
13. 6. 2021 ProjectsFIT

https://projects.fit.cvut.cz/theses/3836/assignment-print 1/1

Instructions

- Get familiar with the implementation of query parser in PostgreSQL

- Do a research of the existing libraries used to construct SQL queries in Scala programming language.

Examine their pros and cons and see how your solution could fit into the existing library ecosystem.

- Design and implement a library which would attempt to support construction and composition of

statically typed PostgreSQL queries in Scala programming language.

- To test the library create a unit test suite, as well as implement an example application using the

library.

- Make sure that your library is available in a form of a public repository with a working CI pipeline,

contribution guidelines, etc.

- Discuss your results.

Electronically approved by Ing. Michal Valenta, Ph.D. on 2 March 2021 in Prague.

Assignment of bachelor’s thesis

Title: Scala library for constructing statically typed PostgreSQL queries

Student: Petr Hron

Supervisor: Ing. Vojtěch Létal

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Scala library for constructing statically
typed PostgreSQL queries

Petr Hron

Department of software engineering
Supervisor: Ing. Vojtěch Létal

June 27, 2021

Acknowledgements

I would like to thank my supervisor Ing. Vojtěch Létal, for the patience,
guidance and support. I would also like to thank my family for their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 27, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Petr Hron. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hron, Petr. Scala library for constructing statically typed PostgreSQL queries.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2021. Also available from: 〈https://github.com/Ivellien/
pgQuery4s〉.

https://github.com/Ivellien/pgQuery4s
https://github.com/Ivellien/pgQuery4s

Abstrakt

Hlavńı téma této práce je vývoj a implementace knihovny pro vytvářeńı sta-
ticky typovaných SQL dotaz̊u v jazyce Scala, společně s pr̊uzkumem exis-
tuj́ıćıch Scala knihoven, které se zabývaj́ı vytvářeńım SQL dotaz̊u.

Nejprve jsou představeny použité technologie a popsány existuj́ıćı knihovny
pro práci s PostgreSQL. Implementačńı část následně popisuje kroky potřebné
k vytvořeńı knihovny. Popsáno je propojeńı Scaly a knihovny v jazyce C,
použit́ı circe knihovny, která slouž́ı pro parsováńı JSON výsledk̊u a vytvořeńı
case class struktury pro reprezentaci syntaktických stromů SQL výraz̊u. Daľśı
velká část implementace popisuje makra v jazyce Scala a jejich využit́ı pro va-
lidaci SQL dotaz̊u během kompilace. Nakonec je popsán nyněǰśı stav knihovny
společně s plány pro budoućı vylepšeńı.

Kĺıčová slova Scala, PostgreSQL, abstraktńı syntaktický strom, open source,
validace během kompilace

vii

Abstract

The focus of this thesis is development of the Scala library capable of creating
statically typed queries, together with research of Scala libraries that deal
with constructing SQL queries.

First, technologies used for this project are introduced, followed by research
of existing Scala libraries for working with PostgreSQL. The implementation
part then follows the steps that were required to create the library. It covers
the connection of Scala with C library, use of circe library for parsing JSON
results, and creating case class structure to represent SQL parse trees. Another
big part of implementation covers macros in Scala and their usage for compile
time validation of queries. Then the current state of the library is described,
together with plans for future improvements.

Keywords Scala, PostgreSQL, parse tree, open source, compile time vali-
dation

viii

Contents

Introduction 3

1 Technologies used 5
1.1 PostgreSQL . 5

1.1.1 Parse tree . 5
1.1.2 Reasons to use parse trees 6

1.2 Scala . 7
1.2.1 Introduction . 7
1.2.2 Functional error handling 7
1.2.3 Static vs. dynamic typing 7
1.2.4 Strong vs. weak typing 8

2 Existing solutions 9
2.1 Database libraries for Scala . 9

2.1.1 Quill . 9
2.1.2 Doobie . 9

2.2 Difference in approach . 10
2.2.1 Database-independent validation 10
2.2.2 Implementation goal . 10
2.2.3 Getting parse tree . 10
2.2.4 Libpg query . 10

3 Realisation 13
3.1 Parse tree representation . 13

3.1.1 C . 13
3.1.2 Scala . 14

3.2 Using native library . 15
3.2.1 Native code and byte code 15
3.2.2 Java native interface . 15
3.2.3 sbt-jni . 16

ix

3.3 Parsing JSON result from libpg query 16
3.3.1 How decoding works in circe 16
3.3.2 Query parsing . 17
3.3.3 Parse expressions . 17
3.3.4 Prettify . 18

3.4 Scala custom interpolators . 18
3.4.1 What are interpolators? 18
3.4.2 Runtime implementation 18

3.5 Scala macros . 19
3.5.1 Scala AST and Reflection library 19
3.5.2 Liftable . 20

3.6 Combining interpolators and macros 20
3.6.1 Parameterized queries in PostgreSQL 20
3.6.2 Validation of the query 21
3.6.3 Transforming syntax tree 21
3.6.4 Type checking . 22
3.6.5 Implicit conversions . 22

3.7 Testing . 23
3.7.1 Unit testing . 23
3.7.2 Parser and core testing 23
3.7.3 Continuous integration 23

4 Conclusion 25
4.1 Summary . 25
4.2 Future work . 26

Bibliography 27

A Acronyms 31

B Contents of enclosed CD 33

x

List of Figures

1.1 Visualisation of parse tree for "SELECT * FROM users WHERE name
= ’Captain Nemo’ ORDER BY id ASC LIMIT 1"[3] 6

1.2 Languages divided into groups. 8

xi

List of Listings

2.1 Example of query interpolator usage 10
2.2 Libpg query usage example [10] 11
3.1 Node representation in PostgreSQL parser 13
3.2 A Expr representation in PostgreSQL parser 13
3.3 A Expr representation in Scala 14
3.4 Scala class with native method 15
3.5 Generated JNI header . 15
3.6 Scala case class with @JsonCodec annotation 16
3.7 Deparsing JSON using circe . 16
3.8 Return value on decoding failure 17
3.9 Example of String concatenation 18
3.10 Example of custom interpolation 18
3.11 Comparison of ASTs of function calls with String and with

variable . 20
3.12 Query with variable name. 21
3.13 Query with a placeholder. 21
3.14 Pattern of the AST of ParamRef node. 21
3.15 Test for expression with FuncCall 23

1

Introduction

Scala is a programming language that combines object-oriented programming
with the support of functional programming. The source code of Scala is
intended to be compiled into Java bytecode and run on JVM. That makes it
a great starting point for programmers who want to get their first experience
with functional programming.

Then we have PostgreSQL, one of the most popular relational database
management systems currently available. It has wide support for working with
different programming languages, regular updates, improvements, and plenty
of documentation and tutorial available everywhere. The fact that the whole
project is open source and free allows anyone to dive right into it.

In the world of Scala, there are already few libraries made to work with
the PostgreSQL database, create queries, and more. Most of them are used
with a direct connection to the database. Because of that, the queries used are
validated only when they are executed. However, Scala is a statically typed
language, which means that type checking is done at compile time, which
eliminates few categories of possible bugs before the code is run. The goal is
to apply the same approach to validation of the SQL queries, so we can, to
some extent, do that during compilation. By using SQL parse trees, we can
also create and update statically typed queries.

In the theoretical part, we will talk about technologies used in this project
like Scala, PostgreSQL and SQL parse trees. Then we will show few examples
of existing Scala libraries for working with databases, their pros, cons, and
how does our library fit into the whole ecosystem. We will also describe the C
library, which is used to access the internal parse function of the PostgreSQL
server, to get the parse tree.

Then in the realisation part, we will go through the implementation pro-
cess. We will start with the representation of the parse tree in Scala and
accessing the C library from our Scala code. Then we will talk about macros
and how to use them. In the end, we combine the macros and custom inter-
polators to introduce type-checked queries.

3

Chapter 1
Technologies used

1.1 PostgreSQL

PostgreSQL is an ORDBMS - abbreviation for open source object-relational
database management system. Origins date back to the year 1986, where
the project then known as POSTGRES started as a reference to the older
INGRES database. One decade later it got renamed to PostgreSQL to clearly
show its ability to work with SQL.[1]

Nowadays, it’s widely used. PostgreSQL popularity has been steadily ris-
ing in the last few years. Based on ”Stack Overflow Annual Developer Sur-
vey” [2], PostgreSQL currently sits in second place for the ’Most popular
technology in the database category’, right after the MySQL.

1.1.1 Parse tree

PostgreSQL internally uses parse trees to process SQL Queries. The whole
parsing comprises multiple stages. First, a query passed in form of plain text
is transformed to tokens using a tool Flex. Next up the parser generator called
Bison is used. It consists of multiple grammar rules and actions. Each action
is executed whenever any of the rules are applied and together they are used
to build the final parse tree.

5

1. Technologies used

Figure 1.1: Visualisation of parse tree for "SELECT * FROM users WHERE
name = ’Captain Nemo’ ORDER BY id ASC LIMIT 1"[3]

During the Parse stage, the parser checks the syntax of a query string.
It does not do any lookups in the system catalogs, and for that reason, it is
independent of the database schema. In the following chapters you will see
how our library seamlessly exposes the internal PostgreSQL parse trees to
the higher level language and how this can be used to validate queries during
compilation.

1.1.2 Reasons to use parse trees

Having the option to work with parse trees can prove useful in multiple
cases.[4] However, working with the tree directly can be tedious work, espe-
cially for big nested queries. That’s why we will use high-level Scala features
to make working with them easier while still keeping the option to access and
work with the parse tree on the lower level.

• Extracting specific part of query
Using parse tree, we will be able to easily extract parts like column
names from the SELECT target list, expression from the WHERE statement
or nested statement from some complicated SQL query.

• Modifying part of the query string
In a similar fashion to extracting, we can also replace parts in the query.
We can for example change the sort clause in SELECT statement or
change the target columns of the query.

• Determining type of query
It can be also used to accomplish load balancing in applications, by
deciding whether the query is read only, or it writes something into the
database.

6

1.2. Scala

1.2 Scala

1.2.1 Introduction

Scala belongs to the group of programming languages that can be compiled
into Java byte code and run on a Java virtual machine (JVM). The major
part, which makes it different from well-known Java, is the combination of
applying a functional approach with an object-oriented paradigm.

1.2.2 Functional error handling

Scala avoids the usual try catch error handling, which is used in Java. The
only occasion where it might be used is when we are calling some Java API
or unsafe library. Instead, Scala is using monads, for example, Option[T],
Try[T], and Either[A, B]. Monad is in simple terms container around a
certain type, for which there is a flatMap function, which allows us to compose
their individual instances.

• Option[T]
Option is definition of nullable type. It contains either None or Some(T)
object. For example, we’re trying to find a certain number in the
List[Int]. We define a function that will traverse the list, and if the
value is present, it returns the number, wrapped like this Some(Int). If
the value is not found, it returns None.

• Either[A, B]
Either is similar to Option, but instead of returning simple None, which
does not tell us what went wrong, it returns Left(A) or Right(B) object.
Right is just like Some, it’s returned when everything went right and we
got the expected result. On the other hand, we return Left whenever
something did not go as planned. It can contain info about the problem.

• Try[T]
Try is more specific Either. It is the same as Either[Throwable, B].
The difference is that instead of Right there is Success and instead of
Left there is Failure. However, Failure can be only exception. It
is mostly used as replacement in situations, where we would use try
catch block.

1.2.3 Static vs. dynamic typing

Besides the functional fundamentals, Scala belongs to the family of statically
typed languages. This family also includes languages like C, C++, Java, or
Haskell. Therefore, every single statement in Scala has a type.[5] Statically
typed languages validate the type during compile time and once it is compiled,
it can be run multiple times.

7

1. Technologies used

On the other hand, dynamic typing does all type checking during runtime,
and every time we want to run the program, it has to be compiled again.
Examples of languages, which use dynamic typing, are Python, Ruby, and
PHP.

1.2.4 Strong vs. weak typing

Strongly typed languages enforce strict restrictions on intermixing values with
different data types. Thanks to that, the behavior is more predictable than it
would be for weakly typed language. The majority of strongly typed languages
require explicit declaration of type for each variable. However, for Scala, that’s
not entirely true. It is strongly typed language, but it uses a system known as
type inference - automatic type detection. That allows faster coding, thanks
to the fact that we don’t have to worry about specifying the type for every
statement.

Figure 1.2: Languages divided into groups.

8

Chapter 2
Existing solutions

2.1 Database libraries for Scala

When we are working with databases in Java, we are most likely using JDBC,
either directly or by wrappers like JPA or Hibernate. JDBC is available in
Scala as well by simply importing the java.sql API. The connection to the
database can be established similarly as it would be done in Java. But there
are multiple existing libraries made for Scala, that ensure an easier way for
the programmer to work with databases. Below there are few examples of
libraries that were created for that specific reason.

2.1.1 Quill

Quill provides a Quoted Domain Specific Language (QDSL). [6] Its primary
usage is to generate SQL queries, using only Scala code which resembles
collection-like operations using combinator methods, such as a filter or map.
The query generation requires defined case classes, where each case class rep-
resents one table in the database. Quill supports generating queries for two
languages - SQL and CQL. The queries are generated at compile time by
translating the AST to the target language. Quill also provides compile-time
validation of the queries by checking against an existing database connection.

2.1.2 Doobie

Next up there is Doobie, which is presented as ”Doobie is pure functional
JDBC layer for Scala”. [7] In this library we can create pure SQL queries in
plain text form. Thanks to the low level access to the java.sql, we can create
a connection to the database in functional style.

Just like in Quill, validation is possible only with an existing database.
Additionally, it is only possible to validate during runtime.

9

2. Existing solutions

2.2 Difference in approach

2.2.1 Database-independent validation

As we can see, working with the database has been already done by multiple
existing libraries. However, sometimes we might not have the option to use
the database to validate the queries. This project isn’t meant as a competitor
to those mentioned libraries. Instead, it is recommended to use them together.
In the example project that was implemented to showcase the usage of our
library, we are using Doobie. The queries are created and validated using our
implementation, and then they are executed on a specific database using a
connection created by Doobie to show that the queries are, in fact, valid.

2.2.2 Implementation goal

The goal is to use the parse tree generated during the Parser stage of the
PostgreSQL parser. As mentioned before, the parsing is independent of the
existing database. Thanks to that, we can check whether the syntax of the
SQL query is valid.

All that will be done during compilation. We will create an interpolator,
which will generate the parse tree structure. As arguments the interpolator
will accept either Nodes directly, or even primitive types like String or Int,
which will be transformed into Node thanks to the implicit conversion.

For example we will be able to create function, that will create different
filtering queries, based on passed expression.

def filterStudents (expr: ResTarget) : Node =
query" SELECT * FROM students WHERE $expr"

Listing 2.1: Example of query interpolator usage

2.2.3 Getting parse tree

To get the parse tree we have to access the internal functions of the Post-
greSQL parser. These internal functions are not accessible directly, fortu-
nately, the PostgreSQL[9] wiki points us in the direction of pg query, a Ruby
gem which can generate query trees in JSON representation. Internally it uses
libpg query, which is standalone C library used to parse PostgreSQL queries.

2.2.4 Libpg query

Libpg query is an open-source C library created by Lukas Frittl. It uses parts
of the PostgreSQL server to access the internal raw parse function, which
returns the internal parse tree. It accesses internal functions of the server,
which allows the library to get the parse tree for each valid query. A minor

10

2.2. Difference in approach

disadvantage of this approach is that it uses the server code directly, and it
has to be compiled before it can be used.

The main purpose of libpg query is to be used as a base library for im-
plementations in other languages. There already exist multiple wrappers, for
example pg query for Ruby or pglast for Python. However, at the moment of
writing this thesis, there is no existing wrapper for it written for Scala. The
important function from libpg query is the pg query parse function.

The pg query parse takes the plain text SQL query in form of const
char*. Then it calls the extracted parts of the PostgreSQL server and returns
the parse tree as JSON. Once we have that, we can decode the JSON and
map it onto the created case class structure in Scala.

include <pg_query .h>
include <stdio.h>

int main () {
PgQueryParseResult result ;
result = pg_query_parse (" SELECT 1");
printf ("%s\n", result . parse_tree);
pg_query_free_parse_result (result);

}
Listing 2.2: Libpg query usage example [10]

11

Chapter 3
Realisation

3.1 Parse tree representation

3.1.1 C

If we look at internal representation of the tree directly in the PostgreSQL
parser, it defines each possible node of the parsetree in form of struct. Any
type of node is guaranteed to have NodeTag as the first field.

typedef struct Node
{

NodeTag type;
} Node;

Listing 3.1: Node representation in PostgreSQL parser

NodeTag is an enum, which contains all types of possible nodes. This is used to
achieve polymorphism in C. Thanks to that guarantee, any type of node can
be cast to Node without losing the information about the type. That allows
casting the Node back to the original type when needed.

This fact is also used when a node contains another node as a leaf. Most
of the time, the type of the required node isn’t specified directly instead, Node
pointer is used. This provides flexibility for the parameters of the nodes.

typedef struct A_Expr {
NodeTag type;
A_Expr_Kind kind;
List *name;
Node *lexpr;
Node *rexpr;
int location ;

} A_Expr ;
Listing 3.2: A Expr representation in PostgreSQL parser

13

3. Realisation

However, in many places, the Node reference could be replaced by a smaller
subset of possible types. Having Node everywhere creates a flat structure,
which could be improved, especially for purposes of type checking.

3.1.2 Scala

Since we already have existing parse tree representation in C we can mirror
it in Scala. Scala is an object-oriented language, therefore each type of node
should be defined by its own class. However, using case classes offers several
advantages over classes in Scala:

• Case classes can be pattern matched

• Automatic definition of equals and hashcode methods

• Automatic definition of getters

First, we convert the struct Node into abstract class Node. It will be
used as base class for every node of the parse tree.
Each struct can be then converted into case class in Scala.

• Each Node* is converted to Option[Node] - same for other variables,
which are pointers to specific Node type

• Each List* is converted to List[Node]

• Primitive data types are converted to their Scala equivalents
(e.g. int to Int, char* to String)

• The NodeTag parameter can be ommited, because in Scala we can use
pattern matching to check the type of the Node.

Each enum is converted to object extending abstract class Enumeration.
Converted A Expr case class

case class A_Expr (
kind: A_Expr_Kind .Value ,
name: List[Node],
lexpr: Option [Node],
rexpr: Option [Node],
location : Int

) extends Node
Listing 3.3: A Expr representation in Scala

14

3.2. Using native library

3.2 Using native library

Libpg query provides pg query parse function, which takes const char* pa-
rameter (the SQL query) and returns parse tree in form of JSON. However,
because of difference between native code and java byte code, we can’t directly
import the C library into our Scala code.

3.2.1 Native code and byte code

Native code is compiled to run on a specific processor. Examples of languages
that produce native code after compilation are C, C++. That means, every
time we want to run our C program, it has to be recompiled for that specific
operating system or processor.

Java byte code, on the other hand, is compiled source code from i.e. Java,
Scala. Byte code is then translated to machine code using JVM. Any system
that has JVM can run the byte code, does not matter which operating system
it uses. That is why Java and Scala as well, are platform-independent.

3.2.2 Java native interface

JNI is programming interface for writing Java native methods.[12] It is used to
enable Java code to use native applications and libraries. The native functions
are implemented in separate generated .c or .cpp file. Let’s say we defined
our class with native method like this:

package com. pgquery

class Wrapper {
@ native def parse(query: String): String

}
Listing 3.4: Scala class with native method

Then we compile the file with the Scala source code. From the compiled
code we generate the JNI header using javah command. The definition of the
native function then looks like this:

JNIEXPORT void JNICALL Java_com_pgquery_Wrapper_parse
(JNIEnv *env , jobjectobj , jstring string)

{
// Method native implementation

}
Listing 3.5: Generated JNI header

The parameter list for the generated function contains a JNIEnv pointer, a
jobject pointer, and any Java arguments declared by the Java method.[13]
The JNIEnv pointer is used as an interface to the JVM. Thanks to that we can

15

3. Realisation

for example use function the convert native const char* to and from Scala
string.
The jobject pointer is used to access class variables of the object the method
was called from.

The JNI header is then compiled, with included JNI headers from local
Java JDK. The extension of the final shared library depends on system - .so
for Linux, .dylib for MacOS and .dll for Windows. The created native
library is then loaded using System.loadLibrary.

3.2.3 sbt-jni

sbt-jni library provides a JNI wrapper for Scala. It is a suite of sbt plugins for
simplifying the creation and distribution of JNI programs. To name the ones
used, JniJavah works as a wrapper around the javah command to generate
headers for classes with @native methods. It uses CMake to compile the
native libraries. Next one used is JniLoad, which enables correct loading of
shared libraries through @nativeLoader annotation.

3.3 Parsing JSON result from libpg query

There are few different libraries that can help with parsing JSON. From those,
we are using circe. Circe is fork of a pure functional library called Argonaut. It
is great for parsing, traversing JSON, but the main functionality we are using
is the auto derivation of Encoder and Decoder instances for a given algebraic
data type.

3.3.1 How decoding works in circe

Basic decoder for case class in circe iterates over all parameters of the case
class and matches the name of the paramater with the key in JSON. Then it
attempts to parse the value as the type of the parameter. Let’s say we have
case class representing person together with implicit definitions of Decoder.

@ JsonCodec case class Person (age: Int ,
name: Option [String])

Listing 3.6: Scala case class with @JsonCodec annotation

The @JsonCodec annotation simplifies the process of generating the Decoder
and Encoder using semi-automatic derivation. [14]
Next we have simple JSON, that we want to parse as Person object.

parse ("{ "age" : 5 }"). as[Person]
Listing 3.7: Deparsing JSON using circe

16

3.3. Parsing JSON result from libpg query

First the string is converted to Json - circe-specific representation of JSON.
Decoding starts with the age parameter and successfully finds the key in
JSON. Then it type checks the value, if it is Int, or if it can be converted to
Int using any implicit conversion. Then it continues with the name parameter.
The JSON doesn’t contain key name, but the type of name is Option[String],
which represents nullable type. The decoder then sets Name as None and the
decoding is finished. Circe then returns Right(Person(5, None)).
However, if the name was String instead, the decoding would stop and return:

Left(
DecodingFailure (

Attempt to decode value on failed cursor ,
List(DownField (name))
)

)
Listing 3.8: Return value on decoding failure

3.3.2 Query parsing

Parsing of the SQL queries is covered by PgQueryParser object. The main
parse function takes SQL query as a plain string on input. The query is
parsed using libpg query. The string representing JSON is then converted
to circe Json type and parsed. The result is then decided based on pattern
matching of the output of circe.

To keep code consistent, we are following the monadic approach circe uses.
The parsing method then returns Either[PgQueryError, Node].

• When everything goes well, we get the Node and return it as
Right(node).

• If the result is an empty array, it suggests that the query was not valid
and libpg query returned JSON with empty array.
Left(EmptyParsingResult)

• If the parsing of the JSON fails, we get DecodingFailure object from
circe. Return value is then
Left(FailureWhileParsing(DecodingFailure))

3.3.3 Parse expressions

Besides parsing full queries, we also support the parsing of expressions. Having
access to parse trees of expression will be useful for the interpolation of queries.
Just like parse method used for parsing queries, the parseExpression takes
expression as string on input. However, libpg query only supports parsing of
full valid queries. For that reason, we are using a small trick, where we add

17

3. Realisation

the prefix ”SELECT ” in front of the expression. This works, because by
definition, targetList of SelectStmt can contain arbitrary expression.

The created query is then parsed using the original parse method. Since
the structure of the SelectStmt node is known, we can use pattern matching
to extract precisely only the expression. The error handling works in similar
fashion as in the parse function and the return type is Either[PgQueryError,
ResTarget].

3.3.4 Prettify

Prettify goes one step beyond the parsing of the query. In case the parse tree
is built successfully, it uses Node.query method. Depending on the structure
of each node, the query method is implemented to recursively build the whole
parse tree back to the SQL query in the string form.

3.4 Scala custom interpolators

3.4.1 What are interpolators?

Starting in Scala 2.10.0, Scala offers a new mechanism to create strings from
your data: String Interpolation. String Interpolation allows users to embed
variable references directly in processed string literals. [15] Besides the three
interpolators provided by scala, we can also define our own custom interpo-
lator. This would help us to create generic queries with variables instead of
direct values. That way, we can define and reuse queries without unnecessary
copying and pasting of code. By extending the existing StringContext class
with new method, we can introduce custom interpolators.

val query: String =
" SELECT " + columnName + " FROM students "

PgQueryParser .parse(query)
Listing 3.9: Example of String concatenation

query" SELECT $columnName FROM students "
Listing 3.10: Example of custom interpolation

3.4.2 Runtime implementation

Although the goal of this project is to validate queries during compilation
and transform the interpolated string to Node at compile time, the runtime
validation is important as well. Parse trees of queries are accessible at runtime.

18

3.5. Scala macros

Simply use the built-in string interpolator to create the query. The parse tree
can be generated by the parse method of PgQueryParser.

3.5 Scala macros

Since we want to achieve compile time validation, we have to explicitly tell the
Scala compiler. If the query is defined as a function with parameters, it waits
for runtime, when the values of parameters are known (not just the types, as
it is when compiling). And then each call to the function would be evaluated
separately.

What we want to do, is to validate the query at compilation and create
placeholders at the parameter positions. These will have the expected type,
so every value passed to the function with the matching type will result in
a valid query. If the query is not valid, we will get compile time error right
away, making it easier for us to debug the code and fix it.

That is where Scala macros are useful. They have the same signature as
functions, but their body consists of macro keyword and name of the macro
function. It will expand that application by invoking the corresponding macro
implementation method, with the abstract-syntax trees of the argument expres-
sions args as arguments. [16] I think that little description of what abstract
syntax trees are is required here. Trees are the basis of Scala’s abstract syntax
which is used to represent programs. They are also called abstract syntax trees
and commonly abbreviated as ASTs.[17]

3.5.1 Scala AST and Reflection library

Macros are part of the Scala reflection library. We will specifically talk about
the compile-time reflection. Scala reflection enables a form of metaprogram-
ming which makes it possible for programs to modify themselves at compile
time.[18]

When we enter the execution of the macro, we have the context and the
function arguments. Everything is in the form of AST, so programming macros
is slightly different from the usual programming in Scala. In simple terms,
context tells us where the macro was called from, which class, method name,
etc.

Another tool, often used when working with macros, is called reify. It
is a method, which takes expression and returns its AST. In the following
snippet we can see difference in the AST, when we call the method directly
with the String vs. passing the String as variable.

19

3. Realisation

scala > reify { printQuery (" SELECT 1") }
res1: Expr[Unit] =

Expr[Unit](cmd1. printQuery (" SELECT 1"))

scala > val selectQuery : String = " SELECT 1"
scala > reify { printQuery (selectQuery) }
res1: Expr[Unit] =

Expr[Unit](cmd1. printQuery (cmd2. selectQuery))
Listing 3.11: Comparison of ASTs of function calls with String and with
variable

Here we can see that if our function calls a macro, the compiler does not know
the value of parameters of the function, only the type, and name. This will be
important when we are going to implement our interpolators using macros.

3.5.2 Liftable

Scala uses trait Liftable[T] to specify conversion of type to tree. It has only
single abstract method - def apply(value: T): Tree. Since the goal of
using macros is to validate queries at compile time, we will use parse method
from PgQueryParse, which returns the parse tree in form of a Node. We will
have to ’lift’ the result, so we can return the correct Tree representation. [19]

Therefore, we have to define Liftable[Node]. We are using three macros,
that generate Liftable object from the original.

• LiftableCaseClass

• LiftableCaseObject

• LiftableEnumeration

Each one of them provides an implementation of creating an implicit object,
which extends Liftable[T] and implements the logic of creating corresponding
Tree.

3.6 Combining interpolators and macros

3.6.1 Parameterized queries in PostgreSQL

Before we can get to the part where our custom interpolator is a simple call
to the macro, which does the validation, we have to talk about the implemen-
tation of placeholders in PostgreSQL. There is existing support for something
called Prepared statements. These allow for placeholders inside the query, in
the form of $n where n must be a positive integer.

During compile time each variable in our interpolated string is known by
name only. In macro, the first thing we have to do is build the string itself

20

3.6. Combining interpolators and macros

from the StringContext and the arguments. To keep the final query valid,
each of the arguments has to be replaced with the placeholder $n. Let’s say
we have the following example.

query" SELECT $columnName FROM students "
Listing 3.12: Query with variable name.

If we tried to pass this string directly to the libpg query, we would get an
empty JSON result, because this is not a valid query. That means we have to
transform it into this form.

query" SELECT $1 FROM students "
Listing 3.13: Query with a placeholder.

This returns the correct parse tree, where each of the placeholders contains a
node of ParamRef type.

3.6.2 Validation of the query

We are able to build the query string from the StringContext and passed
arguments. To create a valid query, we have to enumerate the arguments.
Each argument is replaced by placeholder starting from $1 up to $n, where n
is the total count of passed arguments. After we intersperse the placeholders
into List[String] we can use the parse method from PgQueryParser for
validation. If the query is valid, we get the parse tree representation in the
form of a Node.

3.6.3 Transforming syntax tree

The parse tree now contains one ParamRef node for each argument. The next
step is to replace these placeholder nodes with their corresponding arguments.
Macros are required to return results in the form of Tree. The easiest solution
is to lift the Node we got from libpg query to AST representation and then
replace the placeholders with the original arguments.

For that purpose, we are going to use our custom class ParamRefTransformer.
It extends the abstract class Transformer, which implements a default tree
transformation strategy: breadth-first component-wise cloning.[21]

The ParamRefTransformer overrides the transform method, which takes
one argument - the parse tree in form of a Tree. The method then iterates
over each node of the Tree and matches the following pattern.

q" ParamRef (${ Literal (Constant (constant :Int))}, ${_})"
Listing 3.14: Pattern of the AST of ParamRef node.

Whenever the pattern matches the current Tree, the whole ParamRef is re-
placed by the argument AST with same index as the constant. If the pattern

21

3. Realisation

doesn’t match, the original method from the superclass is called. The original
transform then applies the transform function again on each leaf of the cur-
rent node. This way, every node of the AST is traversed, and we replace each
ParamRef node with the original argument.

3.6.4 Type checking

In the end, we have the finished SQL parse tree in the form of AST. The
parsing in PgQueryParser ensures that the query is valid. Within the tree,
each placeholder is replaced with the original argument. The compiler then
compares the type of the argument with the expected type in the context of
the parse tree structure. If the type of the argument isn’t correct, it throws
the type mismatch error.

3.6.5 Implicit conversions

Since we introduced the validation and type checking using the macro, we
could only use interpolator, which uses the macro with arguments that are
Node objects or a more specific type of Node, depending on where we try to
insert it. That means if we wanted to define a function, which takes String
as an argument, we couldn’t use it in the interpolator. Instead, we had to
parse it as an expression and only then pass it to the interpolator.

Fortunately, Scala provides implicit keyword that can be used to create
the implicit conversion from one type to another. An implicit conversion from
type S to type T is defined by an implicit value which has function type S →
T, or by an implicit method convertible to a value of that type.[22] Whenever
the type of an expression does not conform to the expected type, compile
attempts to find an implicit conversion function, which can be used to get the
correct type. The order in which the compiler looks for the implicit conversion
is as follows: [23]

1. Implicits defined in the current scope

2. Explicit imports (i.e. import ImplicitConversions.int2string)

3. Wildcard imports (i.e. import ImplicitConversions.)

4. Same scope in other files

Currently the library supports implicit conversions from String and Int
to ResTarget and A Const nodes. These nodes cover majority of possible
expressions that can be used. The conversion from String to ResTarget uses
another macro, which validates the expression. The rest creates the desired
objects directly.

22

3.7. Testing

3.7 Testing

3.7.1 Unit testing

Unit tests are used to test small parts of the codebase. They are intended to
be run often, so they have to be simple and quick. For testing, we are using
the most popular option for Scala - scalatest.

3.7.2 Parser and core testing

The tests in parser submodule cover parsing and deparsing of the SQL queries.
The goal is to have every Node properly tested. The tests are currently sepa-
rated into three groups - tests for DatabaseStmt, InsertStmt, and SelectStmt.

Tests in core submodule focus on the interpolators and implicit conver-
sions. We are testing both query and expr interpolator using Matchers DSL
from scalatest.

test("Func call expression test") {
val expr = expr"MIN(columnName)"
expr should matchPattern {

case ResTarget (_, _, Some(_: FuncCall), _) =>
}

}
Listing 3.15: Test for expression with FuncCall

3.7.3 Continuous integration

Our library is intended as an open-source project, which means we can ex-
pect contributions from other developers. Continuous Integration (CI) is a
development practice where developers integrate code into a shared repository
frequently.[25] For our project, we are using free TravisCI service, which pro-
vides quick integration with public GitHub repositories.

With TravisCI we can create a building and testing pipeline, that will be
run for each new contribution. The pipeline is divided into few steps:

• Before the testing part of the pipeline is run, TravisCI sets up local
PostgreSQL 10 database and creates pgquery example database.

• The script navigates inside the libpg query folder and compiles the C
library.

• Then all tests are run and the artifacts are locally published.

• In the last step of the pipeline, the example project is built and run,
using locally published artifacts.

23

Chapter 4
Conclusion

4.1 Summary

Since the library is meant as an open-source project, the whole source code is
available on https://github.com/Ivellien/pgQuery4s/ as a public reposi-
tory. The project is separated into multiple submodules.

• Native
This module contains everything related to native code. There is the
PgQueryWrapper class, which implements single method pgQueryParse
with @native annotation. Then there is the libpg query library itself,
and the JNI implementation of the native method, which directly calls
the C library.

• Parser
Possibly the most important part of the library. Parser submodule con-
tains the whole existing case class structure representation of the parse
tree in node and enums packages. The PgQueryParser object then de-
fines part of our usable public API. Each one of these methods takes
string representing SQL query or expression:

• json - Returns JSON representation of the passed query as received
from libpg query

• prettify - Creates the Node representation of the passed SQL
query and then deparses it back to string again.

• parse - Attempts to parse the whole SQL query. Returns result as
PgQueryResult[Node].

• parseExpression - Same as parse, but instead of parsing the
whole input as query it prepends ”SELECT ” to the expression.
The expression is then extracted from the parse tree using pattern
matching. Return result as PgQueryResult[ResTarget].

25

https://github.com/Ivellien/pgQuery4s/

4. Conclusion

• Macros
The macros submodule is further split into two other subprojects -
liftable and macros. The macros were one of the reasons for splitting up
the project because the macro has to always be compiled before it can
be used elsewhere.
The macros subproject currently contains macro implementations for
parsing queries, expressions and for implicit conversion from String to
ResTarget.
The liftable subproject contains generators of Liftable objects, as ex-
plained in section 4.5.2.

• Core
The core uses the macros package and contains definitions of the custom
interpolators for queries, expressions, and implicit conversions.

So far, we have a library, which can validate queries using a C library called
libpg query. To connect our Scala code with the native code, we are using sbt-
jni plugins. The JSON containing the parse tree representation is then parsed
to our custom case class structure using a functional library for working with
JSON, circe. Then we implemented our interpolators, one for expressions and
another one for queries. To achieve compile-time validation, we used macros,
where we are working with abstract syntax trees of the program itself. The
final query is then type-checked and throws compilation errors whenever the
types don’t match.

4.2 Future work

The library can be, for now, considered a prototype. It covers the majority of
generally used SQL keywords and queries. However, the list of SQL keywords
is long, and together with all the possible combinations, it leaves room for
improvement. The library can be further expanded to eventually cover the
whole SQL node structure.

At the end of May 2021, the newest version of libpg query was also
released. It contains plenty of changes, support for the PostgreSQL 13 version,
changes to JSON output format, new Protobuf parse tree output format,
added deparsing functionality from parse tree back to SQL, and more. [24].

26

Bibliography

[1] PostgreSQL Tutorial. What Is PostgreSQL? [online]. 2021. [Accessed
21 June 2021]. Available from: https://www.postgresqltutorial.com/
what-is-postgresql/

[2] Stack Overflow. Stack Overflow Annual Developer Survey [on-
line]. 2020. [Accessed 13 June 2021]. Available from: https://
insights.stackoverflow.com/survey/2020#technology-databases-
all-respondents4

[3] SHAUGHNESSY, Pat. Following a Select Statement Through Post-
gres Internals [online]. 15 Jun 2015. [Accessed 27 June 2015] Avail-
able from: https://www.cloudbees.com/blog/following-a-select-
statement-through-postgres-internals

[4] PENG, Bo. Introducing PostgreSQL SQL Parser [online]. 2019. [Accessed
24 June 2021]. Available from: https://www.pgcon.org/2019/schedule/
attachments/556_PostgreSQL_SQL_parser.pdf

[5] BHATNAGAR, Mayank. Magic lies here - Statically vs Dynamically
Typed Languages [online]. Sep 9, 2018. [Accessed 21 June 2021].
Available from: https://medium.com/android-news/magic-lies-here-
statically-typed-vs-dynamically-typed-languages-d151c7f95e2b

[6] IOFFE, Alexander. What is Quill? [online]. 2021. [Accessed 25 April 2021].
Available from: https://github.com/getquill/quill/

[7] NORRIS, Rob. Doobie documentation [online]. 2021. [Accessed 25 April
2021]. Available from: https://tpolecat.github.io/doobie/

[8] The PostgreSQL Global Development Group The Parser Stage [on-
line]. 2021. [Accessed 20 June 2021]. Available from: https://
www.postgresql.org/docs/10/parser-stage.html

27

https://www.postgresqltutorial.com/what-is-postgresql/
https://www.postgresqltutorial.com/what-is-postgresql/
https://insights.stackoverflow.com/survey/2020#technology-databases-all-respondents4
https://insights.stackoverflow.com/survey/2020#technology-databases-all-respondents4
https://insights.stackoverflow.com/survey/2020#technology-databases-all-respondents4
https://www.cloudbees.com/blog/following-a-select-statement-through-postgres-internals
https://www.cloudbees.com/blog/following-a-select-statement-through-postgres-internals
https://www.pgcon.org/2019/schedule/attachments/556_PostgreSQL_SQL_parser.pdf
https://www.pgcon.org/2019/schedule/attachments/556_PostgreSQL_SQL_parser.pdf
https://medium.com/android-news/magic-lies-here-statically-typed-vs-dynamically-typed-languages-d151c7f95e2b
https://medium.com/android-news/magic-lies-here-statically-typed-vs-dynamically-typed-languages-d151c7f95e2b
https://github.com/getquill/quill/
https://tpolecat.github.io/doobie/
https://www.postgresql.org/docs/10/parser-stage.html
https://www.postgresql.org/docs/10/parser-stage.html

Bibliography

[9] RENNER, Michael. Query Parsing [online]. 2014. [Accessed 25 June 2021].
Available from: https://wiki.postgresql.org/wiki/Query_Parsing

[10] FITTL, Lukas. libpg query [online]. 2021. [Accessed 25 June 2021]. Avail-
able from: https://github.com/pganalyze/libpg_query

[11] sbt Documentation. Forking [online]. [Accessed 22 June 2021].
Available from: https://www.scala-sbt.org/0.12.3/docs/Detailed-
Topics/Forking.html

[12] Oracle. Java Native Interface [online]. [Accessed 20 June 2021].
Available from: https://docs.oracle.com/javase/8/docs/technotes/
guides/jni/

[13] MIKHALENKO, Peter. Discover how the Java Native Interface
works [online]. 6 Sep 2006 [Accessed 26 June 2021]. Available
from: https://www.techrepublic.com/article/discover-how-the-
java-native-interface-works/

[14] Circe documentation. Semi-automatic Derivation [online]. [Accessed 27
June 2021]. Available from: https://circe.github.io/circe/codecs/
semiauto-derivation.html

[15] SUERETH, Josh. String interpolation [online]. [Accessed 25 April
2021]. Available from: https://docs.scala-lang.org/overviews/core/
string-interpolation.html

[16] BURMAKO, Eugene. Def macros [online]. [Accessed 25 April 2021].
Available from: https://docs.scala-lang.org/overviews/macros/
overview.html

[17] Scala Documentation. Symbols, Trees, and Types. [online]. [Accessed 26
June 2021]. Available from: https://docs.scala-lang.org/overviews/
reflection/symbols-trees-types.html

[18] MILLER, Heather, BURMAKO Eugene and HALLER Philipp.
Compile-time reflection [online]. [Accessed 19 June 2021]. Avail-
able from: https://docs.scala-lang.org/overviews/reflection/
overview.html#compile-time-reflection

[19] SHABALIN, Denys. Quasiquotes lifting [online]. [Accessed 22 June
2021]. Available from: https://docs.scala-lang.org/overviews/
quasiquotes/lifting.html

[20] SHABALIN, Denys. Quasiquotes introduction [online]. [Accessed 22
June 2021]. Available from: https://docs.scala-lang.org/overviews/
quasiquotes/intro.html

28

https://wiki.postgresql.org/wiki/Query_Parsing
https://github.com/pganalyze/libpg_query
https://www.scala-sbt.org/0.12.3/docs/Detailed-Topics/Forking.html
https://www.scala-sbt.org/0.12.3/docs/Detailed-Topics/Forking.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/
https://www.techrepublic.com/article/discover-how-the-java-native-interface-works/
https://www.techrepublic.com/article/discover-how-the-java-native-interface-works/
https://circe.github.io/circe/codecs/semiauto-derivation.html
https://circe.github.io/circe/codecs/semiauto-derivation.html
https://docs.scala-lang.org/overviews/core/string-interpolation.html
https://docs.scala-lang.org/overviews/core/string-interpolation.html
https://docs.scala-lang.org/overviews/macros/overview.html
https://docs.scala-lang.org/overviews/macros/overview.html
https://docs.scala-lang.org/overviews/reflection/symbols-trees-types.html
https://docs.scala-lang.org/overviews/reflection/symbols-trees-types.html
https://docs.scala-lang.org/overviews/reflection/overview.html#compile-time-reflection
https://docs.scala-lang.org/overviews/reflection/overview.html#compile-time-reflection
https://docs.scala-lang.org/overviews/quasiquotes/lifting.html
https://docs.scala-lang.org/overviews/quasiquotes/lifting.html
https://docs.scala-lang.org/overviews/quasiquotes/intro.html
https://docs.scala-lang.org/overviews/quasiquotes/intro.html

Bibliography

[21] Scala Documentation. Transformer [online]. [Accessed 23 June 2021].
Available from: https://www.scala-lang.org/api/current/scala-
reflect/scala/reflect/api/Trees$Transformer.html

[22] Scala Documentation. Implicit conversions [online]. [Accessed 24 June
2021]. Available from: https://docs.scala-lang.org/tour/implicit-
conversions.html

[23] SUERETH, Josh. Implicits without the import tax [online]. 2011. [Ac-
cessed 24 June 2021]. Available from: http://jsuereth.com/scala/2011/
02/18/2011-implicits-without-tax.html

[24] FITTL, Lukas. Release 13-2.0.0 [online]. 18 Mar, 2021. [Accessed 24 June
2021]. Available from: https://github.com/pganalyze/libpg_query/
releases/tag/13-2.0.0

[25] Could Bees. What is Continuous Integration? [online]. 2021. [Accessed
27 June 2021]. Available from: https://www.cloudbees.com/continuous-
delivery/continuous-integration

29

https://www.scala-lang.org/api/current/scala-reflect/scala/reflect/api/Trees$Transformer.html
https://www.scala-lang.org/api/current/scala-reflect/scala/reflect/api/Trees$Transformer.html
https://docs.scala-lang.org/tour/implicit-conversions.html
https://docs.scala-lang.org/tour/implicit-conversions.html
http://jsuereth.com/scala/2011/02/18/2011-implicits-without-tax.html
http://jsuereth.com/scala/2011/02/18/2011-implicits-without-tax.html
https://github.com/pganalyze/libpg_query/releases/tag/13-2.0.0
https://github.com/pganalyze/libpg_query/releases/tag/13-2.0.0
https://www.cloudbees.com/continuous-delivery/continuous-integration
https://www.cloudbees.com/continuous-delivery/continuous-integration

Appendix A
Acronyms

API Application programming interface

AST Abstract syntax tree

CI Continuous integration

CQL Cassandra Query Language

DSL Domain-specific language

JDBC Java Database Connectivity

JPA Jakarta Persistence

JSON JavaScript Object Notation

JVM Java virtual machine

SQL Structured Query Language

31

Appendix B
Contents of enclosed CD

pgQuery4s the directory of source codes
core...core submodule
example ... example project
macros..macros submodule
native...native submodule
parser...parser submodule
project...metabuild
thesis...............the directory of LATEXsource codes of the thesis
build.sbt..build definition
README.md github description of library

thesis.pdf..............................the thesis text in PDF format

33

	Introduction
	Technologies used
	PostgreSQL
	Parse tree
	Reasons to use parse trees

	Scala
	Introduction
	Functional error handling
	Static vs. dynamic typing
	Strong vs. weak typing

	Existing solutions
	Database libraries for Scala
	Quill
	Doobie

	Difference in approach
	Database-independent validation
	Implementation goal
	Getting parse tree
	Libpg_query

	Realisation
	Parse tree representation
	C
	Scala

	Using native library
	Native code and byte code
	Java native interface
	sbt-jni

	Parsing JSON result from libpg_query
	How decoding works in circe
	Query parsing
	Parse expressions
	Prettify

	Scala custom interpolators
	What are interpolators?
	Runtime implementation

	Scala macros
	Scala AST and Reflection library
	Liftable

	Combining interpolators and macros
	Parameterized queries in PostgreSQL
	Validation of the query
	Transforming syntax tree
	Type checking
	Implicit conversions

	Testing
	Unit testing
	Parser and core testing
	Continuous integration

	Conclusion
	Summary
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

