
Instructions

Develop a robust flash memory bootloader for a proprietary RISC-V based microcontroller, which will

allow the update of the internal flash memory over near field communication (NFC) on the fly.

Implementation:

- Get familiar with all needed technologies.

- Develop nonvolatile flash low-level firmware driver or use an existing one.

- Design and develop all necessary communication layers in the firmware and the bootloader which

uses this communication stack.

- Develop an application for one of the mobile platforms (iOS or Android), which can be used to test

and benchmark the whole solution.

- Document completely the results in terms of bootloader footprint, transfer time and power

consumption.

The final solution must be able to recover from all possible use cases (loss of power, out of range…).

The design choices made in this thesis should support robustness, security, speed of communication

and usability in large scale production inside a size constraint of a wearable device design.

Electronically approved by doc. Ing. Hana Kubátová, CSc. on 22 February 2021 in Prague.

Assignment of master’s thesis

Title: Robust flash memory bootloader for a microcontroller over near field

communication

Student: Bc. Jitka Seménková

Supervisor: Ing. Jiří Hušák

Study program: Informatics

Branch / specialization: Design and Programming of Embedded Systems

Department: Department of Digital Design

Validity: until the end of summer semester 2022/2023

Master’s thesis

Robust flash memory bootloader for
a microcontroller over near field
communication

Bc. Jitka Seménková

Department of Digital Design
Supervisor: Ing. Jǐŕı Hušák

June 27, 2021

Acknowledgements

I would like to thank my supervisor Ing. Jǐŕı Hušák for his valuable advice,
comments and help during the whole process of writing this thesis. Also, I
would like to thank the team members for introducing me to the project and
for their code reviews. Furthermore, I would like to thank my family for their
support. Finally, I would like to thank the correctors of this thesis, especially
Bc. Martina Klimešová.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on June 27, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Jitka Seménková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Seménková, Jitka. Robust flash memory bootloader for a microcontroller over
near field communication. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2021.

Abstrakt

Tato práce obsahuje návrh a implementaci zavaděče flash paměti pro mikro-
kontroler s architekturou RISC-V. Zavaděč přenáš́ı novou aplikaci přes roz-
hrańı NFC, tvořené deskou NTAG5 link. Součást́ı práce je i návrh a imple-
mentace komunikace přes dané rozhrańı. Vytvořený zavaděč je optimalizován
na velikost a je navržen tak, aby byl robustńı. V rámci práce vznikla i aplikace
pro Android pro otestováńı zavaděče.

Kĺıčová slova Zavaděč, Flash pamět’, NFC, RISC-V

Abstract

This thesis includes the design and implementation of a flash memory boot-
loader for a RISC-V microcontroller. Communication is done over the NFC
board NTAG5 link. Design and implementation of the communication are
also present in this thesis. The created bootloader is robust, and its memory
footprint is small. As a part of this thesis, an Android application was created
to test the bootloader.

Keywords Bootloader, Flash memory, NFC, RISC-V

vii

Contents

Introduction 1

1 Analysis 3
1.1 Technologies and principles . 4

1.1.1 Bootloader . 4
1.1.1.1 Bootloader stages 4
1.1.1.2 Memory layout 6
1.1.1.3 Communication interface 7

1.1.2 NFC . 7
1.1.2.1 Tag 5 type . 8

1.1.3 I2C brief summary . 9
1.2 Given Hardware . 10

1.2.1 NTAG5 link . 11
1.2.1.1 NFC interface 11
1.2.1.2 I2C interface 12
1.2.1.3 NTAG5 configuration 13
1.2.1.4 Event detection pin 14
1.2.1.5 NTAG5 link communication modes 14
1.2.1.6 Example applications 16

1.2.2 Target processor . 16
1.2.2.1 RISC-V ISA 17
1.2.2.2 Flash memory 17
1.2.2.3 Flash driver 18
1.2.2.4 I2C driver . 20
1.2.2.5 Interrupts . 20

2 Design 21
2.1 Bootloader . 21

2.1.1 DFU principle . 21

ix

2.1.2 Program flow . 22
2.1.3 Flash memory layout and interrupt vector tables 22
2.1.4 Bootloader operation scheme 23

2.2 Communication stack . 24
2.2.1 Communication channel 26

2.2.1.1 NTAG5 mode selection 26
2.2.1.2 NTAG5 SRAM usage 27

2.2.2 Messaging system . 28
2.3 DFU operation scheme . 30
2.4 Bootloader communication . 32

3 Implementation 37
3.1 Software modules . 37

3.1.1 NTAG5 controller . 39
3.1.1.1 Interface . 39
3.1.1.2 Internal functions 40
3.1.1.3 Event detection and callbacks 41

3.1.2 NFC TLV interface . 41
3.1.2.1 Interface . 41

3.1.3 Bootloader . 42
3.1.3.1 Bootloader manager 42
3.1.3.2 Bootloader DFU - controller 44

3.1.4 Bootloader DFU - flash operations 47
3.1.4.1 Interface . 48
3.1.4.2 Internal functionality 48

3.2 Mobile app . 49
3.2.1 UI and functionality behind it 50
3.2.2 Logging and testing . 50

3.3 Example user application . 52
3.4 Robustness discussion . 52

3.4.1 Corruption of the bootloader 52
3.4.2 Buggy user application 52
3.4.3 Desynchronization of devices during DFU 52
3.4.4 Low battery . 53

3.5 Future extensions . 54
3.5.1 Adaptation to specific project 54
3.5.2 Security suggestions . 54
3.5.3 Transfer from emulator 55

4 Testing 57
4.1 Development and testing environment 57
4.2 Functionality testing . 57
4.3 Time analysis . 58

4.3.1 DFU times . 58

x

4.3.2 Transition time of one data chunk 59
4.3.3 Others . 60

4.4 Memory analysis . 60

Conclusion 63

Bibliography 65

A NTAG5 - Pass-through mode 69

B Acronyms 73

C Contents of enclosed CD 75

xi

List of Figures

1.1 Scheme of communication . 3
1.2 Architecture of the flash bootloader 5
1.3 Concept of boot manager . 5
1.4 Concept of boot manager . 6
1.5 NFC tag types . 9
1.6 I2C address frame structure . 10
1.7 I2C example transaction . 10
1.8 NTAG 5 link development board OM2NTP5332 11
1.9 NTAG5 link - I2C memory commands 13
1.10 NTAG5 link - I2C register commands 14
1.11 Flash memory scheme of target processor 18

2.1 Flash memory layout . 23
2.2 Bootloader operation scheme . 25
2.3 User application operation scheme from bootloader point of view . 25
2.4 Scheme of communication channel between mobile and target pro-

cessor . 26
2.5 Diagram of usage of NTAG5 link SRAM memory 28
2.6 Structure of TLV messages . 29
2.7 DFU operation scheme . 31
2.8 Data manipulation for time analysis 32
2.9 Sequence diagram of communication between mobile and target

processor for bootloader purposes 34
2.10 Sequence diagram of DFU communication between mobile and tar-

get processor . 36

3.1 Bootloader modules architecture 38
3.2 Class UML of nfc link ctrl module 39
3.3 Class UML of nfc tlv interface module 42
3.4 Class UML of bootloader module 42

xiii

3.5 Communication controller - actions 46
3.6 DFU controller diagram . 47
3.7 Class UML of bootloader dfu module 48
3.8 Mobile application UI . 51
3.9 Example of testing output in log 51

4.1 DFU recording from a Saleae . 58
4.2 Record of transferring 248 B over NFC with Samsung Galaxy A10 59
4.3 Record of transferring 248 B over NFC with Samsung Galaxy A10

- zoom with time measurements . 59
4.4 Record of transferring 248 B over NFC with Samsung A21s - zoom

with time measurements . 60
4.5 Memory consumption of bootloader 61

A.1 Example usage of NTAG5’s Pass-through mode (direction from I2C
to NFC) . 70

A.2 Memory consumption of bootloader 71

xiv

List of Tables

1.1 NTAG5 link parameters . 11
1.2 NTAG5 NFC commands . 12
1.3 NTAG5 event detection pin configurations 15
1.4 Target processor parameters . 17
1.5 Maximal times of flash memory operations on the target processor 18

2.1 Initial NFC write SRAM speed testing with Samsung A21S 28
2.2 Times of operation needed for time analysis 31
2.3 Command set for bootloader communication 33

4.1 DFU times for a 120kB user application 59
4.2 Times of intervals in NFC communication 60
4.3 Times of flash memory operations 60
4.4 Flash memory footprint of modules in bootloader 61

xv

Introduction

In recent years, the popularity of personal electronics, including wearable de-
vices, has been rising. Many people wear a smartwatch as an extension of
their smartphone. Smartwatch shows them notifications and can track their
daily activities. There are many brands and models to choose from and the
manufacturers need to make an effort to engage customers. The customers
are considering multiple factors such as features of the device, compatibility
with their other devices, and the length of battery life on one charge is also
one of the main parameters they focus on because they do not want to charge
the device every day.

The devices need to be updated from time to time to add new features or
fix bugs. This is where a bootloader comes into play because it is a part of the
device’s code, enabling it to be updated on the fly. The bootloader needs to be
robust so the devices do not get bricked. The bootloader’s footprint also needs
to be small, so it leaves as much space as possible to the user application, so
there can be plenty of features the customers care about.

The assignment of this thesis comes from a real company, which wants to
stay anonymous. The result of this thesis is going to be used in a real device
in the future.

The applicability in real life and the opportunity to work on something
new are the reasons why I chose this assignment.

The goal of this thesis is to create a robust flash memory bootloader for a
proprietary RISC-V microcontroller over NFC, with the usage of NTAG5 link
board. The aim is to have a robust solution with a small memory footprint
and power consumption.

The thesis consists of 4 chapters. The first chapter includes a summary
of all used technologies and a description of the target hardware. The second
chapter describes the design of the communication stack and the bootloader.
The third chapter describes the implementation of the bootloader and the
example mobile phone application. The fourth chapter includes the testing
results and their analysis.

1

Chapter 1
Analysis

This chapter consists of two parts. In the first one, I cover the principle of
bootloader and I go through all the technologies that are used in this thesis.
In the second part, I describe the hardware for which the implementation will
be done.

The company specified the assignment and requested for the NFC com-
munication to be done over NTAG5 link board. It is a NFC tag, that can
be connected to a microcontroller over I2C bus. The mobile phone commu-
nicates with the tag over NFC. The microcontroller and mobile phone can
exchange data via memory of the NTAG5 link. Figure 1.1 shows the scheme
of communication over an NFC tag, like NTAG5 link.

Figure 1.1: Scheme of communication [1]

3

1. Analysis

1.1 Technologies and principles

1.1.1 Bootloader

The term bootloader can have different meanings in different contexts. In this
work, bootloader is a part of code that is run on power-up of a microcontroller
unit (MCU). It is able to reprogram user application and run it without an
external programmer. This is very important in the embedded software, be-
cause it enables the user to update the firmware on the fly, which is needed
in products, where the application is meant to be updated, fixed or expanded
even after the product is in possession of a customer. However, it is also useful
for developers because they do not need to use the external programmer at
all times and they can test the application in a real environment. Therefore
it is usually one of the first things implemented in a project.

1.1.1.1 Bootloader stages

A bootloader is an independent part of code that is run on reset of the con-
troller. Its functionality can be summarized into the following steps:

1. Initialize the environment

2. Check state of the user application

3. Flash new application if needed

4. Run the application

Sometimes the process is theoretically divided into two stages – boot stage
(boot manager), which includes steps 1, 2, 4 and load stage (flash loader),
which corresponds to step 3. [2, 3, 4]

Possible operation scheme of a bootloader is displayed in figure 1.2 and
boot manager internal scheme is in figure 1.3.

The initialization step includes initialization of stack and registers, setup
of interrupt vector table, move of selected code section to RAM, setup of
watchdogs and clock and initialization of HW drivers. This is partly done in
startup code and partly in the actual bootloader code. [5]

After initialization, the bootloader checks if the user application can be
run or device firmware update (DFU) needs to be performed. This usually
consists of checking if there is a valid application in memory (e.g. CRC check)
and if there was a request for an update. [4]

The actual update can be performed in multiple ways based on the options
present in a specific circuit. There are two most common options. First
consists of preloading a whole new application to external memory or part of
internal memory, which is free. The application can be in form of a binary
file or a more complex structure that needs to be unpacked or decrypted.

4

1.1. Technologies and principles

Figure 1.2: Architecture of the flash bootloader[4]

Figure 1.3: Boot manager concept [4] (flowchart starts from the top condition
- Reprogramming request)

Finally, the application is copied to the final place at one go, from where it
can be run. The second option is to receive the application part by part and

5

1. Analysis

store it in the final place continuously. The first option enables to receive
and check the new application before the old one is deleted, so if the transfer
of the new application fails, the old one can still run. The second option is
required if the memory is too small to store both applications at the same
time. [2, 6] There are also special techniques like using only an update file
instead of downloading the whole application [7].

The steps, before the application is started, depend on the state in which
the application expects the processor to be. If the application has a separate
start-up code and it initializes everything by itself, the bootloader needs to
deinitialize everything it initialized before starting the app. If the application
expects everything to be prepared beforehand, the bootloader needs to take
care of that. The bootloader will most probably need to take care of the change
of the interrupt vector table in both cases, because switch to application is
frequently done by jumping to its reset handler [5].

1.1.1.2 Memory layout

The bootloader is usually located in a different part of memory than the user
application, so it can be write protected in the re-programming process. This
is important because if the bootloader was overwritten by mistake, the device
would get bricked. The bootloader needs to be put to place in memory, so
it is automatically run after reset. This location is processor specific and it
is mostly defined by the default address of the interrupt vector table (IVT)
after reset. Its default address is most frequently at the beginning of the
memory. Example, how the memory can look, if the default position is set to
the beginning of the memory, is displayed in figure 1.4.

Figure 1.4: Boot manager concept [5] (IV refers to IVT here)

The bootloader, that is stored in flash and also writes the new application
to flash, in most cases needs to be at least partly relocated from flash to
RAM, because processors mostly do not allow to read flash while erase or write
operations are ongoing. Behavior, what happens if a user tries it, depends on
a specific processor.

Next important thing is the management of interrupt vector tables. If it is
possible for the specific processor to set the location of the IVT on run-time,

6

1.1. Technologies and principles

it is convenient to have separate vector tables for the bootloader and for the
application. If it is not possible, special arrangements need to be implemented.
Solution for this single vector table design is presented in article [8]. Also if
there is a need to use interrupts in the part of bootloader, that needs to be
relocated to RAM, the vector table and handlers also need to be put there.
Otherwise the interrupts need to be disabled in this part of code.

1.1.1.3 Communication interface

During the load stage, there is no standard way, how to transfer the code of
the new application. Bootloader can use any interface present in the device.
The firmware update is divided into two types based on the type of the used
interface [9]:

• OTW (over-the-wire)

• OTA (over-the-air)

Even though both options are widely used, the OTA is more discussed recently
as the fields that use it are expanding. One of its main advantages is the
possibility of an easy reprogramming of boards that are difficult to access.
This can be the case for lots of sensors and other parts of smart homes or
IoT in general or systems supporting agriculture or in automotive. Another
advantage is the lack of need for any connector, which may be needed for some
water-resistant designs or it is just used to reduce costs. The OTA option
can also be used to update multiple nodes at once. Lately, it is frequently
connected to the automotive industry. [10]

1.1.2 NFC

Near-field communication (NFC) technology enables wireless half-duplex data
exchange between two NFC-enabled devices in close proximity (around 4 cm
and less). The communication uses radio waves and it operates on 13.56 MHz.
It was developed by Philips (from which NXP Semiconductors spun-off) and
Sony in 2002 and it was built on RFID and smart card technology. The
companies together with Nokia founded NFC Forum in 2004. Since then, the
NFC Forum promotes usage and covers the standardization of the NFC to
ensure compatibility of the devices. Its standards are built on ISO standards.
[11, 12]

In NFC communication there are two types of devices based on their ac-
tions with the RF field:

• active device - can generate RF field (NFC readers, smartphones)

• passive device - only modulates RF field that it is in (NFC tags)

7

1. Analysis

Active devices always have their own power supply. Passive devices can be
powered from the RF field of the active device if the device is small and the
field is strong and stable enough (this action is called energy harvesting).
[11, 13]

There are two positions in which a device can be in the NFC communica-
tion based on who starts the communication. The device that initiates and
directs the NFC communication is called initiator. The second device, that
answers to this communication, is called target. Initiator always has to be an
active device. The target device can be either passive or active. [11]

There are 3 defined NFC communication operating modes [11, 12]:

• reader/writer - used for reading and writing data to NFC tags by mobile
phones or NFC readers

• peer to peer - used for data exchange between two mobile phones

• card emulation - mobile phone emulates a smart card while communi-
cating with a NFC reader

NFC tags can be either standalone devices, where they can store a small
amount of data in the form of an NFC data exchange format (NDEF) mes-
sages, which is transmitted to the active device on tapping mobile on the tag.
Or the tag can be connected to an IC and be used as an NFC interface, for
communication with active devices. [13]

To this day, there are 5 different types of tag specifications released by
NFC Forum. The names are “Type X Tag”, where X goes from 1 to 5. Where
the 5th one is the youngest, released in 2015. Basic info about each type is
in table showed in figure 1.5. The values for memory size and data rates are
only informative, and real values depend on a specific device.

Further in this thesis I will pursue only type 5, because it is the type of
my target device.

1.1.2.1 Tag 5 type

The tag 5 type is based on ISO/IEC 15693, which was originally developed
for vicinity cards. Both specifications (ISO/IEC 15693 and tag 5 type) are
available only after purchase.

The standards, among other things, specify commands, that the device
must and can support. For example, it includes commands for controlling and
manipulation with tag’s memory. More information about the commands is
included in section 1.2.1.1, which also discusses specific commands supported
by the tag, which is used in this thesis.

Communication based on these standards have an integrated CRC. It uses
CRC16 to secure every single command.

Mobile phone operating systems have an included support for NFC to be
used in the applications. In Android, it is possible to use the Android Java

8

1.1. Technologies and principles

Figure 1.5: NFC tag types [13]

package android.nfc. It includes NfcV class, which provides functionality for
communication with type 5 tags. Android activity can be notified when a tag
is detected, so it can start the communication with it. NfcV automatically
adds CRC to every message, so no action from the user is needed. Also if a
message is received and the CRC is not correct, it raises an exception. [14]

1.1.3 I2C brief summary

I2C is a 2-wire bus. It operates on master-slave principle. By default, it can
always be multi-slave and if extra logic is added to masters, it can also be
multi-master. Neither option requires adding additional wires like it is for
SPI. Both wires are usually connected to pull-ups and nodes operate them
by pulling them down via an open-drain output. One wire is used for clock
transfer and is operated by the master. The second wire is used for trans-
ferring data in both directions. Synchronization is done by using start and
stop conditions, which mark the start and the end of one transaction and
they are generated by the master. The bus can operate at data rates up to
100 kbit/s (Standard-mode), 400 kbit/s (Fast-mode), 1 Mbit/s (Fast-mode
Plus), or 3.4 Mbit/s (High-speed mode). [5, 15]

Each transaction starts with an address frame, which most frequently con-
sists of 7 bit slave address (there is also a 10 bit version) and 1 bit mode select
(1 for read, 0 for write mode). Slave with given address acknowledges the
frame by pulling the data wire down. [5] Structure of the address frame is
displayed in figure 1.6.

9

1. Analysis

Figure 1.6: I2C address frame structure [5]

The rest of the transaction consists of data frames. The direction of the
transfer depends on the mode selected in the address frame. In read mode,
the data is sent from slave to master – slave puts data on the bus and master
acknowledges them. In write mode, the data is sent from master to slave –
master puts data on the bus and slave acknowledges them. [5]

Figure 1.7 includes example of one bus transaction, that sends 1 byte of
data from master to slave.

Figure 1.7: Example of I2C transaction [5]

1.2 Given Hardware

In this section, I will describe hardware (HW) for which the program will be
developed. First, I will write about NTAG5 link board, which is a NFC tag
and then I will describe the target processor, including already implemented
modules I will use.

10

1.2. Given Hardware

1.2.1 NTAG5 link

Board NTAG5 link OM2NTP5332 is a development kit made by NXP Semi-
conductors, for designing systems with NFC interface. Image of the board
can be seen in figure 1.8. The NFC included is of tag type 5 and is based
on ISO/IEC 15693 specification. The board offers multiple wired connection
possibilities: I2C, PWM, GPIO. I will only discuss I2C interface further in
this thesis. [16, 17]

Figure 1.8: NTAG 5 link development board OM2NTP5332 [17]

Table 1.1 includes basic parameters of NTAG5 link.

Table 1.1: NTAG5 link parameters [16]

Parameter Value
NFC Tag Type 5
SRAM memory size 256 B
EEPROM memory size 2 KB
Maximal interface speed 53 kbps
Supply voltage 1.8-5.5 V

1.2.1.1 NFC interface

The NFC interface of NTAG5 link is based on ISO/IEC 15693 and Type 5
Tag norms. It can communicate in close proximity with common NFC-enabled
active devices and powerful industrial readers can reach it from a range up to
60 cm. [18]

The base of command set of NTAG5 link is built on mandatory and op-
tional commands defined in ISO/IEC 15693 and Type 5 Tag specifications.
On top of that NXP added custom commands to provide better and faster
options for specific NTAG5 use cases. [18]

11

1. Analysis

The board can operate either in selected or addressed mode. In selected
mode, the initiator sends select command with tag’s address mostly only at
the beginning of the communication session and then the following commands
do not include address of the tag in the header. In addressed mode, the mobile
phone needs to include the address in every command.

Memory is writable and readable only by blocks (4 B) from NFC interface.
Table 1.2 includes a list of NFC commands that will be used in the example

mobile application. Detailed documentation of each command can be found
in [18].

Table 1.2: NTAG5 NFC commands [18]

Command Description
SELECT Transfer to selected mode
READ SINGLE BLOCK Read a block from memory
WRITE SINGLE BLOCK Write a block to memory
READ SRAM Read blocks of data from SRAM

(only in Pass-through mode)
WRITE SRAM Write blocks of data to SRAM

(only in Pass-through mode)
READ CONFIGURATION Read blocks of data from configuration

memory or session register
WRITE CONFIGURATION Write a block to configuration memory

or session register

The maximal length of one command from a phone is 253 B. For the
command that writes SRAM, which has 5 B header (selected mode), it only
leaves 248 B for data to be written. Therefore if we wanted to use the whole
SRAM (256 B) for transferring data, we would need to use at least two separate
commands to send the data.

1.2.1.2 I2C interface

The I2C interface of NTAG5 board supports both master and slave mode.
The master mode can be used for collecting data from sensors without using
MCU. In this work there is an external processor, which will be used as a bus
master, so slave mode will be used for NTAG5.

NTAG5 link I2C interface uses standard 7-bit addressing. It can operate on
100 kHz or 400 kHz speed in slave mode. Board’s default address is 0b1010100
(0x54). The interface is used to read and write memory or registers. Start
and stop conditions and address frame are omitted in the communication
description below for better readability, as they are mandatory. Brief summary
of I2C bus communication was done in 1.1.3 section.

12

1.2. Given Hardware

The communication scheme for working with EEPROM memory can be
seen in figure 1.9. For SRAM, there are only different constraints, but the
principle is the same. Reading from memory requires two I2C transactions.
The first one is a write of higher and lower byte of address from where the
data will be read. The second one is the actual read of N bytes from memory.
The number of bytes to be read is not limited on the side of NTAG5.

Writing memory is handled by one I2C transaction. The first two trans-
mitted bytes are the higher and lower byte of the memory address, where the
data will be written. After that N bytes of data is sent. It is only possible to
write exactly 4 bytes to EEPROM. Writing to SRAM is limited to a maximum
of 256 bytes at once and the number should be a multiple of 4.

Figure 1.9: NTAG5 link - I2C read and write memory commands [18]

The communication scheme for working with session registers can be seen
in figure 1.10. The interface allows to manipulate only one byte of the register
block at a time (one block has 4 bytes). For most operations, this is sufficient
and when there is a need to modify more bytes at one time, the time overhead
is not that high. Register value reading communication consists of two I2C
transactions. The first one writes higher and lower byte of register block
address followed by index of wanted byte in the block. The second transaction
is used to actually read the one byte of the register’s value.

Writing a value to a register is done by one I2C transaction. The transac-
tion consists of writing higher and lower byte of register block address, index
of the specific byte in the block, mask of bits that will be written from the
value and it ends with the actual value to be written.

1.2.1.3 NTAG5 configuration

There are two ways how the NTAG5 can be configured:

• Configuration (memory) setting

• Session registers

The data from the configuration setting is always copied to session registers
on power on reset (POR). While the NTAG5 is operating, the configuration

13

1. Analysis

Figure 1.10: NTAG5 link - I2C read and write register commands [18]

is taken from session registers. This means that using configuration setting
enables the user to set long-term config that will persist after reset, but will
not take effect immediately. On the other hand, setting session registers af-
fects current communication, but will be overwritten on the next reset. So
configuration that should be used permanently or at the very beginning of
communication, when NFC field is entered, should be set in configuration set-
ting and any other configuration should be set in session registers. A good
example of what needs to be set in the configuration setting is the use case
config - operation mode of the NTAG5 board (in this work, it is I2C slave
option). Also the security information should be set there. [18]

The configuration memory can be set by READ CONFIG and WRITE
CONFIG from NFC interface and by memory manipulations from I2C inter-
face. The session registers can be also set by READ CONFIG and WRITE
CONFIG from NFC interface, but from I2C interface the register manipula-
tions are needed instead of the memory ones. Note that I2C interface addresses
memory (starting from 0x1000), where NFC interface addresses only blocks
in the commands (0x00 is the first block). [18]

1.2.1.4 Event detection pin

NTAG5 link board includes an event detection (ED) pin, that is used for sig-
naling external devices that an event has occurred. The tracked event can
be chosen by modifying bits 0-3 in ED CONFIG (configuration memory) or
ED CONFIG REG (session register). The ED pin has active low implemen-
tation (ON = 0, OFF = 1). [18]

Table 1.3 contains possible configurations of ED pin, that are important
for this thesis.

1.2.1.5 NTAG5 link communication modes

This section describes different communication modes that are available on
NTAG5 link for bidirectional communication between the NFC interface and

14

1.2. Given Hardware

Table 1.3: NTAG5 event detection pin configurations [18]

Name Value State Description
Disable ED 0000b OFF Event detection pin disabled

NFC Field detect 0001b ON NFC field present
OFF NFC field absent

I2C to NFC pass-through 0011b ON Last byte of SRAM data has
been read via NFC; host can
access SRAM again

OFF Last byte written by I2C, or
NFC off, or VCC is off

NFC to I2C pass-through 0100b ON Last byte written by NFC;
host can read data from
SRAM

OFF Last byte has been read from
I2C, or NFC off, or VCC off

Arbiter lock 0101b ON Arbiter locked access to NFC
interface

OFF Lock to NFC interface re-
leased

the slave I2C interface. The modes differ in the memory they use and the
style of arbitration, which interface can access the memory. Some of the
modes support extra commands.

NTAG5 link can operate in 4 communication modes for exchanging data
between NFC and slave I2C interface [19]:

• Normal Mode - EEPROM is used for main data storage, but the
SRAM can also be accessed if requirements are matched. The memory
access arbitration is based on first come first serve principle.

• SRAM Mirror Mode - the same as normal mode, but SRAM is mir-
rored on EEPROM (EEPROM underneath is inaccessible), and it can
be used for functionalities restricted for that area (NDEF messages)

• SRAM Pass-Though Mode - SRAM is used as the only data stor-
age. There are two parts of arbitration - the direction setting (changed
manually by writing to session registers) and the interface lock (changed
automatically based on reads and writes to the last data block). It also
includes additional commands for reading and writing multiple blocks
of data at once from NFC interface, which dramatically affects the time
needed to transfer bigger data.

15

1. Analysis

• PHDC Mode - special mode for Personal Health Device Communica-
tion - similar to normal mode, but special commands are supported

Pass-Through mode allows the smoothest data transfer for an application,
where a large amount of data is sent in one or both directions. This is the
case for the bootloader, where new application needs to be loaded. This is
mostly caused by the ability to write multiple blocks of memory at once from
the NFC interface, because this has a big effect on the transaction time.

As mentioned above, the Pass-through mode synchronizes the devices be-
hind the NFC interface and I2C interface by default. For the Normal and
SRAM mirrored mode, it is possible to synchronize the devices by using sig-
nalization on SYNCH BLOCK. NTAG5 detects and remembers when the syn-
chronization block has been read or written. This is somewhat similar to
Pass-Through mode detection on the last memory block, but the address of
the block can be specified on runtime by modifying SYNCH DATA BLOCK
register and the devices need to implement the arbitration mechanism them-
selves.

To be able to use Pass-Through mode or SRAM Mirror Mode, it is required
to have the NTAG5 VCC supplied. This is required so that SRAM memory
can be used. The same goes for using SRAM in Normal mode. [19]

Example, how the manufacturer suggests to use the Pass-through mode in
document [19], is present in appendix A.

1.2.1.6 Example applications

NXP Seminductors developed example applications for NTAG5 usage. There
is a set of an embedded project and an android app. Together they can demon-
strate different use cases for the NTAG5, like Pass-Through mode, GPIO,
PWM and I2C master mode. The applications in the embedded project are
designed for NXP’s FRDM-KW41Z board. [17]

Authors in [20] describe the different features mainly from the view of the
android app.

There is also an iOS version of the example application. There are two
Windows applications. One enables the user to configure NTAG5 from NFC
interface with an NFC reader connected via USB to the PC. The second one
enables the user to configure NTAG5 from I2C interface via USB-I2C bridge.
[17]

Only the first set is interesting for this thesis, and especially the android
app, which I will use as a base for the testing application.

All the applications are available from [17].

1.2.2 Target processor

The bootloader will be implemented for a proprietary processor with RISC-V
architecture. The company, which gave me the assignment, wishes for the

16

1.2. Given Hardware

name of the processor to remain hidden, so I will refer to the processor as
“the target processor”.

The target processor is still in development. I am using the processor
emulated on an FPGA and once in a while, I receive an updated bitstream.
This means that some things are still changing, while I am working on this
thesis, and there are some things that do not work correctly. This makes the
work harder than it would be if the processor was done and its specification
was complete and not changing.

Basic information about the target processor is included in table 1.4.

Table 1.4: Target processor parameters [21]

Parameter Value
Architecture 32b RISC-V
Clock frequency 8 MHz max
Supply voltage 1-3.6 V
SRAM memory size 8 kB
Flash memory size 128 kB

The processor is designed for usage in ultra low-power IoT projects.

1.2.2.1 RISC-V ISA

RISC-V is an instruction set architecture (ISA) with an integer base of 32b
or 64b. There are multiple prepared extensions and the ISA is opened for
customization and specialization. [22]

The RISC-V ISA base includes instructions for fundamental operations
with integers (load, store and computation) and code flow-control instructions.
Standard extensions add integer multiplication and division operations, single
and double precision floating-point operations and atomic operations. [22]

Names of RISC-V implementations are based on the base and extensions
that are included. The name starts with ether “RV32” or “RV64” depending
on the integer register width and followed by “I” standing for the base. Then
the one-letter identifications of included extensions are added. [22]

The target processor is of type RV32IMC. It is built on a 32b base with
addition of standard extension of compressed instructions and partial support
of integer multiplication and division. [21]

1.2.2.2 Flash memory

Flash memory of the processor includes two sections. There are 128 kB of
user memory and 4 kB of flash is dedicated for configuration data. The flash’s
sector size is 4 kB and row (line) size is 128 B. This means that one sector
consists of 32 rows and the whole memory has 32 sectors (1024 rows). Lines are

17

1. Analysis

the minimal unit for erase operations and the only unit for write operations.
[21]

The memory can be programmed either from JTAG interface or by in-
application programming, where the data is received from any other present
interface. [23]

The architecture expects that the bootloader will be located in the first N
sectors at the beginning of the flash memory (N goes from 0 to 32) [21]. There
is no particular functionality based on this except for the mass erase function
(viz. 1.2.2.3).

Figure 1.11 shows the flash memory scheme of the target processor.

Figure 1.11: Flash memory scheme of target processor

Table 1.5 includes times of flash operations. These times are just an esti-
mate to be corrected once the real version in silicon is characterized. Measured
times for current configuration will be included in section 4.3.

Table 1.5: Maximal times of flash memory operations on the target processor
[21]

Operation Time
Memory erase 4-10 ms
(mass, sector or line)
Line write 3.5 ms

1.2.2.3 Flash driver

The driver is required for erasing and writing the memory. It is not needed
for reading operations. The flash memory is not accessible for reading while
erase or write operation is being executed, so it is mandatory to move the
flash driver and any other code that should be executed in the meantime from

18

1.2. Given Hardware

flash to SRAM. Any attempt to access the flash will stall the processor until
the operation is done. [23]

The flash driver has been implemented by the MCU manufacturer before
this thesis. That is why the implementation is not included in it. However,
I was actively involved in testing and debugging the driver and I have made
some minor changes in it, so it could be included in the project.

The driver implements following operations for the flash memory [24]:

• Locking and unlocking the memory - Locking the memory prevents
an unwanted modification or corruption of the memory. It is essential
to unlock the memory only for the time necessary to perform erase and
write operations.

• Mass erase - This function is meant to be used for erasing the whole
memory except for sectors where the bootloader is located. It accepts
an address of the first block, from where the erase will be performed.

• Sector erase - This function is used to erase a single sector (4 kB) of
the memory.

• Line erase - This function is used to erase a single line (128 B) of the
memory.

• Line write - This function writes data to one line (128 B) of the mem-
ory. It is required to write only previously erased memory.

• Waiting for an operation to end - The erase and write functions
mentioned above only order the HW layer below to perform the specified
operation. This function is used to wait until that operation is done. The
user can specify a timeout for this function.

A rewrite of a part of memory is meant to be performed by executing
following steps:

1. Unlock the memory

2. Erase a part of memory

3. Write all needed lines

4. Lock the memory

It is possible to split the erase and the write operations or not to perform
all the write operations at the same time, but in that case, it is needed to lock
the memory in between them.

It is necessary to avoid reset while the erase or write operation is ongo-
ing (watchdog should be kicked, software reset should not be called, etc.).

19

1. Analysis

The state of the battery should be checked before performing erase or write
operation and voltage monitoring should be enabled. If one of the operations
fails due to a voltage drop, it is necessary to erase the part of memory to
which the operation was connected. [23]

1.2.2.4 I2C driver

The I2C driver provides API for operating I2C. The processor can act only as
a master. It can be either used with busy waiting on every operation or with
interrupts. DMA support has not been added yet. [21]

I2C interface in the target processor supports 7b addressing and data rates
up to 100 kbps, 400 kbps, or 1 Mbps (requires an external pull-up resistor).
The I2C controller includes a 2 B FIFO for storing received bytes or data to
be sent. The direction of the communication is automatically assumed from
the address byte. [21]

The I2C driver API includes [24]:

• Initialization of the bus - setting up the environment, including the pins

• Enabling and disabling of the bus

• Starting an operation - start condition and sending address frame +
setting data counter (number of data that will be sent/receive in this
operation)

• Receiving a byte - get byte from FIFO or try to wait until timeout if it
is empty

• Send a byte - put byte to FIFO or try to wait until timeout if it is full

• Wait for a stop condition

1.2.2.5 Interrupts

The mtvec register in RISC-V stores the base address of the interrupt vector
table. The possibility of changing its value depends on implementation. [25]

The target processor enables to change the address contained in mtvec and
it can even point to SRAM. This means that the whole interrupt handling can
be moved to SRAM. This can be needed if the processor needs to be able to
continue working while a flash memory erase or write operation is performed.
[21]

20

Chapter 2
Design

In this chapter, I go through the design choices that I needed to make.
Section 2.1 describes the design of the bootloader. First, I describe how

the bootloader will work in general. Then I show and describe the memory
layout. Finally, I introduce the operation workflow of the bootloader, except
for the DFU part that I will describe in section 2.3.

Section 2.2 includes design of the communication stack. In there, I describe
which mode will be used for NTAG5 link board and how the communication
will work over this channel.

Section 2.3 introduces the design of the DFU operation scheme. It also
describes how the communication parameters affect this design.

Section 2.4 introduces the messaging system that will be used between the
bootloader and the mobile phone. It includes a list of commands and sequence
diagrams of the communication.

2.1 Bootloader

The design of the bootloader in this thesis is strictly dependent on the target
processor and its properties. The most limiting factor is small memory size.
The processor has only 128 kB of flash memory and 8 kB of SRAM. This affects
the functionalities that the bootloader can have (the goal is to have a small
bootloader to leave space for user application) and also the process of how the
bootloader needs to operate. The second crucial thing is the request for the
bootloader to be robust. This means the bootloader (or the user application)
must not include operations that could potentially corrupt the bootloader (for
example, if the operations failed or were interrupted).

2.1.1 DFU principle

The bootloader created in this thesis will be able to update the user application
only. It will not be possible to update the bootloader on-the-fly, because it

21

2. Design

is not possible to do it safely without using a multilayer bootloader (the first
code that is executed after reset needs to be always fixed).

The new application cannot be pre-downloaded as a whole due to lack
of memory space (external flash is not available at all). Because of this, the
update of the software is done only in the bootloader. If the pre-downloaded
could be done, it could be done while the old app was running. Because it is
not possible, the DFU in bootloader will be done in two steps:

1. Clear the memory (delete the old application)

2. Receive new application part by part and write it to flash on the fly

2.1.2 Program flow

The bootloader could theoretically be built on a scheduler. This may seem
like a good idea at first, that it would be easier to communicate and operate
the flash at the same time, but it is really not necessary. It is even counterpro-
ductive because the bootloader should be as simple as possible to minimize its
memory footprint and to reduce the space for error (as said, the bootloader
will not be updatable on the fly). So the bootloader will work sequentially,
just with the use of interrupts.

2.1.3 Flash memory layout and interrupt vector tables

The flash memory layout that will be used in this thesis is displayed in figure
2.1. The bootloader will be placed at the beginning of the user flash memory.
It is already defined like this in the specification of the processor. There are
two reasons why this was already specified there.

The first one is that the flash controller has a mass erase function with
“protection” of the first N memory sectors (4 kB). This also means that the
bootloader needs to be aligned to sector size and the user application cannot
be placed closer than in the next sector.

The second reason is connected to interrupt vector tables. The bootloader
and the user application will each have their own IVT. This enables the user
to compile the codes separately. It is possible to have multiple IVTs, because
the processor enables the user to specify the address of IVT in mtvec register
at run time. Upon reset of the processor, the value of mtvec is always set to
the beginning of flash memory (0x1000000), so the bootloader IVT has to be
placed there. Once the bootloader is in the stage when the user application
should be started, it sets the mtvec to address of the application IVT and
it jumps to the application’s reset handler. Only these two operations with
mtvec (using value after reset and set upon app start) are sufficient for the
bootloader to work. Analysis, why it not necessary to also have an IVT in
SRAM, is done in section 2.3.

22

2.1. Bootloader

Figure 2.1: Flash memory layout

2.1.4 Bootloader operation scheme

In this section, I will go through bootloader operation design. The first two
paragraphs include a brief overview and the following text includes detailed
description.

The bootloader is always run on reset of the processor. It checks if the DFU
needs to be performed (there was an external request for DFU, or the CRC of
application in memory does not match the control CRC stored in configuration
memory) and if so, the bootloader performs it. After a successful DFU, the
memory includes a valid app and its CRC is stored for future checking to the
configuration memory. Once the memory includes a valid app, the bootloader
can run it.

A standard request for a DFU is made through the user application. If
the user application knows the DFU needs to be performed (e.g. it received
a command to do so), it forwards the information to the bootloader by inval-
idating the CRC in configuration memory, and it resets the processor. After
the reset, the bootloader is started and it thinks the application in memory is
not valid, so it performs the DFU.

Figure 2.2 displays scheme how bootloader is operating. The bootloader is

23

2. Design

started after each reset of the processor. First, it initializes the environment
(“Start bootloader”). Then it checks if there is a valid application in memory.
This will be done by computing its CRC32 and comparing it to value that has
been stored after the last DFU to the configuration flash.

If the CRCs do not match, the bootloader knows that the DFU has to be
performed and it switches to it (“Perform DFU”). The second option how to
trigger the DFU is a DFU request from outside. This is definitely needed in
case when there is a valid app in memory, but it is not able to invalidate the
CRC for any reason (e.g. a bug causing reset before it can do it). However,
this option is project specific and it will need to be implemented based on the
needs of the particular project. It can be, for example, done by sniffing on a
pin or pins for a given amount of time or by checking the NFC interface, if
there is not a message requesting DFU.

If the CRCs match and there was not a request for DFU, the bootloader
starts the application (“Start app”). It is necessary to deinitialize everything
before the application is started because the application performs its own
initialization. Then the bootloader changes the value in mtvec so that it
points to the application interrupt vector table (interrupts should be disabled
at the time). And finally, the bootloader jumps to the reset handler of the
application.

Operation of user application from bootloader point of view is displayed
in figure 2.3. It starts when the bootloader jumps to the application’s re-
set handler (“Start user application”). With this, the application becomes
autonomous. Its startup code initializes everything just as if there was no
bootloader. Apart from normal functionality, the app is expecting that in
future, it will receive a request for DFU. This can be, for example, a request
from mobile via the NFC interface. Once the request is received, the applica-
tion assesses if there are no obstacles, why the DFU cannot be performed at
this moment. If everything is ok, the application can prepare for shutdown by
saving data and such. Once it is ready, it invalidates the CRC value stored
in configuration flash to let the bootloader know DFU needs to be performed,
and it restarts the processor to start the bootloader (“Switch to bootloader”).

2.2 Communication stack

In this section, I will describe the design choices I made while creating the
communication stack between mobile and target processor over NFC, with
the usage of NTAG5 link NFC tag. The communication stack will be used by
the bootloader but also by the user application to unify the communication.
In the bootloader, the main goal of the communication is to transfer data of
the new application (up to 128 kB) to the processor. This will require a large
number of long messages, but also some short control messages. On the other
hand, the application will probably mostly use shorter commands to get status

24

2.2. Communication stack

Figure 2.2: Bootloader operation scheme

Figure 2.3: User application operation scheme from bootloader point of view

25

2. Design

or set some value, but sometimes it may also need to transfer a larger amount
of data sometimes (e.g. log data). Therefore the communication stack will
need to be flexible to support sending short and long messages both ways.

2.2.1 Communication channel

The communication channel between mobile and target processor consists of
two parts.

• NFC part - between mobile and NTAG5 link

• I2C part - between NTAG5 link and target processor

In between these parts, the data will be stored in SRAM of NTAG5 link.
NTAG5 link also supports EEPROM for this job, but it is not suitable for the
purpose of sending a large amount of data. The scheme of the data paths is
displayed in figure 2.4.

Figure 2.4: Scheme of communication channel between mobile and target
processor

2.2.1.1 NTAG5 mode selection

NTAG5 link offers two modes that could possibly be used with SRAM in the
middle: the SRAM mirrored mode and pass-through mode (description of
both of them was done in 1.2.1.5 section). If we only needed to send short
messages, ideally with a fixed length, the mirrored mode would be fine. For
a larger amount of data, it is not ideal because it does not support command
for writing multiple blocks of SRAM memory at once, which greatly reduces
transfer time for this use case.

This command is only supported in Pass-through mode, which is the main
reason why this mode will be used. Another specification of this mode is that
developer needs to control the direction of communication. This setting needs
to be done from I2C side. Once the direction is set, the board automatically
switches interface locks, so only one interface can manipulate the data in
memory. The lock is switched on every interaction with the last block of
SRAM (write or read of this block). This strict arbitration can be used as an

26

2.2. Communication stack

advantage here. Both sides can check the state of the communication anytime,
and they do not need to do any special synchronization.

2.2.1.2 NTAG5 SRAM usage

NTAG5 link has 256 B of SRAM memory divided into 64 blocks (one block
has 4 bytes).

From the NFC side, it is only readable and writable by blocks. Write
SRAM (respectively Read SRAM) command contains a specification of how
many blocks should be read. It is defined by one byte, so it could theoretically
write (respectively read) the whole SRAM. However, the NFC interface of
each device limits the maximal length of a message. For the NTAG5 link, it
is 253 B. The Write SRAM command in selected mode has a 5 B header, so
it leaves 248 B (62 blocks) for data transfer. The Read SRAM command can
return up to 252 B (63 blocks) of data at once.

From the I2C side, it is limited by I2C driver in the target processor, which
can handle only 256 frames per operation. With taking command structure
into account, 255 B can be read and 252 B written at one operation.

It was necessary to choose an address where the mobile and target pro-
cessor should expect the beginning of the message. There were two options
after putting together length limits of read and write commands from both
interfaces:

• start from block 0x02

– 248 B available
– big data writable (readable) with one command (suitable for long

messages)
– messages will not start at the beginning of memory

• start from block 0x00

– 256 B available
– even long messages need 2 commands to be written (read)
– messages will start at the beginning of memory

If we wanted to use the whole SRAM, we would need to always use two read
and write commands from each interface. Unfortunately, the NFC interface
has a quite large overhead for each command. Times measured in initial NFC
speed testing I have done are in table 2.1. The times were measured on the
event detection pin of NTAG5 link. 1

1Because in the final implementation, the exchange between using only 248 B or the
whole 256 B can be done very easily, I was able to measure the difference this choice made
in the end. Results of the measurement are included in chapter “Testing”.

27

2. Design

Table 2.1: Initial NFC write SRAM speed testing with Samsung A21S

Data length Transfer time Transfer speed
4 B 23.6 ms 0.17 B/ms
248 B 137.2 ms 1.81 B/ms
256 B (2*128 B) 155.1 ms 1.65 B/ms

In the implementation, I will use the option with using only 248 B of
NTAG5 link’s SRAM. It enables faster transfer of data and the fact that the
data does not start at the beginning of the memory is not crucial even for
debugging because the memory is not readable directly.

The operations on the last block of SRAM are monitored and they auto-
matically switch the lock between the interfaces. To be able to control the
flow of the data properly, even for long messages, the last memory block will
not be used for transferring data but only for manually controlling the switch.
This will not be used on the NFC side because it would only prolong the time
of the transfer, but from the I2C side, it is needed to be able to switch the
direction of communication safely. Without this feature, the message would
be written till the end of the memory. Right after the processor would read
the whole message, the interface would automatically switch. It would be rec-
ognized by the mobile, which would immediately start to write the next batch
of data without giving the processor opportunity to switch the direction and
respond.

Figure 2.5 shows the diagram of usage of SRAM memory blocks of NTAG5
link.

Figure 2.5: Diagram of usage of NTAG5 link SRAM memory

2.2.2 Messaging system

The task requires to have the possibility to send messages with a variable
length in both directions. The setting of direction needs to be handled by the
target processor. To be able to send messages with a variable length, there
needs to be information about their length in the messages. This can be done

28

2.2. Communication stack

by using the TLV (type-length-value) encoding scheme. The message with this
encoding consists of 3 fields: type, length and value. Type and length fields
have fixed sizes, which need to be set according to the needs and possibilities
of the communication stack. The size of the value field is variable and it is
specified in the length field. Type field holds information about what data is
sent in the value field. The type field can also be thought of as an opcode if
the messages are principally commands.

Given the communication channel, which only supports messages with up
to 244 B, it is sufficient to have the length field of 1 B. After evaluation of
the potential use cases, it will be sufficient to use 1 B for the type field. The
bootloader will consume around 10 opcodes. If there was a use case in the
application where a larger number of opcodes would be needed, it would be
possible to use nested NFC. For the bootloader, it is not necessary and it
would be inefficient due to bigger footprint of needed parser.

The structure of the TLV message is displayed in figure 2.6. The position
of type and length fields at the beginning of the message can be used for more
time efficient communication. It is possible to just read and parse the first two
bytes, from which we have the information about the length of the rest of the
message and then we read just the necessary bytes. This is much better than
reading the whole memory at all times. If an interface has a big overhead for
reading operation, it can be beneficial to read more bytes in the first message
to cover the majority of small messages to avoid the need for a second read.
This is not the case for I2C, but optimization for NFC in the future mobile
application could make a big difference.

Figure 2.6: Structure of TLV messages

For creating the messaging architecture, it is necessary to establish which
device will play what role. In this case, the mobile will be master and the
target processor will behave like a slave. The mobile phone is the initiator
of actions because it is operated by the user (or some other external force).
Also, it will help reduce the power consumption of the processor and the
footprint of the code. It will have a set of commands for reading (writing)
information from (to) the processor and controlling it. The command set will
need to be designed and implemented, so the communication won’t break if it
is interrupted.

29

2. Design

2.3 DFU operation scheme

This section includes the design choices for the actual software update over
NFC. It corresponds to “Perform DFU” part from bootloader operation scheme
displayed in 2.2 figure. In section 2.1.1 I’ve already established the general
idea for DFU. That is that for this processor, it is needed to erase the old ap-
plication first to make room for the new one. After that, the new application
can be received and written to flash.

DFU operation scheme is in 2.7 figure. Apart from the scheme, how it
works, it also includes information, what parts of code will need to be in SRAM
and what parts can stay in flash memory. This decision is for implementation,
where the application data will be sent via NFC, is based on the time analysis
included below. Like this, only parts that directly operate flash memory
(write and erase operations) need to be in SRAM. If another potentially faster
interface was used, this would need to be reevaluated.

The DFU starts with waiting for the initial message that will start the
DFU. Right after that, erase of the whole user flash memory except for boot-
loader sectors will be done (for flash memory, it is always needed to erase the
memory before writing to it). After that, the bootloader will be receiving
data and once it has enough for one flash row, it will write it. This will be
done until the whole application has been received and written. Once it is
done, it is needed to check the CRC of the application, if the data stored in
flash memory correspond to data that has been sent. If the CRC is correct, it
will be stored to configuration flash along with the length of the application,
so in the future, it can be used by the bootloader to verify if there is a valid
application in memory. After a successful DFU, the bootloader will reset the
processor, and the bootloader will be run from the beginning. Using restart
has the advantage of also deinitializing automatically everything that needed
to be initialized for the DFU but needs to be deinitialized before the user app
is started.

The code, that needs to be run, while erase or write operation is happening
in flash memory, needs to be put to SRAM, for the processor not to get stalled
uncontrollably. Any other part can stay in flash memory, which is the preferred
version to save SRAM, even though the user application does not share SRAM
with the bootloader. Times relevant to planning the code memory layout are
summarized in table 2.2. NFC transfer time was measured with Samsung
A21S.

Each of the three parts “Erase memory”, “Write data” and “Write CRC”
needs be in SRAM. They will be built on two part strategy: initiating flash
controller operation and waiting until the operation ends. Both “Erase mem-
ory” and “Write CRC” are only one time operations, so there is no need to
stress over trying to do something else while the operation is running. On
the other hand, for “Write data” it could potentially be beneficial to also be
able to execute other code to speed up the process. The following discussion is

30

2.3. DFU operation scheme

Figure 2.7: DFU operation scheme

Table 2.2: Times of operation needed for time analysis

Operation Time
Memory erase 4-10 ms
Line write 3.5 ms
Transfer of one data batch via NFC (242 B) 135 ms
Transfer of one data batch via I2C (242 B) 8 ms

graphically illustrated in figure 2.8. With knowledge of the communication in-
terface, I know I will be able to send 242 B of data at once. The flash memory
row has 128 B. This means most of the time the “Write data” part will consist
of two write row operations. Once in a while, only one will be ready. Once the
data is received from NTAG5 board it can immediately start receiving data
from the phone without any intervention from the processor. Because of this,
the write of the data to flash and transfer of next data over NFC can be done
simultaneously. The NFC transmission takes a much longer time in oppose
to write times of flash memory. Because of this, there does not need to be
any discussion, whether it would be worth performing the I2C communication
from SRAM to be able to do it in parallel with the flash writing. This also
eases the interrupt handling because interrupts can be disabled in SRAM, so
we do not need new IVT and separate handlers in SRAM.

31

2. Design

Figure 2.8: Data manipulation diagram for time analysis

2.4 Bootloader communication

I already described how the communication channel will look, so the only thing
missing is the list of commands that will be used and how the communication
will look like.

Table 2.3 includes a list of commands that will be exchanged between
the bootloader and the mobile phone. For each command, there is its name,
its description and indication, who will send the message. Even though im-
plementation of user application will not be included in this work, I added
commands for communication regarding firmware update even for application
because it is part of the designed solution.

Any time the two devices come together (NFC connects), the mobile phone
needs to ask the processor for its state. This is needed because the mobile

32

2.4. Bootloader communication

Table 2.3: Command set for bootloader communication

Command Sender Description
GET STATUS M ask processor for status
SEND STATUS P send current status (response to

GET STATUS)
START DFU M tell bootloader to start DFU

(tell application to switch to boot-
loader)

DFU ACK P response to START DFU - accept
or refuse

SEND DFU DATA M send part of new application
SEND CRC M send CRC
CRC ACK P response to SEND CRC
START APP M tell bootloader to start application

after successful DFU
UNKNOWN COMMAND MP last command was not recognized
INVALID COMMAND MP last command was corrupted
CANCEL DFU M tell bootloader to cancel current

DFU
GET VERSION M ask application for its version
SEND VERSION P send version of app (response to

GET VERSION)

phone cannot know if the processor did not restart or change its state from
the last communication. The processor needs to be able to respond to the
“GET STATUS” command with “SEND STATUS” the whole time the NFC
communication is available. This will arrange that the devices can always
synchronize. The content of the value field of the “SEND STATUS” command
may change for each status because sometimes the processor will need to
specify the state in more detail.

The sequence diagram in figure 2.9 shows the communication, regarding
firmware update, between the mobile phone and the applications running on
the target processor. The diagram starts when the mobile get close to the
NTAG5 and the NFC communication starts. A user application is running at
the target processor. The first thing the mobile does, it to ask the processor for
its status (“GET STATUS”). The processor responds with “GET STATUS”
with value indication there is a user application running. The mobile asks the
processor what version of the user application is running (“GET VERSION”)
and the processor responds with “SEND VERSION” command. The mobile

33

2. Design

shows the info to the user, which can choose a new application and click the
“Start DFU” button, after which the mobile sends “START DFU” command
to the processor. In a real case, the mobile application would probably receive
info, that there is a new application available from the server, it would check
the currently present version and offer the user to install the new version
(the user cannot select the application). The user application evaluates if it
can end and it accepts or declines the request (“DFU ACK”). If it can, it
finishes its work, invalidates CRC and resets the processor to switch to the
bootloader. The bootloader recognizes the need for DFU and performs it (the
DFU communication is in a separate diagram). After the DFU is successfully
done, the bootloader starts the new user application.

Figure 2.9: Sequence diagram of communication between mobile and target
processor for bootloader purposes

The DFU communication is displayed in figure 2.10. The communication
starts with the check of the processor’s status, so the mobile can confirm that
the switch between the user application and the bootloader was performed.

34

2.4. Bootloader communication

After that, the mobile initiates the DFU with “START DFU” command,
which includes the length of the new application. If the length is valid, the
bootloader accepts the DFU and starts waiting for the messages with the new
application. The mobile sends chunks of the new application until the whole
application is sent. If the connection is lost and reestablshed again, the mobile
checks the status of the processor. In the middle of the DFU the response from
the processor includes the index of data it expects next. Like this, the devices
do not get desynchronized. After every data chunk is received, the processor
can notify the mobile, if something went wrong (e.g. the battery is low, so
it is not possible to write the flash). Once all the data is sent, the mobile
checks that the processor received all the data, by checking its status. This is
just a failsafe because the devices should always be synchronized. After that,
the mobile sends CRC32 of the application so that the processor can check,
the application in memory is correct. If it is, the processor responds with
“CRC ACK” command, with “CRC OK” value, after which the mobile sends
“START APP”, to which the processor reacts by starting the new application.

The NFC communication includes a CRC16 check in every message, but if
it wouldn’t be enough, it could be a problem, because the error would not be
detected until the end of the long DFU and it would be needed to start from
scratch. Because of this, I originally wanted to add a continuous CRC checking
every few iterations of sending the data. However, I tested the version without
it and no problems were occurring (see chapter 4), so the CRC is sent only at
the end.

35

2. Design

Figure 2.10: Sequence diagram of DFU communication between mobile and
target processor

36

Chapter 3
Implementation

The assignment of this thesis comes from a company. The company requested
for the bootloader to be integrated into a bigger project written in C. Because
of this, some issues were handled differently than if it was a standalone code.
The implementation uses some already implemented modules such as the I2C
driver. Some parts created originally for the bootloader will also be used
elsewhere in the future. The module structure may seem too complex in terms
of the bootloader, but it was necessary to enable reusability and potential easy
switch between external boards or even interfaces for data sending. The code
needs to be well documented and readable. The code was written to meets all
project guidelines.

One of the most crucial aspects of implementation was the very limited
memory space. The internal flash has 128 kB in total and the bootloader
should consume as little as possible to leave space for normal application.
The size of the bootloader needs to be aligned to flash sectors (4 kB). After
the initial assessment, the target size was set to 8 kB.

In this chapter, I will describe the implementation details. First, I will go
through all implemented modules for the target processor. Then I will describe
the implemented mobile application for testing. Then I will introduce the
example user application that is being flashed to the target processor. Then I
discuss the robustness of the solution. And finally, I will go through possible
future extensions of the code.

3.1 Software modules

The implementation is split into modules. Module diagram is displayed in
figure 3.1. Modules with yellow background were implemented in this thesis.
The tlv module was implemented after I designed the communication stack,
but it was done by someone else in the team because it was promptly needed
for other parts of the project.

37

3. Implementation

Figure 3.1: Bootloader modules architecture

All of the modules are discussed later in this chapter, but I include a short
summary to give an overall understanding to the reader.

The ncf link ctrl is module for NFC communication over NTAG5 link
board. It enables the user to read and write data to the board’s SRAM. It
uses I2C interface for the communication, which is why it uses i2C drv.

The nfc tlv interface module allows sending and receiving TVL messages
over the NFC interface. It uses the tlv module for encoding and decoding the
messages, which are transferred using the ncf link ctrl module.

The bootloader dfu module handles interactions with flash memory. It
includes parts that are run from SRAM and precautions connected to it.

The bootloader is the main module. It can start the user application or
perform the DFU. It uses nfc tlv interface for communication with the mobile
phone and bootloader dfu for operating flash memory.

38

3.1. Software modules

3.1.1 NTAG5 controller

NTAG5 controller contains functions for using NFC over NTAG5 link board
with the usage of I2C interface. The module is named nfc link ctrl so that it
is possible to easily exchange the NTAG5 controller for a controller of another
board.

3.1.1.1 Interface

The interface of the module is adjusted to project recommendations for com-
munication modules. Figure 3.2 shows a class diagram of this module.

Figure 3.2: Class UML of nfc link ctrl module

The interface includes the following functions:

• NFCLC init - initialize environment - set pin configuration

• NFCLC set callbacks - set callback functions, that will be used to
notify upper code layers

• NFCLC start - setup environment, so the communication can begin -
configure NTAG5 board and enable interrupts

• NFCLC receive enable - set NTAG5 board to state, where it can
receive data from mobile

• NFCLC receive - read data from NTAG5 board that were previously
written by mobile

• NFCLC send - write data to NTAG5 board

The NFCLC init and NFCLC set callbacks are used only to setup the en-
vironment before the actual communication can start. After the initialization,

39

3. Implementation

the NFCLC start function can be called, which contains the first communica-
tion with the board. The function checks the setting of NTAG5 board. It is
mandatory that the board is set to I2C slave mode and the SRAM is enabled.
These settings can be set only from the mobile phone side. The NFCLC start
function also sets the configuration of the board to pass-though mode with
direction from I2C to NFC. This prevents the mobile from immediately start
writing the flash and instead, it needs to wait until the higher layers of code
decide what direction of communication will be first. Also, it sets event de-
tection (ED) pin to react to NFC field detection.

After everything is set, the actual communication can begin. It is con-
trolled from the upper layer of code and there are two actions (sending and
receiving data) that can be done and each consists of multiple stages. Each
of the actions needs to be finished before another can start.

Sending data is started by calling the function NFCLC send with a pointer
to a data buffer that should be sent. The function transfers the data over I2C
to the board and writes the last data block to let the board know it is all,
and it is the mobile turn to read the data. After the last block is written,
the function returns. Once the data is read from the board by mobile phone,
there is an interrupt on ED pin, which uses the callback, that was set in
NFCLC set callbacks to notify the upper layer of code. With this, the sending
data action is finished and the next sending action can be triggered by calling
NFCLC send again.

Receiving data from the board consists of three parts. The first one is
calling NFCLC receive enable to change the direction of the communication
so that the mobile can write the data to the board. Once the data is written,
there is an interrupt on ED pin, which uses the callback, that was set in
NFCLC set callbacks to notify the upper layer of code. Now the upper layer
can call NFCLC receive to get the data from the board over I2C. The read
can be done in multiple steps, where the next call of the function returns data
from the point where the previous call stopped. In total, it is only possible to
read until the end of SRAM, which is used for data transfer. Theoretically,
the action ends once the interrupt is handled, and it is possible to start the
next action then, but it will not be possible to get to the data once it is done,
so it is necessary to read all the wanted data before starting next action.

3.1.1.2 Internal functions

The module includes internal functions handling communication with NTAG5
board on level of I2C frames. Requirements and principles of this communi-
cation were introduced in chapter 1.2.1.2. Functions nfclc read reg val and
nfclc write reg val handle reading and writing bytes to session registers of the
board. Functions nfclc read sram and nfclc write sram handle reading and
writing data to SRAM from a specified address.

40

3.1. Software modules

All of these functions use a common function nfclc tranceive, which in one
call takes care of one whole operation. All operations first send bytes to the
board and some operations also include receiving data from the board after-
wards. The function takes one input and one output buffer with specification,
how long is the data, that should be sent, and how many bytes should be
received afterwards.

3.1.1.3 Event detection and callbacks

ED pin is used for receiving signals from the NTAG5 board. It is needed,
so the processor does not need to periodically ask for the board’s status (e.g.
field present, data received). This way, I only configure the NTAG5 board
to inform me of the event I am currently interested in, and I configure the
processor to react to the changes on the pin with an interrupt.

The NTAG5 board specifications and example applications recommend
using “I2C to NFC pass-through” and “NFC to I2C pass-through” events for
pass-through mode communication. They notify about interaction on the last
SRAM block, as is needed for pass-through mode synchronization. However,
they are reset when the NFC field is left, which is a problem because it breaks
the synchronization. Instead, I use the ”Arbiter lock” event, which indicates if
the NFC interface is locked. This lock is operated by the board automatically
in pass-through mode and it does not reset when the field is left.

I also implemented an option to use the “NFC field present” event, but in
the end, it is not used in the bootloader.

The module includes a callback mechanism, which enables the module to
notify the upper layers of the code that an event has been detected. It puts
together the interrupts on ED pin with the information, which operation is
being performed at this time to call the proper callback.

3.1.2 NFC TLV interface

Nfc tlv interface module contains functions for using NFC interface for sending
and receiving TLV messages.

3.1.2.1 Interface

The interface includes following functions:

• NFCTLVI init - initialize nfc link ctrl and setup its callbacks

• NFCTLVI start - start nfc link ctrl

• NFCTLVI ask to receive message - use NFCLC receive enable to
enable receive of message from mobile

• NFCTLVI get msg - get TLV message from NTAG5 board

41

3. Implementation

• NFCTLVI send msg - write TLV message to NTAG5 board

Figure 3.3 shows a class diagram of this module.

Figure 3.3: Class UML of nfc tlv interface module

Function NFCTLVI get msg includes two parts. First, the function reads
just the first two bytes from the message. They include the type and length
fields of the TLV. Based on the preloaded length, the function then loads the
rest of the message.

3.1.3 Bootloader

3.1.3.1 Bootloader manager

The bootloader module includes the main control functions of the bootloader.
Figure 3.4 shows a class diagram of bootloader module.

Figure 3.4: Class UML of bootloader module

The reset handler is run first after the reset. It initializes register values to
zero, initializes stack, allocates memory for static variables and zeros it, moves
code from flash to SRAM (only parts that were defined in linker script), moves
initialized data from flash to SRAM. The reset handler than enters the main
function. The reset handler was provided by the MCU manufacturer. I just
added the part that relocates parts of code to SRAM.

Initialization in main function consists of calibrating the MCU, setting up
watchdog and configuring the clock driver.

After the initialization is done, the code checks if DFU should be per-
formed. First, the processor checks if there is a request for DFU from outside.

42

3.1. Software modules

This is temporarily done by checking state of one pin, just as an example. In
the future, this will be modified according to the needs of a specific project.
If the pin is set to 1, the processor starts the DFU, if it is 0, the processor
continues to checking, if there is a valid application in memory.

This is done by comparing the CRC32 of the application which is currently
present in memory to the CRC32 value stored in memory after the last DFU.
Properly the CRC and length of application should be stored in the configu-
ration memory. However, there is a problem, that it is not possible to write
anything there at this moment. It is caused either by a HW bug or there is a
crucial piece of information missing from the MCU specification. Either way,
I am waiting for the fix to be done by the MCU provider. To get around
this, I temporarily stored the information in the last block of standard flash
memory.

Checking validity of the application is done by the following process:

1. Retrieve the supposed length of the application from memory

2. Check if the length is valid (smaller than the maximal length of the
application)

• If not, start DFU

3. Compute CRC32 of memory starting, where the application should start
(beginning of new block right after bootloader), and with length re-
trieved previously

4. Compare the computed CRC with the one store in memory

• If they match, start the application
• If they do not match, start the DFU

Starting the user application consist of three parts:

1. Deinitializing the environment, because the application initializes
everything itself. However, the bootloader does not initialize anything,
that needs to be deinitialized, if the start the application. Some things
are initialized in DFU, but the processor restarts every time after DFU,
so it is not relevant.

2. Moving IVT by writing its address of the user application IVT to
mvtec register.

3. Jumping to the restart handler of the user application - it is at
fixed position as is its IVT (which is arranged in the linker script)

43

3. Implementation

The second and the third point is implemented in boot start app function.
The points are implemented by the following code:

write_csr(RISCV_MTVEC, APP_IVT_ADDRESS)
asm volatile("jal x1, 0%" ::"i"(APP_RESET_HANDLER_ADDRESS))

The DFU process is implemented in boot dfu loop function, which never
returns (the processor resets after the DFU). Its function is described in the
following section.

3.1.3.2 Bootloader DFU - controller

3.1.3.2.1 Loop overview

The DFU loop is built on communication and reacting to the communi-
cation. The loop is infinite and the only way out is resetting the processor,
which is done at the end of a DFU. In every iteration, one complex commu-
nication action is done (viz. 3.1.3.2.2) and then the main controller processes
a received message (if there was any) and it comes up with the next commu-
nication action.

Algorithm 1: DFU loop
Input: Initial communication action, initial state

1 while 1 do
2 Perform communication action
3 Main controller - procces last communication outcome, set next

communication action
4 if Next action is processor reset then
5 Reset processor
6 end
7 end

3.1.3.2.2 Communication controller

The communication controller takes care performing complex communi-
cation actions requested by the main controller loop. One action can consist
of multiple subtasks with rearguard to interactions with NFC. For example,
if the main controller wants to send a message, the communication controller
needs to first start the send operation and then wait until it is done. The
complete list of actions the main controller can ask for is following:

• Send message - Send message and wait, until the mobile reads it

• Ask for message - Enable mobile to send message to NTAG5 board

44

3.1. Software modules

• Receive message - Receive message that NTAG5 got from mobile (needs
to be used right after “Ask for message”)

• Ask for message and receive it - Enable mobile to send message to
NTAG5 board, wait until it gets it and receive it

• Send message and receive message - “Send message” concatenated with
“Ask for message and receive it”

• No action - nothing should be done

Possibilities of communication controller are graphically displayed in figure
3.5. The start points represent actions, which the main controller can request.
The endpoints represent the end of one action, after which the main controller
is asked for next action request.

Even though the existence of complete receive action (“Ask for message
and receive it”) and separate receive action (“Ask for message” and “Receive
message”) may seem redundant. The separate action is needed for receiving
long messages (data of the new app) because it enables the processor to do
something else in the meantime. And the complete action is for any other
case, so the main controller does not need to include dummy states.

Subtasks, which require waiting until the NFC operation is done, are built
on until a callback is run from the interrupt in nfc link ctrl module. The com-
munication controller includes a variable, which is cleared before the commu-
nication, then when the controller needs to wait, it first checks if the variable
isn’t already set. If it is not set, it uses wait for interrupt function to minimize
the power consumption. The bootloader does not check if the NFC field is
currently present. It would have to do it periodically by manually checking
the status of NTAG5. The information would not be useful, and the checking
would only increase the power consumption.

3.1.3.2.3 DFU state controller

The control of DFU is built on a finite state machine (FSM). Diagram of
the FSM is displayed in figure 3.6.

There are two types of states in the FSM:

• Yellow states - react to a received message (it is always needed to
receive a message, when entering this state); the controller stays in a
yellow state, until a specific command is received

• Violet states - “fall through” states - they do to react to anything (if
a message was received when entering this state, it would be discarded
except for “CANCEL DFU” command); the controller automatically
goes to the next state

45

3. Implementation

Figure 3.5: Communication controller - actions

The entry point in the figure corresponds to entering the DFU loop. The
endpoint corresponds to the reset of the processor. If the controller receives a
“CANCEL DFU” command at any time, it resets to the initial state (“WAIT-
ING FOR DFU”). The diagram does not include loops on the yellow states for
better readability. All the yellow states are able to react to “GET STATUS”
command to fulfill the request stated in the design chapter to be able to syn-
chronize the devices at any time.

46

3.1. Software modules

Figure 3.6: DFU controller diagram

3.1.4 Bootloader DFU - flash operations

Module bootloade dfu includes functions, that perform flash memory opera-
tions. All function in this module are relocated to SRAM.

47

3. Implementation

3.1.4.1 Interface

Figure 3.7 shows a class diagram of bootloade dfu module.

Figure 3.7: Class UML of bootloader dfu module

The interface includes following functions:

• BOOTDFU init - initialize the flash driver

• BOOTDFU erase memory - erase memory except for blocks with
bootloader

• BOOTDFU write line - write one line of data to memory

Once the exact cause of the inability to write the configuration flash is
established, a new function will be added to this module to handle the writing
of the configuration flash according to the new specification.

3.1.4.2 Internal functionality

Functions BOOTDFU erase memory and BOOTDFU write line operate on
similar principle. They include a call of flash controller operation and waiting
until the operation is done. Because of this they and every function that is
called from them while the operation is running needs to be put into SRAM
and there can be no reads from flash memory. The interrupts need to be
disabled because the IVT and handlers are in flash memory, but it is sufficient
to disable them inside the function, even if it is in SRAM, because only the
part of code, which is executed between the start and end of the flash memory
operation. The procedure of the functions can be put into following points:

1. Preparatory calculations

2. Interrupt disable

3. Flash memory operation start

4. Wait until the operation is done

48

3.2. Mobile app

5. Interrupt enable

6. Return

Waiting until operation is done is implemented in bootdfu wait until done
function. It uses FLASH wait status function, which busy waits, until the
bit, indicating that operation is done, is set or until the timeout is reached.
The used timeout differs for each operation. I set the timeouts based on the
maximal times for operations from specification, with an additional reserve. I
checked the real times, but these will most probably change when moving from
the emulator, so it will need to be verified again on real HW. If the operation
is not done until the timeout is reached, the code assumes the flash controller
got stuck and resets the processor. This can sound controversial because one
should normally avoid resetting the processor at all costs while the operation
is running, but if the operation does not end, there is nothing else to do.

3.2 Mobile app

To be able to test and benchmark the bootloader, I needed to create a mobile
application. I chose the Android platform because it is easier to develop for
and I lack the devices needed for iOS application development. The applica-
tion is just an example for testing and it will not be used in production. The
application is based on the example application for NTAG5 link from NXP,
which is under Apache license version 2.0.

Most of the reused functionality is present in BaseActivity and MainActiv-
ity, which include basic NFC and UI support. BaseActivity includes functions
for:

• checking if NFC is enabled on the mobile phone

• detecting tag and initializing the communication

• sending commands to the tag

MainActivity adds functions for:

• checking if the tag is configured correctly

• configuring the tag

• logging - not usable

I have created DFUActivity with inspiration from PassThroughActivity,
which was used for demonstrating the pass-through mode of the tag. The
DFUActivity is a child of MainActivity. It handles UI events and also reacts
to newly detected tags. Internally it includes an asynchronous task, which
covers DFU communication and control.

49

3. Implementation

I also needed to add the support of the communication stack I designed
in this thesis. The support for TVL encoding and decoding is included in the
class TLV, that I created. Functions “receiveMessage” and “sendMessage”,
that are located in DFUActivity, are used for sending and receiving TVL
messages from the NTAG5’s SRAM.

The asynchronous task is started once the user selects the application and
click on the “START DFU” button. Behavior in the Asynchronous task is
controlled by a FSM, which is very similar to the one that controls the DFU
in the bootloader. The task is based on an infinite loop, where in every
iteration, it finds out the status of NTAG5 board (the currently set direction
and lock of communication). From this, the task finds out if there is a message
to be read or the memory is opened for writing a new message. Based on this
and the state it is in, it performs the next action. The created communication
corresponds to the one presented in the design chapter. If the tag gets out of
range of the mobile’s field, the task is notified because the next NFC operation
fails. The task just tries to contact the tag periodically until it is successful
and resynchronizes with the processor. This is possible because it is just a
testing app. For a real application, a better solution would be needed.

3.2.1 UI and functionality behind it

The UI of the application consists of three screens. The menu and DFU
screens are displayed in figure 3.8. There is also a screen with user guide how
to operate the application.

In the menu screen, there are links to the two other screens. There is also
a button, which on push executes the long-term setting of the NTAG5 link
board. This setting needs to be done only once.

The DFU screen consists of three parts:

• New firmware: setting the parameters of the DFU (selection of the new
user app binary file, debug option to intentionally send wrong CRC)

• DFU progress: displaying current status of the DFU (progress bar, text
evaluation of progress, indication, if the NFC is connected, total DFU
time, after it finishes)

• Button: for starting and stopping the DFU

3.2.2 Logging and testing

To test the DFU, I needed to add a possibility to run the DFU multiple times
automatically and log the results. Because logging of the communication is
time-consuming, I added this possibility with the use of static final variables,
which behave similarly as conditional compilation in C. Therefore, if I wanted
to test the time consumption of the DFU, it would not be affected by the
logging.

50

3.2. Mobile app

Figure 3.8: Mobile application UI: menu screen (left), DFU screen (right)

The application, to be loaded with the DFU, is selected at runtime from
the mobile application. There is an option to randomize data and in that case,
only the length of the selected application is taken into account. The number
of test iterations can also be specified. Both options, the randomization and
number of iterations, need to be selected in the source code and it cannot be
set directly in the app.

If testing is enabled, the final log is stored in the “/DFU TEST LOGS”
mobile folder. Figure 3.9 shows how the test results may look in the log.

Figure 3.9: Example of testing output in log

51

3. Implementation

3.3 Example user application

The example user application that is being loaded by the bootloader is just for
demonstration purposes. It does not have any special functionality. It only
flashes a LED to be able to see that it is running. Because the integration
of the NFC communication to the user app is out of scope of this thesis, the
invalidation of CRC and reset of the processor is performed on a push of a
button. Discussion of how the NFC could be integrated into the app is done
in section 3.5.1. When compiling the user application, it is needed to link it
for the correct place in memory.

3.4 Robustness discussion

The goal of this thesis was to create a robust bootloader. In this section, I will
go through the identified dangers, and I will describe how they are handled in
the final solution.

3.4.1 Corruption of the bootloader

The first risk is that the bootloader code could get corrupted and the device
would get bricked. This could happen if the bootloader’s code was modified at
runtime, and the processor would reset in the middle of the operation. This is
not a problem in my solution because the bootloader’s code is never modified,
and therefore the processor is always in a stable state for reset in terms of the
bootloader. Also, the bootloader is protected from the mass erase function.

3.4.2 Buggy user application

The second risk is that the user application that has been flashed in the
memory is not working properly, and it cannot trigger the DFU the standard
way. For example, it always resets before it can invalidate the CRC in the
configuration memory. This is taken care of by including the option to trigger
the DFU in the bootloader by a signal from an external source. Without this
option, it would be relatively easy to get the processor to a state when it
cannot update the user application anymore. The form of the external signal
will be dependent on the specific project the MCU will be used in.

3.4.3 Desynchronization of devices during DFU

The third risk is that the mobile phone and the target processor will get
desynchronized during the DFU. There are multiple events, which could cause
this, but the solution must be done from the mobile application side because
it is the master of the communication, and the bootloader does not even know
about the problem.

52

3.4. Robustness discussion

However, the bootloader needs to meet some requirements, so the mobile
phone can solve the situation. The first requirement is that the bootloader’s
DFU controller is implemented so that in every state, it is able to respond
to the “GET STATUS” command, and the responses must be informational
enough. The second requirement is that it has to possible to cancel (reset)
the DFU at any time when the “CANCEL DFU” command is received. If the
bootloader implements those two requirements (which it does), the mobile
phone is able to evaluate the situation and handle it properly.

Note that if the target processor restarts, it loses track of the current
progress of the DFU, and it expects to start from scratch. The same applies
to the mobile application.

List of possible causes of desynchronization and situation resolution:

• The target processor restarts - the NFC connection drops, once
reconnected, the mobile application gets the target processor status,
finds out, that the DFU is not in progress there and the mobile starts
the DFU from scratch

• The mobile phone application restarts - the NFC connection drops,
once reconnected, the mobile application gets the target processor sta-
tus, finds out, that the target processor is in middle of a DFU, so it
sends the “CANCEL DFU” command and that it starts the DFU from
scratch

• The mobile phone stops DFU - the mobile phone does not notify
the target processor immediately and so this situation is transformed
into the “The mobile phone application restarts”, once the user starts
new DFU and it is handled the same way

• NFC gets out of range - after reconnection the mobile phone gets the
status of the target processor, if both devices are still in the middle of a
DFU, the mobile phone starts to send data, from point, which the the
target processor requested; otherwise the situation is the same as one
from above and it is handled the same way

3.4.4 Low battery

The fourth risk is that the voltage gets low and the flash memory cannot
perform erase and write operations. For now, this risk is only hypothetical
because the processor is being emulated. The bootloader detects the low
voltage at first run of a flash operation. Once the bootloader knows about
the problem, it informs the mobile phone about the situation, and the DFU
controller switches to “LOW BATTERY LOOP” state, where it stays, until
“CANCEL DFU” command is received or the processor resets. The user is
informed by the mobile phone about the situation and he is expected to solve
it by changing the battery or charging the device.

53

3. Implementation

3.5 Future extensions

3.5.1 Adaptation to specific project

The code of the bootloader will need to be adapted to the projects it will be
used in.

The first adaptation will need to be done on the implementation of a
request for a DFU from an external source. It enables the bootloader to
update the user application if there is a valid app in memory, but for some
reason, it is not able to invalidate CRC to initiate DFU. The form of the
request is dependent on the needs of the specific project. It could be, for
example, implemented as sniffing on a pin for a certain amount of time after
reset or trying to read a message from NFC.

The second adaptation will be the integration of the bootloader needs
(CRC invalidation) and NFC communication to the real user application.
The application will need to implement a mechanism for receiving requests
to perform DFU and it will have to be able to invalidate the CRC to trigger
it after reset. The communication can be done over the NFC interface that
was developed in this thesis. The only potential modification needed is the
exchange of interrupt-based callbacks for events to be able to better integrate
it into a task in the application. Also, the application needs to be linked for
the correct place in memory.

The third adaptation will be the modification of opcode values (type field
values of TLV messages). This can be done in configuration files. It is needed
to synchronize opcodes from the bootloader and the user application with the
mobile phone application.

3.5.2 Security suggestions

Communication over NFC is not secure. By default, the devices do not au-
thenticate, the data is not encrypted and anyone can eavesdrop on it from a
small distance. It is even a bigger issue for the bootloader because it could
flash a forged application, or someone could get to the binary file of the real
application. This topic will need to be investigated in the future and the risks
taken or adequate contra measures made.

Suggested points for investigation:

• NTAG5 offers AES authentification (not encryption), which could enable
authentication of the mobile phone, so the tag would react only to a
known device

• Possibility to lock some parts on NTAG5’s configuration memory, so it
is not possible to write it from NFC

54

3.5. Future extensions

• Research, if there is a cryptographic library with a very small footprint
so that it would fit in the very limited memory, and it would leave enough
space for the user application

3.5.3 Transfer from emulator

Once the project moves from emulator to the real HW, it will be needed to
retest the whole solution, especially the time consumption and flash memory
behavior. Also the power consumption of the solution the will need to be
measured. There will probably be some modifications needed based on the
results.

55

Chapter 4
Testing

In this chapter, I go through the testing results of the bootloader. First, I
summarize the environment and devices I had available. Then, I describe how
I have tested the functionality and the results of the tests. Then, I introduce
the time measurements and analysis I have performed. Finally, I show the
analysis of the bootloader’s memory consumption. The power consumption
measurement, which was requested in the assignment, cannot be performed
because the processor is emulated on an FPGA.

4.1 Development and testing environment

I used Eclipse IDE for the development and debugging of the bootloader. For
developing the mobile application, I used Android studio. For programming
the code to the flash I used Jlink together with OpenOCD. The configuration
file for OpenOCD was provided by the MCU manufacturer. I used OpenOCD
from Eclipse and from the command line to be able to manually modify and
check the content of the flash memory. For binary file browsing and editing,
I used the HexEditor. For recording digital and analog signals from the pins,
I used a Saleae with the Saleae Logic software (beta version).

I had two Android phones at my disposal for testing the bootloader:

• Samsung A21s (2020)

• Samsung Galaxy A10 (2019)

Both of the phones have Android 10.

4.2 Functionality testing

The testing of functionality was done in two stages. The first one was manual
and the second one automatic.

57

4. Testing

The manual testing was done throughout the development. Among other
things, it was focused on interrupting the communication selected in specific
places, synchronizing the devices (resetting the DFU process on mobile, or
resetting the target processor, etc.), sending invalid CRCs and commands,
invalidating CRC manually with OpenOCD, etc.

The automatic testing was possible because I added testing and logging
feature to the mobile application. This testing included over 900 runs of
the DFU. The tests were run on both available mobile phones. The testing
included sending fixed binaries (real application included) in size of 16 kB and
120 kB (maximal possible length) and random data with the same length. The
tests were made with different distances of the mobile and NTAG. The first
part was done with the devices very close to each other. The second part was
done on a longer distance. And the third part was done with distance on the
edge of the range, so the devices were disconnecting from time to time in the
process.

No failed DFU appeared in the whole automatic testing process (I checked
that if a wrong CRC was sent, that it would be detected correctly). Based
on this, I abandoned the idea that a continuous CRC checking during DFU
would be beneficial because it would only prolong the DFU.

4.3 Time analysis

I used a Saleae with the Saleae Logic software (beta version) for measuring
time consumption. Figure 4.1 shows a recording of a DFU with a 16 kB user
application. We can see both I2C pins, event detection pin recorded as digital
signals, and NFC recording being an analog.

Figure 4.1: DFU recording from a Saleae (16 kB user app)

4.3.1 DFU times

Table 4.1 presents average DFU times of a 120 kB user application. The
times are separate for each phone and for the options, how much of NTAG5’s
SRAM is used. Using only 248 B of SRAM is faster because the mobile phone
only needs one command to write the whole data chunk, and because of it,

58

4.3. Time analysis

I selected it for the final solution. Any other data in the Time analysis section
is measured when using 248 B of SRAM.

Table 4.1: DFU times for a 120 kB user application with using 256 B or 248 B
of NTAG5’s SRAM

Mobile Time (256 B) Time (248 B)
Samsung A21s 79.1 s 73.7 s
Samsung A10 61.9 s 56.6 s

4.3.2 Transition time of one data chunk

In figure 4.2 we can see that the bootloader reacts quickly and nearly imme-
diately starts the I2C transmission after the ED pin is set high. We also see
that there are very long pauses between the NFC transitions. These pauses are
significantly different for each mobile phone, as we can see in figures 4.3 and
4.4. Table 4.2 summarizes the times of the intervals of NFC communication,
that send one data frame.

Figure 4.2: Record of transferring 248 B over NFC with Samsung Galaxy A10

Figure 4.3: Record of transferring 248 B over NFC with Samsung Galaxy A10
- zoom with time measurements

From the table 4.2, we see that the NFC transmissions take exactly the
same time, and the only difference is the pause between the NFC transmis-
sions. Also, the pauses get longer throughout the DFU, which may suggest the
task gets lower and lower priority. Even though the mobile phones are from
the same manufacturer and have the same android version, their behavior is
very different. Anyhow the problem, why the communication takes longer

59

4. Testing

Figure 4.4: Record of transferring 248 B over NFC with Samsung A21s - zoom
with time measurements

Table 4.2: Times of intervals in NFC communication

Mobile Pause Get status Pause Data transition
Samsung A21s 10.3 ms 2.22 ms 50.5 ms 77.13 ms
Samsung A10 9.1 ms 2.22 ms 18.4 ms 77.13 ms

than it could, is on the Android side. It could probably be optimized, but it
is out of scope ot this thesis.

4.3.3 Others

Computation of CRC32 of a 120 kB application in flash memory takes 1.3 s.
Table 4.3 presents times of flash memory operations. It includes maximal

times taken from the specification (Spec time) and the measured values on
the emulator (Real time).

Table 4.3: Times of flash memory operations

Operation Spec time Real time
Mass memory erase 10 ms 5 ms
Line write 3.5 ms 3 ms

4.4 Memory analysis

The bootloader is compiled with “-Os” optimization to minimize the footprint.
Figure 4.5 includes overview of bootloader consumption of flash (on the left)
and SRAM memory (on the right). The chart was created by a script from
the project, which parses elf and object files for information. Table 4.4 shows
information about footprint size of each module bigger than 200 B (the rest
is summed under “others”). If a part of a module is also relocated to SRAM
on start-up, the information about how many bytes is relocated is present in
brackets e.g. “(X relocated)”.

60

4.4. Memory analysis

Figure 4.5: Memory consumption of bootloader

Table 4.4: Flash memory footprint of modules in bootloader

Module Flash footprint [B]
bootloader 1850
gpio drv 1662
nfc link ctrl 1296
i2c drv 828
flash drv 444

(342 relocated)
clock drv 432
bootloader dfu 336

(336 relocated)
nfc tlv interface 262
others 766

total 7978

The bootloader fits into 8 kB of flash memory (2 memory blocks). There
is not much space left at this moment for potential extensions. There are
two possible solutions. The first one is increasing the bootloader space to
12 kB. The second one would be trying to reduce the memory consumption
of the underlying modules that are used in the bootloader. The modules are
implemented for the whole project, so they include code that the bootloader
does not need (most branches are not used), but it cannot be optimized out
because the concrete function is called. I already reduced the footprint of
the underlying modules in this thesis. However, I only focused on the biggest
consumers, so there will still be some room for improvement. The biggest
consumer was gpio drv and especially one function with a large switch-case.

61

4. Testing

By putting most of the cases behind conditional compilation, so it is not
compiled for the bootloader, I managed to free nearly 500 B.

The consumed SRAM consists partly of the code that had to be relocated
to SRAM and partly of static variables. The relocated code consumes at
least 678 B (bootloader dfu + flash drv). The biggest consumers from the
static variables are the data buffers needed for communication with a total of
512 B. The SRAM memory is not shared between the bootloader and the user
application (it is reinitialized in start-up codes), so a bit higher consumption
of the bootloader is not a problem.

62

Conclusion

The goal of this thesis was to create a robust flash memory bootloader for
a proprietary RISC-V microcontroller over NFC, with usage of NTAG5 link
board. The assignment was created by a company. Because of it, the imple-
mentation had to be created inside an existing project, that was still being
worked on. I had to familiarize myself with the project and multiple technolo-
gies, I have never worked with before.

The assignment requested implementing a flash driver in case it was not
already implemented. In the end, the implementation of the flash driver was
provided by the microcontroller manufacturer, but I actively participated in
its testing and debugging. I also had to modify it a little, so I could integrate
it into the project.

As requested, I designed and implemented a communication stack, which
uses the NTAG5 link board. This stack enables communication between the
mobile phone and the target processor via TLV encoded messages.

With the use of the created communication stack and the flash driver, I
designed and implemented the flash bootloader. I focused on the robustness
of the solution and I tried to minimize the memory consumption. The final
bootloader fits into 8 kB of flash memory.

To test the bootloader, I implemented an example Android application.
The application also includes an automatic testing option with logging and a
user guide.

I tested the functionality of the implementation, both manually and auto-
matically. I analyzed the memory footprint of the bootloader and I measured
the time consumption of the firmware update. Finally, I evaluated and docu-
mented all the results. However, I could not measure and document the power
consumption of the realization, because the processor was just emulated on
an FPGA.

Because the target processor was still in development, when I worked on
this thesis, its specification was continuously being updated and some things
were not working properly. Even though this made my work more difficult

63

Conclusion

and sometimes I had to spent more time on seemingly simple things, it was
very exiting to work on a real project, which will be used in the future.

64

Bibliography

[1] NFC for embedded applications [online]. NXP Semiconductors, 2014, [cit.
2021-4-7]. Available from: https://www.nxp.com/docs/en/brochure/7
5017587.pdf

[2] Wang, L.; Chen, X. A Design and Implementation of Bootloader Based
on MPC8280. Applied Mechanics and Materials, volume 668-669, 10 2014:
pp. 592–597, ISSN 1662-7482.

[3] Sha, C.; Lin, Z. Design Optimization and Implementation of Bootloader
in Embedded System Development. In 2015 International Conference on
Computer Science and Applications (CSA), 2015, pp. 151–156, doi:10.1
109/CSA.2015.37.

[4] Bogdan, D.; Bogdan, R.; et al. Design and implementation of a bootloader
in the context of intelligent vehicle systems. 11 2017, pp. 1–5, doi:10.110
9/SusTech.2017.8333509.

[5] Lacamera, D. Embedded Systems Architecture: Explore architectural con-
cepts, pragmatic design patterns, and best practices to produce robust sys-
tems. Birmingham: Packt Publishing, Limited, 2018.

[6] Fan, X. Real-Time Embedded Systems: Design Principles and Engineer-
ing Practices. Cambridge: Elsevier Science & Technology, 2015, ISBN
9780128015070.

[7] Kachman, O. Effective Multiplatform Firmware Update Process for Em-
bedded Low-Power Devices. Information Sciences and Technologies, vol-
ume 11, no. 1, 06 2019: pp. 6–11.

[8] Interrupt Based Bootloader Design For Embedded System Updates. Elec-
tronics for You, 2021.

65

https://www.nxp.com/docs/en/brochure/75017587.pdf
https://www.nxp.com/docs/en/brochure/75017587.pdf

Bibliography

[9] Mansor, H.; Markantonakis, K.; et al. Let’s Get Mobile: Secure FOTA for
Automotive System. In Network and System Security, edited by M. Qiu;
S. Xu; M. Yung; H. Zhang, Cham: Springer International Publishing,
2015, ISBN 978-3-319-25645-0, pp. 503–510.

[10] Kacem, H.; Ben Halima, I. Efficient Implementation of Updating MCU
Using the Firmware on the Air. In Image and Signal Processing, Cham:
Springer International Publishing, 2018, ISBN 978-3-319-94211-7, pp.
176–185.

[11] Coskun, V.; Ok, K.; et al. Near Field Communication (NFC):
From Theory to Practice. Hoboken: Wiley, first edition, 2012, ISBN
9781119971092.

[12] Coskun, V.; Ozdenizci, B.; et al. The Survey on Near Field Communica-
tion. Sensors, volume 15, no. 6, 2015: pp. 13348–13405, ISSN 1424-8220.

[13] TN1216, ST25 NFC guide Rev 2 [online]. STMicroelectronics, 2016, [cit.
2021-4-19]. Available from: https://www.st.com/resource/en/techn
ical note/dm00190233-st25-nfc-guide-stmicroelectronics.pdf

[14] NfcV [online]. [cit. 2021-6-26]. Available from: https://developer.an
droid.com/reference/android/nfc/tech/NfcV

[15] UM10204: I2C-bus specification and user manual Rev. 6 [online]. NXP
Semiconductors, 2014, [cit. 2021-6-22]. Available from: https://www.nx
p.com/docs/en/user-guide/UM10204.pdf

[16] NTAG® 5 link: NFC Forum-compliant I2C bridge for IoT on demand
[online]. NXP Semiconductors, [cit. 2021-3-5]. Available from: https:
//www.nxp.com/products/rfid-nfc/nfc-hf/nfc-tags-for-electr
onics/ntag-5-link-nfc-forum-compliant-ic-bridge-for-iot-on
-demand:NTAG5-LINK

[17] OM2NTx5332: NTAG® 5 development kits [online]. NXP Semiconduc-
tors, [cit. 2021-3-5]. Available from: https://www.nxp.com/products/r
fid-nfc/nfc-hf/nfc-tags-for-electronics/om2ntx5332-ntag-5-
development-kits:OM2NTX5332

[18] NTP53x2: NTAG 5 link - NFC Forum-compliant I2C bridge Rev. 3.3
[online]. NXP Semiconductors, 2020, [cit. 2021-3-15]. Available from: ht
tps://www.nxp.com/docs/en/data-sheet/NTP53x2.pdf

[19] AN12364: NTAG 5 - Bidirectional data exchange Rev. 1.0 [online]. NXP
Semiconductors, 2020, [cit. 2021-3-15]. Available from: https://www.nx
p.com/docs/en/application-note/AN12364.pdf

66

https://www.st.com/resource/en/technical_note/dm00190233-st25-nfc-guide-stmicroelectronics.pdf
https://www.st.com/resource/en/technical_note/dm00190233-st25-nfc-guide-stmicroelectronics.pdf
https://developer.android.com/reference/android/nfc/tech/NfcV
https://developer.android.com/reference/android/nfc/tech/NfcV
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-tags-for-electronics/ntag-5-link-nfc-forum-compliant-ic-bridge-for-iot-on-demand:NTAG5-LINK
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-tags-for-electronics/ntag-5-link-nfc-forum-compliant-ic-bridge-for-iot-on-demand:NTAG5-LINK
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-tags-for-electronics/ntag-5-link-nfc-forum-compliant-ic-bridge-for-iot-on-demand:NTAG5-LINK
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-tags-for-electronics/ntag-5-link-nfc-forum-compliant-ic-bridge-for-iot-on-demand:NTAG5-LINK
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-tags-for-electronics/om2ntx5332-ntag-5-development-kits:OM2NTX5332
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-tags-for-electronics/om2ntx5332-ntag-5-development-kits:OM2NTX5332
https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-tags-for-electronics/om2ntx5332-ntag-5-development-kits:OM2NTX5332
https://www.nxp.com/docs/en/data-sheet/NTP53x2.pdf
https://www.nxp.com/docs/en/data-sheet/NTP53x2.pdf
https://www.nxp.com/docs/en/application-note/AN12364.pdf
https://www.nxp.com/docs/en/application-note/AN12364.pdf

Bibliography

[20] RM00221: NTAG 5 - Android application development Rev. 1.1 [online].
NXP Semiconductors, 2020, [cit. 2021-3-15]. Available from: https://ww
w.nxp.com/docs/en/reference-manual/RM00221.pdf

[21] Internal company document. The company wants to stay anonymous,
2021, [cit. 2021-6-25].

[22] Waterman, A.; Asanović, K. The RISC-V Instruction Set Manual, Vol-
ume I: User-Level ISA, Document Version 2.2. RISC-V Foundation, May
2017. Available from: https://riscv.org/wp-content/uploads/2017/
05/riscv-spec-v2.2.pdf

[23] Internal company document. The company wants to stay anonymous,
2021, [cit. 2021-6-25].

[24] Internal company document. The company wants to stay anonymous,
2021, [cit. 2021-6-25].

[25] Waterman, A.; Asanović, K. “The RISC-V Instruction Set Manual, Vol-
ume II: Privileged Architecture, Document Version 20190608-Priv-MSU-
Ratified. RISC-V Foundation, June 2019.

67

https://www.nxp.com/docs/en/reference-manual/RM00221.pdf
https://www.nxp.com/docs/en/reference-manual/RM00221.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

Appendix A
NTAG5 - Pass-through mode

This appendix includes suggested usage of NTAG5 in Pass-through mode from
the manufacturer. Figure A.1 shows communication with direction from I2C
to NFC. Figure A.2 shows communication with direction from NFC to I2C.

69

A. NTAG5 - Pass-through mode

Figure A.1: Example usage of NTAG5’s Pass-through mode (I2C to NFC) [19]

70

Figure A.2: Example usage of NTAG5’s Pass-through mode (NFC to I2C) [19]

71

Appendix B
Acronyms

DFU Device firmware update

ED Event detection

GPIO General-purpose input/output

HW Hardware

I2C Inter-Integrated Circuit

IoT Internet-of-things

ISA Instruction set architecture

IVT Interrupt vector table

MCU Microcontroller unit

NFC Near field communication

OTA Over-the-air

OTW Over-the-wire

PWM Pulse-width modulation

RAM Random-access memory

SRAM Static random-access memory

73

Appendix C
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

bootloader.....................implementation sources - bootloader
mobile app..............implementation sources - mobile application
thesis..............the directory of LATEX source codes of the thesis
doc...................................documentation of source code

videos...videos of the DFU
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

75

	Introduction
	Analysis
	Technologies and principles
	Bootloader
	Bootloader stages
	Memory layout
	Communication interface

	NFC
	Tag 5 type

	I2C brief summary

	Given Hardware
	NTAG5 link
	NFC interface
	I2C interface
	NTAG5 configuration
	Event detection pin
	NTAG5 link communication modes
	Example applications

	Target processor
	RISC-V ISA
	Flash memory
	Flash driver
	I2C driver
	Interrupts

	Design
	Bootloader
	DFU principle
	Program flow
	Flash memory layout and interrupt vector tables
	Bootloader operation scheme

	Communication stack
	Communication channel
	NTAG5 mode selection
	NTAG5 SRAM usage

	Messaging system

	DFU operation scheme
	Bootloader communication

	Implementation
	Software modules
	NTAG5 controller
	Interface
	Internal functions
	Event detection and callbacks

	NFC TLV interface
	Interface

	Bootloader
	Bootloader manager
	Bootloader DFU - controller

	Bootloader DFU - flash operations
	Interface
	Internal functionality

	Mobile app
	UI and functionality behind it
	Logging and testing

	Example user application
	Robustness discussion
	Corruption of the bootloader
	Buggy user application
	Desynchronization of devices during DFU
	Low battery

	Future extensions
	Adaptation to specific project
	Security suggestions
	Transfer from emulator

	Testing
	Development and testing environment
	Functionality testing
	Time analysis
	DFU times
	Transition time of one data chunk
	Others

	Memory analysis

	Conclusion
	Bibliography
	NTAG5 - Pass-through mode
	Acronyms
	Contents of enclosed CD

