gets clicked, the QAction gets triggered and
a Qt signal is emitted to the global context.

The toolbar in TfAnalyser is implemented using various Qt layouts that
contain text boxes, spin boxes, checkboxes, and their respective labels. The
main menu layout is a horizontal QHBoxLayout that contains QGridLayouts
and vertical QVBoxLayout with the toolbar items. Each menu item is a com-
bination of QLabel and an interactive control element. The textboxes are
implemented using QLineEdit, other elements use QCheckBox, QSpinBox, and
QComboBox.

Each object has a specific way to ensure that the user can’t enter a config-
uration that would break the application. QLineEdit uses QIntValidator to
accept only integers in a certain range. Other objects have an inbuild solution
to restrict the range of numbers.

32

3.5. Visualization

3.5 Visualization

In the final step, the precalculated data is visualized on the screen. Both,
ScalpCanvas and TfVisualizer are an extension of the QOpenGLWidget,
which provides functionality for displaying OpenGL graphics integrated into
a Qt application. QOpenGLWidget has three main graphics related methods,
initalizeGL(), paintGL(), resizeGL(). The initializeGL() is called once
before the resizeGL() and paintGL() is called. It sets up the OpenGL
resources, such as programs and buffers, and state. The resizeGL() gets
called when the window is resized. The paintGL() is the main paint method
that gets call whenever the ScalpCanvas needs to be updated. I also use
the QPainter to draw lines, text, and other simple 2D objects. Both, the
ScalpCanvas and the TfVisualizer combine native OpenGL painting and
the QPainter. Alenka offers an OpenGLInterface that’s used for calling
the OpenGL methods and error control. One of the things set up in the
initializeGL() is the Colormap class which provides the color palette for
the painting process.

3.5.1 Colormap

Colors are used as the main indicator of information in both implemented
windows. ISARG uses color palettes with fewer colors for viewing topographic
maps, mostly the red-white-blue colormap. In opposite to that, they use
color palettes with more colors for spectrogram. I implemented the Colormap
class as the main administrator of the color palettes used in Alenka. It hosts
multiple color palettes that can be selected in the pop-up menu from the side
windows.

A color palette is stored in the RGB format as an array of floats. Since
there wasn’t a requirement for high color variability, I hardcoded the color
palettes into the Colormap class. Each color palette is stored as a set of a
small number of major colors that get interpolated into the full-color palette.
This solution could be later expanded by storing the palettes in JSON or with
a completely customizable GUI solution.

The stored color palette is interpolated so that the final color array has
a severalfold greater number of colors. This need has arisen during the im-
plementation of the OpenGL visualization of the scalp map. Linear OpenGL
interpolation leaves triangle artifacts that were partially overcome by using
the nearest neighbor interpolation. This means that only the colors in the
color array are used. A snippet of the colormap interpolation can be seen
here 3.4.

The Colormap class also allows the color palette to be manipulated. The
brightness and contrast can be changed. The brightness changes by moving
the center of the color palette, the major colors are moved and a new color
array is regenerated. Contrast is a value that multiplies the colors in the array.

33

3. Realization

Listing 3.4: Implementation of the color palette interpolation
int interpolationRegions = colorCnt - 1;
for (int i = 0; i < interpolationRegions; i++) {

int firstColor = i * 3;
int secondColor = firstColor + 3;

float parts = colorPosition[i + 1] - colorPosition[i];
for (int j = 0; j <= parts; j++) {

float redC = (parts - j) / parts * colorTemplate[firstColor +
red] + j / parts * colorTemplate[secondColor + red];

float greenC = (parts - j) / parts * colorTemplate[firstColor +
green] + j / parts * colorTemplate[secondColor + green];

float blueC = (parts - j) / parts * colorTemplate[firstColor +
blue] + j / parts * colorTemplate[secondColor + blue];

int pos = colorPosition[i] * partitionSize + j * partitionSize;
colormap[pos + red] = redC;
colormap[pos + green] = greenC;
colormap[pos + blue] = blueC;

}
}

3.5.2 OpenGL Resources

To visualize the required data, OpenGL first needs to initialize the required
resources. These resources include a vertex shader, a fragment shader, and
data buffers. I also use a 1D texture for the color palette.

The shaders and texture are set up in the initializeGL method. I use
Alenka’s OpenGLProgram as a wrapper for setting up a shader program.

The texture is initialized by calling the setupColormapTexture() method.
First, a texture buffer is generated, then the color palette array is loaden inside
of the buffer with the glTexImage1D() method and parameters are set with
glTexParameteri. The mag and min filters are set to GL NEAREST. Finally, a
sampler location is specified with the glUniform1i() method, so the shader
program can use the texture.

There are two types of data buffers. One contains the processed EEG data
in a form of triangles where each vertex is defined with its 2D coordinates and
amplitude value. The second buffer contains indices, positions of the vertices
inside of the vertex buffer. This is used because the triangle mesh contains
many triangles that share vertices. The vertex buffer would contain multiple
duplicates without the index buffer present. Since the amplitudes change
constantly, data from both buffers are stored inside vectors and then loaded
into OpenGL buffers during the paintGL call.

Index arrays are created during the mesh generation process. Each square

34

3.5. Visualization

Listing 3.5: Triangle vertex shader used to draw spectrogram and scalp map
precision mediump float;

in vec2 currentPosition;
in float amplitude;

out float oAmplitude;

void main()
{

gl_Position.xy = currentPosition;
oAmplitude = amplitude;

}

inside of the spectrogram mesh is made up of two triangles and thus contains
two duplicate vertices on the diagonal. The four non-duplicate vertices are
stored as new vertices inside of the vertex array and four new indices and two
duplicate indices are pushed inside of the index array. The scalp map is a
little bit more complicated since many triangles share their edges. After the
Delaunay triangulation, the result triangles are filtered. The same needs to
be done for the newly created vertices in the middle of the edges during the
triangle division process.

3.5.3 OpenGL Visualization

The OpenGL visualization happens in the paintGL method. First, the channel
program containing both the vertex and the fragment shader is selected to be
used. Then the vertex and index buffers are generated and bind. After that,
the vertex array gets loaded into the vertex buffer. A vertex array is set up
to tell the OpenGL that the vertex buffer is split into sets of threes, where
the first two are the 2D coordinates and the last one is the amplitude. Then
the index array gets loaded into the array buffer and a draw call is made
with the GL TRIANGLES parameter. First, the vertex shader is used to define
the primitives and transform the input vertex into an output vertex. The
interpolated output vertex is then received by the fragment shader which
gets called on each fragment inside of the area defined by the vertex shader
primitive. Both are rather simple, the vertex shader 3.5 splits the input vertex
into coordinates and amplitude, sets up the position of primitive, and passes
on the amplitude to the fragments inside of the primitive. The fragment
shader 3.6 takes an interpolated amplitude value and finds a texture color
that is the nearest to it. Lastly, the fragment shader sets the fragment color
as the attributed texture color. After this, some of the resources are freed,
namely, the buffers and vertex attribute array is disabled.

35

3. Realization

Listing 3.6: Triangle fragment shader used to draw spectrogram and scalp
map
uniform sampler1D colormap;

in float oAmplitude;

void main() {
vec4 color = vec4(texture(colormap, oAmplitude).rgb, 1.0f);
outColor = color;

}

Listing 3.7: Vertex shader used to draw electrode positions in the scalp map.
in vec2 pointPos;

void main()
{

vec2 st = gl_PointCoord.xy;

vec3 color = vec3(0.6, 0.6, 0.6);

float dist = distance(pointPos, st - 0.5);

//dont touch pixels beyond radius of the circle
if (dist > 0.5)

discard;

outColor = vec4(color, 1.0);
}

The drawing of the electrode position indicators in ScalpCanvas is quite
similar. The difference is that instead of the whole mesh, only the original
electrode positions are loaded into the vertex buffer, there is no index buffer,
and glDrawArrays is called with the GL POINTS. The used shaders are also
different. The vertex shader is very simple. It is the same shader as used in
the main window Canvas paint. All it does is setting the gl Position and
passing the coordinates onto the fragment shader. The fragment shader can
be seen here 3.7. The fragment shader uses the received coordinates to paint
a point which is then cropped based on the distance from its center to create
a small circle.

36

3.6. Maintenance

3.5.4 Graphics Objects

Some of the elements in the windows are visualized with the use of QPainter.
I created several helper classes that visualize the individual elements. One of
the problems I ran into was that Qt uses a different coordinate system than
OpenGL. OpenGL works in the -1 to 1 range on both x and y axes. A lot of
Qt graphics objects take a point on the 2D axis and then its height and width.
Qt objects also generally work with the real widget coordinates. I added a
conversion from OpenGL coordinates to Qt into the implemented graphics
objects so that the developer can think in a single coordinate system.

Objects drawn with QPainter include lines, window frames, and text. One
of the main reasons I decided to use the QPainteris that drawing text is very
difficult in OpenGL and would require another external library. QPainter is
a fast solution that also uses OpenGL calls to draw objects and was already
present in Alenka. The text is drawn using the QPainter method drawText().
Some of the text is rotated with the traslate() and rotate() functions. The
lines are drawn with the drawLine() function and window frames with the
drawRect() function.

3.6 Maintenance

3.6.1 Combining the Previous versions

One of the first things I did was combining two previous versions of Alenka
into a single one[29]. The first version was from Martin Bárta. He developed
the application further after finishing his thesis[5]. I had to fix an error that
caused Alenka to lag every time step. The error was in the newly added
VideoPlayer.

The second version was done by Lucas Morona[30]. I had to finish the
AQuestionDialog as it was causing the application to crash.

3.6.2 Deployment

Deployment of Alenka was always a tedious task. To successfully run Alenka,
the user has to have OpenGL and OpenCL drivers installed. Then either
required dynamic Qt libraries or have the Qt installed. Alenka is distributed
inside of an archive with the compiled program and required dynamic libraries.
I wasn’t able to run Alenka compiled on Ubuntu 18 on Ubuntu 20. I solved
this issue with linuxdeployqt[31]. The deployer creates a single image with all
of the required dependencies collected. Such an image created on a Ubuntu
distribution can be then launched on other upstream distributions.

37

3. Realization

3.6.3 Documentation

I expanded the Doxygen[32] documentation already included in Alenka. I also
created a wiki page on the projects github[29].

38

Testing

This chapter contains several testing methods that were applied at the end of
the development process. I tested the application on several platforms. Then
performed functional testing according to a premade scenario. In the end, I
show three benchmark tests performed on dedicated graphics cars and using
AMD emulation of OpenGL running on CPU on a virtual machine. The used
graphics cards are Nvidia GTX 1070 [33] and an older Nvidia GTX 860m. The
virtual machine is running on a pc with AMD 5 5600x[34] processor. The full
specification of the computers can be seen further in the text.

Cross-platform Testing

Two of the non-functional requirements are:

• Support of Microsoft Windows 7, 8, 10 and Linux Ubuntu 14 and 16

• Ability to run the application on a virtual machine

Table 3.1 shows various testing environments that Alenka was tested on.

Table 3.1: Testing Environments

Nvidia 1070 Nvidia 860M Virtual machine
Ubuntu 20.04 x
Ubuntu 18.04 x
Ubuntu 16.04 x
Ubuntu 14.04 x
Windows 10 x64 x
Windows 8 x64 x
Windows 7 x64 x

39

Testing

GUI and Functionality Testing

The following testing scenarios were performed to test the individual features
and the GUI.

1. Scalp map window functionality test

a) Open a new file
b) Load electrodes into the track table
c) Show scalp map (window → scalp map)
d) Test the pop-up menu

i. Show channels
ii. Show labels
iii. Change the colormap to jet (right mouse click inside of the

window → color palette → jet)
iv. Use different projection
v. Set custom extrema to a different value

e) Move the gradient from top to bottom and from bottom to top as
much as possible (mouse left-click on the gradient and drag)

f) Move the gradient from left to right and from bottom to top as
much as possible (mouse left-click on the gradient and drag)

g) Undock the window (move the window out of the original position)
h) Dock the window (move the window to the original position)
i) Dock the window to lower positon such that there will be two side

windows at the same time

2. Scalp map window interaction with main window test

a) Open a new file
b) Show scalp map (window → scalp map)
c) Load electrodes into the track table
d) Test interactions with the main window

i. Move the position scroll bar
ii. Move the blue position indicator (move the mouse to the de-

sired position and press the T key)
iii. Change the high pass filter value
iv. Change the low pass filter value
v. Change the notch filter value

3. Scalp map window interaction with the track table test

40

GUI and Functionality Testing

a) Open a new file
b) Load electrode positions into the track table
c) Set the side windows in such a way that there are two side windows,

first being the track manager and the second being the scalp map
d) Show channels and labels
e) Change the values in the track table

i. Change the first two labels coordinates to zero
ii. Load electrode positions into the track table

4. Time-frequency analysis window functionality test

a) Open a new file
b) Show time-frequency analysis (window → time-frequency analysis)
c) Change the colormap in the pop-up menu to inferno (right mouse

click inside of the window → color palette → inferno)
d) Test the values in the top toolbar of the TFA window

i. Change the channel to 5
ii. Change the time to 6
iii. Change the frame to 256 and the hop to 64
iv. Change the hop to 33
v. Set maximum frequency to half of the current maximum.
vi. Set minimum frequency to half of the current maximum.

vii. Change the filter window to Blackman.
viii. Check and uncheck the 1/f compensation.
ix. Check and uncheck the log compensation.
x. Uncheck the freeze option.
xi. Move the position indicator in the main window (move the

mouse to the desired position and press the T key)
xii. Move the position scroll bar

e) Test the bounds of the toolbar entry fields
i. Try to set the time to −1

ii. Try to set the channel to −1 and to a bigger value than the
maximum in the file

iii. Try to set the frame to −1
iv. Try to set the minimum frequency to below 0
v. Try to set the maximum frequency to a bigger number than

the maximum possible
vi. Set minimum frequency to 30 and try to set maximum fre-

quency to 20

41

Testing

vii. Set set the maximum frequency to 50 and try to set the mini-
mum frequency to 60

f) Move the gradient from top to bottom and from bottom to top as
much as possible (mouse left-click on the gradient and drag)

g) Move the gradient from left to right and from bottom to top as
much as possible (mouse left-click on the gradient and drag)

h) Undock the window (move the window out of the original position)
i) Move the position scroll bar
j) Dock the window (move the window to the original position)
k) Dock the window to lower positon such that there will be two side

windows at the same time

Discovered Problems

Some problems were discovered during the functional testing:

1. Last image produced in scalp map gets left in the window and doesn’t
get deleted when there are no longer valid data to draw.

2. Changing the contrast and brightness of the colormap can cause a single
black row to appear in the upper part for some color palettes. This then
propagates to the triangle with a vertex that has maximum amplitude.

3. Setting custom extrema to low range around 0 causes the scalp map
to not draw properly. Some of the triangles that should represent the
maximum color are instead painted as minimum color.

4. There is no limit for channels in the TFA toolbar. User can set an invalid
channel and kill the application.

5. Sometimes, wrong number values entered into text fields don’t get fixed
back to the old good value and the user has to reenter a good value.

I will try to fix these issues as soon as possible in a future patch.

Benchmarks

I performed several performance benchmarks of the Alenka application with
the newly added features. One of the non-functional requirements is on the
performance:

• Capability to visualize up to 256 channels with sampling frequency 2048
Hz.

42

Benchmarks

Table 3.2: The TFA configuration used in all tests

Time Frame Hop Min f Max f Window 1/f log
10 s 128 16 0 max hamming true false

Table 3.3: The scalp map configuration used in all tests.

Labels Channels Projection Extrema
off off stereoprahic local

Table 3.4: Configuration of the high-end pc.

Operating system Windows 10 64-bit
Processor AMD Ryzen 5 5600X; 6-Core; 3.7 GHz
RAM 16 GB DDR4; 3600 MHz
GPU NVIDIA GeForce GTX 1070; 8 GB GDDR5
Secondary Memory SSD 540MB/s

This is an upper limit requirement, standard EEG data files used by IS-
ARG have 500 to 1000 Hz sampling frequency and 128 channels or less. I
performed several benchmarks on different platforms. I used a standard file
standard 512Hz 128ch.mat with real EEG data that has 512 Hz sampling rate
and 128 channels. Another file big 2kHz 256ch.mat was generated for the pur-
pose of this test and has 2048 Hz sampling rate and 256 channels.

Alenka has a --printTiming toggle that enables the benchmarking and
prints the time interval between the start and the end of the main window
data processing and single paint call. I expanded the benchmarking to include
the methods that get called when the position in the main window updates.
These are the amplitude update in the scalp map, the data update in the
TFA, the loading of the data, and the STFT. Both paint calls, the one in
ScalpCanvas and the one in TfVisualizer are included as well.

I set the main window to show 10 seconds of the signal and turned off all
filters as Martin Bárta did in his benchmark[3]. For the TFA, I use the con-
figuration that can be seen in this table 3.2. Ramos et al. experimented with
the STFT parametrization for epileptic seizure detection in EEG signals[35].
They use window sizes of 64 and 128 and different hop sizes. A similar config-
uration was also used during the meetings with ISARG. Configuration for the
scalp canvas can be seen here 3.3. The electrode positions are already stored
in the track table for the test.

I used three different environments to test the application. A high-end
Windows 10 desktop pc 3.4. A six years old notebook with Ubuntu that
represents the mid-end to low-end pc 3.5. I also test on a virtual machine
with Ubuntu 18.04 running on the high-end Windows pc.

I repurposed the testing scenario done by Martin Bárta in his benchmark

43

Testing

Table 3.5: Configuration of the mid-end pc.

Operating system Ubuntu 20.04 64-bit
Processor Intel Core i7-4710HQ; 4-Core; 2.5 GHz
RAM 8 GB DDR3; 1600 MHz
GPU NVIDIA GeForce GTX 860M; 4 GB GDDR5
Secondary Memory SSD 540MB/s

on the last version of Alenka[3] and use it in all tests.
Testing scenario:

1. Launch already preconfigured Alenka and open a new file.

2. Perform 10 movements to the right (press PageDown)

3. Perform 10 movements to the left (press PageUp)

4. Turn on the Notch filter

5. Perform 10 movements to the right (press PageDown)

6. Turn off the application

Window Benchmark

In the first benchmark, I test the whole application on the Windows 10 desktop
pc. I ran the testing scenario four times, first with only the main window
active, then adding the scalp map, only the main window, and the TFA, and
finally all windows together.

The results can be seen in this graph 3.4. The graph shows the compu-
tation time in seconds of the individual steps in the testing scenario. The
first tick for TFA measurements includes the TFA window setup, STFT, and
first paint call. After that, there is a second tallest tick that represents the
resources being initialized in the main window. Then the rest can be split into
the following parts:

1. Moving to the right, data has to be read and allocated into the GPU
memory in the main window.

2. Moving back, data is allocated and only has to be drawn.

3. Notch filter is turned on, this doesn’t affect the TFA so there is no paint
update.

4. Again, moving to the right, data has to be read again and processed
with an activated filter.

44

Benchmarks

Figure 3.4: Graph of the window benchmark. The x-axis represents the indi-
vidual steps in the test scenario.

Drawing the scalp map is very fast which can be seen on the graph, as
the test with activated scalp map mostly copies the test with only the main
window running. The TFA has its own data, it is separated from the main
window calculations and increases the computation time linearly.

Platform Benchmark

The second benchmark focuses on the performance of the application on dif-
ferent platforms. I performed the test with the main window and the scalp
map activated. I used the standard file and the test scenario from the previous
benchmark. I tested the application in all three environments, the Windows
pc, the Ubuntu notebook, and the virtual machine running on the Windows
pc. Results of the platform benchmark can be seen here 3.5.

Both the notebook and the desktop have very similar results as they have
a dedicated GPU. The virtual machine emulates the OpenGL on the CPU and
is substantially slower. It’s 4 times slower during the memory allocation times
and 25 times slower when tracking back and only visualizing the precached
data.

The delay between frames never goes beyond 100 ms on dedicated GPUs,
which is a good result for a graphic application and feels rather smooth. The
delay on a virtual machine isn’t that much bigger and feels alright as well. I
also tested the TFA on all platforms and the results confirmed the delay ratios
from the window benchmark.

45

Testing

Figure 3.5: Graph of the window benchmark. The x-axis represents the indi-
vidual steps in the test scenario.

File Benchmark

The last benchmark concerns the upper limit file requirement. I compared
the performance of the standard 512 Hz and 128 channel file to the upper
limit test file with 2kHz and 256 channels. I performed the test with the main
window and the scalp map activated. The result can be seen in this graph 3.6

The difference between performance with the two files is minimal in the
backtracking steps, where the data is only visualized. However, the difference
when the data has to be loaded into the GPU memory is substantial. The
amount of data that needs to be processed in the upper limit file is 8 times
bigger, this means that the main window has to process 10 ∗ 256 ∗ 2000 ∗ 4
≈ 20MB to visualize a single frame. However, the upper limit file takes 215
times longer to process in the main window. I also managed to load, process,
and visualize the upper limit file in a virtual machine.

Although the delay between frames is substantial, I still conclude that the
data upper limit was fulfilled as the application can run, process, and visualize
the files successfully.

46

Benchmarks

Figure 3.6: Graph of the file benchmark. The x-axis represents the individual
steps in the test scenario.

47

Conclusion

I researched, designed, and implemented an extension of a multi-platform
application that is capable to visualize EEG curves. The extension includes
a topographical scalp map and time-frequency analysis(TFA) performed with
the STFT and visualized with a spectrogram. I documented and tested both of
the additions. The final application is capable to visualize up to 256 channels
with a sampling frequency of 2048Hz. The application supports Microsoft
Windows 7, 8, and Linux Ubuntu 14, 16, 18, and 20. It is also possible to run
the application on a virtual machine.

The application is able to load three-dimensional electrode positions from
a file, and transform them into two-dimensional coordinates using the stereo-
graphic projection. To visualize the electrical activity measured by the elec-
trodes, the application first creates a triangle mesh with a help of the De-
launay triangulation. The mesh is then split into smaller triangles and the
amplitudes at the newly created positions are interpolated using spatial in-
terpolation. The final mesh is then visualized with OpenGL and its native
interpolation to color the areas inside of the triangles.

The STFT is performed with clFFT library and its OpenCL functions that
use hardware acceleration for parallel computation. The processed data from
the STFT is transformed into a square grid and visualized as a spectrogram
with OpenGL.

The implemented extension could be expanded in multiple ways. Dif-
ferent color interpolations could be used in the topographic map, especially
interpolations that are highly customizable and take into account the specific
criteria of different patients, such as different head shapes. The electrode po-
sitions could be also used in a three-dimensional visualization of the head with
three-dimensional color interpolation. The TFA could be expanded with more
advanced methods, such as the Wigner transform or the wavelet transform.

49

Bibliography

[1] ISARG: Intracranial Signal Analysis Research Group. https://
isarg.fel.cvut.cz/, accessed: 2021-06-09.

[2] Proekt, A. Brief Introduction to Electroencephalography, volume 603. 01
2018, pp. 257–277, doi:10.1016/bs.mie.2018.02.009.

[3] Bárta, M. Multiplatformńı zobrazovaćı software pro elektroencefalografii.
Master’s thesis, CTU, Prague, 2018.

[4] Bárta, M. Specializovaný systém pro zobrazováńı biologických signál̊u pa-
cient̊u zařazených do epilepto-chirurgického programu: rozšǐrovaćı mod-
uly. Bachelor’s thesis, CTU, Prague, 2015.

[5] Bárta, M. A Visualisation System for Biosignals. GitHub [Online]. 2018
[cit. 2021-6-10]. Available from: https://github.com/machta/Alenka

[6] Nunez, P. L.; Srinivasan, R. Electric Fields of the Brain: The
Neurophysics of EEG. New York, NY: Oxford University Press,
second edition, 2006, ISBN 0-19-505038-X, doi:10.1093/acprof:oso/
9780195050387.001.0001.

[7] Maurer, K.; Dierks, T. Atlas of Brain Mapping: Topographic Mapping of
EEG and Evoked Potentials. Berlin-Heidelberg-New York-London-Paris-
Tokyo-Hong Kong-Barcelona-Budapest: Springer-Verlag, 1991, ISBN
978-3-642-76045-7, doi:10.1007/978-3-642-76043-3.

[8] Law, S. K.; Nunez, P. L.; et al. Topographical Mapping of Brain Electrical
Activity. VIS ’91, Washington, DC, USA: IEEE Computer Society Press,
1991, ISBN 0818622458, p. 194–201, doi:10.5555/949607.949639.

[9] Mitas, L.; Mitasova, H. Spatial Interpolation. In Geographical Informa-
tion Systems: Principles, Techniques, Management and Applications, vol-
ume 1, edited by P.Longley, M.F. Goodchild, D.J. Maguire, D.W.Rhind,
Wiley, 1999, ISBN 9780471321828, pp. 481–492.

51

https://isarg.fel.cvut.cz/
https://isarg.fel.cvut.cz/
https://github.com/machta/Alenka

Bibliography

[10] Böhner, J.; Bechtel, B. 2.10 - GIS in Climatology and Meteorology. In
Comprehensive Geographic Information Systems, edited by B. Huang,
Oxford: Elsevier, 2018, ISBN 978-0-12-804793-4, pp. 196–235, doi:
10.1016/B978-0-12-409548-9.09633-0.

[11] Chapter 2 - Geometric processing and positioning techniques. In Advanced
Remote Sensing (Second Edition), edited by S. Liang; J. Wang, Academic
Press, second edition edition, 2020, ISBN 978-0-12-815826-5, pp. 59–105,
doi:10.1016/B978-0-12-815826-5.00002-7.

[12] KHRONOS GROUP. OpenGL [Online]. c1997-2021 [cit. 2021-6-9]. Avail-
able from: https://www.opengl.org/

[13] Angel, E.; Shreiner, D. Interactive Computer Graphics: A Top-down
Approach with OpenGL. Boston, Massachusetts, USA: Addison Wesley,
2012, ISBN 0-13-254523-3.

[14] KHRONOS GROUP. Rendering Pipeline Overview [Online]. 2012 [cit.
2021-6-9]. Available from: https://www.khronos.org/opengl/wiki/
Rendering_Pipeline_Overview

[15] Tzallas, A. T.; Tsipouras, M. G.; et al. The Use of Time-Frequency Distri-
butions for Epileptic Seizure Detection in EEG Recordings. In 2007 29th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 2007, pp. 3–6, doi:10.1109/IEMBS.2007.4352208.

[16] Hussin, S.; Sudirman, R. EEG Interpretation through Short Time Fourier
Transform for Sensory Response Among Children. 1991-8178, 04 2014:
pp. 417–422.

[17] Zhivomirov, H. On the Development of STFT-analysis and ISTFT-
synthesis Routines and their Practical Implementation. TEM Journal,
volume 8, 2019: pp. 56–64, doi:10.18421/TEM81-07.

[18] Žiga Špiclin; Likar, B.; et al. Registration of EEG electrode positions
to PET and fMRI images. In Medical Imaging 2009: Image Processing,
volume 7259, edited by J. P. W. Pluim; B. M. Dawant, International
Society for Optics and Photonics, SPIE, 2009, pp. 834 – 844, doi:10.1117/
12.811892.

[19] Dobeš, P. Topografické mapováńı elektrické aktivity mozku. Bachelor’s
thesis, BUT, Brno, 2014.

[20] THE QT COMPANY. Qt [Online]. c2020 [cit. 2021-6-10]. Available from:
https://www.qt.io/

[21] THE QT COMPANY. QPainter class documentation [Online]. c2021 [cit.
2021-6-15]. Available from: https://doc.qt.io/qt-5/qpainter.html

52

https://www.opengl.org/
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview
https://www.qt.io/
https://doc.qt.io/qt-5/qpainter.html

Bibliography

[22] ClMathLibraries: clFFT. GitHub [Online]. 2021 [cit. 2021-6-15]. Available
from: https://github.com/clMathLibraries/clFFT

[23] Eberly, D. Least Squares Fitting of Data by Linear or Quadratic Struc-
tures: 5 Fitting a Hypersphere to Points. [online]. 2021 [cit. 2021-6-20].
Available from: https://www.geometrictools.com/Documentation/
LeastSquaresFitting.pdf

[24] Delaunator-cpp. GitHub [Online]. 2021 [cit. 2021-6-20]. Available from:
https://github.com/delfrrr/delaunator-cpp

[25] Delaunator. GitHub [Online]. 2021 [cit. 2021-6-20]. Available from:
https://github.com/mapbox/delaunator

[26] Sinclair, D. S-hull: a fast radial sweep-hull routine for Delaunay triangula-
tion. [online]. 2016 [cit. 2021-6-20]. Available from: https://arxiv.org/
abs/1604.01428

[27] THE QT COMPANY. QWidget class documentation [Online]. c2021 [cit.
2021-6-17]. Available from: https://doc.qt.io/qt-5/qwidget.html

[28] ClMathLibraries: clFFT documentation. GitHub [Online]. 2021 [cit.
2021-6-15]. Available from: https://clmathlibraries.github.io/
clFFT/

[29] Papinčák, M. A Visualisation System for Biosignals. GitHub [Online].
2020 [cit. 2021-6-10]. Available from: https://github.com/papincakm/
Alenka

[30] Morona, L. A Visualisation System for Biosignals. GitHub [On-
line]. 2020 [cit. 2021-6-10]. Available from: https://github.com/
MoronaCzech1991/Alenka-master

[31] AppImage. linuxdeployqt. GitHub [Online]. 2020 [cit. 2021-6-10]. Avail-
able from: https://github.com/probonopd/linuxdeployqt

[32] van Heesch, D. Doxygen [Online]. 2021 [cit. 2021-6-15]. Available from:
https://www.doxygen.nl/index.html

[33] Asus. ASUS Dual series GeForce GTX 1070 OC edition [Online]. 2021
[cit. 2021-6-23]. Available from: https://www.asus.com/Motherboards-
Components/Graphics-Cards/Dual/DUAL-GTX1070-O8G/

[34] AMD. Ryzen 5 5600X [Online]. 2021 [cit. 2021-6-13]. Available from:
https://www.amd.com/en/products/cpu/amd-ryzen-5-5600xl

53

https://github.com/clMathLibraries/clFFT
https://www.geometrictools.com/Documentation/LeastSquaresFitting.pdf
https://www.geometrictools.com/Documentation/LeastSquaresFitting.pdf
https://github.com/delfrrr/delaunator-cpp
https://github.com/mapbox/delaunator
https://arxiv.org/abs/1604.01428
https://arxiv.org/abs/1604.01428
https://doc.qt.io/qt-5/qwidget.html
https://clmathlibraries.github.io/clFFT/
https://clmathlibraries.github.io/clFFT/
https://github.com/papincakm/Alenka
https://github.com/papincakm/Alenka
https://github.com/MoronaCzech1991/Alenka-master
https://github.com/MoronaCzech1991/Alenka-master
https://github.com/probonopd/linuxdeployqt
https://www.doxygen.nl/index.html
https://www.asus.com/Motherboards-Components/Graphics-Cards/Dual/DUAL-GTX1070-O8G/
https://www.asus.com/Motherboards-Components/Graphics-Cards/Dual/DUAL-GTX1070-O8G/
https://www.amd.com/en/products/cpu/amd-ryzen-5-5600xl

Bibliography

[35] Ramos, R.; Olvera-López, J.; et al. Parameter Experimentation for
Epileptic Seizure Detection in EEG Signals using Short-Time Fourier
Transform. Research in Computing Science, volume 148, 10 2019: pp.
90–95, doi:10.13053/rcs-148-9-7.

[36] Fadzal, C.; Mansor, W.; et al. Short-time Fourier Transform analysis
of EEG signal from writing. Proceedings - 2012 IEEE 8th International
Colloquium on Signal Processing and Its Applications, CSPA 2012, 03
2012, doi:10.1109/CSPA.2012.6194785.

[37] KHRONOS GROUP. The open standard for parallel programming of
heterogeneous systems [Online]. c2021 [cit. 2021-6-15]. Available from:
https://www.khronos.org/opencl/

54

https://www.khronos.org/opencl/

Appendix A
Acronyms

CPU Central processing unit

DTF Discrete-time Fourier transform

EDF European Data Format

FFT Fast Fourier transform

GDF General data format

GPU Graphics processing unit

GUI Graphical user interface

IDW Inverse distance weighted

ISARG Intracranial Signal Analysis Research Group

STFT Short-time Fourier transform

TFA Time-frequency analysis

TIN Triangulated interpolation network

HW Hardware

55

Appendix B
Controls

Controls tooltip can be displayed with the help application argument (see
appendix C) during the application launch. The added windows can be acti-
vated in the top bar window section. They will then appear in the right-side
window panel.

B.1 Main Window Controls

MouseWheel time step move

PageUp faster time step move left

PageDown faster time step move right

Left and right arrow keys slow time step move

Ctrl + MouseWheel change amplitude of the one selected channel

Shift + MouseWheel change amplitude of all channels

Alt + MouseWheel zoom

Ctrl + LeftMouse one-channel annotation

Shift + LeftMouse all-channel annotation

C cross off/on

T move position indicator to cursor position in the main window

Ctrl + Z undo

Ctrl + Shift + Z redo

57

B. Controls

B.2 Manager Side Windows Controls

Ctrl + C copy selected cells to the clipboard

Ctrl + V insert the clipboard inside the cells

Delete delete selected rows

G move main window visualization to the start of selected annotation

B.3 Gradient Controls

LeftMouse + drag inside of gradient to change the colormap

MiddleMouse inside of gradient to reset the colormap

B.4 ScalpMap Controls

RightMouse show pop-up menu

B.5 TFA Controls

RightMouse show pop-up menu

58

Appendix C
Alenka Help

Display help using the ./Alenka help argument.

Usage:
Alenka [OPTION]... [FILE]...
Alenka --spikedet OUTPUT_FILE [SPIKEDET_SETTINGS]... FILE [FILE]...
Alenka --help|--clInfo|--version
Command line options:
--help help message
--config path override default config file path
--spikedet OUTPUT_FILE Spikedet only mode
--clInfo print OpenCL platform and device info
--glInfo print OpenGL info
--version print version number
--printTiming print the time it took to redraw Canvas
Configuration:
--mode val (=desktop) desktop|tablet|tablet-full
--locale lang (=en_us) mostly controls decimal number format
--uncalibratedGDF bool (=0) assume uncalibrated data in GDF
--autosave seconds (=120) interval between saves; 0 to disable
--kernelCacheSize count (=0) if 0, the existing file is removed
--kernelCacheDir path default is install dir
--gl20 bool (=0) use OpenGL 2.0 instead of 3.0
--gl43 bool (=0) use OpenGL 4.3 instead of 3.0; disabled
--cl11 bool (=0) use OpenCL 1.1 instead of 1.2
--glSharing bool (=1) use cl_khr_gl_sharing extension
--clPlatform ID (=0) select OpenCL platform
--clDevice ID (=0) OpenCL device
--blockSize val (=32768) samples per channel per block
--gpuMemorySize MB (=0) allowed GPU memory; 0 means no limit
--parProc val (=2) parallel signal processor queue count
--fileCacheSize MB (=0) allowed RAM for caching signal files
--notchFrequency f (=50) power interference filter
--resOptions list (=1 2 ...) resolution combo options
--screenPath path screenshot output dir path
--screenType type (=jpg) screenshot file type; jpg, png, or bmp
--matData val... data var names for MAT files; default is ’d’
--matFs val (=fs) sample rate var name

59

C. Alenka Help

--matMults val (=mults) channel multipliers var name
--matDate val (=tabs) start date var name
--matLabel val (=header.label) labels var name
--matEvtPos val (=out.pos) event position var name in seconds
--matEvtDur val (=out.dur) event duration var name in seconds
--matEvtChan val (=out.chan) one-based event channel index var name
Spikedet settings:
--fl f (=10) lowpass filter frequency
--fh f (=60) highpass filter frequency
--k1 val (=3.65) K1
--k2 val (=3.65) K2
--k3 val (=0) K3
--w val (=5) winsize
--n val (=4) noverlap
--buf seconds (=300) buffering
--h f (=50) main hum. freq.
--dt val (=0.005) discharge tol.
--pt val (=0.12) polyspike union time
--dec f (=200) decimation
--sed seconds (=0.1) spike event duration
--osd bool (=1) use orginal Spikedet implementation

60

Appendix D
Build Instructions

Instruction have been generated from GitHub[29]. Written by Martin Bárta.

This page describes steps needed to build Alenka from source. The command-
line examples can be run using bash (or git-bash on Windows which is included
in git’s installer).

Install Qt via the installer on their website. Select the Qt 5.8 msvc2015
64/32-bit package for Windows, or Desktop gcc 64/32-bit for Linux and
Mac. Also select the QtCharts module.

Then download the third-party libraries using the preprepared script:

cd libraries
./download-libraries.sh
cd ..

You can use cmake-gui in place of cmake to change some of the following
options to customize the build configuration:

• set CMAKE PREFIX PATH to specify Qt’s install directory if needed (for
example /opt/Qt/5.8/gcc 64 on Linux, C:/Qt/5.8/msvc2015 64 on
Windows)

• on some systems you need to add to CMAKE PREFIX PATH the location
of AMD APP SDK (e.g. on Linux set it to /opt/Qt/5.8/gcc 64;
/opt/AMDAPPSDK-3.0/lib/x86 64/sdk)

• set CMAKE BUILD TYPE to switch between debug and release

• check ALENKA STATIC LINK to make a standalone Linux binary that
works on both Ubuntu 14 and 16

• check ALENKA BUILD TESTS to build unit-tests

The rest of the instructions are OS specific.

61

https://git-for-windows.github.io/
https://cmake.org/cmake/help/v3.5/variable/CMAKE_PREFIX_PATH.html
https://cmake.org/cmake/help/v3.5/variable/CMAKE_BUILD_TYPE.html

D. Build Instructions

D.1 Linux

First install the required tools and matio library. On some Linux distributions
you need to also install OpenGL headers. On a Debian-like system you can
do this by running:

sudo apt install git cmake-gui build-essential libmatio-dev curl
libgl1-mesa-dev

Then use the usual cmake/make combination to make an out-of-source
build. From the repository’s root directory use:

mkdir build-Release && cd build-Release
cmake -DCMAKE_BUILD_TYPE=Release ..
make

That should be all you need to do to build Alenka. Additionally you
can use Qt Creator (or some other IDE) to open CMakeLists.txt file as a
project. During project configuration redirect to the build directory we have
just created. Then you can rebuild, run and debug the program directly from
the IDE.

D.2 Windows

MSVC++ compiler can be acquired by installing Visual C++ Build Tools
2015. Choose Custom Installation, and uncheck all options but Windows
8.1 SDK. If you already have Visual Studio 2015, you probably don’t need to
install this.

Now you have two options: you can use Qt Creator to generate a makefile-
based project, or use cmake to generate a Visual Studio solution. The first
approach can use only a single thread for compilation which can lead to some
annoying build times. By choosing the second option you lose some of Qt
Creator’s functionality designed to work specifically with Qt.

D.2.1 Qt Creator Project

Open CMakeLists.txt via Qt Creator and fill the configuration form that ap-
pears. Qt Creator with its default settings should take care of everything.

D.2.2 Visual Studio Solution

These commands generate a MS Visual Studio solution and then build Alenka.

mkdir build-Release && cd build-Release
cmake -G "Visual Studio 14 2015 Win64" ..
cmake --build . --config Release

62

D.2. Windows

Figure D.1: Setup project in Virtual Studio. Original picture made by Martin
Bárta.

Or you can skip the cmake build step and open Alenka.sln located in the
build directory. Then select Alenka as the StartUp project, and set PATH
to contain Qt’s library installation directory. (See the picture D.1 for details.
You can also set PATH system wide as an environment variable). Now you
can run Alenka via the debugger button or F5.

63

Appendix E
Contents of enclosed DVD

DP Marek Papincak 2021.pdf............thesis text as a PDF document
Ubu18-Alenka.zip .. Image of virtual machine with preinstalled Alenka
doc

index.html link to documentation.
exe.......................distribution packadges for Linux and Ubuntu
samples.........................test sample files with electrode elc files
src

impl .. implementation source
thesis thesis text source in LATEX

65

	Introduction
	Analysis
	Alenka
	Topographic Scalp Map
	Spatial Interpolation
	OpenGL Interpolation
	Electrode Positions
	Requirements Formalization

	Time-frequency Analysis
	The Short-Time Fourier Transform
	Spectrogram
	Requirements Formalization

	Design
	Topographic Scalp Map
	Loading Electrode Positions
	Projection of Electrode Positions
	Mesh Generation
	EEG Sample Data
	Visualization of EEG Data
	The User Interface
	Visualization Design
	Class Structure

	Time-frequency Analysis
	Data Acquirement
	Data Processing
	Mesh Generation
	Visualization
	User Interface
	Class Structure

	Graphics Objects

	Realization
	Technologies
	Topographic Scalp Map
	Electrode Positions
	Electrode Projection
	Mesh Generation
	Amplitude Update

	Time-Frequency Analysis
	Sample Processing
	Fast Fourier Transform Processor
	Mesh Generation

	User Interface
	Visualization
	Colormap
	OpenGL Resources
	OpenGL Visualization
	Graphics Objects

	Maintenance
	Combining the Previous versions
	Deployment
	Documentation

	Testing
	Cross-platform Testing
	GUI and Functionality Testing
	Discovered Problems

	Benchmarks
	Window Benchmark
	Platform Benchmark
	File Benchmark

	Conclusion
	Bibliography
	Acronyms
	Controls
	Main Window Controls
	Manager Side Windows Controls
	Gradient Controls
	ScalpMap Controls
	TFA Controls

	Alenka Help
	Build Instructions
	Linux
	Windows
	Qt Creator Project
	Visual Studio Solution

	Contents of enclosed DVD

