
Instructions

Research current state-of-the-art techniques that are used for detection and segmentation tasks in

the medical imaging domain, and focus on X-Ray images. Implement one or more models that will

work on open COVID-19 datasets available online. Compare their performance and focus on

preprocessing data in order to achieve the best accuracy with chosen models. Discuss the pros and

cons of the various preprocessing approaches. Publish your prototype code and make sure your

results are reproducible.

Electronically approved by Ing. Karel Klouda, Ph.D. on 11 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Preprocessing of X-Ray images for COVID-19 detection Neural Networks

Student: Tomáš Kořistka

Supervisor: Ing. Jakub Žitný

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023

Bachelor thesis

PREPROCESSING OF X-RAY
IMAGES FOR COVID-19 DE-
TECTION NEURAL NETWORKS

Tomáš Kořistka

Faculty of information technology CTU in Prague
Department of Applied Mathematics
Supervisor: Ing. Jakub Žitný
June 21, 2021

Czech Technical University in Prague
Faculty of information technology CTU in Prague
© 2021 Tomáš Kořistka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Reference to this thesis: Tomáš Kořistka. Preprocessing of X-Ray images for COVID-19 detection Neural
Networks. Bachelor thesis. Czech Technical University in Prague, 2021.

Contents

Acknowledgment ix

Declaration x

Abstract xi

Summary xii

List of abbreviations xiii

1 Preliminaries 3
1.1 Game theory . 3
1.2 Machine Learning . 4

1.2.1 Supervised learning . 5
1.2.2 Unsupervised learning . 5
1.2.3 Deep learning . 5

2 Generative adversarial networks 7
2.1 GAN . 7
2.2 GAN metrics . 9

2.2.1 Inception score . 10
2.2.2 Fréchet inception distance . 10

2.3 Variants . 10
2.3.1 Wasserstein GAN . 10
2.3.2 Conditional GAN . 12
2.3.3 Deep convolutional GAN . 12

2.4 Variational Autoencoder . 12

3 Medical imaging 15
3.1 The quality dilemma . 16
3.2 The quantity conundrum . 16
3.3 State of the art . 18

3.3.1 Reconstruction . 18
3.3.2 Synthesis . 19
3.3.3 Translation . 20
3.3.4 Segmentation . 21

4 Implementation 23
4.1 Technologies . 23
4.2 Data . 24

4.2.1 Dataset issues . 24
4.2.2 Data distribution . 26
4.2.3 Augmentation . 28

4.3 Generation . 29

iii

iv Contents

4.3.1 Training parameters . 29
4.3.2 GAN . 30
4.3.3 WGAN . 31
4.3.4 WGAN-GP . 32
4.3.5 CGAN . 32
4.3.6 DCGAN . 33
4.3.7 VAE . 33

4.4 Classification . 34
4.4.1 DeepCovid . 34
4.4.2 Generic classifier network . 35

4.5 Experiments . 35
4.5.1 Classifiers . 35
4.5.2 GAN . 37
4.5.3 CGAN . 37
4.5.4 WGAN . 39
4.5.5 DCGAN . 39
4.5.6 Second wind . 42

5 Conclusion 45

A GAN evaluation metrics 47

B CovidNet datasets 49

Contents of an attached medium 59

List of Figures

2.1 GAN schema Korkinof et al. 2019 . 8
2.2 Cumulative number of named GAN papers by month. Data source: Hindupur 2017 9
2.3 Single strided convolution of a 2× 2 input with a 4× 4 filter. Source: Dumoulin

and Visin 2016. 12
2.4 Fractionally strided convolution of a 3 × 3 input with stride size of 0.5. Source:

Dumoulin and Visin 2016. 12
2.5 Autoencoder general architecture. The input and output layers are identical in

size, and the hidden layers (code) derive the latent representation of the data.
Source: Stewart 2019. 13

3.1 Comparison of chest radiographs at different image resolutions for patient 103
(60-year-old man with a thoracic mass). The mass finding is visible in all images
but with visually observable improved clarity in the higher resolution examples
(bottom row). Source: Sabottke and Spieler 2020. 17

3.2 Distribution of the GAN-based models utilised in medical imaging. Note that
this examines the medical imaging domain as a whole, and as such is not telling
of individual sub-domains (such as image synthesis or translation). Data source:
composite of Yi, Walia, and Babyn 2019 and Singh and Raza 2020. 18

3.3 Distribution of GAN models in different domains. Entries containing an arrow
depict a translation from a domain to another domain. Data source: composite
of Yi, Walia, and Babyn 2019 and Singh and Raza 2020. 19

4.1 Dataset’s height distribution. 27
4.2 Dataset’s width distribution. 27
4.3 Original dataset’s mode type (channel) distribution. ’Greyscale’ and ’Palletised’

are single channel formats, where ’Palletised’ is a colour image width in single
channel instead of three. 27

4.4 Sample of positive cases . 28
4.5 Results of image augmentation with parameter values: rotation range = 30 ,

zoom range = 0.15 , width shift range = 0.2 , height shift range = 0.2 ,
shear range = 0.15 , horizontal flip = True , fill mode = ’nearest’ . . 29

4.6 Results of image augmentation with parameter values: rotation range = 15 ,
zoom range = 0.15 , width shift range = 0.1 , height shift range = 0.1 ,
shear range = 0.15 , horizontal flip = True , fill mode = ’nearest’ . . 29

4.7 GAN generator with three blocks of layers in the hidden layer, utilising leaky
ReLUs and batch normalisation. 30

4.8 GAN discriminator with a hidden layer of two blocks and a single neuron output
layer. 31

4.9 WGAN generator with two hidden layers and batch normalisation. 31
4.10 WGAN critic with three hidden convolutional layers. 31
4.11 WGAN-GP generator. 32
4.12 WGAN-GP critic. 32
4.13 CGAN generator. 32

v

vi List of Figures

4.14 CGAN discriminator. 33
4.15 DCGAN generator with a single block. 33
4.16 DCGAN discriminator with a single block . 33
4.17 VAE encoder . 34
4.18 VAE decoder . 34
4.19 ResNet architecture, with skip connections. Source: Ramzan et al. 2019. 34
4.20 Convolutional neural network classifier. Source: Kulkarni, Walimbe, and Mundhe

2019. 35
4.21 Confusion matrix of ResNet-18 with the provided test set. 36
4.22 Confusion matrix of ResNet-18 on a balanced test set. 36
4.23 Accuracy of the Deep covid models during their training. The red line tracks the

training on a larger training dataset, whilst the green line tracks training on the
original dataset. 36

4.24 FID of GAN models. The orange and pink curves are of models trained on the
augmented dataset, whilst the green and red are trained on the regular dataset.
Further, the orange and red curves are trained to generate images with dimensions
64× 64, and the green and pink with dimensions 256× 256. 37

4.25 GAN results after 10000 epochs on the augmented dataset with images of size
64× 64. 38

4.26 GAN results after 10000 epochs on the augmented dataset with images of size
256× 256. 38

4.27 GAN results after 10000 epochs on the normal dataset with images of size 64× 64. 38
4.28 GAN results after 10000 epochs on the normal dataset with images of size 256×256. 38
4.29 FID of conditional GAN models. The cyan and orange models produce 64 ×

64images, the first of which was trained on the regular dataset, and the latter
on the augmented dataset. The complementing datasets generate images with
dimensions 256× 256, where the peach and brown-grey curves correspond to the
original dataset and the augmented dataset, respectively. 39

4.30 FID of WGAN models. The lime and brown-grey models represent training runs
on the normal dataset, with image dimensions of 256×256and 64×64, respetively.
The other two, purple and green, represent runs on the augmented dataset, again,
with dimensions 256× 256and 64× 64. 40

4.31 FID of WGAN models with a gradient penalty loss. The crimson and yellow curves
depict the FID during training on the normal dataset with image dimensions
64 × 64and 256 × 256successively, magenta and pink follow the same dimensions
on the augmented dataset. 40

4.32 Wasserstein GAN results after 10000 epochs on the augmented dataset with images
of size 64× 64. 40

4.33 Wasserstein GAN results after 10000 epochs on the augmented dataset with images
of size 256× 256. 41

4.34 Wasserstein GAN results after 10000 epochs on the normal dataset with images
of size 64× 64. 41

4.35 Wasserstein GAN results after 10000 epochs on the normal dataset with images
of size 256× 256. 41

4.36 Wasserstein GAN with gradient penalty results after 10000 epochs on the aug-
mented dataset with images of size 64× 64. 41

4.37 Wasserstein GAN with gradient penalty results after 10000 epochs on the aug-
mented dataset with images of size 256× 256. 41

4.38 Wasserstein GAN with gradient penalty results after 10000 epochs on the normal
dataset with images of size 64× 64. 41

4.39 DCGAN results after 10000 epochs on the normal dataset with images of size
256× 256. 42

4.40 FID of DCGAN models. The quick convergence is alarming. The purple and blue
lines track training with 256 × 256and 64 × 64, respectively, on the augmented
dataset. The gray and brown lines then track training on the regular dataset,
with 64× 64and 256× 256. 42

4.41 DCGAN results after 10000 epochs on the augmented dataset with images of size
64× 64. 42

4.42 DCGAN results after 10000 epochs on the augmented dataset with images of size
256× 256. 43

4.43 DCGAN results after 10000 epochs on the normal dataset with images of size 64×64. 43
4.44 Wasserstein GAN with gradient penalty results after 10000 epochs on the normal

dataset with images of size 256× 256. 43
4.45 Conditional GAN results after 10000 epochs on the augmented dataset with images

of size 64× 64. 43
4.46 Conditional GAN results after 10000 epochs on the augmented dataset with images

of size 256× 256. 43
4.47 Conditional GAN results after 10000 epochs on the regular dataset with images

of size 64× 64. 43
4.48 Conditional GAN results after 10000 epochs on the normal dataset with images

of size 256× 256. 44
4.49 Images generated at earlier stages of the training. From left to right, they are as

following: Wasserstein GAN with gradient penalty at 3000th epoch, Deep Convo-
luted GAN at 2000th epoch and Wasserstein GAN at 4500th epoch. 44

4.50 Confusion matrix of the DeepCovid classifier with the original covid data supple-
mented by data generated by a GAN model. 44

List of Tables

4.1 Examples of unbroken and broken data entries. The broken entries have a value
in the err column. 25

4.2 Fixed dataset example . 26
4.3 Number of positive and negative cases for the training and testing sets of Wang,

Lin, and Wong 2020 . 26
4.4 Class and set distribution of images used by the DeepCovid’s (Minaee et al. 2020)

ResNet network. 35
4.5 Fixed dataset example . 37

List of code listing

4.1 Tensorflow version change in Google Colab from the default 2.0 to 1.0 for legacy
code. 23

vii

https://colab.research.google.com

viii List of code listing

4.2 Manual configuration of the Weights and Biases listener with hyperparameters of
a vanilla GAN model. 23

4.3 Manual logging during the training process of a vanilla GAN model. Logged
variables were replaced with elipsis’ to simplify the snippet. 24

4.4 Dataset fixing . 25
4.5 Declaration of the training function for the GAN models. 30
4.6 Wasserstein loss function. 31

https://wandb.ai/home

I would like to heartily thank my family and friends for supporting
me during my studies. I want to also thank my supervisor for his
expertise and guidance, as well as persons working on the front line
against the global pandemic.

ix

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague, mm dd yyyy .

x

Abstrakt

Tato práce se věnuje nedostatečnému množstv́ı dat v doméně zobrazovaćıch metod v lékařstv́ı
ve vztahu k viru covid-19, které má za dopad nedostatečně kvalitńı klasifikaci př́ıtomnosti to-
hoto onemocněńı. Hlavńım ćılem je generováńı a porovnáváńı rentgenových sńımk̊u lidských
plic. Práce zkoumá zp̊usoby jak vyřešit problém malého množstv́ı sńımk̊u pozitivńıch př́ıpad̊u
patologie covid-19 použit́ım , vyhodnocováńım a porovnáváńım rozličných generativńıch model̊u
za ćılem vytvářeńı věrohodných obrázk̊u vysoké kvality použitelných ve strojovém učeńı.

Práce srovnává modely z rodiny generativńıch adversariálńıch śıt́ı a vyhodnocuje vliv použit́ı
takto vygenerovaných obrázk̊u na trénovańı klasifikačńıch neuronových śıt́ı.

Práce si dává za ćıl pośılit existuj́ıćı klasifikačńı algoritmy k lepš́ımu určováńı infekce virem
covid-19 na základě rentgenových sńımk̊u plic.

Kĺıčová slova strojové učeńı, hluboké učeńı, neuronové śıtě, GAN, konvolučńı neuronové
śıtě, COVID-19, klasifikace rentgenových sńımk̊u, zobrazovaćı metody v lékařstv́ı

Abstract

This thesis deals with the insufficient volume of data in the domain of medical imaging related
to the covid-19 virus, which hinders proper classification of this severe illness. The main focus
is generation and comparison of X-ray images of human lungs. It explores ways to tackle the
issue of small number of positive cases in the pathology of covid-19, by utilising, evaluating and
comparing different generative models to increase the number of high quality and credible images
usable in machine learning algorithms.

It compares models of the generative adversarial network family and assesses the impact of
using images generated in this manner on the training of classification neural networks.

The thesis is aiming to bolster existing classification algorithms to perform better in deter-
mining covid-19 infection based on lung X-ray images.

Keywords Machine learning, Deep learning, neural networks, GAN, convolutional neural
networks, COVID-19, X-rays classification, medical imaging

xi

Summary

Motivation

Covid-19 is a highly contagious disease caused
by the SARS-CoV-2 virus. Since patient zero in
Wuhan, China in 2019, the disease has plunged
the entire world into a health pandemic, disrupt-
ing the normal flow of life and costing millions
of life worldwide. I have chosen this thesis as
I saw the potential of its practical application,
wanted to attain experience within deep learning
and computer vision, as well as the possibility of
contribution to the medical domain.

Goals

The goal of the thesis is to research state-of-the
art techniques in medical imaging, and to pro-
vide a way to enhance existing classification algo-
rithms by supplying credible data, boosting their
performance by reducing the data disparity be-
tween positive and negative cases. Further, pro-
viding credible artificial data resolves the issue
of medical privacy, ever present in the domain of
machine learning in the medical domain.

Method

Existing classification networks were used, as
well as a simple out-of-the-box CNN for the final
classification. Various generative adversarial net-
work models were used (such as the vanilla GAN,
Wasserstein GAN or Deep convolutional GAN),
a variational autoencoder and plain augmenta-
tion, which was also utilised in tandem with the

aforementioned networks. Metrics, specifically
Fréchet inception distance and Inception score
were used to compare the individual models were
used to compare the models. Models are imple-
mented based on their respective papers, edited
and customised to fit task-specific needs. The
best performing model was incorporated into a
classifier’s training to evaluate its benefit.

Results

Out of the many models that were examined, im-
plemented and their results compared and inter-
preted, the best performing one’s generated data
was used in conjunction with existing datasets
to train a classifier network without hindering
its performance, with accuracy of 93 % with no
false negatives.

Structure

This thesis consists of 5 major parts. The
first chapter establishes a baseline knowledge of
terms and knowledge of game theory and ma-
chine learning. The second delves into generative
adversarial networks and their many offshoots,
which are the bulk of this thesis, followed by a
dive into their foothold in the domain of medical
imaging in the third chapter. Following is the
description of implemented models and data op-
erations in chapter 4. The entire thesis is then
concisely summed in last, fifth chapter.

xii

List of abbreviations

GDPR General data protection regulation
GAN Generative adversarial network

CGAN Conditional generative adversarial network
WGAN Wasserstein generative adversarial network

DCGAN Deep convoluted generative adversarial network
PGGAN Progressive growing generative adversarial network

LAPGAN Laplacian Pyramid generative adversarial network
IS Inception score

FID Fréchet inception distance
EMD Earth mover’s distance
ReLu Rectified linear unit
CNN Convolutional neural network
FCN Fully convolutional network

xiii

1

Chapter 1

Preliminaries

1.1 Game theory
Mathematical game theory, is a study of mathematical models, denoting a multi-agent environ-
ment, where agents’ actions impact each other, regardless of whether the agents are cooperative
or competitive (Russell and Norvig 2002). Game theory studies how rational, self-interested
agents interact in a shared environment. Their outcomes affect the other agents within the en-
vironment (either directly, or by influencing the shared environment). Agent is any system that
satisfies the following (Wooldridge and Jennings 1995):

The system operates without direct intervention of humans. (Autonomy)

The system perceives its environment and responds to it. (Reactivity)

The system interacts with other agents. (Sociability)

The system is actively working towards achieving its goals. (Proactivity)

I Definition 1.1 (Constant-sum game (Borovicka 2013)). Let G = (N ,A, u) be a game in
normal form, then G is a constant-sum game if

∃c ∈ R : ∀a ∈ A :
n∑
i=1

ui(a) = c.

A special case of a constant-sum game is the zero-sum game, where c = 0, i.e.

∀a ∈ A :
n∑
i=1

ui(a) = 0.

I Definition 1.2 (Game in extensive form (Borovicka 2013)). A game in extensive form for n
players is a tuple (N ,A, H, T, χ, ρ, σ, u), such as:

N = (N1, N2, ..., Nn) is a set of players,

A is a set of possible actions,

H is a set of decision nodes,

T is a set of terminal nodes, such that H ∩ T = ∅,

3

4 Chapter 1. Preliminaries

χ : H → 2A assigns a set of possible actions to each node,

ρ : H → N assigns to each non-terminal node a player on turn,

σ : H ×A → H ∪ T ,

u = (u1, u2, ..., un), ui : T → R is a utility function of player Ni in terminal nodes.

I Definition 1.3 (Two player zero-sum game (Borovicka 2013)). Two player zero-sum in ex-
tensive form is a game (N ,A, H, T, χ, ρ, σ, u) where

1. | N |= 2,

2. u = (u1, u2),

3. ∀t ∈ T : u1(t) + u2(t) = 0.

I Definition 1.4 (Best response(Borovicka 2013)). Given a game in normal form (N ,A, u),
and an action profile a = (aN1 , aN2 , ..., aNn)), let

a\i = (aN1 , ..., aNi−1 , aNi+1 , ..., aNn ,)

be an action profile consisting of actions of all players but Ni. Then

BR(a\i) = arg max
âNi inAi

ui((aN1 , ..., aNi−1 , âNi , aNi+1 , ..., aNn))

is the best response action of player Ni.

Best response of a player to a given set of actions taken by other players is the action that
maximises that given action profile. This is mostly used to determine the best course of action
in a game of limited visibility, where players choose actions independently from each other.

I Definition 1.5 (Nash Equilibrium (Mesquita 2016)). Considering a game in normal form
(N ,A, u) and an action profile a = (aN1 , aN2 , ..., aNn)), a is a Nash Equilibrium if

∀i ∈ (1, 2, ..., n) : aNi ∈ BR(a−i).

In layman’s terms, a Nash equilibrium is such an action profile, in which the action of each
player is the best response. When players are in equilibrium, they will not change their action.
It is possible for multiple such equilibria to exist.

1.2 Machine Learning

Machine learning is a discipline of artificial intelligence that has been gaining momentum in recent
years and doesn’t show signs of stopping. They key feature of machine learning is adapting and
modeling new data without need of explicit programming, i.e. the programme creates and adapts
its model(s) of its own volition. Whilst machine learning algorithms require large quantities of
data and a fair bit of computational power, they can provide state of the art results and, as
mentioned before, do not require a human intervention to adapt to new data. As such, they can
continuously learn on their own, as more data becomes available. Machine learning algorithms
comprises supervised and unsupervised learning1.

1Not to be confused with the current educational tendencies.

1.2. Machine Learning 5

1.2.1 Supervised learning
Supervised learning consists of inferring a mapping function of a set of inputs (a vector of features)
to an output label (a supervisory signal). The model is trained on dataset of examples, and the
model’s performance and accuracy can be easily determined by comparing acquired results with
expected values. Supervised learning can be further split into classification and regression, based
on the nature of the supervisory signal2 (Alzubi, Nayyar, and Kumar 2018).

1.2.2 Unsupervised learning
Compared to supervised learning, unsupervised learning lacks a clue as of what it is trying to
achieve. Instead of finding a formula for predicting an output (label) based on data inputs
(features), unsupervised machine learning aims to understand the structure, hidden patterns
and data grouping (Education 2020). Clustering (cluster analysis) and anomaly detection are
the most common representatives of this domain.

1.2.3 Deep learning
Deep learning is a branch of machine learning dealing with artificial neural networks. As most
sources state, neural networks take their inspiration from the organic nervous system, and as
such the computation cells (neurons) are connected by their synapses (inputs and outputs) that
fire (represented by the output function) when their potential reaches a specific value (bias or
threshold). It is important to note that deep learning can be both supervised and unsupervised.

1.2.3.1 Artificial neuron

Artificial neuron is a mathematical function consisting of a number of weights w = (w1, ..., wn)T ,
inputs x = (x1, ..., xn)T , a bias value x0, for which w0 = 1, an inner potential function ξ and an
activation function f(ξ). The set of weights of the neuron are the component which can learn
in the model. Although the inner potential is almost always a sum of the weighted inputs, there
are alternatives, as described by Klaus Debes 2005. The activation function for a neuron in a
non-output layer is usually one of the following:

Sigmoid: f(ξ) = 1
1+e−ξ (Weisstein 2021c)

Rectified linear unit: f(ξ) = max (0, ξ) =
{
ξ ifξ ≥ 0,
0 otherwise

(Vasata and Cepek 2020)

Leaky rectified linear unit: f(ξ) =
{
ξ ifξ ≥ 0,
ξ ∗ α otherwise

(Maas, Hannun, and Ng 2013)

Hyperbolic tangent: f(ξ) = tanh(ξ) = eξ−e−ξ

eξ+e−ξ (Weisstein 2021b),

whilst the output layer’s function is dependent on the task:

Regression: f(ξ) = ξ

Classification to c classes3 (Vasata and Cepek 2020): The output layer is composed of c
neurons, each predicting the probability of the given class. The activation function of the

2For classification, the supervisory signal is a discrete value (i.e. the possible values are finite) and for regression
the signal is a continuous value.

3Special case c = 2 is called a binary classification.

6 Chapter 1. Preliminaries

i-th neuron (with inner potential ξi) is a softmax function and represents the probability of
ξ belonging to class i:

fi(ξ) = eξi

eξ1 + ...+ eξc
= P̂ (Y = i | X = x).

Altogether the prediction for a vector of inputs x is as follows:

Ŷ = arg max
i∈1,...,c

P̂ (Y = i | X = x).

1.2.3.2 Artificial neural network
Neural networks weave individual neurons together into layers, which in turn are structured into
a large, interconnected network in sequence. Each layer takes its inputs from the previous layer
4, and symmetrically feeds its outputs to the next layer5.

Neural networks operate in two fashions - the forward and backward pass. The forward pass
is the sequential calculation from inputs of the first layer to the output of the last layer, given
the weights of each individual neuron. Working in the opposite direction, the backward pass
calculates the error of the forward pass. The forward pass is utilised to train and predict results
based on the provided inputs, as opposed to the backward pass, which is not utilised during
training only.

For a given neuron, the weights are adjusted followingly (Vasata and Cepek 2020):

error = Y − Ŷ

wi ← wi + error ∗ xi
w0 ← w0 + error,

where Ŷ is the neuron’s prediction, Y the actual value, (x1, x2, ...xn) input values, (w1, w2, ..., wn)
weights.

4Except for the very first layer, which processes the provided input data instead.
5Again, the last layer is an exception, and provides the result of the network to the user instead.

Chapter 2

Generative adversarial networks

2.1 GAN

Generative adversarial networks are an up and coming machine learning technique. They were
first proposed by Goodfellow et al. 2014. To tackle the common issues of deep adversarial
networks, a two agent model is introduced. These two agents, a generator and a discriminator,
are pitted against each other in a non-cooperative game.

While the discriminator is aiming at perfectly telling apart real and fake (generated, synthetic)
data, the generator’s goal is to generate data such that the discriminator cannot distinguish it
from real data. The two players are most usually (also described as such in the original paper)
multi-layer perceptron.

Formally put, to learn the generator’s distribution pg over data x, we define a prior on
input noise variables pz(z), then represent a mapping to data space as G(z; θg), where G is a
differentiable function represented by a multi-layer perceptron with parameters θg (Goodfellow
et al. 2014). The discriminator D(x; θd) outputs a single scalar, where D(x) is the probability
that x comes from the data rather than being the output of a generator.

The utility of the generator and discriminator is to minimize log(1−D(G(z))) and to max-
imize the probability of correctly labeling (distinguishing) real and fake data, i.e. log(D(x)),
respectively. Summarised, D and G play the following two-player minimax game with value
function1 (Goodfellow et al. 2014):

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))].

Training then consists of a gradient descent of both networks. Goodfellow et al. 2014 used

1This is also referred to as the adversarial loss function.

7

8 Chapter 2. Generative adversarial networks

Figure 2.1 GAN schema Korkinof et al. 2019

k = 1 for their experiments.
Algorithm 1: Mini-batch stochastic gradient descent training of generative adversarial
nets. The number of steps to apply to the discriminator, k, is a hyper-parameter.

for number of steps do
for k steps do

Sample mini-batch of m noise samples (z(1), z(2), ..., z(m)) from noise prior pg(z).
Sample mini-batch of m examples (x(1), x(2), ..., x(m)) from data generating
distribution pdata(x).

Update the discriminator by ascending its stochastic gradient:

∇θd
1
m

m∑
i=1

[logD(x(i)) + log (1−D(G(z(i))))].

end
Sample mini-batch of m noise samples (z(1), z(2), ..., z(m)) from noise prior pg(z).
Update the generator by descending its stochastic gradient:

∇θg
1
m

m∑
i=1

log (1−D(G(z(i)))).

end

The entire pipeline of a GAN model can be depicted by 2.1. Noise is drawn from the Z
distribution, fed to the generator, which generates data Xfake. The discriminator is provided
with both real data Xreal and generated Xfake and attempts to distinguish between them. This
process is laced with descents of individual networks, as mentioned by algorithm 1.

Per game theory, the entire model, composed of aforementioned two players playing a zero-
sum game, converges when the discriminator D and generator G reach a Nash equilibrium, which
might not exist (Farnia and Ozdaglar 2020), i.e. the model fails to converge (Salimans et al.
2016).

The main disadvantages of this approach are the need of synchronisation between the gen-
erator and discriminator, otherwise the likelihood of mode collapse – scenario, where too many
values of z collapse to the same x, resulting in insufficient diversity and modality of generated
data.

Another main problem that has not been resolved is the instability of model training.
The intuitive use of gradient descent to minimise each player’s respective cost function results

in many games not converging, and a range of heuristics have been proposed (by Salimans et al.
2016), such as feature matching, mini-batch discrimination or historical averaging.

2.2. GAN metrics 9

Since its inception in 2014, the number of GAN variation has grown steeply, as depicted by
2.2, from general architectures, such as DCGAN (Radford, Metz, and Chintala 2016) or WGAN
(Arjovsky, Chintala, and Bottou 2017), architectures translating data between two domains,
such as pix2pix (Isola et al. 2018), CycleGAN (Zhu et al. 2020), to specialised ones like MedGAN
(Armanious et al. 2020).

2014 2015 2016 2017 2018

Year

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440
460
480
500

T
o
ta

l
n
u
m

b
e
r

o
f

p
a
p

e
rs

Cumulative number of named GAN papers by month

Figure 2.2 Cumulative number of named GAN papers by month. Data source: Hindupur 2017

2.2 GAN metrics

To evaluate the quality and potential application of a model as a whole, a wide range of metrics
can be calculated. Whilst the individual player’s utility function do provide information of their
performance (such as loss or accuracy), they provide that information in the context of their
adversary, they do not offer an objective view on the generated data - its variety, quality or
even credibility. The two models can get caught in local extremas, and drag each other in a
self-feeding loop of seemingly good performance, but producing degraded data.

Metrics measuring these qualities are aplenty - as composed by Borji 2018, the list is rather
extensive (see appendix A). These techniques do not include a manual inspection (i.e. a human
inspecting generated pictures and determining the quality of the result), which can quickly and
cheaply identify aberrant data. However, it cannot encompass properties such as data disparity
or credibility of generated data.

Most commonly used are the Inception score and Fréchet inception distance, which do
precisely that - measuring generated data’s variety and similarity to the real data’s distribution,
respectively.

10 Chapter 2. Generative adversarial networks

2.2.1 Inception score
IS uses an existing, already trained network Inception Net (trained on the ImageNet dataset)
(Szegedy et al. 2014). It is also important to note that the inception score is limited to specifically
scoring images (Barratt and Sharma 2018), which is the case of this work. The goal of the
inception score is diversity with respects to the class labels, and clear, sharp objects in the
generated pictures.

I Definition 2.1 (Inception score (Borji 2018)).

exp(Ex[KL(p(y | x) || p(y))]),

where p(y | x) is the conditional label distribution for image x estimated using a pre-trained
Inception model, p(y) is the marginal distribution

p(y) ≈ 1
N

N∑
n=1

p(y | xn = G(zn)

and KL denotes the Kullback-Leibler divergence (i.e. relative entropy)2.

2.2.2 Fréchet inception distance
I Definition 2.2 (Fréchet distance (Efrat et al. 2002)). Let α, β be two polylines and let d(p, q)
denote the Euclidean distance between two points p and q in the plane. The Fréchet distance
between α and β is

F(α, β) = min
f :[0,1]→α,g:[0,1]→β

max
t
d(f(t), g(t)),

where f and g are continuous non-decreasing functions.

Fréchet inception distance (FID) is a metric that represents distance between feature vectors of
real and fake data.

2.3 Variants

2.3.1 Wasserstein GAN
To address some of the downfalls of the vanilla GAN, Arjovsky, Chintala, and Bottou 2017
propose replacing the discriminator with a critic, and using the Wasserstein distance to compare
real and fake data distributions.

I Definition 2.3 (Metric (Weisstein 2021c)). A metric is any non-negative function f : X ×
X → R that satisfies the following conditions for ∀x, y, z ∈ X:

1. f(x, y) = f(y, x) (symmetry)

2. f(x, y) = 0↔ x = y (identity)

3. f(x, z) + f(z, y) ≥ f(x, z) (triangle inequality).

Earth mover’s distance 3 is a method of calculating dissimilarity between two multi-dimensional
distributions. Most commonly, it is abstracted to two piles of dirt, representing the probability
distributions, and the amount work needed to transform one pile into another, which is analogous
to distributions’ distance.

2The Kullback-Leibler divergence is a measure of difference between two probability distributions (Theodoridis
2020)

3also known as Wasserstein distance or optimal transport

2.3. Variants 11

I Definition 2.4 (Wasserstein’s distance (Arjovsky, Chintala, and Bottou 2017)). Wasserstein
metric between cumulative distribution functions F,G is defined as

W (Pr,Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ [‖x− y‖]

where
∏

(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals are respectively
Pr and Pg.

Given two probability distributions, a transport plan is any shifting of the weights (proba-
bilities) of one distribution to transform it into another distribution. Taking into consideration
all of these possible transport plans, the earth mover distance takes into consideration the best
one, i.e. the infimum.

Algorithm 2: WGAN (Arjovsky, Chintala, and Bottou 2017)
Require:

α - learning rate; c - clipping parameter; m - batch size, ncritic - number of iterations of the
critic per generator iteration.

Require:
w0 - initial critic parameters; θ0 - initial generator’s parameters.

while θ has not converged do
for t = 0, ... ncritic do

Sample {x(i)}mi=1 ∼ Pr a batch from real data.
Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.
gw ← ∇w[1

m

∑m
i=1 fw(x(i))− 1

m

∑m
i=1 fw(gθ(z(i)))]

w ← w + α ·RMSProp(w, gw)
w ← clip(w,−c, c)

Sample {z(i)}mi=1 ∼ p(z) a batch of prior samples.
gθ ← −∇θ 1

m

∑m
i=1 fw(gθ(z(i)))

θ ← θ − α ·RMSProp(θ, gθ)

The main advantage of utilising a Wasserstein distance is that it is continuous and differen-
tiable and has a linear gradient - it is possible to train until optimum without a mode collapse.
The discriminator is replaced by a critic, who acts as a helper for estimating EMD between real
and generated data distributions.

Instead of predicting the probability of data being real or fake4, the critic scores the ’realness’
or ’fakeness’ of data. The critic, when trained to optimum, it functions as as a loss to the
generator, which can continue training, compared to the vanilla GAN which required training in
tandem. A clear correlation between critic and image quality has been observed by Arjovsky,
Chintala, and Bottou 2017.

Another important aspect of the WGAN model is weight clipping. In short, it is a technique
that deals with exploding and vanishing gradients, i.e. the gradients are either too large or too
small respectively, hindering further learning. More formally, this enforces a constraint called
the Lipschitz constraint. A Lipschitz continuous function is any such function f : Ω ⊂ Rn → R
and there exists a constant K ≥ 0 such that:

|f(x)− f(y)| ≤ K|x− y|,

for each x, y,∈ Ω. The important aspect of a Lipschitz continuous function is that is differ-
entiable in almost any point.

4as was the case of the ’vanilla’ GAN

12 Chapter 2. Generative adversarial networks

Figure 2.3 Single strided convolution of a 2 × 2
input with a 4×4 filter. Source: Dumoulin and Visin
2016.

Figure 2.4 Fractionally strided convolution of a
3×3 input with stride size of 0.5. Source: Dumoulin
and Visin 2016.

2.3.2 Conditional GAN
Generative adversarial nets can be extended to a conditional model if both the generator and
discriminator are conditioned on some extra information y (Mirza and Osindero 2014). This extra
information is provided as an input to both players. The objective function is then modified:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x|y))] + Ez∼pz(z)[log(1−D(G(z|y)))].

Conditional GAN models (in their base form) create a one-to-one mapping of input to output,
i.e. mapping of a unit of data to a single class. However, this can be naturally extended to provide
a one-to-many mapping, by mapping a unit of data to class allegiance probability.

2.3.3 Deep convolutional GAN
Convolution is the process of overlaying two functions (Weisstein 2021a). In terms of images
and convolutional neural networks, one of the functions is the image itself, perceived as a matrix
of values, and the other is a predefined matrix, called the convolutional kernel. The kernel is
applied to a section of the image, then shifted. The shift can be by a single cell, but also can be
both larger and smaller, dependent on the stride size. Strided convolutions are convolutions such
that the stride (step size) is larger than 1, whilst fractionally strided convolutions have a step
size less than 1, which is achieved by inserting padding in-between cells to achieve the desired
fraction (Dumoulin and Visin 2016).

DCGAN architecture, proposed by Radford, Metz, and Chintala 2016, uses a fully convolu-
tional network as its generator by replacing pooling functions5 with convolutional filters.

2.4 Variational Autoencoder
Autoencoders are unsupervised deep learning models that enforce a condensation of information
by introducing a bottleneck. This way, autoencoders aim to learn the structure of the data,
provided there are correlations between the input features. Essentially, they’re a compression
algorithm, forcing to learn a representation of data in lower dimension space.

The model consists of two transitions φ : X → F and ψ : F → X , such that

φ, ψ = arg min
φ,ψ

‖X − (ψ ◦ φ)X‖2
.

5Also called down sampling layers, which force the network to concentrate important features into a data
structure of smaller size.

2.4. Variational Autoencoder 13

Figure 2.5 Autoencoder general architecture. The input and output layers are identical in size, and
the hidden layers (code) derive the latent representation of the data. Source: Stewart 2019.

Variational auntoencoders venture off this path by instead of representing the bottleneck
with a vector of latent attributes, representing it by probability distributions. The encoder is
approximating a posterior distribution, formulating it as an optimization task. The goal is to
generate data x from latent variables z. i.e. learning:

p(z | x) = p(x | z)p(z)
p(x) ,

where

p(x) =
∑
z

p(x | z)p(z),

which could be intractable, and as a result, the posterior distribution6 is intractable. To solve
this debacle, commonly the p(z | x) is approximated by a different distribution q(z | x), such
that it is tractable and at the same time is not too different to the former. To minimise the
difference between the two distributions, the Kullback-Leibler (KL) divergence (Joyce 2011) is
used.

DKL(p||q) =
N∑
i=1

p(xi) log p(xi)− log q(xi) =
N∑
i=1

p(xi) log p(xi)
q(xi)

,

which is very similar to the entropy of a probability distribution (Shannon 1948):

H = −
N∑
i=1

p(xi) log p(xi).

From that focus, the KL divergence is easily interpreted as the expected loss of information
by substituting the p distribution with the q distribution.

Put altogether, the expression that the variational autoencoder attempts to minimise is:

Eq(z|x) log p(x | z)−KL(q(z | x)||p(z))
6The summary after after the data has been observed - new evidence.

14 Chapter 2. Generative adversarial networks

Essentially, the network learns by learning the mean and standard deviation of the latent
space. Training data that is similar (i.e. the same class label) stimulates similar nerves (passes
the threshold of the same neurons) and forms clusters in the latent space (Stewart 2019).

Chapter 3

Medical imaging

Medical imaging is used to examine tissue and organs1 in-vivo2. It is an umbrella term for a
numerous collection of techniques and processes used to create images of various modalities of
the human3 body.

This includes, but is not limited to (Mayo et al. 2018 and Imaging and radiology 1997):

1. X-rays are a type of electromagnetic radiation. Their most important property is that they
are absorbed by dense tissues, such are bones, or contrasting agents injected into bodies,
and pass through soft issue without much difficulty. Commonly, x-ray examinations are
used to diagnose bone damage and fractures, but can also be used to examine parts of the
gastrointestinal tract, such as the stomach or the intestines, and other internal organs, such
as the heart, the bladder or lungs (X-Rays 2021; Imaging and radiology 1997).

2. Magnetic resonance imaging (MRI) exploits interaction of magnetic fields and water molecules’
alignment in the body. The procedure is carried out by two powerful magnets, first of which
causes the hydrogen atoms to align in one direction within the body, whilst the second is
rapidly turned on and off. As different kinds of body tissues react differently to this pull, and
as such can be observed and segmented (MRI scan 2018).

3. Sonography uses high frequency sound waves released by probes (transducers), which also
act as receivers. Based on the delay between the transmission and the reflection of the sound
wave, the distance can be calculated and an image produced (Mental Health 2016).

4. Positron emission tomography (PET) traces the radioactive emission of an injected tracer
agent. This can map metabolic processes, blood flow, oxygen and glucose consumption
(Berger 2003). These observations are used to evaluate the functionality (or dysfunction-
ality) of organs and tissues, such as cancer, heart disease or neurological disorders (Positron
Emission Tomography - Computed Tomography (PET/CT) 2019).

5. Computer tomography (CT) is a procedure that utilises x-rays to create a three dimensional
model of the target. In a fashion similar to how a gamma knife (Gamma Knife 2018) operates,
a CT procedure consists of narrow x-ray beams rotated around the body, creating slices of the
body, which can be stacked to construct a three dimensional representation (Mental Health
2013).

1And basically everything that should stay on the inside of the human meat puppet
2’In the living body of a plant or an animal’. (Merriam-Webster 2021)
3Not necessarily limited to human anatomy, though.

15

16 Chapter 3. Medical imaging

Each of the different imaging approaches provides a different kind of information, and as such
is used for different diagnoses, and different modalities are often utilised in tandem in a cross
modality evaluation to complement each other, resulting in a better diagnosis.

3.1 The quality dilemma
The problem with image data, to which medical images are no exception, is that it is incredibly
disparate in regards to its properties, such as image resolution, image size, number of colour
channels, never mind the actual semantic information of the content. This poses a daunting
challenge, as deep learning algorithms require a single, unified format of input data. As a result,
these properties should be perceived as a hyper-parameter, and treated accordingly.

Focusing on resolution alone, there is a number of trade-offs. Larger resolution provides
more information4 and allow training to be more accurate. Armanious et al. 2020 state that
’especially when using automated image analysis tools, high image quality is required for the
accuracy and reliability of the results’, which supports the point of view of containing as much
relevant information as possible per image.

However, image resolution goes hand-in-hand with the number of parameters to be optimised.
As a result, high resolution images explode the size of the learning models, and increases the
affinity of overfitting (Mesquita 2016).

Although unintuitive, empirically it shows that models work better when trained on lower
resolution images. This discussion is still at large, but one thing is certain - high resolution
images, especially in medical imaging, are a resource sought after. Resolution (and number of
color channels, etc.) is easier to scale down rather than up - resulting in information loss at
worst, compared to facilitating artefacts in the image.

Another important factor is the actual need for detail. As examined and shown by Sabottke
and Spieler 2020, many important findings are clearly noticeable at fairly low resolutions. In
particular, in their study of chest radiography Sabottke and Spieler 2020 have examined images
ranging from 32×32 (pixels) to 600×600, and found that best results were achieved for resolutions
between 256 × 256 and 448 × 448 for a range of binary classifications. As seen in figure 3.1
(retrieved from Sabottke and Spieler 2020), findings of the pathology are visible even at low
resolutions.

The main advantage of using low resolution data is increase in computation, but relaxing
the resolution requirement also allows more data to be used, resulting in larger, bulkier and
(hopefully) diverse datasets.

The effects of a covid-19 pneumonia are, as most pneumoniæ, visible on x-ray modality
images. The telltale indicator is an increased density in the lungs, visible as (in layman’s terms)
whiteness in the lungs’ x-rays. The more severe the pneumonia, the more opaque the white,
effectively decreasing the visibility of the common lung marking.

3.2 The quantity conundrum
The biggest concern when it comes to machine learning is data quantity. As the aim of machine
learning is to model the general realities based on a limited sample, the larger the dataset
that encompasses rich, various data5, the better. Smaller datasets can easily lead to a model’s
overfitting, producing pointless data of no use, just like uniform datasets6.

Data with high class imbalance (a large disparity in the volume of data per class) leads to
poor classification. This is the case in the domain of medical imaging, for a number of reasons:

4Whether the information is relevant or a dead-end is to be determined.
5That ideally represents the entire domain.
6Dataset without much variance.

3.2. The quantity conundrum 17

Figure 3.1 Comparison of chest radiographs at different image resolutions for patient 103 (60-year-
old man with a thoracic mass). The mass finding is visible in all images but with visually observable
improved clarity in the higher resolution examples (bottom row). Source: Sabottke and Spieler 2020.

Annotated (labeled) medical image data is sparse and expensive - it requires a medical pro-
fessional’s expertise to correctly annotate, and as such is time consuming and tedious7.

Due to moral values (patients’ privacy and confidentiality8), medical images can be difficult
to access to the general public. Each country handles this problem differently by laws, and
there is no single accord all follow, but in general, any data regarding medical patients has
to be anonymised prior to their release. In USA, this falls under ’The Privacy rule’ federal
law (Your Rights Under HIPAA 2020), this is covered by GDPR in EU.

The number of data for a given pathology (positive cases) are scarce (Yi, Walia, and Babyn
2019), despite the effort of organisations such as RSNA or or NBIA. In other words, data
depicting abnormal findings are not nearly as numerous as normal findings.

With GDPR in effect, health data is treated specially as sensitive in nature by default, and
can be processed only if (Aumage 2016)

an individual’s consent is given to do so, or

it is necessary for archiving purposes, or

it is used for scientific, historical or statistic purposes.

o
7Also, a lot of medical data is often three dimensional (Shin, Roth, et al. 2016; Guibas, Virdi, and P. S. Li

2018).
8Handling private information of patients in confidence by medical professionals.

18 Chapter 3. Medical imaging

pix2pix

dcgan

cgan

cyclegan
pggan

cascade cgan

others

Model papers | 83 total

Figure 3.2 Distribution of the GAN-based models utilised in medical imaging. Note that this exam-
ines the medical imaging domain as a whole, and as such is not telling of individual sub-domains (such
as image synthesis or translation). Data source: composite of Yi, Walia, and Babyn 2019 and Singh and
Raza 2020.

3.3 State of the art

Deep learning has established a firm foothold in the domain of medical imaging. Multiple parties
have compiled lists of notable GAN-based models in medical imaging (Yi, Walia, and Babyn 2019
and Singh and Raza 2020). Figure 3.2 shows the distribution of different models in the domain
of medical imaging, with pix2pix being the most common, and DCGAN following.

3.3.1 Reconstruction

Yu et al. 2017 improves the speed of MR imaging, patient discomfort and reduces the suspectibil-
ity to artefacts induced by patients’ movement by undersampling and then using a combination
of a U-Net architecture in the generator and a trio of losses - adversarial, a pixel-wise mean
squared error and a perceptual loss. 1708.00961 uses similar methods, but omits the pixel-wise
MSE due to it being prone to generating blurry images.

Abramian and Eklund 2019 set out to an unprecedented goal - reconstruction of facial features
from anonymised MRI. They were examining if the state of the art anonymisation techniques
were sufficient, using a CycleGAN, with a large degree of success in terms of face blurring, and
limited success in complete face removal reconstruction.

Shan et al. 2018 commits transfer learning from 2D trained networks to 3D to take into
account information from adjacent MR slices during reconstruction. This is then taken into
account with convolutional filters shifting over neighbouring slices.

3.3. State of the art 19

Con
dit

ion
al

syn
the

sis

Reco
nst

ruc
tio

n

Tra
nsl

ati
on

Unco
nd

itio
na

l sy
nth

esi
s

use

0

5

10

15

20

25

30

Co
un

t

Modalities
3T->7T MRI
CT
CT->MRI
CT->PET
Dermoscopy
Domain adaption
Endomicroscopy
Histopathology color normalization
Histopothology
Hyperspectral histology->H&E
MRI
MRI->CT
MRI->PET
MRI<->CT
Mammography
PET
PET->CT
PET->MRI
Real->Synthetic
Retinal
Synthetic->Real
T1->FLAIR MRI
T1;T2->MRI
T1<->T2 MRI
Ultrasound
X-rays

Figure 3.3 Distribution of GAN models in different domains. Entries containing an arrow depict a
translation from a domain to another domain. Data source: composite of Yi, Walia, and Babyn 2019
and Singh and Raza 2020.

3.3.2 Synthesis
Synthesis is, alongside translation, the center stage of GANs in medical imaging. Almost every
application of a GAN model results is one of a kind modification of an existing model9.

Yi and Babyn 2018 used a DCGAN to synthesise image of lung nodules, and instead of
computed metrics, used a visual Turing test to determine the quality of the images. Baur,
Albarqouni, and Navab 2018b and Baur, Albarqouni, and Navab 2018a worked with skin lesion
data, the former with a LAPGAN modified to work with a single source of noise and upsampling
instead of interpolation, whilst the later used a progressive growing GAN (PGGAN). Similarly,
Beers et al. 2018 used a PGGAN to produce MR images of retinal fundus10, Bowles et al. 2018
also added Gaussian noise layer (blur) based on empiric results to further stabilise training. Mok
and Chung 2019 used two generators, first of which trained to sketch a coarse shape and texture
of a brain MR image, whilst the second refines it to a high resolution, detailed image. Calimeri
et al. 2017 made use of LAPGAN in the same domain, Han et al. 2018 of WGAN.

Possibly the highest resolution images in medical imaging were synthesised with the use of a
Wasserstein GAN by Korkinof et al. 2019, who worked with more than one million mammogram
images, and much like the previously mentioned, progressively increased the resolution during
the training, up to 1280 × 1024. Notably, they have also used FID and IS to evaluate their
models. Mahapatra and Bozorgtabar 2019 tackles the issue of high resolution by chaining GAN
networks with a triplet loss11.

Zhao, H. Li, and Cheng 2017, Iqbal and Ali 2018, Appan K. and Sivaswamy 2018, Costa et al.
2018 and Guibas, Virdi, and P. S. Li 2018 proposed various models to generate retinal fundus
images, with the first one also applying the same approach to neuronal images. Iqbal and Ali
2018 and Zhao, H. Li, and Cheng 2017 both utilised style transfer to boost training, and the
former also updated generator’s values twice as often to reduce training time.

9Todo what is visual Turing test
10The inside lining of an eyeball (Stöppler 2021).
11Comparing the generated data with ’truth-y’ and ’false-y’ data (Das 2019).

20 Chapter 3. Medical imaging

A frequent use of GAN models is synthesis of Brain MRI. Plassard et al. 2018 used a slice of
MRI, whilst Shin, Tenenholtz, et al. 2018 uses labels (masks of tumours), enforcing variability by
altering the properties of the label, such as size or placement, or even placing it over a tumour-free
image.

Chuquicusma et al. 2018 proposed using a DCGAN to model the underlying distribution of
lung cancer CT images and compared the results using a visual Turing test, whereas Salehinejad
et al. 2018 made a more generic sweep by exploiting to boost the number of various pathologies
captured by X-ray images of chest, training the model of a dataset of 2000 images a class.
Madani et al. 2018 addresses the issue using a semi-supervised learning approach, training on
both labeled and unlabeled data. Even though the unlabeled data does not provide information
as of its class, it functions similarly to a transfer style training - X-ray images of lungs will follow
a general shape and proportions, in spite of positive sickness or damage. This technique was also
applied to retinal fundus imaging by Lahiri et al. 2018.

There exist a set of guidelines for good cardiac magnetic resonance images, and to that end,
Zhang, Gooya, and Frangi 2017 aimed to automate that assessment. As in most cases though,
the volume of training data is sparse, and so additional data is generated by a DCGAN.

3.3.3 Translation
Translation is the process of mapping between different modalities of the same underlying im-
age. The motivation behind translation is replacing expensive or dangerous procedures with
more appropriate ones, by finding correlations between different modalities, removing artefacts,
i.e. any information that is introduced by the machine/process (Bell 2020, overcoming imaging
constraints such as lack of a contrast medium or the amount of a radiation dose the patient is
exposed to during the procedure.

Most of the research in translation to CT is focused on brain images, such as Emami et al.
2018, Nie, Xiang, et al. 2019, Wolterink et al. 2017, Nie, Trullo, et al. 2016. Emami et al. 2018’s
generator constitutes of a ResNet with shortcuts between distant layers, which offers conservation
of lower level details. Wolterink et al. 2017 feeds unpaired data to a CycleGAN.

Whilst brain imaging is consistent as to image shapes, orientation and imaging angles, the
same is not true for many domains. Mahapatra, Bozorgtabar, et al. 2019 works with this variety
with hips, Hiasa et al. 2018 and Maspero et al. 2018 utilised a CycleGAN and pix2pix to translate
between MR and CT pelvic images, aiming to overcome MR’s poor contrast for bone analysis.
Working in the opposite direction, Jin et al. 2019 made use of both paired and unpaired data of
brain images, employing two loss cycle consistencies.

Ben-Cohen et al. 2017, Bi et al. 2017 mapped CT to PET. The former used a CGAN and
a fully convolutional network (FCN). The CGAN’s results were more realistic, but the FCN
responded to malignant tumour. The authors blended the two models by placing a mask from
the FCN onto images made by CGAN.

Medical image translation can also take place within the same modality, with different prop-
erties. For instance, whilst higher doses of radiation are potentially more harmful, they yield
better results than lower doses. As such, there is a notion to map low dose CTs to high dose
CTs, as done by Yi and Babyn 2018, Liu et al. 2020; Nie, Xiang, et al. 2019, first of which added
a third neural network to the equation, addressing the general problem of edge blurring, whilst
the last deploys two discriminator. One of them functions on local areas of images, and the other
on the global scale of the image.

MRI is capable of a similar mapping. Based on magnetic resonance weights 12 MR images
depict different types of tissue. Nie, Xiang, et al. 2019 added a second discriminator to the
model’s architecture. While one discriminator examines the images in their global scope, the
second works on a local one to address the sway of easily synthesised regions (specifically, healthy
tissue).

12How much time elapses between a proton’s excitation and relaxation (Preston 2006)

3.3. State of the art 21

A peculiar case is the work of Mahmood, Chen, and Durr 2018, who had approached model
learning in an inverse manner. The generator is replaced with a transformer, which learns to
map real data to synthetic data instead.

Armanious et al. 2020 set out to create a universal image translation model for medical
imaging. They introduce a handful of novelty components, such as two loss functions, or a
generator comprised of a chain of encoder-decoder networks, to progressively grow the desired
images.

3.3.4 Segmentation
Segmentation has been mentioned in previous sections, but only its results were used. Image
segmentation is the process of creating a pixel-wise mask over the original image, identifying
a group of pixels that represent an object. In medical imaging the most common use of image
segmentation is identification of abnormal regions or alien bodies, such as tumours, or boundaries
of organs. Xue et al. 2018 drew inspiration from GANs, manifesting in an adversarial model that
consists of a segmentation network and a critic with a custom loss for the segmentation network,
which is an encoder-decoder in the original paper with skip connections between corresponding
layers. The model has been trained to segment brain tumours with a superior accuracy.

As with the other domains, three dimensional data is an open problem, mainly due to the
tedious amount of work needed to label all slices (most of which contains information already
provided in adjacent slices), and as such, properly annotated three dimensional data is sparse.
Currently, there are groups that work with this issue (Çiçek et al. 2016, Milletari, Navab, and
Ahmadi 2016), all of which train their models on either images or worst case large sections,
rather than small patches. Çiçek et al. 2016 segments brain tumours, Milletari, Navab, and
Ahmadi 2016 segments prostate in MRI and adds a dice similarity loss function, Dou et al. 2016
learns to segment livers from medical images. Yang et al. 2017 segments liaisons in 3D CT data,
producing a probability map, again, using an encoder-decoder as a generator.

A name that has been mentioned multiple times is project U-Net Ronneberger, Fischer, and
Brox 2015. U-net is a model that aims to create a rich, deep convolutional segmentation network
by ideally assigning a class label to each element of the picture. It sports a U-shape architecture
- consists of two parts, the first of which is constraining and progressively reducing the number
of layers, and the other expanding, working in the opposite direction - a concept similar to
autoencoders. U-Net has demonstrated fantastic results in medical imaging, and serves as a
baseline for many other works.

Dai et al. 2017 streamlines shape and irregularity based diagnosis of lungs and heart by
performing segmentation on chest x-rays. The model is made of a segmentation network, and a
critic, both being fully convolutional networks.

Chapter 4

Implementation

4.1 Technologies
Experiments were conducted using Python. The main motivation behind that is, aside from the
relative ease and comfort of writing code in Python, the popularity it has attained in the domain
of machine learning, data analysis and data operations. The specific distribution of Python can
differ on project basis, but Python 3 is the foothold of the implementation, varying from versions
3.5 to 3.8.

As this project falls in the field of computer vision, the computing power of a desktop station
level computer is not sufficient. Instead, data operations and transformations, model learning
and testing were all run in cloud to make use of more powerful hardware. Namely, models were
trained in Google Colab and Deepnote environments. Both environments’ preferred modus
operandi are interactive Jupyter notebooks documents1

Most image datasets are accompanied by a metadata csv file, containing supplementary
information to the image data. To that end, Pandas team 2020 a data manipulation library, was
used to read, edit and save data.

There are multiple frameworks for working with artificial neural networks. The most widely
used ones are Tensorflow (Developers 2021), Keras (Chollet et al. 2015), Caffe (Jia et al. 2014)
and PyTorch (Paszke et al. 2019). Tensorflow has two main distributions (1.0 and 2.0), both
of which are used at some point during experiments, and which differ in their API. To make
matters worse, whilst Tensorflow 2.0 provides legacy support to Tensorflow 1.0, it still requires
changes in the user code to run. Google Colab provides an advantage in that regard, easily
allowing a switch between the two versions by running the in-built magic command 4.1.

1 % tensorflow_version 1.x

Code listing 4.1 Tensorflow version change in Google Colab from the default 2.0 to 1.0 for legacy
code.

import wandb

...

wandb .init(project =’GAN ’,
group =’GAN ’,
entity =’koristo1 ’,
config ={

’epochs ’ : epochs ,

1Deepnote offers a terminal, therefore .py scripts could be run directly.

23

https://colab.research.google.com
https://deepnote.com/dashboard
https://www.tensorflow.org/
keras.io
http://caffe.berkeleyvision.org/
https://pytorch.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://colab.research.google.com
https://colab.research.google.com
https://deepnote.com/dashboard

24 Chapter 4. Implementation

’batch_size ’ : batch_size ,
’height ’ : self.img_rows ,
’width ’ : self.img_cols ,
’latent_dim ’ : self. latent_dim ,
’model_name ’ : self.timestamp ,
’model_type ’ : self.name

})

...

Code listing 4.2 Manual configuration of the Weights and Biases listener with hyperparameters of
a vanilla GAN model.

To observe and log the data, rather than creating a custom logger (or using an existing one)
to store the information locally, the Weights and Biases Biewald 2020 was plugged into a project.
The API provides callbacks that can be incorporated into various training and fit functions of
the aforementioned frameworks, but due to the architecture complexity and irregularity of GAN
models this is not feasible and the logging implementation needed to be provided manually2,
whereas the (architecturally) simpler classifiers can make full use of the provided callbacks.
import wandb

...

wandb .log ({
’accuracy ’: ... ,
’d_loss ’ : ... ,
’g_loss ’ : ... ,

})

...

Code listing 4.3 Manual logging during the training process of a vanilla GAN model. Logged variables
were replaced with elipsis’ to simplify the snippet.

4.2 Data
Data is the be-all and end-all of machine learning. Data used in this project is provided by
Wang 2020, which in turns gathers it from multiple sources. This project operates with data
aggregation and selection implemented in commit a8de16a . Since then, the project has been
expanded with more data sources. The classification models have been trained on a different
dataset, provided by the implementation of Minaee et al. 2020.

Although this repository provides an easy-to-follow instructions to construct the dataset, it
also produces a broken metadata file. A significant subset of both train (7.644 %) and test (8.5 %)
data were corrupted this way.

4.2.1 Dataset issues
The repository does not contain the data itself, as those are curated by other parties, but it
does provide direct links to the individual datasets. However, one of them, a dataset hosted on
Kaggle , is broken, and the only functional source of it is now hosted on Google Drive . The
dataset sources are listed in appendix B.

There are multiple issues with the provided dataset rendering it unusable without fixing them.
They are as follows:

Broken csv file
2see code snippets 4.2 and 4.3

https://wandb.ai/home
https://wandb.ai/home
 https://github.com/lindawangg/COVID-Net/tree/a8de16ad725062ec58246084f2d08859c2b3d05c
kaggle.com
drive.google.com

4.2. Data 25

Disjoint number of colour channels (greyscale, RGB and RGBA)

Different image dimension.

Fortunately, the images themselves are not corrupted as provided, and require no pruning.
The first shortcoming of the script provided by Wang 2020 is the disparity between the

default names of the composing datasets and the paths the scripts assumes them to have. This
is resolved by renaming the folders to mirror the expected names in the script.

As mentioned before, the dataset constructed from the Wang 2020 repository provides mal-
functional data, and as such needs is to be either discarded or repaired. Meddling with the
provided code is volatile, as fixing one naming issue would break another. As such, the dataset
is repaired after construction. Fortunately, the error is consistent - all broken files came to be
by containing a whitespace character ’ ’, which is also (unfortunately) used as a separator of the
csv file.

The script 4.4 fixes this issue, by supplying an extra column which will be NaN for
correctly formatted records, and will not be NaN for broken files. That is the result of the
extra whitespace in the ID of the files, which consumes a column following it.

index ID file label source err
0 5 ARDSSevere.png negative cohen
60 COVID-00026 COVID-00026.jpg positive fig1
67 COVID-00036 COVID-00036.jpg positive fig1
104 COVID 72 COVID(72).png positive sirm
105 COVID 77 COVID(77).png positive sirm
109 COVID 95 COVID(95).png positive sirm
116 COVID 213 COVID(213).png positive sirm
119 COVID 216 COVID(216).png positive sirm
389 284 000011-6.jpg negative cohen
483 75 covid-19-pneumonia-19.jpg positive cohen

Table 4.1 Examples of unbroken and broken data entries. The broken entries have a value in the err
column.

The table 4.1 shows an example of five non-corrupted and five corrupted entries, respectively.
The ID of the corrupted entries is split, half of it occupying the file column, forcing
the rest of the columns to be shifted as well. The script below fixes that issue, by providing
an artificial err column, which is NaN for non-corrupted entries, whereas the corrupted
entries occupy the column (due to the ID spanning two columns instead of one). Based on
the value of this extra column, the dataset can be split and regenerated. The broken entries have
their ID concatenated with the column following it, followed by dropping the (now) extra
column, and renaming the columns to be in accordance with their data.

1 import pandas as pd
2 from PIL import Image
3

4 def verify (df , subset):
5 broken_files = []
6

7 for file in df[’file ’]:
8 filename = ’./ data /{}/{} ’. format (subset , file)
9

10 try:
11 Image .open(filename)
12 except FileNotFoundError :
13 broken_files . append (filename)
14

15 print (’No. of broken files : {} ’. format (len(broken_files)))

26 Chapter 4. Implementation

16 print (’Files : {} ’. format (broken_files))
17

18 return len(broken_files) == 0
19

20 def fix(name):
21 df = pd. read_csv (’{} _split .txt ’. format (name),names =[’id ’,’file ’,’label ’, ’

other ’,’err ’],sep=’ ’)
22

23 broken = df[df[’err ’]. notna ()]. copy(deep = True)
24 broken [’id ’] = broken [’id ’] + ’(’ + broken [’file ’] + ’)’
25

26 cols = broken . columns [: -1]
27 broken = broken .drop(columns =[’file ’])
28 broken . columns = cols
29

30 df = df.drop(columns =[’err ’])
31 df = df.drop(broken . index)
32

33 result = pd. concat ([df , broken])
34 if verify (result , name):
35 result . to_csv (’{} _split_fixed .txt ’. format (name), sep = ’ ’, header = None)

Code listing 4.4 Dataset fixing

Observing the same entries as before, the fixed dataset is represented by table 4.2.This dataset
is usable to work over the provided images.

index ID file label source
0 5 ARDSSevere.png negative cohen
60 COVID-00026 COVID-00026.jpg positive fig1
67 COVID-00036 COVID-00036.jpg positive fig1
104 COVID(72) COVID(72).png positive sirm
105 COVID(77) COVID(77).png positive sirm
109 COVID(95) COVID(95).png positive sirm
116 COVID(213) COVID(213).png positive sirm
119 COVID(216) COVID(216).png positive sirm
389 284 000011-6.jpg negative cohen
483 75 covid-19-pneumonia-19.jpg positive cohen

Table 4.2 Fixed dataset example

4.2.2 Data distribution
The data is comprised of covid-19 positive and covid-19 negative cases x-ray images of various
dimensions and number of colour channels. As seen in table 4.3, the dataset is heavily imbalanced
and skewed towards negative cases.

train test
positive 1670 100
negative 13794 100

Table 4.3 Number of positive and negative cases for the training and testing sets of Wang, Lin, and
Wong 2020

The box and whisker plots (figure 4.1 for height and figure 4.2) are quite similar, with the
interquartile range being in the 800–2000 range and being skewed upwards. Both the height and

4.2. Data 27

width sit at a 1016 median value, and mean value of 1024 and 1024 respectively3.

0

1000

2000

3000

4000

5000

he
ig

ht

Figure 4.1 Dataset’s height distribution.

0

1000

2000

3000

4000

5000

w
id

th

Figure 4.2 Dataset’s width distribution.

96.4%

2.95%

0.638%
0.0176%

Greyscale

RGB

RGBA

Palletised

Figure 4.3 Original dataset’s mode type (channel) distribution. ’Greyscale’ and ’Palletised’ are single
channel formats, where ’Palletised’ is a colour image width in single channel instead of three.

Most of the dataset (96.5 %) is already in shades of gray, whilst the remaining (3.5 %) are
colour images, in one (up to 256 different colours), three or four colour channels. All non-
greyscale images have been converted into greyscale images, computing the single channel pixel
values as a weighted with the following weights: 0.2989, 0.5870, 0.1140 for red, green and blue
colour channels respectively.

3rounded to nearest whole number.

28 Chapter 4. Implementation

4.2.3 Augmentation

Figure 4.4 Sample of positive cases

In terms of augmenting the dataset, there are three questions that require answering.

1. What sort of transformations will be used?

2. Do the transformations create credible data?

3. Does an augmented dataset yield better results?

All three questions will be answered by evaluating the performance of models. Transforma-
tions can include any combination of affine transformations, cropping, equalisations or blurs (and
many others). To preserve the variety of the original dataset, an equal number of augmented
images is extracted from each (positive case) image.

The augmented dataset is created once, by using the ImageDataGenerator provided by
tensorflow.keras.preprocessing.image (documentation can be found here: Chollet et al.
2015 and Developers 2021). has been used with the following parameters4:

rotation range - the maximum degrees of rotations in either direction

zoom range - the maximum size increase and decrease.

width shift range - percentage of shift across the x-axis

height shift range - percentage of shift across the y-axis

shear range - maximum skew in counterclockwise fashion in degrees

horizontal flip - allows a random horizontal flip5

fill mode = ’nearest’ - the method of filling in the points outside the image boundaries6

The augmentation draws 10 samples for each image of the dataset, resulting in 7422 images.
To mirror that, even though the images depicting negative cases of covid-19 were augmented, so
that transformations take place over both datasets. The augmentation had proved to be a bit
extreme, resulting in contorted images, and as such, was adjusted slightly, to be less extreme in
all directions. Figure 4.5 depicts a sample of the more severe augmentation, whilst figure 4.6
depicts the result of the milder augmentation.

A point of concern is augmenting the images via the means of flipping (mirroring) by an axis.
Horizontal flipping is completely out of the question, as that would generate nonsensical data and
introduce artefacts and impact the results of any further operations. The vertical flip, however,
is not as simple discarded. Human bodies are near symmetrical in general, and in that regard,
flipping sounds like a sound way of augmenting the dataset. However, the heart’s silhouette is
captured faintly by x-rays. As such, flipping the images creates ones with faulty anatomy.

4The value of the parameters had been chosen per common recommendations.
5This will be a point of contention discussed later.
6Created by processes such as rotating or shifting the image.

4.3. Generation 29

Figure 4.5 Results of image augmentation with parameter values: rotation range = 30 ,
zoom range = 0.15 , width shift range = 0.2 , height shift range = 0.2 , shear range = 0.15
, horizontal flip = True , fill mode = ’nearest’ .

Figure 4.6 Results of image augmentation with parameter values: rotation range = 15 ,
zoom range = 0.15 , width shift range = 0.1 , height shift range = 0.1 , shear range = 0.15
, horizontal flip = True , fill mode = ’nearest’ .

4.3 Generation

The models are built in different frameworks, but the general idea of layer types is common
across all of them. Dense layers are the most common layers. They are densely connected layers,
calculating the output in this fashion: output = activation(dot(input, kernel) + bias) (Chollet
et al. 2015). The activation function is supplied, but is usually either a leaky rectified linear unit
(leaky ReLU), a hyperbolic tangent (tanh) or a softmax7 (usually in the output layers). The
models are periodically saved to a persistent medium, evaluated and sampled.

All models were trained in different instances, with different hyperparameters, mainly a
different input shape (the dimensions of the image). With some moments, changing the input
shape (and by consequence, the output shape to match) required no other major change, but with
some, more changes needed to be done. For instance, the DCGAN model consists of upsampling
layers, and to achieve the desired output dimension, blocks of layers had to be added or removed.

Batch normalisation is another frequent layer type. As inputs, handed over to the network
in batches, can have various distributions (in regards to one another within a batch), this can
lead to the chase of a moving target by the network. Batch normalisation attempts to resolve
this potential problem by standardising the batches, and thus stabilising the learning process.
Essentially, the mean and the standard deviation of the batch is calculated, and then the batch
is standardised.

Dropout layers aim to prevent overfitting models on a limited dataset by resetting (effectively
ignoring) random inputs of the previous layer. On a high level, this is akin to obscuring random
parts of an image during training, with the goal of learning the actual semantic features, rather
than finding easy ways to conform to the training data.

4.3.1 Training parameters

7normalised exponential function σ(−→z)i = ezi∑K

j=1
e
zj

, which ensures that all values sum to 1.

30 Chapter 4. Implementation

1 class GAN(interfaceGAN):
2 def __init__ (self , width , height , model_loaded =False , model_file =None):
3 ...
4 def train (self , epochs , batch_size , sample_interval , save_interval ,

data_path , calculate_metrics):
5 ...

Code listing 4.5 Declaration of the training function for the GAN models.

During the training, a major setback introduced itself. The virtual machines on which the
training took place often timed out, or were forcibly disconnected during the lengthy training
process. At times this was due to resource exhaustion, prolonged lack of user interaction, or just
general life cycle of the machines. Since some of the models take hours to train, this needed to be
resolved. A parameter has been introduced, called save interval , which specifies the frequency
of model saving. When the model is saved to a local disk, the metrics are also calculated and
logged. The reasoning behind this is a compromise between complexity and utility. The metrics
are expensive to calculate at every step, and to cut that, and since the only model state that can
be recalled is when the model is saved at a save interval , they are calculated as the model
snapshot is saved. This behaviour can be disabled, resulting in skipping of metrics calculation
and saving the model only, by using the the calculate metrics .

During model’s instantiation the model’s architecture and weights can be loaded from file by
setting the model loaded flag to True and providing a path to the model’s location. Training
can be then resumed from the snapshot.

Another parameter that is not to be treated as a hyperparameter, but as an indicator (or
a debugging variable) is sample interval , defining the interval at which images are sampled
from the distribution and logged. This process is not expensive, and as such the frequency can
be much higher than the save interval .

The remaining parameters, epochs, batch size, data path , are straightforward, describ-
ing the number of training iterations, size of the batch in which training takes place, and the
folder containing training images, respectively.

4.3.2 GAN
The vanilla GAN model’s generator (figure 4.7) consists of an input layer, followed by three
blocks of dense-leaky ReLu-batch normalisation layers, which in turn is connected to a dense
layer. Batch normalisation is applied after every activation layer. The three hidden dense layers
have 256, 512 and 1024 neurons, going from the input layer to the output layer. The activation
functions (leaky ReLUs) have the parameter alpha (multiplier of negative values) set to 0.3,
rather than discarding them, as is the case with a regular ReLU function. The momentum (the
resistance to succumb to changes from the current batch) (Bautista 2017) is set to 0.8 in all
blocks. The output layer’s activation function is a hyperbolic tangent.

Figure 4.7 GAN generator with three blocks of layers in the hidden layer, utilising leaky ReLUs and
batch normalisation.

4.3. Generation 31

The discriminator model (figure 4.8) is simple (which is usually the case). It consists of a
flattening layer, which transforms its multidimensional input to a one dimensional array, followed
by two blocks of a dense layer with a leaky ReLU activation function, with the alpha set to 0.2
in both cases. As the discriminator’s output is a boolean (a binary value), stating whether the
image is deemed real or synthesises, the output layer is a dense layer with a single neuron, in
this case with a sigmoid activation function.

Figure 4.8 GAN discriminator with a hidden layer of two blocks and a single neuron output layer.

4.3.3 WGAN
The Wasserstein model (figure 4.9) brings convolution to the table. The generator is identical to
the previous models’.

Figure 4.9 WGAN generator with two hidden layers and batch normalisation.

The critic (figure 4.10) uses convolutions instead of dense layers. Again, there are three hidden
layers, with 32, 64 and 128 neurons respectively. The input layer is also a 2D convolutional layer,
with 16 neurons. All convolutional layers have a kernel of size 3 and a stride size of 2. The first
hidden layer also contains a zero padding layer, which adds padding of 0s around the image (this
is needed to apply the convolutional filter to pixels at the edges of the image). The remaining
hidden layers keep this padding. All hidden layers also include a batch normalisation with
momentum = 0.8, a leaky ReLU with alpha = 0.2 and a dropout with rate = 0.25. The critic
also uses a custom loss function, wasserstein loss:

1 import keras . backend as K
2

3 def wasserstein_loss (y_true , y_pred):
4 return K.mean(y_true * y_pred)

Code listing 4.6 Wasserstein loss function.

Figure 4.10 WGAN critic with three hidden convolutional layers.

The WGAN network contains 5 critics altogether, with a clip value of 0.01, as recommended
in the proposing paper Arjovsky, Chintala, and Bottou 2017.

32 Chapter 4. Implementation

4.3.4 WGAN-GP
Though Wasserstein GAN has shown better performance in terms of convergence, quality and
resistance to mode collapse, it retains some of the weaknesses, such as training instability or slow
convergence (Weng 2019), caused by vanishing gradients, exploding gradients and non-continuous
functions. Instead of clipping, a gradient penalty is introduced. The loss function of the critic is
expanded by

λ Ex̂∼Px̂ [(‖∇x̂D(x̂)2‖ − 1)2]
The λ parameter, called the penalty coefficient, was empirically set to 10. The original paper

(Gulrajani et al. 2017) also recommends removing batch normalisation.

Figure 4.11 WGAN-GP generator.

Figure 4.12 WGAN-GP critic.

4.3.5 CGAN
The premise of the conditional GAN in this regard is very similar to the concept of transfer
learning. Even though the network trains on both the positive and negative labels, ultimately
only the positive ones will be put to use. However, the negatively labelled images are still of the
lungs, and provide more data to get the general distribution represented.

Figure 4.13 CGAN generator.

The conditional GAN’s generator (figure 4.13) is based on the vanilla one’s, with one difference
- an input label is embedded into the input layer, with as many neurons as there are classes (in
this case, 2 classes).

4.3. Generation 33

Figure 4.14 CGAN discriminator.

Similarly, the discriminator (figure 4.14) is provided with the same information in the same
manner. However, instead of using batch normalisation, the discriminator contains dropout
layers with a rate of 0.4 in the hidden layers.

4.3.6 DCGAN

Figure 4.15 DCGAN generator with a single block.

Figure 4.16 DCGAN discriminator with a single block

The deeply convoluted GAN generator (figure 4.15) consists of a number of upsampling layers
followed by convolutional layers with an increasing number of neurons per layer with a 3 × 3
kernel. The convolutional layers’ outputs are batch-wise normalised with a momentum of 0.8.
The output layer’s activation function is a hyperbolic tangent. Its discriminator (figure 4.16)
consists of convolutional layers with a 3× 3 kernel, stride of 2, a leaky ReLU activation function
with alpha 0.2, batch normalisation with momentum 0.8 and a dropout rate of 0.25. The last
layer has a sigmoid as the activation function.

4.3.7 VAE
To compare the performance of GANs with another generative model, a variational auto encoder
has been used. The implementation of YongWook 2018 has been used as the base, but needed
modifications, as it didn’t function out-of-the-box. This implementation creates a custom image
generator, but its image loading function scipy.misc.imread is deprecated, and had to be

34 Chapter 4. Implementation

Figure 4.17 VAE encoder

Figure 4.18 VAE decoder

replaced, by imageio.imread , which also enforced a conversion from a PIL object to a numpy
array. Further, at each epoch’s end, inception score is calculated and logged alongside the loss.
Further refactoring needed to be performed, as the metrics calculation was written as a callable
programme, rather than callable functions, which can be incorporated into training, which was
fixed by encapsulating the code into functions and made adhered to the DRY principle. As easily
visible from figures 4.17 and 4.18, it has the U-like architecture.

4.4 Classification

4.4.1 DeepCovid
The DeepCovid project (Minaee et al. 2020) trains a ResNet 18 (He et al. 2015) on a dataset with
184 images labeled as ’covid’ provided by Cohen, Morrison, and Dao 2020 and 5000 non-covid
images uniformly drawn from Irvin et al. 2019.

The model itself is a convolutional network of 18 layers, which is pre-trained on data from
the ImageNet (Deng et al. 2009) database and provided by the PyTorch framework.

Figure 4.19 ResNet architecture, with skip connections. Source: Ramzan et al. 2019.

https://pytorch.org/

4.5. Experiments 35

train test
positive 84 100
negative 2000 3000

Table 4.4 Class and set distribution of images used by the DeepCovid’s (Minaee et al. 2020) ResNet
network.

Figure 4.20 Convolutional neural network classifier. Source: Kulkarni, Walimbe, and Mundhe 2019.

4.4.2 Generic classifier network
To compare results and provide a baseline to measure against, a plain convolutional neural
network classifier has also been trained. The number of layers is based on Kulkarni, Walimbe,
and Mundhe 2019. The convolutional layers have, in order from start to finish, 128, 64, 32 and
32 layers, followed by a densely connected layer of 128 units and an output layer of 1 neuron
with the softmax activation. The convolution filter is 3× 3 for all the convolutional layers, and
the pool size is 2× 2.

4.5 Experiments
Logs of individual runs can be access at https://wandb.ai/koristo1/GAN and https://wandb.
ai/koristo1/GAN.

4.5.1 Classifiers
The Deepcovid’s ResNet-based classifier has been trained with its provided data, only split into
three subsets, rather than two, to provide a universal data split for other frameworks. The model
has been trained over 50 epochs, with 20 images per batch, learning rate of 0.001 and 2 workers8.

The model is successful at identifying non-covid samples. 99.8 % non-covid images were
labelled correctly. However, only 51 % of the covid positive samples were identified correctly, as
visible from the confusion matrix 4.21. This can be due to the low number of samples of covid
positive samples, and as such, the model has also been trained on an augmented dataset.

The false negatives are very alarming. Another training was undertaken on the same dataset,
but with a different data split. Instead of the provided split, where the test set was unreasonably
large (3100 images), the images have been pooled and then randomly, without replacement,
60 % of the images were designated as training data, 20 % as validation and the remaining 20
% as test data. This process was done over labels separately, so the proportions of covid and
non-covid is the same. This has resulted in a much lower number of false negatives and no false
negatives, as visible in the confusion matrix 4.22.

Hoping for a fair comparison with a naive model, a simple convolutional network was also
trained on the same dataset. However, the model has always quickly degenerated and collapsed,

8The number of subprocesses for data loading.

https://wandb.ai/koristo1/GAN
https://wandb.ai/koristo1/GAN
https://wandb.ai/koristo1/GAN

36 Chapter 4. Implementation

Figure 4.21 Confusion matrix of ResNet-18 with
the provided test set.

Figure 4.22 Confusion matrix of ResNet-18 on a
balanced test set.

Figure 4.23 Accuracy of the Deep covid models during their training. The red line tracks the training
on a larger training dataset, whilst the green line tracks training on the original dataset.

resulting in 0 loss, and hence the loss function, which uses the logarithmic value of that, escalated
into infinity. Thus, no matter what the activation functions were, this classifier is unusable -
both the validation and test results were 50 %.

Initially, all GAN models were trained with a batch size of 32, 10000 epochs and latent
dimension of 100. The desired output (and by extension, required input) was i.e. greyscale
images. Models were trained on both the regular dataset, sourced from Wang, Lin, and Wong
2020, as well as the augmented dataset9.

There is a dramatic difference in training time based on the model and desired image dimen-
sions. Further, the captured duration of training does not include data loading, only the training
of the network itself. Due to network transfer from a cloud storage to a virtual machine’s, the
loading process can take up to an hour, if not longer, depending on the dataset size. This in gen-
eral hinders easy reproducibility and tuning, and could be solved by compressing the individual
sets into archives and transferring those instead to dramatically reduce copying by removing a
large chunk of the copying overhead.

9As described in section 4.2.3.

4.5. Experiments 37

Model type Run time (s) Batch size Epochs Height Width Dataset
wgan-gp 5913 32 10000.0 64.0 64.0 normal

dcgan 8967 32 10000.0 256.0 256.0 normal
wgan 9042 32 10000.0 256.0 256.0 normal
cgan 818 32 10000.0 256.0 256.0 normal
wgan 2687 32 10000.0 64.0 64.0 normal
cgan 2221 32 10000.0 64.0 64.0 normal

wgan-gp 6000 32 10000.0 256.0 256.0 normal
wgan-gp 3029 32 10000.0 64.0 64.0 augmented

wgan 3394 32 10000.0 64.0 64.0 augmented
cgan 4498 32 10000.0 64.0 64.0 augmented

wgan-gp 6285 32 10000.0 256.0 256.0 augmented
wgan 10655 32 10000.0 256.0 256.0 augmented
cgan 4751 32 10000.0 256.0 256.0 augmented

Table 4.5 Fixed dataset example

Figure 4.24 FID of GAN models. The orange and pink curves are of models trained on the augmented
dataset, whilst the green and red are trained on the regular dataset. Further, the orange and red curves
are trained to generate images with dimensions 64×64, and the green and pink with dimensions 256×256.

4.5.2 GAN
The vanilla GAN has tangible results, especially on the non-augmented dataset (figures 4.27 and
4.28).

As visible in figure 4.24, all the GAN models have a similar curve when it comes to Fréchet
inception distance, having a steep decrease in the first 1000 epochs and then converging from
2000th epoch onwards10.

4.5.3 CGAN
The conditional dataset performs quite well on the regular dataset, creating tangible pictures at
the higher resolution (4.48), and slightly worse, but still recognizable, at lower (4.45). This is due
to the much larger dataset size, which also learns from negative samples, which in general are

10The lower the Fréchet inception distance, the better.

38 Chapter 4. Implementation

Figure 4.25 GAN results after 10000 epochs on the augmented dataset with images of size 64 × 64.

Figure 4.26 GAN results after 10000 epochs on the augmented dataset with images of size 256 × 256.

Figure 4.27 GAN results after 10000 epochs on the normal dataset with images of size 64 × 64.

Figure 4.28 GAN results after 10000 epochs on the normal dataset with images of size 256 × 256.

4.5. Experiments 39

Figure 4.29 FID of conditional GAN models. The cyan and orange models produce 64 × 64images,
the first of which was trained on the regular dataset, and the latter on the augmented dataset. The
complementing datasets generate images with dimensions 256 × 256, where the peach and brown-grey
curves correspond to the original dataset and the augmented dataset, respectively.

quite similar (in terms of the human physiology). The augmented dataset’s performance with a
conditional GAN, whist comparing worse with the regular dataset, seems more promising than
the WGAN.

As was the case with the vanilla GAN models, the curves of FID throughout the training are
all quite similar, dipping steeply early and then having a very mild rise.

4.5.4 WGAN
Wasserstein GAN has unfortunately fallen short in general, especially with gradient penalty.
Though the ’regular’ WGAN generates results that with a grain of salt resemble the domain
they are trained on (figures 4.34,4.35,4.32), it also easily generates irrelevant data (figure 4.33).
Even worse, the WGAN with gradient penalty performs even worse, generating only and only
white noise (4.36,4.33,4.34 and 4.35). These models were given a second chance to perform with
fewer epochs, to see if they produce better results earlier during the training process.

FID of both families (with and without gradient penalty loss) show wild oscillation during
training, moreso in the case of models with gradient penalty. Whilst they do have the steepest
initial drop in value, as visible in figure 4.31, they follow by a quick rise and unstable progress.
The regular WGAN models perform slightly better, but still not adequately, as depicted in figure
4.30, the values do not unfold in a controlled manner.

Based on the recorded metrics, the 2500th epoch was determined most suitable for a second
examination.

4.5.5 DCGAN
Similarly to the Wasserstein GANs, the DCGAN is a failure, and on top of that it has suffered
from a mode collapse. This can be easily visible in figures 4.43, 4.41 and 4.44, where the generated
images are identical or near identical. The expected result of the DCGAN was abnormal and
distorted body shapes depicted in the image, as reported by Kovalev and Kazlouski 2019.

Regarding FID, the models quickly converge, most likely due to the mode collapse visible in
the result images. The run that had the lowest FID has basically not changed from the 2000th

40 Chapter 4. Implementation

Figure 4.30 FID of WGAN models. The lime and brown-grey models represent training runs on the
normal dataset, with image dimensions of 256 × 256and 64 × 64, respetively. The other two, purple and
green, represent runs on the augmented dataset, again, with dimensions 256 × 256and 64 × 64.

Figure 4.31 FID of WGAN models with a gradient penalty loss. The crimson and yellow curves depict
the FID during training on the normal dataset with image dimensions 64 × 64and 256 × 256successively,
magenta and pink follow the same dimensions on the augmented dataset.

Figure 4.32 Wasserstein GAN results after 10000 epochs on the augmented dataset with images of
size 64 × 64.

4.5. Experiments 41

Figure 4.33 Wasserstein GAN results after 10000 epochs on the augmented dataset with images of
size 256 × 256.

Figure 4.34 Wasserstein GAN results after 10000 epochs on the normal dataset with images of size
64 × 64.

Figure 4.35 Wasserstein GAN results after 10000 epochs on the normal dataset with images of size
256 × 256.

Figure 4.36 Wasserstein GAN with gradient penalty results after 10000 epochs on the augmented
dataset with images of size 64 × 64.

Figure 4.37 Wasserstein GAN with gradient penalty results after 10000 epochs on the augmented
dataset with images of size 256 × 256.

Figure 4.38 Wasserstein GAN with gradient penalty results after 10000 epochs on the normal dataset
with images of size 64 × 64.

42 Chapter 4. Implementation

Figure 4.39 DCGAN results after 10000 epochs on the normal dataset with images of size 256 × 256.

Figure 4.40 FID of DCGAN models. The quick convergence is alarming. The purple and blue lines
track training with 256 × 256and 64 × 64, respectively, on the augmented dataset. The gray and brown
lines then track training on the regular dataset, with 64 × 64and 256 × 256.

epoch onwards, whilst the others increased in value over time. In the same vein, the variational
auto encoder performed terribly, producing but noise and no usable data, and was not taken into
consideration going gorward.

4.5.6 Second wind
As mentioned during the examination of models’ results, some of them have failed to model
the desired domain. That could be an issue of mode collapse, overfitting or simply general lack
of data. Attempting to salvage, the models were loaded at an earlier checkpoint, where their
metrics were promising, and examined. However, this has not come into fruition, as the results
are still a scrambled mess, as visible in figure 4.49.

Through and through, the vanilla GAN model, trained on the base dataset with image di-
mensions of 256 × 256has emerged superior amongst its peers. The bets performing dataset
of DeepCovid contained but 312 image, and so a combination of those 312 and 312 generated
images was used to train the DeepCovid model.

Figure 4.41 DCGAN results after 10000 epochs on the augmented dataset with images of size 64×64.

4.5. Experiments 43

Figure 4.42 DCGAN results after 10000 epochs on the augmented dataset with images of size 256 ×
256.

Figure 4.43 DCGAN results after 10000 epochs on the normal dataset with images of size 64 × 64.

Figure 4.44 Wasserstein GAN with gradient penalty results after 10000 epochs on the normal dataset
with images of size 256 × 256.

Figure 4.45 Conditional GAN results after 10000 epochs on the augmented dataset with images of
size 64 × 64.

Figure 4.46 Conditional GAN results after 10000 epochs on the augmented dataset with images of
size 256 × 256.

Figure 4.47 Conditional GAN results after 10000 epochs on the regular dataset with images of size
64 × 64.

44 Chapter 4. Implementation

Figure 4.48 Conditional GAN results after 10000 epochs on the normal dataset with images of size
256 × 256.

Figure 4.49 Images generated at earlier stages of the training. From left to right, they are as following:
Wasserstein GAN with gradient penalty at 3000th epoch, Deep Convoluted GAN at 2000th epoch and
Wasserstein GAN at 4500th epoch.

Figure 4.50 Confusion matrix of the DeepCovid classifier with the original covid data supplemented
by data generated by a GAN model.

Chapter 5

Conclusion

The research aimed to review state-of-the-art techniques used in the domain of medical imaging,
with a focus on the application of generative models and segmentation tasks. As proven times
and times again in their short life span, adversarial models are a remarkable tool for exploring
the intricate distributions of complex data, and have established a foothold in medical imaging,
competing with modern approaches.

The experiments pick a handful of the most common models for implementation and eval-
uation, to supplement the dissatisfactory amount of positive pathologies of covid-19, and those
models were compared and contrasted against each other. The models were ran and evaluated
with regular dataset, as well as their augmented variations. The expectations were such that the
augmented datasets will bolster the models, by tackling overfitting and forcing the models to
learn the semantic information from images, but in the end, the baseline dataset outperformed
the augmented in every sense. Similarly, the more refined models performed much worse than
their simpler brethren.

The generated images from these models have demonstrated being on par with real data
when supplementing it during training of classification neural networks. Using data generated
from the best performing model - the vanilla GAN model without any additional loss functions
or modifications, on the non-augmented dataset, working with greyscale 256 × 256 images to
train an existing classifier ResNet-18, the model sports a 93% accuracy.

Further tinkering with model shapes and hyperparameters and an increase in volume of
training data shows promises of further improvement and practical use of synthetic data.

45

Appendix A

GAN evaluation metrics

Compiled by Borji 2018.

1. Average Log-likelihood

2. Coverage Metric

3. Inception Score (IS)

4. Modified Inception Score (m-IS)

5. Mode Score

6. AM Score

7. Frechet Inception Distance (FID)

8. Maximum Mean Discrepancy (MMD)

9. The Wasserstein Critic

10. Birthday Paradox Test

11. Classifier Two-sample Tests (C2ST)

12. Classification Performance

13. Boundary Distortion

14. Number of Statistically-Different Bins (NDB)

15. Image Retrieval Performance

16. Generative Adversarial Metric (GAM)

17. Tournament Win Rate and Skill Rating

18. Normalized Relative Discriminative Score (NRDS)

19. Adversarial Accuracy and Adversarial Divergence

20. Geometry Score

21. Reconstruction Error

47

48 Appendix A. GAN evaluation metrics

22. Image Quality Measures (SSIM, PSNR and Sharpness Difference)

23. Low-level Image Statistics

24. Precision, Recall and F1 Score

Appendix B

CovidNet datasets

https://github.com/ieee8023/covid-chestxray-dataset.git

https://github.com/agchung/Figure1-COVID-chestxray-dataset.git

https://github.com/agchung/Actualmed-COVID-chestxray-dataset.git

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/discussion/
209607 (broken)

https://drive.google.com/file/d/1xt7g5LkZuX09e1a8rK9sRXIrGFN6rjzl/view?usp=sharing
(functional alternative)

https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data

49

https://github.com/ieee8023/covid-chestxray-dataset.git
https://github.com/agchung/Figure1-COVID-chestxray-dataset.git
https://github.com/agchung/Actualmed-COVID-chestxray-dataset.git
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/discussion/209607
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/discussion/209607
https://drive.google.com/file/d/1xt7g5LkZuX09e1a8rK9sRXIrGFN6rjzl/view?usp=sharing
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data

Bibliography

[1] David Abramian and Anders Eklund. “Refacing: Reconstructing Anonymized Facial Fea-
tures Using GANS”. In: 2019 IEEE 16th International Symposium on Biomedical Imaging
(ISBI 2019) (Apr. 2019). doi: 10.1109/isbi.2019.8759515. url: http://dx.doi.org/
10.1109/ISBI.2019.8759515.

[2] Jafar Alzubi, Anand Nayyar, and Akshi Kumar. “Machine learning from theory to algo-
rithms: an overview”. In: Journal of physics: conference series. Vol. 1142. 1. IOP Publish-
ing. 2018, p. 012012.

[3] Pujitha Appan K. and Jayanthi Sivaswamy. “Retinal Image Synthesis for CAD Devel-
opment”. In: Image Analysis and Recognition. Ed. by lio Campilho Auré, Fakhri Karray,
and Bart ter Haar Romeny. Cham: Springer International Publishing, 2018, pp. 613–621.
isbn: 978-3-319-93000-8.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. 2017. arXiv:
1701.07875 [stat.ML].

[5] Karim Armanious et al. “MedGAN: Medical image translation using GANs”. In: Com-
puterized Medical Imaging and Graphics 79 (Jan. 2020), p. 101684. issn: 0895-6111. doi:
10. 1016/ j. compmedimag. 2019. 101684. url: http: // dx. doi. org/ 10.1016 /j .
compmedimag.2019.101684.

[6] Valérie Aumage. Health data and data privacy. Challenges for data processors under the
GDPR. June 2016. url: https : / / globaldatahub . taylorwessing . com / article /
health-data-and-data-privacy-challenges-for-data-processors-under-the-
gdpr.

[7] Shane Barratt and Rishi Sharma. A Note on the Inception Score. 2018. arXiv: 1801.01973
[stat.ML].

[8] Christoph Baur, Shadi Albarqouni, and Nassir Navab. Generating Highly Realistic Images
of Skin Lesions with GANs. 2018. arXiv: 1809.01410 [cs.CV].

[9] Christoph Baur, Shadi Albarqouni, and Nassir Navab. MelanoGANs: High Resolution
Skin Lesion Synthesis with GANs. 2018. arXiv: 1804.04338 [cs.CV].

[10] Joseph J. Bautista. A Bit Beyond Gradient Descent: Mini-Batch, Momentum, and Some
Dude Named Yuri Nesterov. Dec. 2017. url: https://towardsdatascience.com/a-
bit- beyond- gradient- descent- mini- batch- momentum- and- some- dude- named-
yuri-nesterov-a3640f9e496b.

[11] Andrew Beers et al. High-resolution medical image synthesis using progressively grown
generative adversarial networks. 2018. arXiv: 1805.03144 [cs.CV].

51

https://doi.org/10.1109/isbi.2019.8759515
http://dx.doi.org/10.1109/ISBI.2019.8759515
http://dx.doi.org/10.1109/ISBI.2019.8759515
https://arxiv.org/abs/1701.07875
https://doi.org/10.1016/j.compmedimag.2019.101684
http://dx.doi.org/10.1016/j.compmedimag.2019.101684
http://dx.doi.org/10.1016/j.compmedimag.2019.101684
https://globaldatahub.taylorwessing.com/article/health-data-and-data-privacy-challenges-for-data-processors-under-the-gdpr
https://globaldatahub.taylorwessing.com/article/health-data-and-data-privacy-challenges-for-data-processors-under-the-gdpr
https://globaldatahub.taylorwessing.com/article/health-data-and-data-privacy-challenges-for-data-processors-under-the-gdpr
https://arxiv.org/abs/1801.01973
https://arxiv.org/abs/1801.01973
https://arxiv.org/abs/1809.01410
https://arxiv.org/abs/1804.04338
https://towardsdatascience.com/a-bit-beyond-gradient-descent-mini-batch-momentum-and-some-dude-named-yuri-nesterov-a3640f9e496b
https://towardsdatascience.com/a-bit-beyond-gradient-descent-mini-batch-momentum-and-some-dude-named-yuri-nesterov-a3640f9e496b
https://towardsdatascience.com/a-bit-beyond-gradient-descent-mini-batch-momentum-and-some-dude-named-yuri-nesterov-a3640f9e496b
https://arxiv.org/abs/1805.03144

52 Bibliography

[12] Daniel J Bell. 2020. url: https://radiopaedia.org/articles/radiological-image-
artifact.

[13] Avi Ben-Cohen et al. “Virtual PET Images from CT Data Using Deep Convolutional
Networks: Initial Results”. In: Lecture Notes in Computer Science (2017), pp. 49–57.
issn: 1611-3349. doi: 10.1007/978-3-319-68127-6_6. url: http://dx.doi.org/10.
1007/978-3-319-68127-6_6.

[14] Abi Berger. “Positron emission tomography”. In: BMJ 326.7404 (June 2003), pp. 1449–
1449. doi: 10.1136/bmj.326.7404.1449. url: https://doi.org/10.1136/bmj.326.
7404.1449.

[15] Lei Bi et al. Synthesis of Positron Emission Tomography (PET) Images via Multi-channel
Generative Adversarial Networks (GANs). 2017. arXiv: 1707.09747 [cs.CV].

[16] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available from
wandb.com. 2020. url: https://www.wandb.com/.

[17] Ali Borji. Pros and Cons of GAN Evaluation Measures. 2018. arXiv: 1802.03446 [cs.CV].
[18] Tomas Borovicka. Multi-agent systems and The Game Theory. Games in Normal Form,

Games in Extensive Form. https : / / courses . fit . cvut . cz / BI - ZUM / media / en /
lectures/10-games-noanim.pdf. Thákurova 9, 160 00 Prague 6: Department of Theo-
retical Computer Science , Faculty of Information Technology Czech Technical University
in Prague, 2013.

[19] Christopher Bowles et al. GAN Augmentation: Augmenting Training Data using Gener-
ative Adversarial Networks. 2018. arXiv: 1810.10863 [cs.CV].

[20] Francesco Calimeri et al. “Biomedical Data Augmentation Using Generative Adversarial
Neural Networks”. In: Artificial Neural Networks and Machine Learning – ICANN 2017.
Ed. by Alessandra Lintas et al. Cham: Springer International Publishing, 2017, pp. 626–
634. isbn: 978-3-319-68612-7.

[21] François Chollet et al. Keras. https://keras.io. 2015.
[22] Maria J. M. Chuquicusma et al. How to Fool Radiologists with Generative Adversarial

Networks? A Visual Turing Test for Lung Cancer Diagnosis. 2018. arXiv: 1710.09762
[cs.CV].

[23] Özgün Çiçek et al. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse
Annotation. 2016. arXiv: 1606.06650 [cs.CV].

[24] Joseph Paul Cohen, Paul Morrison, and Lan Dao. “COVID-19 image data collection”.
In: arXiv 2003.11597 (2020). url: https://github.com/ieee8023/covid-chestxray-
dataset.

[25] Pedro Costa et al. “End-to-End Adversarial Retinal Image Synthesis”. In: IEEE Trans-
actions on Medical Imaging 37.3 (2018), pp. 781–791. doi: 10.1109/TMI.2017.2759102.

[26] Wei Dai et al. SCAN: Structure Correcting Adversarial Network for Organ Segmentation
in Chest X-rays. 2017. arXiv: 1703.08770 [cs.CV].

[27] Shibsankar Das. Image similarity using Triplet Loss. July 2019. url: https://towardsdatascience.
com/image-similarity-using-triplet-loss-3744c0f67973.

[28] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE
conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255. url: http:
//www.image-net.org/.

[29] TensorFlow Developers. “TensorFlow”. In: (Mar. 2021). doi: 10.5281/zenodo.4758419.
[30] Qi Dou et al. 3D Deeply Supervised Network for Automatic Liver Segmentation from CT

Volumes. 2016. arXiv: 1607.00582 [cs.CV].

https://radiopaedia.org/articles/radiological-image-artifact
https://radiopaedia.org/articles/radiological-image-artifact
https://doi.org/10.1007/978-3-319-68127-6_6
http://dx.doi.org/10.1007/978-3-319-68127-6_6
http://dx.doi.org/10.1007/978-3-319-68127-6_6
https://doi.org/10.1136/bmj.326.7404.1449
https://doi.org/10.1136/bmj.326.7404.1449
https://doi.org/10.1136/bmj.326.7404.1449
https://arxiv.org/abs/1707.09747
https://www.wandb.com/
https://arxiv.org/abs/1802.03446
https://courses.fit.cvut.cz/BI-ZUM/media/en/lectures/10-games-noanim.pdf
https://courses.fit.cvut.cz/BI-ZUM/media/en/lectures/10-games-noanim.pdf
https://arxiv.org/abs/1810.10863
https://keras.io
https://arxiv.org/abs/1710.09762
https://arxiv.org/abs/1710.09762
https://arxiv.org/abs/1606.06650
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://doi.org/10.1109/TMI.2017.2759102
https://arxiv.org/abs/1703.08770
https://towardsdatascience.com/image-similarity-using-triplet-loss-3744c0f67973
https://towardsdatascience.com/image-similarity-using-triplet-loss-3744c0f67973
http://www.image-net.org/
http://www.image-net.org/
https://doi.org/10.5281/zenodo.4758419
https://arxiv.org/abs/1607.00582

Bibliography 53

[31] Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for deep
learning”. In: ArXiv e-prints (Mar. 2016). eprint: 1603.07285.

[32] IBM Cloud Education. Unsupervised learning. Sept. 2020. url: https://www.ibm.com/
cloud/learn/unsupervised-learning.

[33] Alon Efrat et al. “New Similarity Measures between Polylines with Applications to Mor-
phing and Polygon Sweeping”. In: Discrete and Computational Geometry 28 (July 2002),
pp. 535–569. doi: 10.1007/s00454-002-2886-1.

[34] Hajar Emami et al. “Generating synthetic CTs from magnetic resonance images using
generative adversarial networks”. In: Medical Physics 45.8 (2018), pp. 3627–3636. doi:
https://doi.org/10.1002/mp.13047. eprint: https://aapm.onlinelibrary.wiley.
com/doi/pdf/10.1002/mp.13047. url: https://aapm.onlinelibrary.wiley.com/
doi/abs/10.1002/mp.13047.

[35] Farzan Farnia and Asuman Ozdaglar. GANs May Have No Nash Equilibria. 2020. arXiv:
2002.09124 [cs.LG].

[36] Gamma Knife. Jan. 2018. url: https://www.radiologyinfo.org/en/info/gamma_
knife.

[37] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.2661 [stat.ML].
[38] John T. Guibas, Tejpal S. Virdi, and Peter S. Li. Synthetic Medical Images from Dual

Generative Adversarial Networks. 2018. arXiv: 1709.01872 [cs.CV].
[39] Ishaan Gulrajani et al. Improved Training of Wasserstein GANs. 2017. arXiv: 1704.00028

[cs.LG].
[40] Changhee Han et al. “GAN-based synthetic brain MR image generation”. In: 2018 IEEE

15th International Symposium on Biomedical Imaging (ISBI 2018). 2018, pp. 734–738.
doi: 10.1109/ISBI.2018.8363678.

[41] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.03385
[cs.CV].

[42] Yuta Hiasa et al. “Cross-Modality Image Synthesis from Unpaired Data Using Cycle-
GAN”. In: Simulation and Synthesis in Medical Imaging. Ed. by Ali Gooya et al. Cham:
Springer International Publishing, 2018, pp. 31–41. isbn: 978-3-030-00536-8.

[43] Avinash Hindupur. GAN Zoo. https://github.com/hindupuravinash/the-gan-zoo.
2017.

[44] Imaging and radiology. 1997. url: https://medlineplus.gov/ency/article/007451.
htm.

[45] Talha Iqbal and Hazrat Ali. “Generative Adversarial Network for Medical Images (MI-
GAN)”. In: Journal of Medical Systems 42.11 (Oct. 2018). issn: 1573-689X. doi: 10.
1007/s10916-018-1072-9. url: http://dx.doi.org/10.1007/s10916-018-1072-9.

[46] Jeremy Irvin et al. CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels
and Expert Comparison. 2019. arXiv: 1901.07031 [cs.CV].

[47] Phillip Isola et al. Image-to-Image Translation with Conditional Adversarial Networks.
2018. arXiv: 1611.07004 [cs.CV].

[48] Yangqing Jia et al. “Caffe: Convolutional Architecture for Fast Feature Embedding”. In:
arXiv preprint arXiv:1408.5093 (2014).

[49] Cheng-Bin Jin et al. “Deep CT to MR Synthesis Using Paired and Unpaired Data”. In:
Sensors 19.10 (2019). issn: 1424-8220. doi: 10.3390/s19102361. url: https://www.
mdpi.com/1424-8220/19/10/2361.

1603.07285
https://www.ibm.com/cloud/learn/unsupervised-learning
https://www.ibm.com/cloud/learn/unsupervised-learning
https://doi.org/10.1007/s00454-002-2886-1
https://doi.org/https://doi.org/10.1002/mp.13047
https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.13047
https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.13047
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13047
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13047
https://arxiv.org/abs/2002.09124
https://www.radiologyinfo.org/en/info/gamma_knife
https://www.radiologyinfo.org/en/info/gamma_knife
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1709.01872
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
https://doi.org/10.1109/ISBI.2018.8363678
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://github.com/hindupuravinash/the-gan-zoo
https://medlineplus.gov/ency/article/007451.htm
https://medlineplus.gov/ency/article/007451.htm
https://doi.org/10.1007/s10916-018-1072-9
https://doi.org/10.1007/s10916-018-1072-9
http://dx.doi.org/10.1007/s10916-018-1072-9
https://arxiv.org/abs/1901.07031
https://arxiv.org/abs/1611.07004
https://doi.org/10.3390/s19102361
https://www.mdpi.com/1424-8220/19/10/2361
https://www.mdpi.com/1424-8220/19/10/2361

54 Bibliography

[50] James M. Joyce. “Kullback-Leibler Divergence”. In: International Encyclopedia of Sta-
tistical Science. Ed. by Miodrag Lovric. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 720–722. isbn: 978-3-642-04898-2. doi: 10.1007/978-3-642-04898-2_327.
url: https://doi.org/10.1007/978-3-642-04898-2_327.

[51] Horst-Michael Gross Klaus Debes Alexander Koenig. “Transfer Functions in Artificial
Neural Networks - A Simulation-Based Tutorial”. In: Brains, Minds and Media 1 (2005).

[52] Dimitrios Korkinof et al. High-Resolution Mammogram Synthesis using Progressive Gen-
erative Adversarial Networks. 2019. arXiv: 1807.03401 [cs.CV].

[53] Vassili Kovalev and Siarhei Kazlouski. Examining the Capability of GANs to Replace Real
Biomedical Images in Classification Models Training. 2019. arXiv: 1904.08688 [cs.CV].

[54] Sumedh Kulkarni, Pranav Walimbe, and Prathamesh Mundhe. IE 7615: NeuralNetworks
and Deep Learning - Final Project. https://github.com/sumedhkulkarni7/Image-
Classification-using-CNN-Keras-and-Tensorflow-in-Python. 2019.

[55] Avisek Lahiri et al. Retinal Vessel Segmentation under Extreme Low Annotation: A Gen-
erative Adversarial Network Approach. 2018. arXiv: 1809.01348 [cs.CV].

[56] Zhengchun Liu et al. “TomoGAN: low-dose synchrotron x-ray tomography with generative
adversarial networks: discussion”. In: Journal of the Optical Society of America A 37.3
(Feb. 2020), p. 422. issn: 1520-8532. doi: 10.1364/josaa.375595. url: http://dx.doi.
org/10.1364/JOSAA.375595.

[57] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities improve
neural network acoustic models”. In: Proc. icml. Vol. 30. 1. Citeseer. 2013, p. 3.

[58] Ali Madani et al. “Semi-supervised learning with generative adversarial networks for chest
X-ray classification with ability of data domain adaptation”. In: 2018 IEEE 15th In-
ternational Symposium on Biomedical Imaging (ISBI 2018). 2018, pp. 1038–1042. doi:
10.1109/ISBI.2018.8363749.

[59] Dwarikanath Mahapatra and Behzad Bozorgtabar. Progressive Generative Adversarial
Networks for Medical Image Super resolution. 2019. arXiv: 1902.02144 [cs.CV].

[60] Dwarikanath Mahapatra, Behzad Bozorgtabar, et al. Efficient Active Learning for Image
Classification and Segmentation using a Sample Selection and Conditional Generative
Adversarial Network. 2019. arXiv: 1806.05473 [cs.CV].

[61] Faisal Mahmood, Richard Chen, and Nicholas J. Durr. “Unsupervised Reverse Domain
Adaptation for Synthetic Medical Images via Adversarial Training”. In: IEEE Trans-
actions on Medical Imaging 37.12 (Dec. 2018), pp. 2572–2581. issn: 1558-254X. doi:
10.1109/tmi.2018.2842767. url: http://dx.doi.org/10.1109/TMI.2018.2842767.

[62] Matteo Maspero et al. “Dose evaluation of fast synthetic-CT generation using a generative
adversarial network for general pelvis MR-only radiotherapy”. In: Physics in Medicine &
Biology 63.18 (Sept. 2018), p. 185001. issn: 1361-6560. doi: 10.1088/1361-6560/aada6d.
url: http://dx.doi.org/10.1088/1361-6560/aada6d.

[63] Hugo Mayo et al. Types of Medical Imaging. 2018. url: https://www.doc.ic.ac.uk/
˜jce317/types-medical-imaging.html.

[64] The National Institute of Mental Health. “Computed Tomography (CT)”. In: (July 2013).
url: https://www.nibib.nih.gov/science-education/science-topics/computed-
tomography-ct.

[65] The National Institute of Mental Health. “Ultrasound Imaging”. In: (July 2016). url:
https://www.nibib.nih.gov/science-education/science-topics/ultrasound.

[66] Merriam-Webster. url: https://www.merriam- webster.com/dictionary/in%5C%
20vivo (visited on 03/12/2021).

https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://arxiv.org/abs/1807.03401
https://arxiv.org/abs/1904.08688
https://github.com/sumedhkulkarni7/Image-Classification-using-CNN-Keras-and-Tensorflow-in-Python
https://github.com/sumedhkulkarni7/Image-Classification-using-CNN-Keras-and-Tensorflow-in-Python
https://arxiv.org/abs/1809.01348
https://doi.org/10.1364/josaa.375595
http://dx.doi.org/10.1364/JOSAA.375595
http://dx.doi.org/10.1364/JOSAA.375595
https://doi.org/10.1109/ISBI.2018.8363749
https://arxiv.org/abs/1902.02144
https://arxiv.org/abs/1806.05473
https://doi.org/10.1109/tmi.2018.2842767
http://dx.doi.org/10.1109/TMI.2018.2842767
https://doi.org/10.1088/1361-6560/aada6d
http://dx.doi.org/10.1088/1361-6560/aada6d
https://www.doc.ic.ac.uk/~jce317/types-medical-imaging.html
https://www.doc.ic.ac.uk/~jce317/types-medical-imaging.html
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct
https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct
https://www.nibib.nih.gov/science-education/science-topics/ultrasound
https://www.merriam-webster.com/dictionary/in%5C%20vivo
https://www.merriam-webster.com/dictionary/in%5C%20vivo

Bibliography 55

[67] Ethan Bueno de Mesquita. Political Economy for Public Policy. Princeton University
Press, 2016. isbn: 9780691168739. doi: 10 . 2307 / j . ctvc772fr. url: http : / / www .
jstor.org/stable/j.ctvc772fr.

[68] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-Net: Fully Convolutional
Neural Networks for Volumetric Medical Image Segmentation. 2016. arXiv: 1606.04797
[cs.CV].

[69] Shervin Minaee et al. “Deep-COVID: Predicting COVID-19 From Chest X-Ray Images
Using Deep Transfer Learning”. In: arXiv preprint arXiv:2004.09363 (2020).

[70] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. 2014. arXiv:
1411.1784 [cs.LG].

[71] Tony C. W. Mok and Albert C. S. Chung. “Learning Data Augmentation for Brain Tumor
Segmentation with Coarse-to-Fine Generative Adversarial Networks”. In: Lecture Notes
in Computer Science (2019), pp. 70–80. issn: 1611-3349. doi: 10.1007/978- 3- 030-
11723-8_7. url: http://dx.doi.org/10.1007/978-3-030-11723-8_7.

[72] MRI scan. Aug. 2018. url: https://www.nhs.uk/conditions/mri-scan/.
[73] Dong Nie, Roger Trullo, et al. Medical Image Synthesis with Context-Aware Generative

Adversarial Networks. 2016. arXiv: 1612.05362 [cs.CV].
[74] Dong Nie, Lei Xiang, et al. Dual Adversarial Learning with Attention Mechanism for

Fine-grained Medical Image Synthesis. 2019. arXiv: 1907.03297 [eess.IV].
[75] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Curran Associates,
Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf.

[76] Andrew J. Plassard et al. “Learning implicit brain MRI manifolds with deep learning”.
In: Medical Imaging 2018: Image Processing (Mar. 2018). Ed. by Elsa D. Angelini and
Bennett A.Editors Landman. doi: 10.1117/12.2293515. url: http://dx.doi.org/10.
1117/12.2293515.

[77] Positron Emission Tomography - Computed Tomography (PET/CT). Aug. 2019. url:
https://www.radiologyinfo.org/en/info/pet.

[78] David C Preston. “Magnetic resonance imaging (mri) of the brain and spine: Basics”. In:
MRI Basics, Case Med 30 (2006).

[79] Alec Radford, Luke Metz, and Soumith Chintala. 2016. arXiv: 1511.06434 [cs.LG].
[80] Farheen Ramzan et al. “A Deep Learning Approach for Automated Diagnosis and Multi-

Class Classification of Alzheimer’s Disease Stages Using Resting-State fMRI and Residual
Neural Networks”. In: Journal of Medical Systems 44.2 (Dec. 2019), p. 37. issn: 1573-689X.
doi: 10.1007/s10916-019-1475-2. url: https://doi.org/10.1007/s10916-019-
1475-2.

[81] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for
Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[82] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd Edi-
tion). Prentice Hall, Dec. 2002. isbn: 0137903952.

[83] Carl F. Sabottke and Bradley M. Spieler. “The Effect of Image Resolution on Deep
Learning in Radiography”. In: Radiology: Artificial Intelligence 2.1 (2020), e190015. doi:
10.1148/ryai.2019190015. eprint: https://doi.org/10.1148/ryai.2019190015.
url: https://doi.org/10.1148/ryai.2019190015.

https://doi.org/10.2307/j.ctvc772fr
http://www.jstor.org/stable/j.ctvc772fr
http://www.jstor.org/stable/j.ctvc772fr
https://arxiv.org/abs/1606.04797
https://arxiv.org/abs/1606.04797
https://arxiv.org/abs/1411.1784
https://doi.org/10.1007/978-3-030-11723-8_7
https://doi.org/10.1007/978-3-030-11723-8_7
http://dx.doi.org/10.1007/978-3-030-11723-8_7
https://www.nhs.uk/conditions/mri-scan/
https://arxiv.org/abs/1612.05362
https://arxiv.org/abs/1907.03297
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1117/12.2293515
http://dx.doi.org/10.1117/12.2293515
http://dx.doi.org/10.1117/12.2293515
https://www.radiologyinfo.org/en/info/pet
https://arxiv.org/abs/1511.06434
https://doi.org/10.1007/s10916-019-1475-2
https://doi.org/10.1007/s10916-019-1475-2
https://doi.org/10.1007/s10916-019-1475-2
https://arxiv.org/abs/1505.04597
https://doi.org/10.1148/ryai.2019190015
https://doi.org/10.1148/ryai.2019190015
https://doi.org/10.1148/ryai.2019190015

56 Bibliography

[84] Hojjat Salehinejad et al. “Generalization of Deep Neural Networks for Chest Pathology
Classification in X-Rays Using Generative Adversarial Networks”. In: 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018, pp. 990–
994. doi: 10.1109/ICASSP.2018.8461430.

[85] Tim Salimans et al. “Improved Techniques for Training GANs”. In: Proceedings of the 30th
International Conference on Neural Information Processing Systems. NIPS’16. Barcelona,
Spain: Curran Associates Inc., 2016, pp. 2234–2242. isbn: 9781510838819.

[86] Hongming Shan et al. “3-D Convolutional Encoder-Decoder Network for Low-Dose CT
via Transfer Learning From a 2-D Trained Network”. In: IEEE Transactions on Medical
Imaging 37.6 (June 2018), pp. 1522–1534. issn: 1558-254X. doi: 10.1109/tmi.2018.
2832217. url: http://dx.doi.org/10.1109/TMI.2018.2832217.

[87] C. E. Shannon. “A mathematical theory of communication”. In: The Bell System Technical
Journal 27.3 (1948), pp. 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.

[88] Hoo-Chang Shin, Holger R. Roth, et al. Deep Convolutional Neural Networks for Computer-
Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. 2016.
arXiv: 1602.03409 [cs.CV].

[89] Hoo-Chang Shin, Neil A Tenenholtz, et al. Medical Image Synthesis for Data Augmenta-
tion and Anonymization using Generative Adversarial Networks. 2018. arXiv: 1807.10225
[cs.CV].

[90] Nripendra Kumar Singh and Khalid Raza. Medical Image Generation using Generative
Adversarial Networks. 2020. arXiv: 2005.10687 [eess.IV].

[91] Matthew Stewart. Comprehensive Introduction to Autoencoders. Apr. 2019. url: https:
//towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368.

[92] Melissa Conrad Stöppler. Medical Definition of Retinal fundus. Mar. 2021. url: https:
//www.medicinenet.com/retinal_fundus/definition.htm.

[93] Christian Szegedy et al. Going Deeper with Convolutions. 2014. arXiv: 1409.4842 [cs.CV].
[94] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb. 2020.

doi: 10.5281/zenodo.3509134. url: https://doi.org/10.5281/zenodo.3509134.
[95] Sergios Theodoridis. “Chapter 2 - Probability and Stochastic Processes”. In: Machine

Learning (Second Edition). Ed. by Sergios Theodoridis. Second Edition. Academic Press,
2020, pp. 19–65. isbn: 978-0-12-818803-3. doi: https://doi.org/10.1016/B978-0-12-
818803-3.00011-8. url: https://www.sciencedirect.com/science/article/pii/
B9780128188033000118.

[96] Daniel Vasata and Miroslav Cepek. Neural networks. https://courses.fit.cvut.
cz/BIE-VZD/lectures/files/2020/11/BI-VZD-11-en-slides.pdf. Thákurova 9,
160 00 Prague 6: Department of Theoretical Computer Science , Faculty of Information
Technology Czech Technical University in Prague, 2020.

[97] Linda Wang. COVID-Net Open Source Initiative. https://github.com/lindawangg/
COVID-Net. 2020.

[98] Linda Wang, Zhong Qiu Lin, and Alexander Wong. “COVID-Net: a tailored deep convo-
lutional neural network design for detection of COVID-19 cases from chest X-ray images”.
In: Scientific Reports 10.1 (Nov. 2020), p. 19549. issn: 2045-2322. doi: 10.1038/s41598-
020-76550-z. url: https://doi.org/10.1038/s41598-020-76550-z.

[99] Eric W. Weisstein. Convolution. url: https://mathworld.wolfram.com/Convolution.
html (visited on 03/31/2021).

[100] Eric W. Weisstein. Hyperbolic Functions. url: https : / / mathworld . wolfram . com /
HyperbolicFunctions.html (visited on 04/21/2021).

https://doi.org/10.1109/ICASSP.2018.8461430
https://doi.org/10.1109/tmi.2018.2832217
https://doi.org/10.1109/tmi.2018.2832217
http://dx.doi.org/10.1109/TMI.2018.2832217
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://arxiv.org/abs/1602.03409
https://arxiv.org/abs/1807.10225
https://arxiv.org/abs/1807.10225
https://arxiv.org/abs/2005.10687
https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368
https://towardsdatascience.com/generating-images-with-autoencoders-77fd3a8dd368
https://www.medicinenet.com/retinal_fundus/definition.htm
https://www.medicinenet.com/retinal_fundus/definition.htm
https://arxiv.org/abs/1409.4842
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/https://doi.org/10.1016/B978-0-12-818803-3.00011-8
https://doi.org/https://doi.org/10.1016/B978-0-12-818803-3.00011-8
https://www.sciencedirect.com/science/article/pii/B9780128188033000118
https://www.sciencedirect.com/science/article/pii/B9780128188033000118
https://courses.fit.cvut.cz/BIE-VZD/lectures/files/2020/11/BI-VZD-11-en-slides.pdf
https://courses.fit.cvut.cz/BIE-VZD/lectures/files/2020/11/BI-VZD-11-en-slides.pdf
https://github.com/lindawangg/COVID-Net
https://github.com/lindawangg/COVID-Net
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1038/s41598-020-76550-z
https://doi.org/10.1038/s41598-020-76550-z
https://mathworld.wolfram.com/Convolution.html
https://mathworld.wolfram.com/Convolution.html
https://mathworld.wolfram.com/HyperbolicFunctions.html
https://mathworld.wolfram.com/HyperbolicFunctions.html

Bibliography 57

[101] Eric W. Weisstein. Metric. url: https://mathworld.wolfram.com/Metric.html (vis-
ited on 03/31/2021).

[102] Lilian Weng. From GAN to WGAN. 2019. arXiv: 1904.08994 [cs.LG].
[103] Jelmer M. Wolterink et al. “Deep MR to CT Synthesis Using Unpaired Data”. In: Simula-

tion and Synthesis in Medical Imaging. Ed. by Sotirios A. Tsaftaris et al. Cham: Springer
International Publishing, 2017, pp. 14–23. isbn: 978-3-319-68127-6.

[104] Michael Wooldridge and Nicholas R. Jennings. “Intelligent agents: theory and practice”.
In: The Knowledge Engineering Review 10.2 (1995), pp. 115–152. doi: 10.1017/S0269888900008122.

[105] X-Rays. Apr. 2021. url: https://medlineplus.gov/xrays.htm.
[106] Yuan Xue et al. “SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image

Segmentation”. In: Neuroinformatics 16.3-4 (May 2018), pp. 383–392. issn: 1559-0089.
doi: 10.1007/s12021-018-9377-x. url: http://dx.doi.org/10.1007/s12021-018-
9377-x.

[107] Dong Yang et al. Automatic Liver Segmentation Using an Adversarial Image-to-Image
Network. 2017. arXiv: 1707.08037 [cs.CV].

[108] Xin Yi and Paul Babyn. “Sharpness-Aware Low-Dose CT Denoising Using Conditional
Generative Adversarial Network”. In: Journal of Digital Imaging 31.5 (Feb. 2018), pp. 655–
669. issn: 1618-727X. doi: 10.1007/s10278-018-0056-0. url: http://dx.doi.org/
10.1007/s10278-018-0056-0.

[109] Xin Yi, Ekta Walia, and Paul Babyn. “Generative adversarial network in medical imaging:
A review”. In: Medical Image Analysis 58 (Dec. 2019), p. 101552. issn: 1361-8415. doi:
10.1016/j.media.2019.101552. url: http://dx.doi.org/10.1016/j.media.2019.
101552.

[110] Ha YongWook. VAE Keras. https://github.com/YongWookHa/VAE-Keras. 2018.
[111] Your Rights Under HIPAA. Nov. 2020. url: https : / / www . hhs . gov / hipaa / for -

individuals/guidance-materials-for-consumers/index.html.
[112] Simiao Yu et al. Deep De-Aliasing for Fast Compressive Sensing MRI. 2017. arXiv: 1705.

07137 [cs.CV].
[113] Le Zhang, Ali Gooya, and Alejandro F. Frangi. “Semi-supervised Assessment of Incom-

plete LV Coverage in Cardiac MRI Using Generative Adversarial Nets”. In: Simulation
and Synthesis in Medical Imaging. Ed. by Sotirios A. Tsaftaris et al. Cham: Springer
International Publishing, 2017, pp. 61–68. isbn: 978-3-319-68127-6.

[114] He Zhao, Huiqi Li, and Li Cheng. Synthesizing Filamentary Structured Images with GANs.
2017. arXiv: 1706.02185 [cs.CV].

[115] Jun-Yan Zhu et al. Unpaired Image-to-Image Translation using Cycle-Consistent Adver-
sarial Networks. 2020. arXiv: 1703.10593 [cs.CV].

https://mathworld.wolfram.com/Metric.html
https://arxiv.org/abs/1904.08994
https://doi.org/10.1017/S0269888900008122
https://medlineplus.gov/xrays.htm
https://doi.org/10.1007/s12021-018-9377-x
http://dx.doi.org/10.1007/s12021-018-9377-x
http://dx.doi.org/10.1007/s12021-018-9377-x
https://arxiv.org/abs/1707.08037
https://doi.org/10.1007/s10278-018-0056-0
http://dx.doi.org/10.1007/s10278-018-0056-0
http://dx.doi.org/10.1007/s10278-018-0056-0
https://doi.org/10.1016/j.media.2019.101552
http://dx.doi.org/10.1016/j.media.2019.101552
http://dx.doi.org/10.1016/j.media.2019.101552
https://github.com/YongWookHa/VAE-Keras
https://www.hhs.gov/hipaa/for-individuals/guidance-materials-for-consumers/index.html
https://www.hhs.gov/hipaa/for-individuals/guidance-materials-for-consumers/index.html
https://arxiv.org/abs/1705.07137
https://arxiv.org/abs/1705.07137
https://arxiv.org/abs/1706.02185
https://arxiv.org/abs/1703.10593

Contents of an attached medium

readme.txt..Brief overview of the medium
code

notebook .. Interactive notebooks
src ...Source code of the implementation
thesis..Thesis’ source code in LATEX

text..Thesis text
thesis.pdf...Thesis text in PDF format

59

	Acknowledgment
	Declaration
	Abstract
	Summary
	List of abbreviations
	Preliminaries
	Game theory
	Machine Learning
	Supervised learning
	Unsupervised learning
	Deep learning

	Generative adversarial networks
	GAN
	GAN metrics
	Inception score
	Fréchet inception distance

	Variants
	Wasserstein GAN
	Conditional GAN
	Deep convolutional GAN

	Variational Autoencoder

	Medical imaging
	The quality dilemma
	The quantity conundrum
	State of the art
	Reconstruction
	Synthesis
	Translation
	Segmentation

	Implementation
	Technologies
	Data
	Dataset issues
	Data distribution
	Augmentation

	Generation
	Training parameters
	GAN
	WGAN
	WGAN-GP
	CGAN
	DCGAN
	VAE

	Classification
	DeepCovid
	Generic classifier network

	Experiments
	Classifiers
	GAN
	CGAN
	WGAN
	DCGAN
	Second wind

	Conclusion
	GAN evaluation metrics
	CovidNet datasets
	Contents of an attached medium

