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Abstract

Close-Enough Traveling Salesman Prob-
lem (CETSP), a variant of well-known
Traveling salesman problem (TSP), is one
of the important problems in routing and
circular tour planning applications, such
as automatic meter reading, collecting
data in circular regions and searching for
sources of gamma radiation. The aim of
this thesis was to combine existing algo-
rithms in pursuit of higher quality results
obtained in shorter time than previously
attained. A novel heuristic method called
GLNS-CETSP was proposed. It combines
a solver for finding the shortest path be-
tween two points and a circle called point-
circle-point (PCP) with GLNS, and tour-
ing circle problem (TCP) algorithms. Ex-
periments were carried out to test various
configurations of GLNS-CETSP. These
include mode (fast, medium, slow), initial-
ization heuristics (random_insertion, ran-
dom, GSOA, and LKH) and two versions
of PCP (simplified and precomputed).
Additionally, the novel approach was rig-
orously tested against the state-of-the-
art metaheuristics. The obtained results
showed the GLNS-CETSP in the majority
of the cases obtains higher quality results
than the state-of-the-art metaheuristics.
It was also demonstrated that the GLNS-
CETSP is the second fastest algorithm
in the majority of cases. However, the
computation time significantly increases
in instances containing more than 200
circles. In response, a second new algo-
rithm GSOA+TCP was proposed. As the
name suggests, it combines growing self-
organizing array (GSOA) and TCP algo-
rithms. Although, GSOA+TCP was not
able to reach as good results as the GLNS-
CETSP the combination of two very fast
algorithms resulted in very fast and effec-
tive method. Adding the TCP to GSOA

improved significantly the quality of re-
sults at minimal time cost. Based on the
properties of the two new methods, a con-
clusion has been reached that each of the
algorithms should be used in different sit-
uation. The GSOA+TCP should be used
especially in applications where the com-
putational time is limited and where the
instances contain more than 500 circles.
The CETSP problem has 4 different vari-
ants of which only two have been previ-
ously solved by approximation algorithms.
GLNS-CETSP was extended to solve the
other two types, which contains polyg-
onal obstacles. Therefore, new CETSP
instances were generated on four maps
(jari-huge, large, potholes and warehouse)
with and without polygonal obstacles by
proposed generator of CETSP instances.

Keywords: CETSP, TCP,
GLNS-CESTP, GLNS, GSOA,
point-circle-point

Supervisor: RNDr. Miroslav Kulich,
Ph.D.

IMR - Intelligent Mobile Robotics,
CIIRC, CTU in Prague,
Jugoslávských partyzánů 1580/3,
160 00 Praha 6, Dejvice,
Czech Republic

vi



Abstrakt

Close-Enough Traveling Salesman Pro-
blem (CETSP), varianta dobře známého
problému obchodního cestujícího (TSP),
je jedním z důležitých problémů při apli-
kacích zabývajících se trasováním a plá-
nováním cest na oblastech tvaru kruž-
nic. Příklady těchto aplikací jsou násle-
dující: automatické odečty elektroměrů,
sběr dat v kruhových oblastech a hledání
zdrojů gamma záření. Cílem této práce
bylo zkombinovat stávající algoritmy za
účelem dosažení kvalitnějších výsledků zís-
kaných v kratším čase, než bylo dříve
dosaženo. Byla navržena nová metoda
s názvem GLNS-CETSP, která kombi-
nuje metodu pro nalezení nejkratší cesty
mezi dvěma body a kružnicí zvanou bod-
kružnice-bod (PCP) s algoritmy GLNS
a TCP. Byly provedeny experimenty k
otestování různých konfigurací GLNS-
CETSP. Mezi testované konfigurace patří
mód (rychlý, střední, pomalý), iniciali-
zační heuristiky (random_insertion, ran-
dom, GSOA, and LKH) a dvě verze PCP.
Kromě toho byl nový přístup srovnán s
nejmodernějšími metaheuristikami. Namě-
řené výsledky ukázaly, že GLNS-CETSP
ve většině případů dosahuje kvalitnějších
výsledků než nejmodernější metaheuris-
tiky. Ukázalo se také, že GLNS-CETSP je
ve většině případů druhým nejrychlejším
algoritmem. V případech obsahujících více
než 200 kruhů se však doba výpočtu vý-
razně prodlužuje. V reakci na to byl navr-
žen druhý nový algoritmus GSOA+TCP.
Jak název napovídá, kombinuje algoritmy
GSOA a TCP. Ačkoli GSOA+TCP ne-
byl schopen dosáhnout tak dobrých vý-
sledků jako GLNS-CETSP, kombinace
dvou velmi rychlých algoritmů vedla k
velmi rychlé a efektivní metodě. Přidání
TCP k GSOA výrazně zlepšilo kvalitu
výsledků za minimální časové ztráty. Na

základě vlastností těchto dvou nových
metod bylo rozhodnuto, že každý z al-
goritmů by měl být použit v jiné situ-
aci. GSOA+TCP by měl být používán
zejména v aplikacích, kde je výpočetní
čas omezený a kde instance obsahují více
než 500 kružnic. Problém CETSP má 4
různé varianty, z nichž pouze dvě byly
dříve vyřešeny zmíněnými aproximačními
algoritmy. GLNS -CETSP byl rozšířen o
řešení dalších dvou typů, které doplňují
stávající varianty o polygonální překážky.
Proto byly vegenerovány nové CETSP in-
stance na mapách (jari-huge, large, po-
tholes and warehouse) s polygonálními
překážkami a bez nich pomocí námi vy-
tvořeného generátoru CETSP instancí.

Klíčová slova: CETSP, TCP,
GLNS-CESTP, GLNS, GSOA,
bod-kružnice-bod

Překlad názvu: Close Enough
Travelling Salesman Problem v
polygonální doméně
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Chapter 1

Introduction

Travelling Salesman Problem (TSP) is a well-known NP-hard problem with
an aim to visit a given set of cities by a salesman while minimizing the length
of a traversed tour. The salesman starts and ends at the same location and
visits each city exactly once. Close Enough Traveling Salesman Problem
(CETSP) is an extension of TSP, where the salesman visits an arbitrary point
in the circular area around each city. Both TSP and CETSP are combinatorial
optimization problems that play a crucial role in robotic applications. In
mobile robotics, examples of usage include monitoring and collecting data in
regions [1], [2]. Examples of usage in industrial robotics include optimization
of the sequence of robotic tasks [3] and planning time-optimal motions of
manipulators [4].

Several algorithms were proposed to solve CETSP, such as Steiner zone
heuristic [5], branch-and-bound [6], mixed-integer nonlinear program [7],
Growing Self-Organizing Array [8], discrete gravitational search algorithm [9],
and regression model to estimate the solution [10]. Some of the algorithms
are able to compute the shortest tour possible but only for a small number of
cities. For a larger number of cities, these algorithms are computationally
demanding making them slow. On the other hand, there are also very fast
algorithms, but these generally find worse solutions than the slower algorithms.
As a result, this thesis is motivated by the need to solve CETSP even for
a larger number of cities in the shortest possible computation time. At the
same time, the solution proposed by the thesis will attempt to find better
solutions than the already best-found solutions.

The aim of the thesis is to devise a new heuristic method to solve CETSP in
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1. Introduction .....................................
the polygonal domain and evaluate it on existing CETSP datasets. Also, new
CETSP instances in the environment with polygonal obstacles are generated
and solved. The proposed heuristic method combines three algorithms: point-
circle-point (PCP), GLNS, and touring circle problem (TCP). First, PCP
computes a point on the circle that minimizes the sum of distances between
the the point and the other two points. GLNS determines a sequence of circles
to be visited and a corresponding sequence of points, where each point lies
on a different circle from the sequence. The order of circles in the sequence
minimizes the length of the tour traversing the sequence of points. Finally,
for each circle, TCP computes a point, which minimizes the sum of distances
between the consecutive points in the sequence given by GLNS.

The following Section 1.1 provides a literature review of CETSP problem.
The rest of the thesis is organized as follows. Chapter 2 defines all terms used
in the thesis and specifies TSP and CETSP problems. Also, the variants of
CETSP problem in the polygonal domain are introduced. Chapter 3 describes
in detail the algorithms PCP, GLNS and TCP including their implementation.
The process of generation of CETSP instances in the environment with
polygonal obstacles is also described. Finally, the experimental setup and
results are outlined in Chapter 4.

1.1 State of the art

The CETSP is a combinatorial optimization problem extensively studied in
researches with practical applications, such as automatic meter reading using
radio frequency identification (RFID), monitoring geographical regions by
drones, routing in wireless sensor networks, and optimizing a sequence of
robotic tasks in industrial robotics [5], [11]. Since the exact solution for this
problem can not be found in polynomial time, the approximation algorithms
running in a reasonable time are being proposed.

1.1.1 First specification and heuristics to CETSP problem

The CETSP problem was first mentioned by Heath et al. (2006) [11] in
an automatic meter reading (AMR) application and was defined as follows.
A service team has to visits customers (labeled as nodes) that have RFID
transmitter transmitting a signal in a circular area of a radius r. The service
team starts and ends in a point called depot and each node can be visited
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anywhere in its surrounding circular area. The authors proposed a method
to find the shortest tour that visits all nodes and the depot. The method is
divided into three consecutive parts:..1. Generate a feasible set of supernodes S (defined in next paragraph) that

covers the whole plane with nodes, where each node is distant no more
than r from the closest supernode...2. Find near-optimal TSP tour T on S...3. Improve tour T, i.e. reduce the distance traveled in T.

A feasible set of supernodes S is determined by six heuristics as follows:

. First three heuristics use variants of the tilling method that initially
cover the whole plane with a set of equal-sized regular hexagons, where
each hexagon can be inscribed in a circle of a radius r. Regular hexagons
were chosen from all types of polygons due to their minimal overlap area.
The hexagon centers form a set of supernodes Sr, size of which number
must be reduced.
The first variant called shifting reduces the number of supernodes by
performing a series of small random shifts (vertically or horizontally) of
all hexagons at once. The output of each shifting process is a new set of
supernodes, where each supernode corresponds to the center of a shifted
hexagon that covers at least one node. The set of supernodes with the
smallest cardinality is considered to be a feasible set S.
The second variant called merging attempts to merge every two adjacent
hexagons on the plane. Assume two adjacent hexagons H1, H2 with
centers h1, h2 ∈ Sr and a point h created as a midpoint on a line segment
h1h2. A new hexagon H with equal size to H1 and with the center in
h is created. If H covers all nodes that lie in H1 or H2, the hexagons
H1, H2 are merged and only h is considered to be supernode in set S.
Otherwise, the centers h1, h2 are considered to be supernodes in S.
The third variant, called circular extension replaces the hexagons with
circles of radii with the same centers and tries to reduce Sr by considering
the intersection of the circles. Assume three intersecting circles C1, C2
and C3, where C2 intersects C1 and C3, and C1 and C3 do not intersect
with each other. If all nodes that are covered by C2 are located only in
the intersect areas with C1 or C3, C2 is labeled as superfluous and is
eliminated, i.e. the center of C2 is removed from Sr. Sr is considered to
be feasible S after eliminating all superfluous circles.
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1. Introduction .....................................
. For the second heuristic, assume n intersecting circles. An area where

the circles intersect is called Steiner Zone of degree n. Steiner Zone
heuristic initially creates equal-sized circles with centers in all nodes.
To quickly obtain S, Steiner zones with degrees no more than three are
picked as an area suitable for possible supernodes. An arbitrary point in
each Steiner zone is considered to be a supernode, and it is saved to S.
The process of creating and saving supernodes starts from the Steiner
zone with the highest degree and repeats until all nodes are covered with
at least one supernode.. Sweeping Circle heuristic covers the whole plane with overlapping equal-
sized circles with centers shifted by a given value. The process of choosing
supernodes is iterative. In each iteration, the circle with the highest
number of nodes, is picked and its center is considered to be a new
supernode of S. The process is repeated until all nodes are covered.. In the last heuristic, node n1 is said to be adjacent to node n2 if the
distance between n1 and n2 is more than 0 and no more than r. The
degree of n1 is the number of nodes adjacent to n1. Radial Adjacency
heuristic creates S using an iterative process. In each iteration, node n
with the highest degree is picked from a set of all available nodes, and
the geometric mean of n and all of its adjacent nodes is computed. If the
resulting point is adjacent to fewer nodes than n, the node n is considered
to be a supernode and is added to S. Otherwise, the point resulting from
the computation of the geometric mean is a supernode and node n along
with its neighbors is removed from the set of all available nodes.

Near-optimal T on S is found by a non-specified heuristic. The process
of improving T is based on minimization of the marginal cost of visiting
supernodes in T.

The authors tested the heuristics on seven instances consisting of 100 to
1000 nodes. The results show that the merging tilling and Steiner Zone
heuristics are the most effective in the way of shortening the length of tour T.
The computation time was not measured.

1.1.2 Mixed-integer nonlinear program (MINLP)

Dong et al. (2007) [12] formulated a mixed-integer nonlinear program
(MINLP) for CETSP, but they did not solve it. Furthermore, they pro-
posed two approximation heuristics to find a set of supernodes S on the plane
in the AMR application. The first heuristic, called clustering-based is the
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same as the merging tilling heuristic. The second heuristic, called convex
hull-based finds a set S that covers the whole plane with nodes using an
iterative process. The process can be described by the following steps:..1. Depot is added to S...2. Nodes that lie within the distance r from closest supernode in S are

called covered nodes...3. A convex hull over all noncovered nodes is created by the Quickhull
algorithm [13]...4. A centroid O of the convex hull is computed...5. A set of all vertices of the convex hull is iterated. In each iteration
a current vertex is labeled as V and a distance between V and O is
measured. If the distance is less than or equal to r, O is a new supernode
and added to S. Otherwise, a new point is created on V O with distance
r from V and considered to be a new supernode...6. Go to step 2. until all nodes are covered.

The TSP tour T on S is found by the convex hull insertion algorithm,
which the authors consider to be an algorithm with a remarkable speed and
a surprising accuracy. The process of improving T is done by the simulated
annealing algorithm.

The authors constructed and tested 190 cases consisting of 100 to 1000
nodes and their radii from 2 to 20 by 2, i.e., ten different radii. Both heuristics
produce good results in a computation time not exceeding 800 milliseconds,
which is very fast.

1.1.3 Steiner Zone heuristic SZH and CETSP-lib

Mennell (2009) [5] formulated the MINLP and introduced a new lower bounds
(LB) techniques derived from MINLP. Next, the author developed several
solvers of the CETSP tour based on the Steiner Zone heuristic (SZH ) and
generated a set of 62 CETSP instances, which consists of 17 to 1001 circles.
We labeled the set of instances as CETSP-lib. CETSP-lib contains a set of
seven instances with three different overlap ratios (low, moderate, and high),
a set of fourteen instances with circles with random values of radii, and a set
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of twenty-seven instances with circles with equal-sized radii. Overlap ratio
defines the ratio between the areas where circles overlap and where not.

The author shows that the results of LB techniques for the CETSP problem
are very weak, i.e., computed LB values of most instances with moderate and
high overlap ratios are equal to zero. The computation process of general
SZH is divided into three phases:..1. The phase called Steiner zone generation generates a set of several

suitable disjoint or intersecting Steiner zones on a given instance. For
further information on this phase the reader is advised to read chapter
2.4.1 on page 22 of the original article [5]...2. The phase called Tour finding finds a representative point in each Steiner
zone and computes TSP tour T on these points. T is computed by
Lin-Kernighan heuristic LKH [14], which is considered to be a fast
heuristic...3. The third phase called Tour improvement tries to shorten T by changing
positions of points in T. The order of points in T, where each point
corresponds to one Steiner zone, is fixed and the position of points in each
Steiner zone minimizing the length of T is solved by an algorithm called
the Touring polygon problem (TPP) [15]. TPP originally optimizes
tour on a sequence of polygons, but the convex regions (Steiner zones)
are used in SZH. The author modified TPP to Touring Steiner Zones
Problem (TSZP), and proposed two types of solution of TSZP: optimal
and near-optimal. The optimal solution is formulated by the second-
order cone program (SOCP) and solved by CPLEX optimizer [16]. The
near-optimal solution is found by a heuristic called IPPhIII . Detailed
definition can be found on page 261 in the original article [5]. IPPhIII
solver finds the solution on up to 1001 circles in under 1 second and no
more than 1% from the currently shortest length. On the other hand,
CPLEX finds the optimal solution on 1000 circles in roughly 6 seconds,
which is more than six times slower than IPPhIII .

Moreover, it proposes several variants of SZH.

The variants of SZH are called SZ1 and SZ2. SZ1 prioritizes the com-
putational speed over the tour length and therefore, uses IPPhIII solver in
the third phase. On the other hand, SZ2 prioritizes the tour length and
hence uses the CPLEX solver in the third phase and repeats phases 2. and 3.
until no improvement of tour length is met. SZ1 and SZ2 were compared
with Generalized Traveling Salesman Problem (GTSP) based algorithms

6



................................... 1.1. State of the art

and another 11 heuristics on CETSP-lib. The GTSP-based algorithms use
a genetic algorithm (GA) to solve the exactly-one-in-set GTSP problem on
an instance with approximated circles. The author tried to approximate
the circles by 3, 6, 12, and 24 points and determined that only a 24-points
approximation is suitable.

The results show that SZ1 and SZ2 are very fast and provide the best
combination of computation time and length of the tour found. Although,
GTSP based algorithms find shorter tours than SZH based heuristics on
instances with a low and moderate overlap ratio, the computation time is
very slow, taking days or even weeks for larger instances.

1.1.4 Behdani & Cole (2014) and CETSP-lib-small

Behdani and Smith (2014) [7] approached CETSP problem as problem, where
the area around each point is not necessarily a circle and introduced two
discretization methods: grid-based and arc-based to approximate the areas.
Grid-based discretization method approximates close-enough areas of each
point by rectangular cells. Arc-based discretization is intended only for circular
areas. Assume a sequence of circles and a convex hull created from the centers
of circles in the sequence. Boundaries of circles lying on or inside the convex
hull are approximated by points called arc cells.

In addition, the authors generated a new set of 720 CETSP instances
consisting of 6 to 30 circles. We labeled the set of instances as CETSP-lib-
small due to a small number of circles in each instance. CETSP-lib-small
contains instances with three different overlap ratios: low, moderate, and
high. Last but not least, three mixed-integer program (MIP) approaches
(LB1, LB2, and LB3 ) were formulated on discretization schemes to find upper
and lower bounds on CETSP-lib-small and two alternative formulations
(Bender Decomposition (BD) and Iterative algorithm (IA)) were proposed.
IA improves the lower bound found by LB1, LB2 or LB3. BD significantly
improves the solvability of the general formulation of MIP by reformulating
the problem as a two-stage problem that is suitable for decomposition. The
formulations of LB1, LB2, and LB3 are solved by CPLEX.

LB1, LB2, and LB3 were tested on instances with 6 circles. In comparison
with the other two algorithms, the LB2 has proven to be very slow and
has been excluded from further testing. LB1 and LB3 were then tested on
instances of up to 10 circles. The tightest lower and upper bounds were found
by LB3 in shorter computation time than LB1. BD has been shown to be
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effective for larger instances of 14 to 20 circles. The improving algorithm IA
was tested on instances of 12 circles with two different overlap ratios: low and
moderate. The upper and lower bounds were found in up to 210 seconds on
instances with a low overlap ratio. On the contrary, the 1000 seconds limit
was reached in most instances with a moderate overlap ratio. Thus, IA is
very time-consuming on instances with moderate or high overlap ratios.

1.1.5 Branch-and-Bound (B&B)

Coutinho et al. (2016) [6] proposed an effective branch-and-bound (B&B)
algorithm for the CETSP and compared its results on CETSP-lib and CETSP-
lib-small.

Assume that the circular tour T starts and ends in the same position called
the depot and visits each circle in the CETSP instance exactly once. The tour
T=(TC , TP ), where TC is a sequence of all circles in the CETSP instance
and TP is a sequence of points. Partial tour Tpart=(TCp , TPp ), where TCp is
sub-sequence of TC and TPp is sub-sequence of TP . A set of circles that are
not visited by Tpart is called uncovered circles.

B&B algorithm finds the circular tour T with length that represents LB
estimate for a given instance and which can be considered to be optimal
length of T, if T contains all circles in the instance. The algorithm starts
with the initialization of a feasible Tpart and its TCp consists of three circles
that are picked using a method called root relaxation, which will be described
later. TPp is found using CPLEX on formulated second order cone program
(SOCP) also proposed by Mennell (2009) [5]. Next, the branching process is
applied and described by the following steps:..1. A circle from uncovered circles is selected based on one of the two

branching rules and placed at each position of TCp in the feasible Tpart.
The first branching rule selects from uncovered circles the circle that is
the most distant from the closest line segment created by two consecutive
points in Tpart. The second branching rule inserts each uncovered circle
from uncovered circles to the feasible Tpart between two closest circles in
TCp . A new TPp is computed, the length of Tpart is determined and the
uncovered circle is removed from Tpart. When the lengths of all Tpart are
determined, the circle from uncovered circles that maximizes length of
Tpart is selected. In cases where all circles have the same radii, the first
branching rule is applied. Otherwise, the second rule stands.
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................................... 1.1. State of the art..2. Three new Tpart containing TCp are created and their TPp are generated
using CPLEX. Tpart with the minimal length is picked as new feasible
Tpart...3. All consecutive points in feasible Tpart are connected using a line segment
and an area created from these connections is called convex bounding
region...4. If a circle from uncovered circles intersects some line segment in convex
bounding region, it is removed from uncovered circles...5. If uncovered circles is not empty, go to step 1. Otherwise, the branching
process is finished and Tpart is considered to be T.

Root relaxation method picks the initial circle with radius equal to zero
(depot) as a first circle. The circle that is the most distant from depot (based
on Euclidian distance measured between the coenters of the circles) is picked
as a second circle. The remaining circle with the maximal insertion cost is
picked as the third circle. The insertion cost of circle C is the length of Tpart
consisting of the two previously picked circles and C.

The results of the B&B algorithm were compared with the best results
found on CETSP-lib and CETSP-lib-small. B&B algorithm found a new
optimal solution in 22 out of 62 instances of CETSP-lib and improved the
LB estimates in the rest of the instances, which were initially computed
by Mennell (2009) using MINLP [5]. On the other hand, there was a vast
difference in the computation time between instances. The computation time
of instances with a high overlap ratio was less than one second. However, the
computation time of instances with a low or moderate overlap ratio almost
always reached the time limit of four hours. This means, the B&B algorithm
is effective only for instances with a high overlap ratio. Next, the B&B
algorithm is much more effective on CETSP-lib-small because it solves all
instances to optimality in no more than two seconds.

1.1.6 Carrabs et al. (2017)

Francesco Carrabs et al. (2017) [17] proposed two new discretization schemes:
perimetral and internal that effectively discretize the solution space (boundary
of circles). Moreover, they introduced a graph reduction algorithm that
significantly reduces the problem size on already discrete solution space and
speeds up the computation process. The optimal circular tour T is then
computed by solving the GTSP problem on the reduced discrete solution
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space. GTSP problem is formulated by MIP and solved by CPLEX. The
process of creating a discrete solution space, reduction of discrete space, and
computing optimal T is called ULB.

ULB was compared with LB3, BD and IA proposed by Behdani and Smith
et al. (2014) [7] in Section 1.1.4. The results show that ULB find tighter
lower and upper bounds and much faster than the other algorithms in most
instances. Overall, ULB outperforms the other tested algorithms.

1.1.7 F. Carrabs et al. (2017)

F. Carrabs et al. (2017) [18] proposed an improved version of internal
discretization scheme, which was initially proposed by the same authors and
in the same year. In addition, they proposed a heuristic IULB combining the
scheme with SOCP to solve CETSP.

IULB was compared with ULB and was shown to be an improved version
of ULB as IULB solves 17 instances in less than 100 seconds while during
the same time ULB solves only 12 instances.

1.1.8 Growing Self-Organizing Array GSOA

Jan Faigl (2018) [8] introduced unsupervised learning procedure Growing
Self-Organizing Array GSOA inspired by Self-Organizing maps SOM [19] to
solve TSP and CETSP problems.

Assume a set of circles S that need to be visited and a growing array
structure N initialized with one point (centroid to S). GSOA computes T
by an iterative process, where each iteration is called a learning epoch. Each
learning epoch can be described by the following steps:..1. A temporal circular tour Ttmp encompasses all points from N ...2. Winner selection and adaptation step randomly iterates through all

circles in S and for each determines a winner point w. w is the closest
point on Ttmp to a given circle. Each w is then adapted towards the
corresponding circle and inserted into N .
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Ttmp is the new T after completion of all epochs.

GSOA was compared with SZ2 and GTSP-GLNS on CETSP-lib. TSPlib
[20] was used for comparison with LKH, Co adaptive Net and ORC-SOM.
GTSP-GLNS is exactly-one-in-set GTSP solver and is applied to circles in
CETSP instances that are approximated by 24 points. Algorithms ORC-SOM
on TSPlib are considered to be the most representative SOM -based algorithms
for the TSP by the author. The results show that GSOA is very fast because
the computation time of the biggest instance consisting of 1001 circles is
approximately 0.6 seconds, and the total average of all CETSP-lib instances
is approximately 0.1 seconds, which is several orders of magnitude faster than
other algorithms. On the contrary, solutions found by GSOA are worse than
the best-found solutions in most cases. Therefore, GSOA is recommended to
be used only as an initialization tour heuristic for other algorithms.

1.1.9 Steiner Zone Variable Neighborhood heuristic
(SZVNS)

Wang et al. (2019) [21] proposed Steiner Zone Variable Neighborhood heuristic
(SZVNS) to find circular tour T on CETSP instance CETSP-lib and CETSP-
lib-small.

SZVNS works in three phases:..1. Data cleaning phase eliminates redundant circles to reduce the number
of circles and improve computation time. When a Steiner zone created
by set of circles is inscribed in another circle, the circle is eliminated,
because any point from the Steiner zone always lies in this circle...2. Construction initially creates a set of all Steiner zones from a reduced
set of circles using Sweep line algorithm, which effectively finds each
subset of circles producing a Steiner zone. Then, the set containing the
fewest Steiner zones that cover all circles is selected using Set Covering
Problem (SCP). SCP is formulated by Binary Integer Program (BIP)
and solved by optimization software Gurobi. Finally, an initial tour T is
generated from the optimal set of Steiner zones.
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1. Introduction .......................................3. Let us define a fixed point in a Steiner zone as Steiner point. Tour
improving phase improves T, i.e., shorten length of T if it is possible
using TSP solver and Steiner point selection. TSP solver finds a sequence
of Steiner zones minimizing T from their Steiner points using the LKH
heuristic. Once the sequence is found, Steiner point selection method
computes a Steiner point on each Steiner zone, which minimizes the
distance between the previous and next points in sequence. The Steiner
points can be computed by SOCP, but due to its time consumption, the
authors applied a greedy algorithm.

SZVNS is compared with the best results computed by B&B and ULB
algorithms on CETSP-lib-small and the results of all heuristics introduced
by Mennell (2009) [5] including SZ1, SZ2, and GTSP based on CETSP-lib.
SZVNS found optimal solutions on 94.4% instances of CETSP-lib-small in
less than one second in all cases, which is much faster than B&B and ULB
algorithms. In CETSP-lib, SZVNS found the new optimal solutions in 29 out
of 62 instances. Total average computation times of SZVNS, SZ2, and GTSP
based algorithm are 72, 7, and 1,053,012 seconds, respectively. The fastest
is SZ2, but it has not found as many optimal solutions as SZVNS. Overall,
SZVNS seems to be a very effective solver.

1.1.10 M. Antonescu and C. Bîră (2019)

M. Antonescu and C. Bîră (2019) [9] introduce new TSP and CETSP solvers
(DGSA-TSP and DGSA-CETSP) based on discrete gravitational search
algorithm (DGSA). In addition, two types of rubber band algorithm (RBA) are
proposed: Bisector RBA and Segment Middle Point RBA. These algorithms
are used as a part of DGSA in DGSA-CETSP solver. The main purpose of
the RBA algorithm is to improve the circular tour T, i.e., find a point on
each circle of the tour that shortens the length of the tour.

The results of DGSA-TSP and DGSA-CETSP were compared with GSOA
algorithm introduced by Faigl (2018) of auger engineering radio array (AERA)
instances. The authors generated AERA instances consisting of circles with
equal-sized radii. In the case of the TSP problem, the radii are equal to
zero, and in the case of the CETSP problem, the radii are equal to 21 and
30 meters. The results show that DGSA-TSP finds the tour slightly shorter
than GSOA. On the other hand, DGSA-CETSP generates poor results.
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1.1.11 Regression model (RM)

Roy et al. (2021) [10] built a regression model RM to estimate circular
tour lengths without generating the actual tour and tested the lengths on
CETSP-lib-small. In addition, they generated a new set of 234 instances
similar to the already proposed CETSP instances and a new set of 72 larger
instances.

RM uses tour lengths computed by SZVNS heuristic proposed by Wang et
al.(2019) [21] to estimate the tour lengths. The results show that the tour
lengths computed by SZVNS can be estimated by RM with eight independent
variables with an average error of approximately 4%.
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Chapter 2

Problem specification

This chapter opens with an introduction to GLNS and TSP problems that
are the basis of this thesis. The basic terms that are necessary to describe
these problems are defined. At the end of this chapter, the CETSP problem
is defined along with variants of CETSP that this thesis aims to solve.

2.1 Coordinate system

We work in a two-dimensional Cartesian coordinate system to represent the
points on the plane. Each point p is uniquely described as p = (px, py), where
px and py are numerical coordinates.

The distance d between points p and q is computed as the Euclidean
distance:

d(p, q) =
√

(qx − px)2 + (qy − py)2
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2.2 Tour on graph

Assume a complete weighted graph G = (V, E, w), where

. V is a set of (m) vertices defined as V = {V1, V2, . . . , Vm}.. E is a set of paired vertices called edges, i.e. E ⊆ {(x, y) | (x, y) ∈
V 2 and x 6= y}.. w is a function assigning weight to each edge: E → R.

Finite path P on G is defined as P = (VT , ET ), where VT is a set of n vertices
VT = {V1, V2, . . . , Vn} and ET is a set of n−1 edges ET = {e1, e2, . . . , en−1} ⊆
E that joins consecutive vertices from VT , i.e. ei = (Vi, Vi+1). The path P
does not have to visit all vertices on G, i.e., VT ⊆ V .

Cycle on G is a finite path P that starts and ends in the same vertex. The
Hamiltonian path is a finite path P that visits each vertex on G exactly once.
The Hamiltonian cycle is a Hamiltonian path that starts and ends in the
same vertex [22]. The optimal tour T = (VT , ET ) is a Hamiltonian cycle on
G and has a minimal cost defined as:

cost(T ) =
∑
e∈ET

w(e).

2.3 Circular tour

Assume a set of m circles C = {C1, C2, . . . , Cm}, where Ci is described by
its center and radius, i.e., Ci = (ci, ri). The circular tour T of C describes a
cyclic path on a sequence of consecutive circles.

The tour T = (TC , TP ), where..1. TC = (TC1 , TC2 . . . , TCm), where TCi ∈ C.
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...........................2.4. Traveling Salesman Problem (TSP)..2. TP = (TP1 , TP2 . . . , TPm), where pi is a point and lies on the circle Ci ∈ TC .

A partial circular tour Tpart = (TCp ,TPp ), where TCp ⊆ TC and TPp ⊆ TP .

The distance dist between two circles Ci ∈ C and Cj ∈ C is defined as

dist(Ci, Cj) = d(ci, cj)− ri − rj

The main metric for measuring the quality of the tour is the tour’s length
(len). It is computed as a sum of the distances between each two consecutive
points in the tour’s path:

len(T ) =
|T |−1∑
i=1

d(TPi , TPi+1) + d(TP1 , TP|T |),

where |T | is the number of circles in the tour.

2.4 Traveling Salesman Problem (TSP)

Traveling Salesman Problem (TSP) is an NP-hard problem in combinatorial
optimization. Let us assume a salesman wants to visit several cities and then
come back home. The problem is to arrange the order of cities such that the
cost of the tour is minimized [3]. This problem can be modeled as the TSP
problem on the graph G = (V,E,w), where V represents cities, E represents
the roads between cities and w is a distance function of E.

The optimal TSP tour visiting all cities is the optimal tour T on G.
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2. Problem specification .................................
2.5 Generalized Traveling Salesman Problem
(GTSP)

Generalized Traveling Salesman Problem (GTSP) is an extension of the TSP.
The variant of the GTSP that we work with is called an exactly-one-in-set
GTSP problem. Assume the graph G = (V,E,w) mentioned above and a
set of m clusters S = {S1, ..., Sm}. Each cluster Si ∈ S contains a set of ni
vertices Si = {V1, ..., Vni}, where Vni ∈ V .

The GTSP optimal tour T is a cycle on G that visits exactly one node
from each cluster and its cost is minimal among all such cycles.

2.6 Close-Enough Traveling Salesman Problem
(CETSP)

CETSP is a variant of TSP, where each city is symbolized by a circle area
with radius r. The city is considered to have been visited if the salesman
is within the city’s specified radius (in other words, "the salesman is close
enough") [5].

To clarify this problem, we extend the TSP problem described on graph G
in a discrete space to a continuous space R2. More specifically, we search for
the optimal circular tour T in a continuous space instead of searching for the
tour in a graph G.

This thesis aims to solve the different variants of CETSP problem. These
variants are sorted based on their complexity. Each variant inherits constraints
from its predecessor and adds other constraints. Specifically:..1. CETSPdis is an elementary variant of the CETSP problem containing

only disjoint circles with arbitrary-sized or equal-sized radii. The main
goal of the search for the optimal circular tour T is to find the correct
order of circles in TC and their points in TP ...2. CETSPint is similar to CETSPdis with the exception that the circles
are allowed to intersect with each other.
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................... 2.6. Close-Enough Traveling Salesman Problem (CETSP)..3. CETSPobst_dis extends the CETSPdis by adding an environment with a
set of polygonal obstacles P . The obstacles must be simple polygons and
have to be disjoint. Moreover, the obstacles are not allowed to intersect
with the circles that are to be visited...4. CETSPobst_int is an extension of CETSPobst_dis. The circles are allowed
to intersect with each other.

All variants of CETSP problem are solved on the map that specifies the
environment. Each map may contain obstacles. CETSP instance is a set of m
intersecting or disjoint circles on a map defined as C = {C1, . . . , Cm}, where
Ci = (ci, ri) and Ci ∈ C. An example of CETSP problem and of all considered
variants shown on Fig.2.1 on two different CETSP instances placed on the
map with and without obstacles. Subfigures (a) and (c) (similarly Subfigures
(b) and (d)) produce similar T because the position of circles is the same but
the environment differs in the presence of polygonal obstacles highlighted by
red color.
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2. Problem specification .................................

(a) : Solution to CETSPdis problem
on instance called disjoint_50. Total
number of circles is 50 and the circles
are disjointed and with all with the
same radius.

(b) : Solution to CETSPint problem
on instance called intersect_50. Total
number of circles is 50 and the circles
are intersected and with all with the
same radius.

(c) : Solution to CETSPobst_dis prob-
lem on instance called disjoint_50 on
the map with obstacles.

(d) : Solution to CETSPobst_int prob-
lem on instance called intersect_50 on
the map with obstacles.

Figure 2.1: Examples of solved CETSP problem and all variants on the map
large.
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Chapter 3

Solution Approach

This thesis aims to solve the CETSP problem and its extension to an envi-
ronment with polygonal obstacles (i.e., to find circular tour T).

Firstly, let us describe the proposed solvers to the CETSP problem without
obstacles. The following algorithms, sorted by increasing complexity, were
used to resolve parts of this problem: point-circle-point (PCP), touring
polygon problem (TPP), and GLNS. PCP solver finds a point p on the circle
C such that the path between p and two points on the map is the shortest.
PCP is the basis for the other two more complex algorithms and it is described
in Section 3.1.

The general TPP algorithm (Section 3.2) determines a path touring a
sequence of polygons. This general algorithm is not sufficient for our problem
because we work with circles instead of polygons. Therefore, we modified
TPP to find the shortest path on the circular tour T as defined in Section
2.3. Let us name the modified TPP solver TCP (Section 3.3). TCP is able
to find an optimal solution to the circular tour T only for a fixed order of
circles. Therefore, it is not suitable for solving the general CETSP problem,
where the order of circles is not specified.

The optimal order of circles and the optimal path can be found by a
modified GLNS algorithm. The original version of the GLNS algorithm
(Section 3.4) can solve the GTSP problem. Our modified version called
GLNS-CETSP (Section 3.5) determines the optimal path and order of circles
in circular tour T. The TCP is used as a part of the optimization process of
GLNS for the CETSP problem.
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3. Solution Approach ..................................
Secondly, we address the CETSP problem with obstacles. This problem

extends the CETSP problem by adding polygonal obstacles that need to
be avoided into the environment. The previously described algorithms were
used to solve this problem. However, with a slight modification, the shortest
collision-free path TP needs to be found, i.e., the Euclidean distance between
two points on the map can not be used.

3.1 Point-circle-point (PCP)

This section proposes a technique of finding the shortest path between two
points a and b through an optimal point p located on a circle C (point-circle-
point PCP). The point p is called optimal if it minimizes the sum of the
Euclidean distances between p and a and between p and b. There are four
different versions of the scenario with respect to the mutual positions of these
points.:..1. Both points a and b are located on C. The optimal point p is located

always inside this circle. Fig. 4.2a...2. One of the points a or b is located inside C. The optimal point p is
located on C or inside this circle. Fig. 4.2d and 4.2c...3. The position of points a and b is outside C and line segment ab intersects
C. The optimal point p is located on C or inside this circle. Fig. 3.1d
and 3.1e...4. The position of points a and b is outside C and line segment ab does not
intersect C. The optimal point p is always located on C. Fig. 3.1f.

The last scenario is nontrivial to solve, while the others are trivial. The
following subsections introduce the PCP solver, which provides solutions to
the particular cases and an additional technique that improves the compu-
tation speed of the solver. Subsection 3.1.1 describes the framework of the
solver. Subsection 3.1.2 introduces the computation of points located both
on C and ab, which is used in scenarios 2 and 3. Subsection 3.1.3 describes
the solution of the nontrivial scenario.
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............................... 3.1. Point-circle-point (PCP)

(a) : Scenario 1 (b) : Scenario 2a

(c) : Scenario 2b (d) : Scenario 3a

(e) : Scenario 3b (f) : Scenario 4

Figure 3.1: Scenarios of mutual positions of points a and b and circle C

3.1.1 Solver framework

Algorithm 1 describes the PCP solver. The solver’s inputs are points a and b
and circle C defined by its center point c and radius r. It returns an optimal
point p. Using a switch statement (lines 1 - 18), the solver is divided into
four separate parts, each representing one of the scenarios.

The first part (lines 2 - 3) corresponds to the first scenario and occurs
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3. Solution Approach ..................................
Algorithm 1: PCP solver
Input: Points a and b and circle C
Output: Point p on circle C

1 switch scenario do
2 case 1 do
3 p ← compute_mid_point(a, b);
4 case 2 do
5 p ← compute_mid_point(a, b);
6 if is_not_inside(p, C) then
7 az, bz ← transform_to_zero(a, b, C)
8 pz ← point_on_circle_and_line(az, bz, C);
9 p ← transform_from_zero(pz, C);

10 case 3 do
11 az, bz ← transform_to_zero(a, b, C)
12 p1, p2 ← points_on_circle_and_line(az, bz, C);
13 pz ← compute_mid_point(p1, p2);
14 p ← transform_from_zero(pz, C);
15 case 4 do
16 aty, btx, bty, α ← transform(a, b, C);
17 pt ← solve(aty, btx, bty) ; // solving of nontrivial scenario
18 p ← inverse_transform(α, pt, C);

19 return p

when both points a and b are inside C. The point p can be located on any
position of the line segment ab. In case of simplification of the computation
process, we always compute p in the middle of the line segment ab as follows:

p = (ax + bx
2 ,

ay + by
2 ) (3.1)

The second part (lines 4 - 9) occurs, when the either a or b is inside C while
the other point is outside C. If so, the point p is placed in the middle of ab
and its position is checked. If p is inside C, the result is saved and returned.
Otherwise, a new p equal to the position, where ab intersects C need to be
computed. In the first step, points a, b and C are shifted so that c is in the
origin. The new shifted points are labeled as az and bz (line 7). Next, the
pz is computed as described in detail in Section 3.1.2. The computed pz is
finally shifted back using the original c and a resulting point p is assigned to
the solver’s output.
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............................... 3.1. Point-circle-point (PCP)

The third part (lines 10 - 14) occurs, when ab intersects C. Let us define
points p1 and p2 as points located on both C and ab. The point p can be
located anywhere on line segment p1p2, i.e, p can be located on or inside C.
To simplify the computation process, we consider p as a middle point on p1p2,
which is closest to the center of C. The computation process is described by
the following steps:..1. Points a, b and C are shifted to center c to the origin (line 11)...2. Points p1 and p2 are computed using shifted points az, bz and C (line

12). Section 3.1.2 describes the computation process in detail...3. Point pz is computed as a middle point on line segment p1p2 (line 13)...4. pz is shifted back using the original c and resulting p is assigned to the
solver’s output (line 14).

The fourth part (lines 15 - 19) corresponds to the last scenario. General
position of points a and b and circle C in the space is described by seven
parameters (ax, ay, bx, by, cx, cy, r), where cx and cy are the coordinates of
center c of C and r is its radius. Example of the general position of points a,
b and the circle C is shown on Fig. 3.2.

Figure 3.2: Position of points a, b and circle C with radius r and center c in
the space described by seven parameters

To simplify the computation, we can transform this space to a space that
is described by three parameters (ay, bx, by), by moving the circle center to
the origin O, scaling to unit radius and rotating so that a lies on the y-axis.
The transformation process (line 16) is shown on Fig. 3.3 and described as
follows:..1. Points a and b are shifted by c (Fig. 3.3a):

af = (afx, afy) = (ax − cx, ay − cy);

25



3. Solution Approach ..................................

bf = (bfx, bfy) = (bx − cx, by − cy);..2. Points af and bf are scaled by 1/r (Fig. 3.3b):

as = (asx, asy) = (a
f
x

r
,
afy
r

)

bs = (bsx, bsy) = (b
f
x

r
,
bfy
r

)..3. Angle α between half-line −−→Oas and y-axis is computed using function
arctan (Fig. 3.3c):

α = arctan(
−−→
Oas, y − axis)..4. The resulting points at and bt are computed by rotating points as and

bs about α (Fig. 3.3d):

at = (atx, aty) = (0, sin(α) · asx + cos(α) · asy)

bt = (btx, bty) = (cos(α) · bsx − sin(α) · bsy, sin(α) · bsx + cos(α) · bsy)

Point pt is then computed by the solver described in Section 3.1.3 and p is
determined using inverse transformation function (line 18) from pt, Cp and α
as follows:..1. Point pr is computed by rotating point pt about -α:

pr = (prx, pry) = (cos(−α) · ptx− sin(−α) · pty, sin(−α) · ptx + cos(−α) · pty)..2. pr is multiplied by r:

ps = (psx, psy) = (prx · r, pry · r)..3. The resulting point p is computed by shifting ps about c:

p = (px, py) = (psx + cx, p
s
y + cy)
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............................... 3.1. Point-circle-point (PCP)

(a) : General points and the circle C
shifted by center of circle c. The center
of C is at the origin.

(b) : Shifted points and C scaled by
1/r. The radius of circle C is equal to
1.

(c) : Computed angle α between half-
line
−−→
Oas and y-axis.

(d) : Points as and bs rotated by angle
α to result in transformed points at and
bt.

Figure 3.3: Transformation of points and a circle in space described by seven
parameters to space described by three parameters.

3.1.2 Points on the line and circle

This section describes the computation of points on the line segment ab that
intersects circle C = (c, r), where c lies in the origin of the coordinate system
(0, 0). Let us formulate a point p by the parametric line equation of the
direction vector ~ab and point a:

p = (px, py) = (ax + t · (bx − ax), ay + t · (by − ay)), (3.2)

where t is scalar value. To compute t, we use the equation of the circle
described by point p:
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3. Solution Approach ..................................
p2
x + p2

y = r2 (3.3)

By substituting Eq. 3.2 into equation of a circle, we get

(ax + t · bx − t · ax)2 + (ay + t · by − t · ay)2 = r2 (3.4)

By separating the variable t and solving Eq. 3.4, we obtain two solutions
t1 and t2 of t as follows:

t1 = n ·m− ax bx − ay by + ax
2 + ay

2

q
(3.5)

t2 = −n ·m+ ax bx + ay by − ax2 − ay2

q
(3.6)

Where n, m and q are:

n =
√
−ax2 by

2 + ax2 r2 + 2 ax ay bx by − 2 ax bx r2 (3.7)

m =
√
−ay2 bx

2 + ay2 r2 − 2 ay by r2 + bx
2 r2 + by

2 r2 (3.8)

q = ax
2 − 2 ax bx + ay

2 − 2 ay by + bx
2 + by

2 (3.9)

By substituting t1 and t2 into equation of p (Eq. 3.2), we get two points
p1 and p2 that lie on C and line

←→
ab .

p1 = (px, py) = (ax + t1 · (bx − ax), ay + t1 · (by − ay)) (3.10)
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............................... 3.1. Point-circle-point (PCP)

p2 = (px, py) = (ax + t2 · (bx − ax), ay + t2 · (by − ay)) (3.11)

There are two different mutual positions of line segment ab and C that
affect the number of points located both on C and ab:..1. One of the points a, b is located inside C. Exactly one point p (p1 or p2)

is located both on C and ab. The value of parameter t decides which p
will be located on ab as only one of the parameters t1 or t2 is equal to a
value in range [0,1]. Fig. 3.4a shows an example, where point a is inside
C and the point p1 is the only point lying on both C and ab...2. Both points a and b are located outside C. Both points p1 and p2 are
located on both C and ab. An example is shown on Fig. 3.4b.

(a) : Point a is inside and point b is outside
C. Only one point p1 lies on C.

(b) : Points a and b are outside C. Two
points p1 and p2 lie on C.

Figure 3.4: Two different mutual positions of line segment ab intersecting circle
C and found points on ab and C.

3.1.3 Solving nontrivial case

The PCP solver of the nontrivial case aims to compute an optimal point
p = (px, py) located on the circle C = ((0, 0), 1), while a = (0, ay) and
b = (bx, by) are located outside C, i.e., the space described by three parameters
is used. The solver minimizes the distances between p and a and between b
and p.

The main idea is based on the light reflection theory, specifically on Snell’s
law that defines the reflection of light with the following equation [23]:

n1sin(β1) = n2sin(β2) (3.12)
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3. Solution Approach ..................................
Where n1 is the incident index, n2 is the refracted index, β1 is incident

angle and β2 is the refracted angle. Let us suppose the situation depicted in
Fig. 3.5, where the incident and refracted light ray is on the same side of the
medium M, i.e., n1 = n2. We get β1 = β2.

Figure 3.5: Light reflection

According to the following lemma, which is proved in Chou et al. (2008)
[23], we are able to find the shortest path using light reflection.

Lemma: With the incident angle β1 equal to the reflection angle β2, the
length of traversal path along the line segments ap and pb is the shortest path.

Assume a new point a∗ = (a∗x, a∗y), which is the mirroring of a in line
M. Line segment ap has the same length as line segment a∗p, which can be
described by the following equation:

√
(ax − px)2 + (ay − py)2 =

√
(a∗x − px)2 +

(
a∗y − py

)2
(3.13)

Figure 3.6: Principle of light reflection applied to the PCP problem
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............................... 3.1. Point-circle-point (PCP)

By applying the principle of light reflection to the PCP problem, we get
into the situation depicted in Fig. 3.6, where M is the tangent line to C and
θ is an angle that determines p using polar coordinates as follows:

p = (px, py) = (cos(θ), sin(θ)). (3.14)

Point a∗ can be expressed by a parametric equation as a point lying on a
line segment passing through a with slope corresponding to point p. The line
segment a∗a is parallel to cp.

a∗x = ax + t · px, (3.15)

and

a∗y = ay + t · py, (3.16)

where t is a scalar value parameter of the equation. Parameter t is computed
by substituting a∗ into Eq. 3.13:

(ax − px + px t)2 + (ay − py + py t)2 − (ax − px)2 − (ay − py)2 = 0. (3.17)

By rearranging the formula, we get:

t = 2− 2 · axpx + aypy
px2 + py2 = 2 px2 + 2 py2 − 2 ax px − 2 ay py

px2 + py2 . (3.18)

By assuming only three parameters, we can simplify Eq. 3.15 and 3.18 as

a∗x = t · px, (3.19)
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3. Solution Approach ..................................

t = 2 px2 + 2 py2 − 2 ay py
px2 + py2 . (3.20)

Eq. 3.16, 3.19 and 3.20 are derived equations of a∗. Since a∗, p and b are
collinear, the line segments a∗p and pb are collinear as well and we get

py − a∗y
px − a∗x

= py − by
px − bx

. (3.21)

Eq. 3.21 can be substituted by a∗ with parameter t as:

py − ay − py · t
px − px · t

= by − py
bx − px

≡ t · (bxpy − bypx) = bxpy − bxay + pxay − pxby
(3.22)

We can substitute p in the form of polar coordinates Eq. 3.14 into Eq.
3.22:

t · (bxsin(θ)− bycos(θ)) = bxsin(θ)− bxay + aycos(θ)− bycos(θ) (3.23)

To improve the readability of the equations, we create expressions from sin
and sin2 functions as follows:

z = sin2(θ) = 1− cos2(θ), (3.24)

√
z = sin(θ) =

√
1− cos2(θ). (3.25)

Eq. 3.23 and parameter t (Eq. 3.20) can be simplified using parameter
√
z

as
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............................... 3.1. Point-circle-point (PCP)

t · (bx
√
z − bycos(θ)) = bx

√
z − bxay + aycos(θ)− bycos(θ), (3.26)

t = 2 cos2(θ) + 2− 2cos2(θ)− 2ay
√
z

cos2(θ) + 1− cos2(θ) = 2− 2ay
√
z. (3.27)

Since t is simplified Eq.3.27, we can substitute it into Eq. 3.26 and we
obtain

bx
√
z + 2aybycos(θ)

√
z = bxay + aycos(θ) + bycos(θ)− 2bxaycos2(θ). (3.28)

By substituting parameter
√
z Eq. 3.25 into Eq. 3.28 as

bx

√
1− cos2(θ) + 2aybycos(θ)

√
1− cos2(θ) =

bxay + aycos(θ) + bycos(θ)− 2bxaycos2(θ),
(3.29)

we obtained the equation with three requested parameters (ay, bx, by) and
parameter θ to compute. To remove the square root, we square the equation
and obtain

− 4 ay2 by
2 cos4 (θ) + 4 ay2 by

2 cos2 (θ)− 4 ay bx by cos3 (θ)
+ 4 ay bx by cos (θ)− bx2 cos2 (θ) + bx

2 =
+ 4 ay2 bx

2 cos4 (θ)− 4 ay2 bx
2 cos2 (θ) + ay

2 bx
2 − 4 ay2 bx cos3 (θ)

+ 2 ay2 bx cos (θ) + ay
2 cos2 (θ)− 4 ay bx by cos3 (θ) + 2 ay bx by cos (θ)

+ 2 ay by cos2 (θ) + by
2 cos2 (θ)

(3.30)

By rearranging the equation, we get the final polynomial of degree four of
variable cos(θ).
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3. Solution Approach ..................................

4
(
ay

2 bx
2 + ay

2 by
2
)
cos4(θ)

− 4
(
ay

2 bx
)
cos3(θ)

+
(
−4 ay2 bx

2 − 4 ay2 by
2 + ay

2 + 2 ay by + bx
2 + by

2
)
cos2(θ)

+ 2
(
ay

2 bx − ay bx by
)
cos(θ)

+
(
ay

2 bx
2 − bx2

)
= 0

(3.31)

The following are the four solutions of the polynomial:

cos(θ) =



1
4z + n− k

√
q + t

1
4z + n+ k

√
q + t

1
4z − n− k

√
q − t

1
4z − n+ k

√
q − t

(3.32)

where z, n, t, q and k are

z = 4 ay2 bx
ab , (3.33)

n =
√
m

6 l1/6 , (3.34)

t = 3
√

6h
√

2 g3 − 72 f g + 27h2 + 3
√

3 ch, (3.35)

q = −12 f
√
m− g2√m− 9 l2/3√m− 12 g l1/3√m, (3.36)

k = 1
6 l1/6m1/4 . (3.37)

Parameters ab, c, d, e, f, g, h, ch, l and m are computed as:
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ab = 4 ay2 bx
2 + 4 ay2 by

2 (3.38)

c = −4 ay2 bx
2 − 4 ay2 by

2 + ay
2 + 2 ay by + bx

2 + by
2 (3.39)

d = 2 ay2 bx − 2 ay bx by (3.40)

e = ay
2 bx

2 − bx2 (3.41)

f = e

ab −
3 z4

256 + c z2

16 ab + d z

4 ab (3.42)

g = c

ab −
3 z2

8 (3.43)

h = d

ab −
z3

8 + c z

2 ab (3.44)

ch =
√
−256 f3 + 128 f2 g2 − 16 f g4 − 144 f g h2 + 4 g3 h2 + 27h4 (3.45)

l = g3

27 −
4 f g

3 + h2

2 +
√

3 ch
18 (3.46)

m = 12 e
ab − 6 g l1/3 + g2 + 9 l2/3 − 9 z4

64 + 3 c z2

4 ab + 3 d z
ab (3.47)

Since cos(θ) = cos(−θ), we have
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3. Solution Approach ..................................

cos(−θ) =



1
4z + n− k

√
q + t

1
4z + n+ k

√
q + t

1
4z − n− k

√
q − t

1
4z − n+ k

√
q − t

(3.48)

By deriving θ from Eq. 3.32 and 3.48, we obtain the following eight
solutions of θ:

θ =



θ1 = cos−1(1
4z + n− k

√
q + t)

θ2 = −cos−1(1
4z + n− k

√
q + t)

θ3 = cos−1(1
4z + n+ k

√
q + t)

θ4 = −cos−1(1
4z + n+ k

√
q + t)

θ5 = cos−1(1
4z − n− k

√
q − t)

θ6 = −cos−1(1
4z − n− k

√
q − t)

θ7 = cos−1(1
4z − n+ k

√
q − t)

θ8 = −cos−1(1
4z − n+ k

√
q − t)

(3.49)

By substitution of θ into polar form of p (Eq. 3.14), we obtain eight final
solutions of p:

p1 =


px = 1

4z + n− k
√
q + t

py =
√

1−
(

1
4z + n− k

√
q + t

)2 (3.50)

p2 =


px = 1

4z + n− k
√
q + t

py = −
√

1−
(

1
4z + n− k

√
q + t

)2 (3.51)

p3 =


px = 1

4z + n+ k
√
q + t

py =
√

1−
(

1
4z + n+ k

√
q + t

)2 (3.52)

p4 =


px = 1

4z + n+ k
√
q + t

py = −
√

1−
(

1
4z + n+ k

√
q + t

)2 (3.53)
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p5 =


px = 1

4z − n− k
√
q − t

py =
√

1−
(

1
4z − n− k

√
q − t

)2 (3.54)

p6 =


px = 1

4z − n− k
√
q − t

py = −
√

1−
(

1
4z − n− k

√
q − t

)2 (3.55)

p7 =


px = 1

4z − n+ k
√
q − t

py =
√

1−
(

1
4z − n+ k

√
q − t

)2 (3.56)

p8 =


px = 1

4z − n+ k
√
q − t

py = −
√

1−
(

1
4z − n+ k

√
q − t

)2 (3.57)

The computed points p are visualized in Fig. 3.7, where the red line
highlights the distance from a and b to the closest p (p1 in this case). This
p1 is considered to be the optimal point p.

Figure 3.7: Eight computed solutions of point p by PCP solver

The solutions (Eq. 3.50 - 3.57) are inspired by the solutions proposed by
Chou (2008) [23]. Initially, the equations (12 - 24) in the original paper were
used to solve the nontrivial case. However, these equations contain several
transcription errors that prevent the PCP from working correctly. Moreover,
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3. Solution Approach ..................................
five parameters (ax, ay, bx, by, r) are used in the original solution instead of
three parameters (ay, bx, by).

Precomputed solution

The previous equations allow us to compute approximately 22900 PCP
problems per second as the experimental results show. Although the number
of PCP problems is high, we want to make the computation process even
faster due to its frequent usage in the complex algorithms (GLNS-CETSP
and TCP). One of the possible solutions is to precompute a three-dimensional
table of solutions of p for given ranges of three parameters (ay, bx, by). The
table can be precomputed only once at the beginning of the program or stored
in the file and loaded to program memory on demand.

The process of precomputation can be divided into two separate phases:
storing values and loading values. The first phase can be described by the
following steps:..1. The three-dimensional table Rn×m×k is created. Each dimension corre-

sponds to parameter’s range of values...2. Point b is converted from Cartesian representation of points (btx, bty) to
polar representation of points (s, φ), i.e., the parameters (ay, bx, by) are
converted into (ay, s, φ).

s =
√
b2
x + b2

y (3.58)

φ = arctan(by, bx) (3.59)..3. The three-dimensional space Rn×m×k of the parameters is sampled, where
each parameter is from a discrete interval defined by lower bound l, upper
bound u and step (increment) i...4. Values of angle θ representing the point p computed and stored for
each combination of values of the parameters. To minimize the size of
the table in memory, values of θ are precomputed only in range [-π2 ,

π
2 ]

corresponding an area of I. and IV. quadrants. Fig. 3.8 shows example
of position of points a and b and these quadrants as a light red area.
The rest of these values are mirrored by angle π

2 around y-axis in loading
process.
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Figure 3.8: Quadrants of circle C, where the angle is computed (light red area).

The second phase describes the loading of precomputed p values. It can
be described by the following steps, where the inputs of this phase are the
transformed values aty, btx and bty (Algorithm 1 line 16):..1. Point bt is mirrored to I. and IV. quadrant of circle around y-axis shown

on Fig. 3.8...2. Mirrored point bt is converted from Cartesian representation of points
(btx, bty) to polar representation of points (s, φ)...3. aty, s and φ are converted to the corresponding indexes in array based
on their values:

idxa =
aty − la
ia

; idxs = s− ls
is

; idxφ = φ− lφ
iφ

; (3.60)

Where idx is an index in the array of the corresponding parameter, l is
a lower bound defined in storing phase and i is the increment defined
during storing data...4. Instead of computing pt (Algorithm 1 line 17), the value of angle θ is
loaded from the table based on the indexes and mirrored back to original
quadrant of circle. pt is then computed as follows:

ptx = cos(θ) (3.61)

pty = sin(θ) (3.62)

If one of the indexes is out of table’s range, this step is skipped and pt is
computed the way without precomputed values.
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3.2 Touring polygon problem (TPP)

The touring polygon problem (TPP) [15] is an algorithm that finds the
optimal path on a sequence of polygons. More specifically, the general TPP
finds the shortest path on n convex polygons consisting of points, where each
convex polygon is visited exactly once. The order of convex polygons is fixed
and can not be changed.

However, in the thesis, we find the shortest path on circular tour T instead
of a tour on the sequence of polygons. We modified the general TPP for this
purpose and named it "Touring circle problem" (TCP). The general TPP
algorithm was picked and modified because of the easy implementation and
quick solving speed [15].

3.3 Touring circle problem (TCP)

The touring circle problem (TCP) is a modified version of the TPP, which
finds the optimal circular tour T = (TC , TP ) for a fixed order of circles, i.e.,
TC does not change.

The following sections describe the TCP algorithm and compare the com-
putations on the map with and without obstacles. Section 3.3.1 describes the
algorithm using a pseudocode.

3.3.1 Algorithm description

The TCP algorithm is described by Algorithm 2. The input of the algorithm
is the circular tour T to optimize. The algorithm’s output is already optimized
circular tour Tout.

The first step of the algorithm is to randomly initialize the path TP of
the circular tour T (line 1). The central part of the algorithm consists of
two nested cycles. The first one counts the iterations and exits the program
loop when the stopping criteria (detailed in Section 9) are met. The second
cycle iterates through the path of the circular tour T and finds the optimal
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............................. 3.3. Touring circle problem (TCP)

points on the path (line 7). More specifically, for the jth iteration, the point
TPj on Cj that optimizes the distance between its preceding and succeeding
point on TP is computed using the point-circle-point solver. The preceding
point (labeled as a) is generated by the predecessor(j) function (line 4). This
function initially computes an index i of the preceding point:

i = j 	 1,

where the symbol 	 is the subtraction modulo m, where m is the number
of circles in the tour T. The point a is then selected from ith position of
the path: a = TPi . The succeeding point (labeled as b) is generated by the
successor(j) function (line 5). This function initially computes an index k of
the succeeding point:

k = j ⊕ 1,

where the symbol ⊕ is the addition modulo m. The point b is then selected
from kth position of the path: b = TPk . Fig. 3.9 shows the optimization process
of TCP for two different CETSP instances Bubbles1 and ConcentricCircle1.
Subfig. 3.9a and 3.9c represent the instances with the tour corresponding to
the initial order of the centers of circles. Subfig. 3.9b and 3.9d show found
T using TCP after six iterations in case of ConcentricCircle1 and twenty
iterations in case of Bubbles1.

Algorithm 2: TCP
Input: Tour to optimize T
Output: Optimal tour Tout

1 TP ← random_init_path(TP ) ; // randomly initialize path TP

2 repeat
3 for j = 1 to |T| do
4 a ← predecessor(j);
5 b ← successor(j);
6 circle ← TCj ;
7 TPj ← find_optimal_point(a, b, circle);

8 until stopping criteria are met ;
9 Tout ← T ;
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3. Solution Approach ..................................

(a) : Bubbles1 with initial
order or circles, where the
T touring through centers
of circles.

(b) : Bubbles1 with com-
puted T using by TCP al-
gorithm.

(c) : ConcetricCircles1
with initial order or cir-
cles, where the T touring
through centers of circles.

(d) : ConcetricCircles1
with computed T using by
TCP algorithm.

Figure 3.9: Computation of T using TCP algorithm for two different CETSP
instances (Bubbles1 and ConcentricCircles1 ).

Stopping criteria

The stopping criteria (Algorithm 2 line 8) represent several conditions used
to stop the main cycle of the algorithm. The choice of these conditions has a
key role in the efficiency of the whole algorithm. The conditions are chosen to
prevent the long run of the algorithm and oscillate the length of the computed
circular tour T.

Two types of conditions exit the main cycle of the algorithm: regular and
early. The regular type occurs when the difference between the length of the
previous circular tour (circular tour in the previous iteration) and the current
circular tour is lower than some reference value eref .
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The early type occurs when the count of iterations reaches limititer value.
Therefore, the finishing of the algorithm is guaranteed. If limititer value is
correctly chosen, the early condition happens occasionally and only for big
circular tours (the tour consisting of one hundred circles or more) or in case
of a wrongly chosen eref value.

3.4 GLNS algorithm

The GLNS algorithm solves the exactly-one-in-set GTSP problem defined in
Section 2.5. This algorithm is originally presented in the article [24] together
with experimental results on several well-known GTSP instance libraries
(GTSP-Lib, BAF-Lib, GTSP+-Lib, and SAT-Lib). The results are compared
with the best heuristic algorithms (GK [25] and GLKH [14]), solving this
type of problem available at that time. The GLNS algorithm is competitive
with the algorithms mentioned above on GTSP-Lib and finds higher quality
solutions on other libraries.

At the core of the GLNS solver is the adaptive large neighborhood search
(ALNS) algorithm, which was initially proposed for pick-up and delivery
problems [26]. The main idea is as follows. In the beginning, the initial
solution is created and then repeatedly destroyed and repaired. If a better
solution is found, then it is accepted. The destroy and repair procedures
are repeated until the stopping criterion is met. The insertion and removal
mechanisms, such as nearest, farthest, and random, were used to destroy and
repair solutions [24].

The following subsections overview the general GLNS algorithm for exactly-
one-in-set GTSP problem. A detailed description of the GLNS algorithm
can be found in [24]. Section 3.4.1 explains the solver framework together
with the given pseudocode. Section 3.4.2 proposes three different modes: fast,
medium, and slow. Section 3.4.3 presents different insertion heuristics and
their unification in one unified insertion heuristic. Section 3.4.4 describes
three removal heuristics. Section 3.4.5 introduces two types of optimization:
Re-opt and Move-opt.
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3.4.1 Solver description

The GLNS algorithm is described by pseudocode (Algorithm 3). The algo-
rithm’s input is the requested mode, and the output is a found optimal tour
Tout. The whole algorithm works with three nested loops. The first one (lines
5 - 25) initializes the tour and updates the insertion and removal heuristics
and their weights based on the algorithm’s phase (early, mid, late). Each
iteration can be termed as the cold restart of the algorithm. Number of
cold restarts is determined by Ncold value. The second one (lines 12 - 23)
is the algorithm’s warm restart. This cycle makes a copy of the currently
best tour (line 13). Number of warm restarts is determined by Nwarm value.
The third one is called remove insert loop and performs the removal and
insertion of the Nr vertices from the tour (tour reconstruction). The process
of tour reconstruction is done by remove_insert function using removal and
insertion heuristics (line 16). The number Nr is selected uniformly randomly
from {1, ..., Nmax} in each iteration. The new tour Tnew can be accepted
or not, which is determined by applying the standard simulated annealing
criterion. The new tour is locally optimized and replaces the currently best
tour if the new tour is accepted and the current tour’s length is better than
the length of the currently best tour. Remove insert loop is repeated until
the stopping criterion is met. Finally, the lowest tour is locally optimized
with higher precision after finishing all iterations.

Stopping criteria

The stopping criterion is used in the solver framework (Algorithm 3 line 23) in
the remove insert loop. Its main purpose is to optimize the number of calling
of removal and insertion heuristics. There are two types of stopping criteria.
The first one is met when the specific number of non-improving tour cycles
in a row is reached. The non-improving tour cycle is a cycle of remove insert
loop when the current tour Tcurrent is not accepted as the best tour (Tbest).
The specific number of non-improving tour cycles is given by the number
called countfirst in the first turn of the algorithm and the number countlatest
in the second and other turns. One turn of the algorithm is cycles of remove
insert loop continuing until Tcurrent is accepted as the new best tour Tbest. If
the number of non-improving tour cycles is equal to countfirst in the first
turn or countlatest in the second and other turns the remove insert loop is
finished. The number of turns and the number of non-improving tour cycles
are reset after starting each new warm restart loop. The numbers countfirst
and countlatest have different values in each mode of the algorithm.
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Algorithm 3: GLNS(G, S)
Input: Mode of algorithm m ; // m = {fast, medium, slow}
Output: Optimal tour Tout on G
Data: GTSP instances(G, S)

1 Precompute_distances(G, S) ; // precompute distances between
each pair of vertices in S

2 Tinit ← init(G, S) ; // initialize tour
3 Tlowest ← Tinit ; // intialize lowest tour
4 Ncold, Nwarm ← init_params(m) ; // intialize parameters based

on the mode of algorithm
5 for j = 1 to Ncold do
6 Tbest ← Tinit;
7 if j == 1 then
8 Init insertion (I) and removal (R) heuristics
9 else

10 Update selection weights
11 Update I and R based on the selection weights
12 for 1 to Nwarm do
13 Tcurrent ← Tbest;
14 repeat
15 Select uniformly randomly a number of vertices to remove

Nr from {1, ..., Nmax}
16 Tnew ← remove_insert(Tcurrent, I, R, Nr);
17 if accept_tour(Tnew,Tcurrent) then
18 Tcurrent ← Tnew;
19 Record the improvement made by R and I;
20 if len(Tbest) > len(Tcurrent) then
21 Optimize(Tcurrent);
22 Tbest ← Tcurrent;
23 until stopping criterion is met ;
24 if len(Tlowest) > len(Tbest) then
25 Tlowest ← Tbest

26 Optimize (Tlowest);
27 Tout ← Tlowest;

Assume that the total iteration of the whole algorithm is equal to one cycle
of remove insert loop and is not reset after each cold restart loop and warm
restart loop. The second stopping criterion is met when the order of circles
in Tbest and in Tcurrent is the same in the specific number of cycles in a row.
The order of circles in tours Tbest and Tcurrent is considered to be the same if
one of the following states is fulfilled:
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3. Solution Approach ....................................1. Positions of all circles in TCbest are the same in TCcurrent...2. Circles in TCcurrent are shifted in a ring order with comparison to TCbest...3. Circles in TCcurrent are in a reverse order with comparison to TCbest...4. Circles in TCcurrent are shifted and in a reverse ring order with comparison
to TCbest.

The specific number is given by Nsame value, which can differ in each mode
of the algorithm. This stopping criterion is valid after reaching the specific
number of total iterations to prevent early termination of the algorithm,
which can lead to an incorrect solution. Nstart value determines the specific
number of total iterations and can differ in each mode of algorithm.

3.4.2 Modes of the algorithm

The main purpose of different modes is to regulate the ratio between the
length of the found tour and the execution time for a given data instance.
The description of all modes is as follows:

. Fast mode minimizes the execution time of the algorithm at the cost
of possibly lengthening the tour. The number of cold and warm restarts
is sufficiently small to prevent a long run of the algorithm..Medium mode tries to shorten length of tour by increasing the number
of cold and warm restarts with compare to fast mode.. Slow mode minimizes the length of the found tour at the cost of in-
creasing execution time.

3.4.3 Insertion heuristics

The main purpose of insertion heuristics is to insert vertices to the tour and
create a complete tour T from a partial tour Ts. The partial tour Ts = (Vs,
Es) visits a subset of clusters Ss denoted as Ss ⊆ S. Vs is a subset of vertices
Vs ⊆ V and Es is a subset of edges Es ⊆ E in the graph G. Firstly, we define
a distance dist between a cluster (Si ∈ S\Ss) and vertex u ∈ Vs on Ts:
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dist(Si, u) = min
v∈Si

{min{w(v, u), w(u, v)}} (3.63)

Secondly, we describe the insertion methods initially proposed in [26], which
choose the optimal cluster (Sopt ∈ S\Ss):..1. Nearest insertion selects a cluster Sopt with minimal distance to any

vertex u on the Ts:

Sopt = arg min
Si∈S\Ss

min
u∈Vs

dist(Si, u) (3.64)..2. Farthest insertion selects a cluster Vs, whose closest vertex to any
vertex on the Ts is maximal:

Sopt = arg max
Si∈S\Ss

min
u∈Vs

dist(Si, u) (3.65)..3. Random insertion selects a cluster Sopt uniformly randomly from the
set S \Ss...4. Cheapest insertion selects a cluster Sopt containing the vertex v ∈ Sopt
that minimizes the insertion cost:

Sopt = arg min
Si∈S\Ss

min
(x,y)∈Es

{w(x, v) + w(v, y)− w(x, y)} (3.66)

Furthermore, a vertex v must be chosen from Sopt, which was picked by
one of the insertion methods. The process of picking v is described by the
following steps:..1. Find an edge (x, y) ∈ Es that minimizes w(x, v) + w(v, y)− w(x, y)...2. Delete the edge (x, y) from Es...3. Add the edges (x, v) and (v, y) to Es...4. Add the vertex v to Vs.

The process of selecting Sopt and picking v is repeated until Ts contains
vertices from all clusters from S and the tour becomes a complete tour T .
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Unified insertion

Because of the four different insertion heuristics, it is essential to find an
effective way to switch between multiple insertion heuristics. The solution is
the unified insertion heuristic, which unifies selecting a cluster Sopt ∈S\Ss for
the nearest, farthest, and random insertion methods. The cheapest insertion
heuristic is based on different techniques and can not be unified. Firstly, we
define the minimum distance (dmin) between cluster Si ∈ S\Ss and partial
tour Ts.

dmin = dist(Si, Ts) = min
u∈Vs

dist(Si, u)

Secondly, the heuristic framework for picking the cluster Sopt is described
by Algorithm 4. Line 1 describes the precomputation of the distances between
each pair of vertices in unused clusters S \Ss using dmin formula. Line 2
describes the selection of the parameter k using the probability mass function,
which is defined by a set of λ values and its powers from 0 to l. The value l
is the number of unused clusters |S \Ss|. The next step is to pick Sopt based
on the parameter k (lines 3 - 4).

The insertion heuristic type is specified by the parameter λ ∈ [0,∞). Only
three values decide a specific insertion heuristic. The remaining values of λ
define combinations of these insertion heuristics. Values (0,1) combine the
random and the nearest insertion, and values (1, ∞) combine the nearest and
the farthest insertion. Three specific values of λ are described as follows:

. Random insertion is obtained by setting λ = 1.

. Nearest insertion is achieved by λ = 0.

. Farthest insertion is received by λ = ∞ (or some large enough value).

The undefined state 00 is equal to 1 in our case. The original paper [24]
shows the difference between performances using different λ parameters.
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Algorithm 4: Unified insertion heuristic framework
Input: Partial tour Ts on G
Output: The selected cluster Sopt
Data: GTSP instances(G, S)

1 Pre-compute_distances(G, S\Ss)
2 Select uniformly randomly k from set {1, ..., l} according to

unnormalized probability mass function [λ0, λ1, ..., λl−1]
3 Sort an array of all unused clusters (S\Ss) according to dmin from

lowest to highest
4 Pick the cluster Sopt with the kth index from the array of all unused

clusters
5 return Sopt

3.4.4 Removal heuristics

The main purpose of removal heuristics is to remove Nr vertices from a tour
T. The removal heuristics initially proposed in [26], are briefly described
below.

Worst removal

The worst removal heuristic removes the vertex vj from a tour T that max-
imizes the removal cost rj , which says how the vertices reduce the tour’s
length:

rj = w(vj	1, vj) + w(vj , vj⊕1)− w(vj	1, vj⊕1), (3.67)

While this operation removes only one vertex from the required Nr vertices,
it is repeated Nr times.

Distance removal

The main idea of this heuristic is to remove vertices from T that are "close" to
each other. At first, the uniformly randomly chosen vertex vseed is removed
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from T. For each vertex vi from the tour T without vseed is computed distance
di as follows:

di = min{w(vseed, vi), w(vi, vseed)} (3.68)

Vertex vi with minimal distance di to vseed is removed. The process is
repeated until Nr − 1 vertices are removed from T. The last removed vertex
corresponds to vseed.

Segment removal

The main purpose of the segment removal heuristic is to resolve the possible
local optima by destroying large and contiguous segments of Nr vertices of T.
Firstly, the index j is uniformly randomly selected from the tour T. Secondly,
vertices vj , vj⊕1, ..., vj⊕Nr−1 are removed from the tour T.

3.4.5 Tour optimization

The main reason for optimizing the tour is possibly shortening its length in a
short amount of computation time by fixing some parts of a current solution.
Tour optimization is applied several times in the algorithm (Algorithm 3 lines
21 and 26). Two types of optimization methods that can run consecutively
or separately based on the mode of the algorithm are applied as follows:..1. Re-Opt attempts to optimize the tour T with fixed ordering of a set of

clusters S. The main idea is as follows:..a. A direct acyclic graph (DAG) containing all vertices V from graph
G is created...b. Each vertex from cluster Vi is connected to all vertices in the next
cluster of the ordering...c. The vertices in the last cluster are connected to the first cluster of
the ordering vertices...d. The optimized tour is the shortest path in the DAG graph, which
starts and ends in the same vertex in the first cluster. The shortest
path is found by the breadth-first search BFS algorithm.
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.................................... 3.5. GLNS-CETSP..2. Move-Opt attempts to optimize the ordering of vertices in T. Firstly, a
vertex v from cluster Si ∈ S is uniformly randomly selected and removed
from the tour T = (VT , ET ).
Secondly, a new vertex u from the same cluster Si is reinserted to the
position in T, where an insertion cost is minimal. Thus the order of
vertices in T is changed. The insertion cost ci is defined as:

ci = w(x, u) + w(u, y)− w(x, y); ∀u ∈ Si; ∀(x, y) ∈ ET ;

The reinsertion is repeated until Nmove vertices is reinserted.

3.5 GLNS-CETSP

The original GLNS algorithm has valuable properties such as relatively easy
adjustment to solve a slightly different problem (CETSP problem in our case)
and a variety of parameters that enable the improvement of the algorithm’s
performance. Because of that, we used and modified this algorithm to solve
the CETSP problem. More specifically, we try to find the circular tour T
with a minimal length by this algorithm. Several modifications of the original
GLNS were made to resolve the CETSP problem:..1. Tour modification - Instead of the general tour described by a graph

G, it is used a circular tour T described by circles and points...2. Insertion heuristic modification - The idea of all heuristics remains
the same, but we work with circles instead of clusters. In addition, an
emplace point heuristic is applied to optimize the inserting point from
the picked circle to the circular tour T...3. Removal heuristic modification - The modifications are minimal,
and all methods remain the same except the usage of a different type of
tour...4. Tour optimization modification - Firstly, a completely different Re-Opt
optimization solver is proposed. Instead of generating a direct acyclic
graph (DAG), the TCP algorithm was used. Secondly, point reinsertion
in the Move-Opt optimization process is different...5. Initial tour generation modification - We propose two different meth-
ods to initialize circular tour T: random and TSP-based. The random
method initializes the tour uniformly randomly, which is the same as
in the original GLNS. The TSP-based method applies a TSP solver to
initialize circular tour T.
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3. Solution Approach ..................................
The following subsections detail the modifications mentioned above. Section

3.5.1 describes the insertion heuristics and their modifications. Section 3.5.3
describes and compares the removal heuristics with the original GLNS. Section
3.5.2 describes the new emplace point heuristic used to select the optimal
point on the circle and insert it to the optimal position in the circular tour
T. Section 3.5.4 aims to describe the new Re-Opt optimization process and
all differences in Move-Opt optimization process. Section 3.5.5 defines two
methods for initializing the circular tour T.

3.5.1 Insertion heuristics

Assume a partial circular tour Ts = (TPs , TCs ), where TPs ⊆ TP and TCs ⊆ TC .
Ts visits only subset of circles Cs ⊆ C.

Insertion heuristics find the optimal circle to insert Copt ∈ C \Cs, compute
point popt on Copt and then insert popt to TPs and Copt to TCs on the position
in the Ts called emplace index.

The emplace index iemplace is the position in Ts that minimize insertion
cost of T. Insertion cost (cinsert) of point q ∈ TPs that is inserted between
two points p1, p2 ∈ TPs on TPs is defined as:

cinsert(q, p1, p2) = d(q, p1) + d(p2, q)− d(p1, p2) (3.69)

The insertion methods, which find Copt are described as follows:..1. Nearest insertion picks Copt with a minimal distance to any circle
Cu ∈ TCs :

Copt = arg min
Ci∈C\Cs

min
Cu∈TC

s

dist(Ci, Cu) (3.70)..2. Farthest insertion picks Copt, whose closest distance to Ts is maximal:

Copt = arg max
Ci∈C\Cs

min
Cu∈TC

s

dist(Ci, Cu) (3.71)
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.................................... 3.5. GLNS-CETSP..3. Random insertion picks a circle Copt uniformly randomly from the set
C\Cs.

The process of computing popt on selected Copt and finding emplace index
iemplace is determined by "Emplace point heuristic".

The other heuristic called cheapest insertion selects Copt and computes
popt together with iemplace at the same time. It repeatedly calls "Emplace
point heuristic" for all Ci ∈ C \Cs and picks one together with its point pi
that minimizes cinsert:

Copt, popt = arg min
Ci∈C\Cs

min
(p1,p2)∈TP

s

{cinsert(pi, p1, p2)} (3.72)

The process of selecting Copt and picking point popt is repeated until TPs
contains points from all circles in TC from the set of circles Sv and the tour
becomes complete.

Unified insertion

The main idea of unified insertion is the same as in Section 3.4.3. The
modifications used in our version are proposed as follows:..1. Instead of picking cluster Vopt ∈ S \Ss, the circle Copt ∈ C \Cs is picked

to partial circular tour Ts...2. The minimum distance dmin function is changed. dmin function is defined
between Ci ∈ C \Cs and Ts as:

dmin = dist(Ci, Ts) = min
Cu∈Cs

dist(Ci, Cu)

3.5.2 Emplace point heuristic

Emplace point heuristic is used as a part of the insertion heuristic and
optimization process. It aims to find the emplace index iemplace effectively in
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the circular partial tour T and optimal point pi on the circle Ci, which must
be inserted into the tour.

The heuristic is described by a pseudocode ( Algorithm 5). Its input is T
and the circle Ci to insert to T. Output is the emplace index iemplace and the
computed optimal point pi on Ci. At the start, it is required to initialize the
parameters as follows:

. Indexes is an array of indexes of sorted circles in T by distances to Ci
from nearest to farthest (line 1).. Cost represents the length of T (line 2) as defined in Section 2.3..Min represents the length of a shortest tour found so far (line 3).

The main cycle (lines 4 - 16) iterates through each consecutive pair of
points in T and checks the optimal place to insert Ci. Firstly, the first index
m is obtained from the sorted array indexes and k is the index of the next
circle in T. The optimal point popt on the circle Ci is determined by the
point-circle-point solver represented by find_optimal_point function (line
11). As the solver is time-consuming, we want to prevent unnecessary calls of
it. For this purpose, we applied lower-bound checking (line 10) comparing
cost and lower-bound cost (costlb), where cost is initially equal to the tour’s
length. Lower-bound cost (line 9) is defined by summation of cost, Euclidean
distance between points a and b, and lower-bound formula.

Lower-bound formula lb is defined as the shortest distance between two
circles Ca and Cb on T and Ci, which is inserted between these two circles:

lb(Ca, Cb, Ci) = dist(Ca, Ci)+dist(Ci, Cb) = d(ca, ci)+d(ci, cb)−ra−rb−2·ri

3.5.3 Removal heuristics

Removal heuristics remove Nr points from the path TP in circular tour T
and their corresponding circles TC . The modified heuristics are proposed as
follows:
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Algorithm 5: Emplace point heuristic
Input: Partial tour T and circle Ci to insert
Output: emplace index iemplace and optimal point pi

1 indexes ← sort(TC , Ci) ; // Sort circles in tour
2 cost ← len(T);
3 min ←∞;
4 for j = 1 to |T| do
5 m ← indexes(j);
6 k ← m ⊕1;
7 a ← TPm ;
8 b ← TPk ;
9 costlb ← cost - d(a, b) + lb(TCm , TCk , Ci);

10 if costlb < cost then
11 popt ← find_optimal_point(a, b, Ci);
12 costmin ← cost + d(a, popt) + d(popt, b) - d(a, b) ;
13 if costnew < min then
14 min ← costnew;
15 pi ← popt;
16 iemplace ← k;

17 return iemplace, pi..1. Worst removal removes point pi ∈ TP and its corresponding circle
Ci ∈ TC that maximizes the removal cost ri:

ri = d(pi	1, pi) + d(pi, pi⊕1)− d(pi	1, pi⊕1), (3.73)

While this operation removes only one point and circle from the required
Nr points and circles, it is repeated Nr times...2. Distance removal uniformly randomly selects and removes point pseed
from T and its circle Cseed. For each point pj ∈ TP except pseed is
computed distance dj as follows:

dj = min{d(pseed, pj), d(pj , pseed)} (3.74)

Point pj with minimal dj to pseed is removed from TP together with
circle Cj from TC . The process is repeated until Nr−1 points and circles
are removed from T...3. Segment removal removes a segment of points and their circles from
T. Firstly, the index j is uniformly randomly selected from T. Secondly,
points pj , pj⊕1, ..., pj⊕Nr−1 are removed from T.

55



3. Solution Approach ..................................
3.5.4 Tour optimization

In the GLNS-CETSP algorithm, the tour optimization has the same purpose
as in the original GLNS algorithm (Section 3.4.5). The modifications are
described as follows:..1. Re-Opt optimizes only points in path TP with fixed order of circles

in TC . The optimization process is performed by the TCP algorithm.
Because of the fixed order of points, this method can be fast assuming
the correctly chosen parameters of the TCP algorithm...2. Move-Opt optimizes the ordering of circles in T. Circle Ci is uniformly
randomly selected and removed from TC together with its point on the
path TP . The new optimal point pi on Ci is computed by the "Emplace
point heuristic" together with emplace index iemplace. Ci is inserted to
TC on the position of iemplace. The optimal point pi is inserted to TP
on the position of iemplace. This process is repeated until Nmove points,
and circles are reinserted to T. Limitations of this method are its time
consummation for big Nmove number and insufficient improvement of the
tour length in case of small Nmove number. Because of these limitations,
this method is not used in the fast mode of the algorithm.

3.5.5 Initial tour generation

Initial tour of the GLNS-CETSP algorithm Tinit (Algorithm 3 line 2) defines
the initial order of circles in each cold restart loop (Algorithm 3 lines 5 - 25).
Quality of Tinit significantly affects the execution time and the solution of
the GLNS-CETSP algorithm. Assume that the order of circles in Tinit is
initialized similar to the order of circles in the optimal solution. Therefore, it
is more likely that the computational process of GLNS-CETSP will be faster
and the algorithm’s output tour Tout (Algorithm 3 line 27) will be shorter
than in case of inappropriately chosen Tinit, such as tour where the order of
circles is mixed up undesirably. Tinit is generated by an initialization method.

The GLNS-CETSP algorithm uses four different initialization methods:
random, random-insertion, unsupervised-learning-based and TSP-based . The
random method sets the order of circles of the tour Tinit uniformly ran-
domly. The main advantage is its speed of the initialization process and the
disadvantage is a poor quality of a generated solution.
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The random-insertion method adds circles to Tinit using the unified insertion
heuristic framework with λ=1.

The TSP-based method initializes the order of circles in Tinit by solving the
TSP problem on centers of circles. It was picked Lin–Kernighan–Helsgaun
LKH heuristic [14] to solve the TSP problem because it is generally considered
to be one of the most effective. The heuristic finds an optimal or near-optimal
TSP tour Ttsp. LKH found in many cases the same order of circles as it
is in the optimal solution of CETSP problem. On the other hand, LKH
found completely different order of circles on more complex CETSP instances,
where the circles overlap a lot. An example of the same order and completely
different order of circles found by LKH on two different instances is shown
on Fig.3.10. Nonetheless, despite the limitations, the LKH is still a sufficient
heuristic used as a tour initializer.

(a) : Instance Bubbles1
with found order of cir-
cles by LKH, which is
the same as the order of
circles in the optimal so-
lution of CETSP prob-
lem for this instance.

(b) : Instance Bubbles2
with order of circles
found by LKH, which
is completely different
from order of circle in
the optimal solution.

(c) : Instance Bubbles2
with visualization of or-
der of circles equal to
order of circles in the
optimal solution.

Figure 3.10: An example of found order of circle by LKH algorithm on two
CETSP instances Bubbles1 and Bubbles2.
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The unsupervised-learning-based method initializes Tinit by solving CETSP

problem using an unsupervised learning procedure calling Growing Self-
Organizing Array GSOA [8]. This procedure is very fast, i.e., GSOA finds
the solution on a dataset with 1000 circles in less than one second but slower
than random and random-insertion methods. Moreover, the order of circles
is generally very close to the optimal solution and even the same for many
instances.

3.6 Environment with obstacles

Assume the variants CETSPobst_dis and CETSPobst_int of CETSP problem
and map that specify the environment for these variations. The shortest
collision-free path pathfree between two points on map is defined as set of
points pathfree = {p1, p2, . . . , pl}, where p1 is a start point, pl is an end
point, and the rest of the points are collision-free points. The Euclidean
distance metric can not be used to compute the distance between p1 and pl
because the environment with polygonal obstacles is used. Nevertheless, the
Euclidean distance metric is used to compute the distance between each pair
of consecutive points in pathfree.

Two modifications of our algorithm are proposed to solve these variations
of the CETSP problem:..1. Points a and b in TCP algorithm (Algorithm 2 lines 4 - 5) and emplace

point heuristic (Algorithm 5 lines 7 - 8) are picked based on their pathfree.
More specifically, a new previous point anew in TP corresponds to the
one before the last point in pathfree between a ∈ TP on circle Ca ∈ TC
and the center of the current circle Ci ∈ TC . If there is no obstacle
between Ca and Ci, anew corresponds to p1 ∈ pathfree, i.e., anew is equal
to a. A new next point bnew is computed the same way as anew except
that pathfree now starts from b ∈ TP on circle Cb ∈ TC and ends in
the center of Ci ∈ TC . Points anew and bnew are the input of the "find
optimal point function" in Algorithm 2 line 7 and Algorithm 5 line 11.
The illustrated example of computing anew and bnew is shown in Fig.
3.11...2. The found tour Tout in GLNS algorithm (Algorithm 3 line 27) is recon-
structed, i.e., pathfree is computed between each pair of consecutive
points in TPout. Fig. 3.12 shows the difference between final Tout and
reconstructed final Tout
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(a) : Points a and b on their
circles and Ci with highlight
center.

(b) : Created collision-free
points on two pathfree.

(c) : Created pathfree from a
(blue) and from b (orange) to
center of circle Ci.

(d) : Determined new points
anew and bnew from created
pathfree.

Figure 3.11: Process of generating two collision free paths pathfree and com-
puting points anew and bnew on corresponding pathfree.

(a) : Found Tout, which ignoring
obstacles.

(b) : Reconstructed Tout, where
the obstacles are not ignored.

Figure 3.12: Comparison of found two different Tout. The first ignore obstacles
and the second tour is reconstructed and avoids the obstacles on the map.
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3.6.1 Polyanya solver

The polyanya solver that is fast and effective was chosen to compute a pathfree.
This solver is initially presented by Michael Cui and Daniel D. Harabor, and
Alban Grastien [27]. The approach of this solver can be divided into three
steps as follows:..1. Convert map into navigation merged mesh called Constrained Delaunay

Triangulation M-CDT...2. Compute shortest Euclidean distances between consecutive points in the
pathfree on M-CDT mesh...3. Generate pathfree.

Example of finding collision-free points and generating pathfree by polyanya
solver is shown on Fig. 3.11. The subfigure (a) shows the three initial points
(a, b and center of circle Ci). Between these points are found two collision-free
paths pathfree. The subfigure (b) shows generated all relevant collision-free
points. The subfigure (c) shows two generated pathfree.

Conversion of the map to mesh

Assume set of s traversable simple polygons is definedM = {M1, . . . ,Ms},
where Mi = (VK , EK). VK is a sequence of m distinct vertices VK =
{V1, V2, . . . , Vm} and EK is a sequence ofm−1 edges EK = {e1, e2, . . . , em−1}
that joins vertices VK . VK and EK are defined on graph G Section 2.2 as
VK ⊆ V and EK ⊆ E. The navigation mesh N = (M, P), where P is set of
n obstacles on the map defined in Section 2.6.

The CDT is a constrained Delaunay triangulation of traversable area on N .
Constrained Delaunay triangulation is described in [28]. The merged M-CDT
is a CDT, which merges all polygons with sharing edges. The main purpose
of M-CDT is to retain solving complexity and maximize the area ofM.

An example of the process of conversion on the input map called potholes
is shown on Fig. 3.13 described as follows:
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............................. 3.7. Generator of CETSP instances..1. The input map is converted into CDT mesh using FADE2D library [29]...2. The CDT mesh is merged to M-CDT mesh .

(a) : Input potholes map with
obstacles highlighted by red
color.

(b) : From potholes is gener-
ated CDT mesh.

(c) : From CDT is generated
M-CDT mesh.

Figure 3.13: An example of process of conversion potholes map.

3.7 Generator of CETSP instances

Suppose the variants CETSPdis, CETSPint, CETSPobst_dis, and CETSPobst_int
of CETSP problem and their maps. All 62 instances of CETSP-lib were
solved by the GLNS-CETSP algorithm, but they fulfill the requirements only
for CETSPint variant. CETSP instances that fulfill the requirements for the
rest of these variants were generated by the generator of circles.

There are two types of CETSP instances that were generated based on the
sizes of radii of circles: random and fixed. In random type, each Ci ∈ C has
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ri generated uniformly randomly in a given range. In fixed type, each Ci ∈ C
has the same value of ri. The radii of circles differ in each set C to fill the
largest area of the traversable part of the map.

Four different maps were used to generate instances: potholes, large, jari-
huge and warehouse. Used maps are shown in Fig. 3.14 together with different
generated instances. Polygonal obstacles have a red color, the borders are
symbolized by blue lines, and the circles have randomly assigned colors.
Circles are generated on the maps with obstacles even for the CETSPdis
variant, where the polygonal obstacles are neglected during the solving process.
The generator’s output is generated C.

(a) : Potholes map together
with 200 disjoint circles with
fixed size of radii. Instance is
called disjoint_200.

(b) : Large map together
with 200 intersect cir-
cles with random size of
radii. Instance is called
intersect_200_random.

(c) : Jari-huge map to-
gether with 100 disjoint cir-
cles with random size of
radii. Instance is called dis-
joint_100_random.

(d) : Warehouse map together
with 400 intersect circles with
fixed size of radii. Instance is
called intersect_400.

Figure 3.14: All used maps describing the environment with polygonal obstacles.
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The generator is described by the pseudocode Algorithm 6. The generator’s
inputs are the number of circles to generate m, Boolean value random choosing
the type of CETSP instance and a map. The generator has one main loop
(lines 1 - 12) that exits if the set C contains m circles (stopping criterion line
12). The loop starts generating a circle Ci with a center ci inside the map
(line 2) and radius ri (line 3) uniformly randomly or with a fixed value. Three
conditions must be fulfilled before the circle Ci is saved into C:..1. Ci must be inside the border of map (line 5)...2. Ci can not collide with obstacles P on map (line 7). Ci collides with

obstacle Pj ∈ P if intersect...3. Ci can not collide with other circles in C (line 9). If the circles can
intersect, the center of each circle can not be located inside other circles
in C. The circles can not intersect at all in the case of disjoint circles.

If one of these is not fulfilled, the iteration is skipped and the main loop is
repeating.

Algorithm 6: Generator of CETSP instances
Input: Map, m, random
Output: Set of circles C

1 repeat
2 ci ← generate_center(map);
3 ri ← generate(random);
4 Ci ← create(ci, ri);
5 if is_not_inside_map(map, Ci) then
6 continue with the next iteration;
7 if collide_with_obstacles(map, Ci) then
8 continue with the next iteration;
9 if collide_with_other(C, Ci) then

10 continue with the next iteration;
11 C ← save(Ci);
12 until stopping criterion is met ;
13 return C

3.8 Code implementation

The majority of the algorithms described in the previous sections have been
implemented from scratch in C++. Moreover, several libraries and implemen-
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tations of other authors were used. These are described next together with
their necessary modifications done to integrate them into the whole project.

3.8.1 GLNS-CETSP

The general GLNS algorithm described in Section 3.4 is initially implemented
in the programming language Julia 1. In the master thesis presented by
David Woller [30], the GLNS algorithm is implemented in the programming
language C++ and compared with the original version implemented in Julia.
In addition, Jan Vidašič [31] in his master thesis modified the GLNS in C++
version to solve the traveling salesman problem with neighborhoods in a
polygonal domain. We used both C++ versions of GLNS and modified them
to solve the CETSP problem also in C++.

3.8.2 TCP

The TPP algorithm solving a tour on a sequence of polygons was implemented
by Jan Vidašič as a part of the GLNS algorithm [31]. This implementation
was used as a template for our TCP algorithm and completely modified to find
a tour on a sequence of circles instead of polygons. The TCP is implemented
in C++ and it is one of the parts of the GLNS-CETSP algorithm. Moreover,
TCP can be used as a stand-alone algorithm.

3.8.3 LKH

The general LKH library 2 implemented in the programming language C was
used to implement LKH in this thesis. The general LKH library requires
tuning some internal parameters to achieve an effective solver tailored to our
CETSP problem. It was done by supervisor Miroslav Kulich in the form of a
library called lkh in code.

1Available at https://github.com/stephenlsmith/GLNS.jl
2Available at http://webhotel4.ruc.dk/~keld/research/LKH/
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3.8.4 GSOA

The original implementation of GSOA proposed by J.Faigl 3 was used and
edited to the library, which allows us to call the GSOA solver in our project.
The modifications were done because the original solution is a stand-alone
executable project without the option to call the solver directly from another
project.

3.8.5 Polyanya solver

Polyanya solver and mesh converter [27] are implemented in the programming
language C++ and provided in the form of already compiled executable files.
These files can not be used for these reasons:..1. Mesh converter requires a different input map than we apply...2. We need call of this solver directly from our algorithms.

Hence, we modified the original mesh converter to convert our type of maps
to M-CDT mesh. In addition, we adjusted the solver to be callable in our
algorithm.

3Available at https://github.com/comrob/gsoa
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Chapter 4

Experiments

In this thesis, several experiments were proposed to measure the performance
of implementation of GLNS-CETSP algorithm. Firstly, the performance
of three different algorithm modes (fast, medium, and slow), four different
initialization heuristics (random_insertion, random, LKH, and GSOA), and
two versions of PCP solver called simplified and precomputed were compared
sequentially. Secondly, the configuration of GLNS-CETSP with the best
results is selected and compared with other algorithms. A new algorithm
GSOA+TCP was proposed and compared with GLNS-CETSP and GSOA.
Finally, GLNS-CETSP were tested on CETSP instances on four maps with
polygonal obstacles.

Section 4.1 describes tools and methods including used parameters of the
algorithms and the instances on which were the experiments evaluated. Pa-
rameters of GLNS-CETSP, GLNS-GTSP, and PCP algorithms are described
in Section 4.1.1. All used instances on the maps with and without obstacles
are described in Section 4.1.2. Description of the evaluation and measuring
of performance of the algorithms is described in Section 4.1.3. Description
of the experiments in detail is in Section 4.1.4. Section 4.2 describes and
evaluates the obtained results.
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4.1 Tools and methods

4.1.1 Parameters

Parameters used for the evaluation of the experiments are described in this
section. Additionally, parameters, which were experimented with and changed
during the evaluation, are stated. The default values of the parameters of
external libraries or algorithms are not mentioned.

GLNS-CETSP algorithm

Table 4.1 shows the selected parameters of GLNS-CETSP that were chosen
after initial experimentation with all possible values. These selected values of
the parameters are the most suitable for the given configuration. Num_circles
parameter is equal to the number of circles in the instance. Min is a function
that finds a minimum value from two given values. The rest of the parameters
is explained in Section 3.4 and Section 3.5.

Modes
Parameters Fast Medium Slow
Niter num_circles 5·num_circles 10·num_circles
Ncold 2 5 10
Nwarm 2 4 6
countfirst Niter/4 Niter/4 Niter/4
countlatest Niter/4 Niter/3 Niter/3
Nstart Niter/3 - -
Nsame 5 - -
eref 1× 10−5 1× 10−5 1× 10−10

limititer 1000 1000 10000
Nmove min(20, 0.1·Niter) min(100, 0.3·Niter) 0.4·Niter

Table 4.1: Parameters of GLNS-CETSP for three different modes. Num_circles
value is the number of circles in a CETSP instance and min is function that
selects the minimum from two given values.
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GLNS-GTSP algorithm

Table 4.2 shows the selected parameters of GLNS-GTSP for the three modes
of the algorithm.

Modes
Parameters Fast Medium Slow
Niter num_circles 10·num_circles 20·num_circles
Ncold 3 5 6
Nwarm 3 3 5
countfirst Niter/6 Niter/4 Niter/6
countlatest Niter/4 Niter/2 Niter/3
Nmove min(20, 0.1·Niter) min(100, 0.3·Niter) 0.4·Niter

Table 4.2: Parameters of three modes of GLNS-GTSP algorithm. Num_circles
value is the number of circles in GTSP instance and min is function that selects
the minimum from two given values.

PCP solver

When using the precomputed solution of PCP solver, a three-dimensional table
with precomputed values is used. The relationship between two of points and
a circle are described by PCP parameters (ay, s, φ) each representing one
dimension in the table. Ranges of precomputed values are given by parameters
of the discrete interval (lower bound l, upper bound u, and increment i).
Table 4.3 shows the selected values for these pairs of parameters (interval
and PCP parameters). Memory usage of the table is approximately 880MB.
The specific values in the tables were assigned as follows:

. The parameters l and u of φ are fixed.. The parameter l of ay and s are fixed since in this case the radius of the
circle is always equal to 1.. A preliminary experiment was performed to estimate the upper bound
u on ay and s. In the first step of the experiment, a set of values {10,
20, 30, 40, 50} was created. In the second step, the same value of u
on ay and s was assigned from the set. For each value the number of
cases when CPP parameters were outside of the bounds set by l and u
(and therefore not in the precomputed table) were counted. In the third
step, the value 40 was selected as the best in terms of the ratio between
the number of cases exceeding the selected bounds and the memory
usage of the precomputed table. Almost 98% of the cases were in the
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precomputed table. The rest of the cases (2%) were computed using the
simplified version of solver.. Parameter i of φ, ay and s was estimated.

PCP parameters
Interval parameters ay s φ

lower bound l 1.0 1.0 -π2
upper bound u 40.0 40.0 π

2
step (increment) i 0.1 0.1 π

720

Table 4.3: Interval parameters of the three-dimensional table used to precompute
parameters of PCP solver.

4.1.2 CETSP instances

Two types of CETSP instances were used in combination with maps without
obstacles. The first type contains a set of all 62 instances from CETSP-
lib created by Mennell (2009) 1 [5]. These instances consist of 17 to 1001
intersected circles and can be divided into three categories:..1. Circles with equal-sized radii in the instance...2. Circle with arbitrary-sized radii in the instance. These instances are

labeled by rdmRad at the end of the instance name...3. Instances containing circles with an overlap ratio R, which specify the
extent to which the circles overlap in the given instance. Three sets
of various overlap ratios were proposed: very low (R=0.02), moderate
(R=0.10) and very high (R=0.30).

The second type contains a set of 32 instances created by the developed
generator of CETSP instances. These instances consist of 50 to 400 disjoint
circles and are generated on four maps with obstacles. The obstacles are later
omitted. The instances are divided into two categories: instances of circles of
equal-sized radii and instances of circles with arbitrary-sized radii labeled by
rdmRad.

The measurements on the map with polygonal obstacles were carried out on
a set of 64 CETSP instance produced by the generator of CETSP instances.

1Available at https://drum.lib.umd.edu/handle/1903/9822
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Each set of 16 instances is generated on a different map. A set of instances
on each map contains from 50 to 400 intersecting and disjoint circles with
the equal- or arbitrary-sized radii.

4.1.3 Tools

Suppose that the CETSP instance is solved nrepeat times by an algorithm.
The performance of the algorithm is compared based on the quality of the
solutions and the measured computational times. The quality of the solutions
is evaluated by two deviation equations %PDB and %PDM. These equations
are adopted from Faigl (2018) [8]. %PDB (Eq.4.1) calculates the percentage
deviation of the length of the shortest found tour from nrepeat solutions Lmin
from the length of the currently best found solution on the CETSP instance
Lopt. %PDM (Eq.4.2) calculates the percentage deviation of the average
length of the tour Lavg from Lopt.

%PDB = Lmin − Lopt
Lopt

· 100 (4.1)

%PDM = Lavg − Lopt
Lopt

· 100 (4.2)

Computational time is computed as the median of all measured times
for the nrepeat solutions. Almost all used algorithms were evaluated on a
computer with processor Intel(R) Core(TM) i5-6300HQ CPU @ 2.30GHz
and operation system Ubuntu 20.04.02 LTS. One exception is the heuristic
SZ2, which was evaluated on a processor Intel Pentium E2220. Based on the
CPU benchmark software 2 is Intel Pentium 2.0 times slower than Intel(R)
Core(TM) i5-6300HQ in single thread rating. Therefore, the computational
times of SZ2 proposed in [5] were divided by the constant of 2.0.

4.1.4 Methods

This section describes the proposed experiments. All experiments were
evaluated on CETSP instances. The performance of each algorithm was

2Available at https://www.cpubenchmark.net/singleCompare.php
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measured by the quality of the solution defined by %PDB and %PDM values
and the computation time. Due to the time consuming complexity of solving
big instances, each instance containing up to 999 circles was solved 100 times
while instances with 1000 and more circles were solved only 30 times.

The experiments were carried out in the following order. First, the per-
formance of three different GLNS-CETSP modes (fast, medium, and slow)
was compared on 13 instances containing up to 201 intersected circles with
equal-sized and arbitrary-sized radii. The GSOA initialization heuristic, which
was considered to be the best was used. Based on the results, the fast mode
and the best algorithm configuration was selected and used from this point
forward.

Second, four initialization heuristics (random_insertion, random, LKH,
and GSOA) with GLNS-CETSP were compared on 47 instances containing
intersected circles with equal-sized and arbitrary-sized radii and with three
different overlap ratios. Based on the measured performance of GLNS-
CETSP with each initialization heuristic, the GSOA was selected as the best
initialization heuristic, and it is used in the rest of the experiments.

Third, two versions of PCP solver simplified and precomputed were tested on
32 instances containing disjoint circles and 58 instances containing intersected
circles both in combination with equal-sized and arbitrary-sized radii and with
three different overlap ratios. Moreover, the number of solved PCP problems
per second for each version of PCP was counted. The simplified version
of PCP solver computes the solution analytically from the implemented
equations. In comparison, the precomputed version of PCP solver uses a table
of precomputed values. The simplified version of PCP performed the best in
terms of the number of solved problems per second and it was used in the
rest of the experiments.

Fourth, the GLNS-CETSP algorithm with the previously selected configura-
tions was compared with other algorithms: SZ2 [5] based on the Steiner zones,
GSOA [8] based on the unsupervised learning procedure and GLNS-based
algorithm [24] (GLNS-GTSP) solving GTSP on GTSP instances. GTSP
instance is created from the CETSP instance by approximation of each circle
in the instance by 24 equally distanced points.

Next, a new algorithm called GSOA+TCP was proposed as a possible
improved version of stand-alone GSOA algorithm. The algorithm is a com-
bination of GSOA [8] and TCP algorithms, where GSOA finds the tour
T and TCP shortens the length of T (improves T) on the given order of
circles TC if it is possible. GSOA requires the setting of several parameters.
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All these parameters have default values as it was proposed in the original
solution by Faigl (2018) [8]. TCP requires only two parameters (eref and
limititer) that have the same values as in the GLNS-CETSP defined in table
4.1. The algorithm GSOA+TCP is compared with GSOA and GLNS-CETSP
algorithms on all CETSP instances.

Finally, GLNS-CETSP were tested on 64 CETSP instances containing
intersected and disjoint circles on four maps with polygonal obstacles (jari-
huge, large, potholes and warehouse) generated by the generator of CETSP
instances.

4.2 Results and Evaluation

This section describes the measured results. All results are in form of tables
and placed in the Appendix B. The shortest computational time is highlighted
for each instance in all tables that show computational times. Tables showing
the quality of the found solutions contain Lopt value that refers to the best
known solution for the given instance proposed by Mennell (2009) [5]. If any
of the configurations of GLNS-CETSP algorithm found the new best solution
or the solution is equal to currently best solution rounded to three decimal
places, the Lopt value is modified and highlighted. Otherwise, Lopt value is
not highlighted. The smallest %PDB and %PDM values for each instance are
highlighted. The process of finding the smallest %PDB and %PDM values
was carried out on values before they were rounded to two decimal places.

4.2.1 Modes of GLNS-CETSP

Tables B.1 and B.2 show the found solutions and computational times of
different modes of GLNS-CETSP algorithm on instances containing only
intersected circles with equal-sized and arbitrary-sized radii. The initialization
heuristic of GLNS-CETSP is the GSOA algorithm.

GLNS-CETSP with mode fast is much faster than with other modes, as
we can see in table B.1. As expected, the best quality of the solution is found
by GLNS-CETSP with mode slow on all instances as shown in table B.2.
This is because the slow mode prefers quality of solution over time taken to
compute it.
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Looking closely at %PDB and %PDM values in table B.2, we can see that

these values are equal or almost the same in slow mode. This means that
slow mode always finds the best solution or a solution very close to the best
solution in each run of the algorithm. Comparing %PDB value of fast mode
and slow mode, the %PDB values of fast mode are close to or almost the
same as %PDB values found by slow mode.

Overall, these results indicate that GLNS-CETSP with mode fast should
be considered the best in terms of the ratio of the quality of solution and
computational requirements.

4.2.2 Initialization heuristics

The performances of four different initialization heuristics with GLNS-CETSP
are shown in the following tables:

. Tables B.3, B.4 show the results for instances containing intersected
circles with equal-sized radii.. Tables B.5, B.6 show the results for instances containing intersected
circles with arbitrary-sized radii.. Tables B.7, B.8 show the results for instances containing intersected
circles with three different overlap ratios.

The results shown in tables B.4, B.6 and B.8 revealed a significant difference
between the quality of the solutions depending on initialization heuristic used.
Initialization heuristic GSOA found the best initial tour out of the three
initialization heuristics. This lead to identification of the solution with the
best quality by GLNS-CETSP as we can see in the tables. Values %PDB and
%PDM of GLNS-CETSP using GSOA are the lowest in nearly all solutions.
Surprisingly, GLNS-CETSP using GSOA is not always the fastest solution
as shown in tables B.3, B.5 and B.7. In more than half of the solutions
random_insertion method used as initialization heuristic was the fastest,
but the difference in speed is not so great. The possible explanation is that
GLNS-CETSP using random_insertion was terminated earlier than the others
with worse quality of initial tour. Example supporting this explanation is the
instance bubbles5, where GLNS-CETSP using random_insertion found the
worst quality of solution in the shortest time.
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Overall, GLNS-CETSP using GSOA is considered to be the best algorithm
and initialization heuristic combination despite the fact that it has not always
found the best quality solution in the shortest possible time.

4.2.3 Simplified and precomputed versions of PCP

The results obtained for GLNS-CETSP using simplified PCP solver and
GLNS-CETSP using precomputed version of PCP solver are shown in the
following tables:

. Tables B.9, B.10 show the results for instances containing intersected
circles with equal-sized radii.. Tables B.11, B.12 show the results for instances containing intersected
circles with arbitrary-sized radii.. Tables B.13, B.14 show the results for instances containing disjoint circles
with equal-sized radii.. Tables B.15, B.16 show the results for instances containing disjoint circles
with arbitrary-sized radii.

The expected results for the simplified and precomputed versions of PCP
were that the GLNS-CETSP using simplified version of the solver would
find the best quality results but in longer time period than GLNS-CETSP
using precomputed version. Unexpectedly, the GLNS-CETSP using simplified
version found the results faster and with the better quality of solutions than
GLNS-CETSP using precomputed version on the majority of instances as
shown in tables B.9, B.10, B.11, B.12, B.13, B.14, B.15, and B.16. There are
two reasons why the precomputed version takes longer to find the solution
than the simplified version:..1. The quality of solution of precomputed version is better than the simplified

version at a cost of prolonged computational time...2. Since, the precomputed version of PCP approximated points based on
the values from precomputed table, it can lead to increased number of
iterations of GLNS-CETSP algorithm.

The number of solved PCP problems per second for each version is the
following:
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. Simplified version of PCP solves approximately 22900 PCP problems

per second.. Precomputed version of PCP solves approximately 37420 PCP problems
per second.

From the obtained results it is clear that the precomputed version of PCP
solver is faster than the simplified version.

4.2.4 Comparison of GLNS-CETSP with other algorithms

The performance of GLNS-CETSP is compared with SZ2, GSOA, and GLNS-
GTSP algorithms. The following tables show the results, where the %PDM
value of SZ2 heuristic is not known and therefore is not mentioned:

. Tables B.17, B.18 show the results for instances containing intersected
circles with equal-sized radii.. Tables B.19, B.20 show the results for instances containing intersected
circles with arbitrary-sized radii. Computational time of SZ2 heuristic
is not known and therefore SZ2 heuristic is not mentioned.. Tables B.21, B.22 show the results for instances containing intersected
circles with three different overlap ratios.. Tables B.23, B.24 show the results for instances containing disjoint
circles with equal-sized radii. SZ2 heuristic has not been solved on these
instances.. Tables B.25, B.26 show the results for instances containing disjoint circles
with arbitrary-sized radii. SZ2 heuristic has not been solved on these
instances.

Looking at the quality of solution, the GLNS-CETSP finds solution that is
the new best or is equal to the currently best solution in 47 out of 62 instances
consisting of intersecting circles, and 32 out of 32 instances consisting of
disjoint circles, as the tables B.17, B.19, B.21, B.23, B.25 show. Instances
on which the solutions have significantly improved compared to the solutions
proposed by Mennell (2009) [5] are the following:

. bonus1000
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. bonus1000rdmRad. bubbles4. bubbles6. bubbles7. bubbles8. bubbles9. team2_200rdmRad. team6_500rdmRad. dsj100rdmRad. pcb442rdmRad. pcb442 with overlap ratio R=0.10

Example of best found solution is on figures 4.1 and 4.2. On the other hand,
the solved instance by GLNS-CETSP with the worst result is dsj1000 with
overlap ration R=0.30, where the value %PDB=7.17. The other algorithms
solve the instance dsj1000 with following %PDB values:

. GSOA with value %PDB=6.18. GLNS-GTSP with value %PDB=228.57

Comparing the computational requirements, the GSOA is the fastest al-
gorithm on all instances as we can see in the tables B.18, B.20, B.22, B.22,
B.24 and B.26. Comparing GLNS-CETSP and SZ2, the GLNS-CETSP
algorithm is faster for instances containing up to 200 intersected circles and
for instances with low overlap ratio. The GLNS-GTSP was the slowest and
worst performing algorithm of them all.

4.2.5 GSOA+TCP

The following tables show the comparison of the performance ofGSOA+TCPwith
GLNS-CETSP and GSOA algorithms:
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. Tables B.27, B.28 show the results for instances containing intersected

circles with equal-sized radii.. Tables B.29, B.30 show the results for instances containing intersected
circles with arbitrary-sized radii.. Tables B.31, B.32 show the results for instances containing intersected
circles with three different overlap ratios.

As mentioned previously, GSOA algorithm found the solution in the shortest
computational time on all instances. Since the stand-alone TCP algorithm
is fast, the GSOA+TCP algorithm is only slightly slower than GSOA. In
comparison, the computational time of GLNS-CETSP are much longer on
instances with high number of circles (more than 300 circles), as we can see
on tables B.28, B.30, and B.32.

GLNS-CETSP algorithm finds the best quality solutions (lowest %PDB
and %PDM values) on nearly all instances. TCP improves the quality of the
solution, therefore GSOA+TCP finds better quality solutions than GSOA.
However, the improvement is not enough to reach better quality solution than
the one obtained using GLNS-CETPS, as shown in the tables B.27, B.29,
and B.31.

There are some instances with solutions that were not expected. For
example, the best quality solutions on instances d493 and dsj1000 with
overlap ratio R=0.30 were found by GSOA algorithm and GSOA+TCP found
significantly worse quality of solutions. The possible explanation is that due
to the high overlap ratio, the GSOA found the order of circles on which TCP
lengthened the tour. The instances are too complex even for GLNS-CETSP
as it was not able to find the best quality solution.

4.2.6 Environment with polygonal obstacles

Table B.33 shows solved instances on the four maps with obstacles. These
instances are solved only using the GLNS-CETSP solving obstacles. Therefore,
%PDB value is not used.

On average, the best quality solutions with lowest %PDM values and the
shortest computational times for environments with polygonal obstacles were
found on the map potholes as the table B.33 shows. Comparing the instances
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with disjoint and intersected circles on all maps, the GLNS-CETSP algorithm
found the best quality solutions (lowest %PDM) on instances consisting of
intersected circles. On the other hand, the solution is found faster on instances
consisting of disjoint circles.

(a) : Solved instance Bonus1000 (b) : Solved instance Bubbles8

(c) : Solved instance Bubbles9 (d) : Solved instance Bonus1000

Figure 4.1: Example of best found solutions on instances with intersected circles
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(a) : Solved instance Jari-
huge200rdmRad (b) : Solved instance Large100rdmRad

(c) : Solved instance Potholes50 (d) : Solved instance Warehouse400

Figure 4.2: Example of best found solutions on instances with disjoint circles
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Discussion

The proposed GLNS-CETSP algorithm combines PCP, GLNS, and TCP
algorithms to create an effective method to solve all types of CETSP problems
(CETSPdis, CETSPint, CETSPobst_dis, and CETSPobst_int). The achieved
results confirm that the final algorithm indeed is an effective method. Looking
at the quality of the solutions, the majority of results for the CETSPint
problem show solutions that are better than or equal to the currently best-
known solution obtained by Mennell (2009) [5]. Moreover, the instances used
in CETSPdis, CETSPobst_dis, and CETSPobst_int problems were generated
and also solved by GLNS-CETSP for the future comparisons of results with
other algorithms.

When comparing the computational times, it can be observed that the
GLNS-CETSP algorithm is fast on instances containing up to 200 circles. In
instances consisting of up to 150 intersected circles with low overlap ratio,
the GLNS-CETSP algorithm is even faster than SZ2 heuristic [5]. However,
the GLNS-CETSP is slow for larger instances containing more than 200
circles which makes it suitable only in applications that are not limited by
computation time or when the quality of the solution is preferred over the
computational time.

A second new algorithm GSOA+TCP was also proposed, which is suitable
for applications when the computational time is limited. The GSOA+TCP
is a combination of GSOA and TCP algorithms, where GSOA finds the
solution and TCP improve this solution with the fixed order of circles. Since
stand-alone TCP and stand-alone GSOA are fast, GSOA+TCP is slightly
slower than GSOA. Although the GSOA+TCP is slower than the GSOA,
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the significantly improved solution is worth the little extra time gained by
the addition of TCP in the majority of cases. However, it is not suitable for
applications that are not limited by time as there are algorithms such as the
GLNS-CETSP that produce a higher quality of results.

For applications that find both time and quality important, it is advised
to use GLNS-CETSP for environments with up to around 500 circles and
GSOA+TCP for environments with a larger number of circles to balance the
quality/time trade-off.

The experiments carried out were limited, especially in instances with more
than 999 circles. It is noteworthy that the number of repetitions carried
out for these instances was limited to only 30, compared to the number
of repetitions carried out for smaller environments where the number of
repetitions was 100. The limitation may have a negative effect on the %PDM
value or the final computational time considered for these instances, as 30
repetitions and even 100 repetitions may not be enough to obtain adequate
results. Some of the unexpected results obtained throughout the experiments
may be attributed to the low number of repetitions.

Additionally, the results of simplified and precomputed versions of PCP
solver should be studied more in the future. Looking at the speed of the PCP
solvers individually and in combination with the GLNS-CETSP, there is a
possibility of fine-tuning the precomputed version so that in combination with
the GLNS-CETSP it fulfils its potential of being faster than the other version.
Last but not least, further investigation of unexpected results observed in
instances d493 and dsj1000 with overlap ratio R=0.30 is recommended. An
explanation has already been proposed in the previous section, however, a
solution to these situations has not yet been offered.
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Chapter 6

Conclusion

In this thesis, the new heuristic method GLNS-CETSP was proposed to solve
CETSP problem in polygonal domain on maps with and without obstacles.
The heuristic method combines three algorithms: PCP, GLNS and TCP.
PCP is a technique of finding the shortest path between two points and a
circle. The main idea of PCP was inspired by light reflection theory and uses
a set of derived equations to find the shortest path. These equations were
inspired by the solution proposed by Chou (2008) [23]. However, equations
from the original solution contain several transpiring errors that prevent us
from using these equations. Two versions of PCP were proposed: simplified
and precomputed. The simplified version finds the shortest path using the
equations and the precomputed version finds the shortest path using the
precomputed values in the table. GLNS is a solver of the GTSP problem
which was modified to solve the CETSP problem. TCP improved the solution
on the fixed order of circles and it was used as a tour optimization technique
of the heuristic method.

Several GLNS-CETSP configurations were compared and the best configu-
ration was selected. The configuration is given by the mode of GLNS-CETSP
(fast, medium, slow), initialization heuristic (random_insertion, random,
GSOA, and LKH) and two versions of PCP. Based on the results, the GLNS-
CETSP containing fast mode, GSOA initialization heuristic and simplified
version of PCP were considered as the best configuration. GLNS-CETSP
using this configuration finds the best solutions based on the ratio of the
quality of the solution and computational time.

Next, the new CETSP instances were generated on four maps (jari-huge,
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large, potholes and warehouse) by developed generator of CETSP instances.
The CETSP instances contain from 50 to 400 intersected and disjoint circles
with equal-sized and arbitrary-sized radii, and the number of generated
instances is 64 in total. These instances can be used for CETSP problems
with and without polygonal obstacles.

The results of GLNS-CETSP with the best configuration were compared
with several state of the art algorithms such as SZ2, GSOA, and GLNS-GTSP
on instances from CETSP-lib and the generated CETSP instances. The
best-known solutions for instances in CETSP-lib were used from Mennell
(2009) [5]. GLNS-GTSP is a GLNS solver of GTSP problem. In case of
GLNS-GTSP algorithm, each CETSP instance is transformed into GTSP
problem by approximation of each circle by 24 points. Comparing the quality
of the solution, in 75% cases the GLNS-CETSP found on instances from
CETSP-lib a new best solution or a solution that is equal to the currently
best solution. GSOA found worse quality results in all cases. Comparing the
computational time, GSOA was very fast even on large instances (instances
containing more than 500 circles). GLNS-CETSP was faster than SZ2 on
instances containing up to 150 circles and with low overlap ratio. GLNS-
CETSP is slow on large instances (computational time is approximately 220
second on instance contains 1000 circles) and is not suitable in applications
where the time is limited and large instances are used. However, comparing
GLNS-CETSP and GLNS-GTSP, GLNS-CETSP is four times faster even on
large instances and finds better solutions.

Because of the time consumption of GLNS-CETSP on large instances, a
second new algorithm GSOA+TCP was proposed. The GSOA+TCP is a
combination of GSOA and TCP algorithms, where GSOA finds the solution
and TCP improve this solution with the fixed order of circles. Since TCP is
fast GSOA+TCP is only slightly slower than stand-alone GSOA. Comparing
the quality of the solutions, GSOA+TCP finds better solutions than GSOA,
but worse than GLNS-CETSP. Therefore, GSOA+TCP is an improved
version of GSOA that is much faster than GLNS-CETSP and should be used
especially in applications where the computational time is limited and where
the instances contain more than 500 circles.

Finally, GLNS-CETSP was extended to solve the generated CETSP in-
stances on maps with polygonal obstacles.
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Appendix B

Tables of results

CETSP instances Nc Fast Medium Slow

T[s] T[s] T[s]

bubbles1 37 0.007 0.162 0.712
bubbles2 77 0.030 1.620 6.191
bubbles3 127 0.120 5.525 27.482
chaoSingleDep 201 0.331 22.733 107.122
concentricCircles1 17 0.002 0.032 0.127
concentricCircles2 37 0.007 0.136 0.702
concentricCircles3 61 0.018 0.483 2.441
kroD100rdmRad 100 0.051 2.505 13.362
rotatingDiamonds1 21 0.003 0.054 0.248
rotatingDiamonds2 61 0.016 0.501 2.442
rotatingDiamonds3 181 0.248 28.396 86.377
team1_100 101 0.069 29.269 14.695
team1_100rdmRad 101 0.056 3.375 15.345

Table B.1: Comparison of computational times of three different modes of
GLNS-CETSP. Initial heuristic is GSOA in all cases. The shortest time is bold
for each measured CETSP instance.
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CETSP instances Nc Random insertion Random LKH GSOA

T[s] T[s] T[s] T[s]

bubbles1 37 0.005 0.005 0.005 0.007
bubbles2 77 0.025 0.033 0.029 0.030
bubbles3 127 0.103 0.133 0.110 0.120
bubbles4 185 0.310 0.395 0.326 0.333
bubbles5 251 0.786 0.912 0.795 0.844
bubbles6 325 2.111 2.228 1.802 1.984
chaoSingleDep 201 0.342 0.409 1.769 0.331
concentricCircles1 17 0.001 0.001 0.002 0.002
concentricCircles2 37 0.004 0.004 0.010 0.007
concentricCircles3 61 0.010 0.012 0.053 0.018
concentricCircles4 105 0.046 0.051 0.089 0.072
concentricCircles5 149 0.126 0.134 0.215 0.154
rotatingDiamonds1 21 0.002 0.002 0.003 0.003
rotatingDiamonds2 61 0.015 0.011 0.033 0.016
rotatingDiamonds3 181 0.241 0.236 0.269 0.248
rotatingDiamonds4 321 1.372 1.715 1.738 1.502
team1_100 101 0.052 0.068 0.080 0.069
team2_200 201 0.877 1.242 1.283 0.882
team3_300 301 1.498 2.141 2.074 1.779
team4_400 401 4.261 5.149 4.793 4.798

Table B.3: Comparison of computation time of GLNS-CETSP algorithm for
four initialize heuristics (random insertion, random, LKH and GSOA). Instances
consisting of intersected circles with equal-sized radii.
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CETSP instances Nc Random insertion Random LKH GSOA

T[s] T[s] T[s] T[s]

kroD100rdmRad 100 0.044 0.056 0.067 0.051
lin318rdmRad 318 2.816 2.973 3.069 2.358
pcb442rdmRad 442 8.629 11.605 8.926 7.419
rat195rdmRad 195 1.315 1.546 1.578 1.301
rd400rdmRad 400 3.486 5.820 3.785 4.875
team1_100rdmRad 101 0.049 0.068 0.078 0.056
team2_200rdmRad 201 0.357 0.418 0.502 0.419
team3_300rdmRad 301 3.870 5.281 4.811 4.124
team4_400rdmRad 401 3.741 5.427 4.229 4.666

Table B.5: Comparison of computation time of GLNS-CETSP algorithm for
four initialize heuristics (random insertion, random, LKH and GSOA). Instances
consisting of intersected circles with arbitrary radii.
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CETSP instances Nc Random insertion Random LKH GSOA

T[s] T[s] T[s] T[s]

Overlap ratio R = 0.02
kroD100 100 0.033 0.043 0.062 0.052
lin318 318 1.465 2.098 1.710 1.856
pcb442 442 4.770 7.055 5.545 6.151
rat195 195 0.263 0.318 0.308 0.344
rd400 400 3.733 4.312 3.766 4.562

Overlap ratio R = 0.10
kroD100 100 0.057 0.084 0.093 0.064
lin318 318 2.304 3.027 2.689 2.179
pcb442 442 7.396 10.169 10.000 7.251
rat195 195 0.563 0.825 0.703 0.618
rd400 400 4.710 6.795 5.803 4.656

Overlap ratio R = 0.30
kroD100 100 0.136 0.210 0.222 0.131
lin318 318 7.943 11.503 12.474 7.091
pcb442 442 25.263 45.502 40.136 23.329
rat195 195 1.163 2.164 2.184 1.056
rd400 400 17.751 25.528 27.608 17.674

Table B.7: Comparison of computation time of GLNS-CETSP algorithm for
four initialize heuristics (random insertion, random, LKH and GSOA). Instances
are sorted by three different overlap ratios.
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CETSP instances Nc Lopt Simplified Precomputed

%PDB %PDM %PDB %PDM

bubbles1 37 349.13 0.00 0.01 0.00 0.00
bubbles2 77 428.28 0.00 0.12 0.00 0.09
bubbles3 127 529.96 0.00 0.13 0.00 0.14
bubbles4 185 802.76 0.00 0.61 0.07 0.58
bubbles5 251 1040.54 0.00 3.85 1.02 3.87
bubbles6 325 1254.61 2.18 7.75 0.00 7.76
bubbles7 407 1622.99 0.00 1.94 0.19 1.92
bubbles8 497 1964.68 0.28 1.47 0.00 1.56
bubbles9 595 2283.41 0.00 3.24 0.36 3.10
chaoSingleDep 201 1039.61 0.00 1.09 0.00 1.08
concentricCircles1 17 53.16 0.00 0.04 0.00 0.03
concentricCircles2 37 153.13 0.00 1.02 0.00 0.90
concentricCircles3 61 270.32 0.00 0.88 0.04 0.85
concentricCircles4 105 452.68 0.00 0.78 0.17 0.84
concentricCircles5 149 644.73 0.00 2.19 0.51 2.13
rotatingDiamonds1 21 32.39 0.00 0.00 0.00 0.00
rotatingDiamonds2 61 140.48 0.00 0.19 0.00 0.29
rotatingDiamonds3 181 380.88 0.00 0.28 0.00 0.25
rotatingDiamonds4 321 770.66 0.02 2.85 0.00 2.89
rotatingDiamonds5 681 1510.75 0.03 1.22 0.01 0.99
team1_100 101 307.34 0.00 0.12 0.00 0.14
team2_200 201 246.68 0.00 0.17 0.00 0.14
team3_300 301 462.35 0.00 4.56 0.28 4.74
team5_499 500 702.82 0.86 2.68 0.96 2.71
team6_500 501 225.22 0.05 0.46 0.61 0.61

Table B.9: Comparison of two types of PCP solver as a part of GLNS-CETSP
on found results by GLNS-CETSP algorithm with GSOA initialization heuristic.
The first one is without precomputation Simplified and the second one is with
table of precomputed values Precomputed. Instances consisting of intersected
circles with equal-sized radii.
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CETSP instances Nc Simplified Precomputed

T[s] T[s]

bubbles1 37 0.007 0.008
bubbles2 77 0.030 0.027
bubbles3 127 0.120 0.133
bubbles4 185 0.333 0.379
bubbles5 251 0.844 0.969
bubbles6 325 1.984 2.436
bubbles7 407 4.471 5.228
bubbles8 497 9.561 9.307
bubbles9 595 19.957 20.434
chaoSingleDep 201 0.331 0.368
concentricCircles1 17 0.002 0.002
concentricCircles2 37 0.007 0.008
concentricCircles3 61 0.018 0.021
concentricCircles4 105 0.072 0.082
concentricCircles5 149 0.154 0.153
rotatingDiamonds1 21 0.003 0.003
rotatingDiamonds2 61 0.016 0.022
rotatingDiamonds3 181 0.248 0.290
rotatingDiamonds4 321 1.502 1.798
rotatingDiamonds5 681 24.159 24.705
team1_100 101 0.069 0.065
team2_200 201 0.882 0.866
team3_300 301 1.779 1.674
team5_499 500 8.664 8.769
team6_500 501 39.053 21.007

Table B.10: Comparison of two types of PCP solver as a part of GLNS-CETSP
on computational time of GLNS-CETSP. The first one is without precomputation
Simplified and the second one is with table of precomputed values Precomputed.
Instances consisting of intersected circles with equal-sized radii.
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CETSP instances Nc Lopt Simplified Precomputed

%PDB %PDM %PDB %PDM

d493rdmRad 493 134.24 0.01 1.39 0.00 1.38
kroD100rdmRad 100 141.84 0.04 2.31 0.11 2.23
lin318rdmRad 318 2047.11 1.52 5.58 0.00 5.16
pcb442rdmRad 442 219.56 0.07 2.98 0.00 2.83
rat195rdmRad 195 68.22 0.00 0.08 0.00 0.06
rd400rdmRad 400 1252.38 1.15 2.93 0.62 2.94
team1_100rdmRad 101 388.54 0.00 1.95 0.00 1.73
team2_200rdmRad 201 614.26 0.10 1.89 0.00 2.25
team3_300rdmRad 301 378.09 0.00 2.58 0.01 2.82
team5_499rdmRad 500 446.19 0.00 1.42 0.00 1.45
team6_500rdmRad 501 624.01 0.45 3.87 0.00 3.34

Table B.11: Comparison of two types of PCP solver as a part of GLNS-CETSP
on found results by GLNS-CETSP algorithm with GSOA initialization heuristic.
The first one is without precomputation Simplified and the second one is with
table of precomputed values Precomputed. Instances consisting of intersected
circles with arbitrary radii.

CETSP instances Nc Simplified Precomputed

T[s] T[s]

d493rdmRad 493 26.458 18.868
kroD100rdmRad 100 0.051 0.054
lin318rdmRad 318 2.358 2.407
pcb442rdmRad 442 7.419 8.096
rat195rdmRad 195 1.301 0.855
rd400rdmRad 400 4.875 5.409
team1_100rdmRad 101 0.056 0.068
team2_200rdmRad 201 0.419 0.454
team3_300rdmRad 301 4.124 2.833
team5_499rdmRad 500 19.611 12.159
team6_500rdmRad 501 13.228 11.633

Table B.12: Comparison of two types of PCP solver as a part of GLNS-CETSP
on computational time of GLNS-CETSP. The first one is without precomputation
Simplified and the second one is with table of precomputed values Precomputed.
Instances consisting of intersected circles with arbitrary radii.
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CETSP instances Nc Lopt Simplified Precomputed

%PDB %PDM %PDB %PDM

jari-huge100 100 224.90 0.00 1.99 0.21 1.95
jari-huge200 200 304.86 0.00 1.98 0.22 2.20
jari-huge400 400 412.93 0.21 1.77 0.00 1.83
jari-huge50 50 156.31 0.00 1.70 0.00 1.66
large100 100 360.51 0.43 2.60 0.00 2.59
large200 200 497.02 0.14 2.67 0.00 2.82
large400 400 666.01 0.00 3.20 1.02 3.10
large50 50 272.98 0.00 0.45 0.06 0.65
potholes100 100 230.34 0.00 3.00 0.03 2.98
potholes200 200 280.70 0.00 3.04 0.15 3.26
potholes400 400 392.55 0.00 1.88 0.28 1.89
potholes50 50 169.68 0.29 1.61 0.00 1.72
warehouse100 100 199.56 0.48 2.30 0.00 2.33
warehouse200 200 266.75 0.00 2.35 0.03 2.37
warehouse400 400 359.91 0.70 2.97 0.00 2.73
warehouse50 50 146.01 0.00 1.29 0.79 1.34

Table B.13: Comparison of two types of PCP solver as a part of GLNS-CETSP
on found results by GLNS-CETSP algorithm with GSOA initialization heuristic.
The first one is without precomputation Simplified and the second one is with
table of precomputed values Precomputed. Instances consisting of disjoint circles
with equal-sized radii.
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CETSP instances Nc Simplified Precomputed

T[s] T[s]

jari-huge100 100 0.053 0.050
jari-huge200 200 0.401 0.376
jari-huge400 400 4.759 5.062
jari-huge50 50 0.011 0.011
large100 100 0.048 0.051
large200 200 0.373 0.429
large400 400 4.463 5.557
large50 50 0.009 0.011
potholes100 100 0.046 0.051
potholes200 200 0.368 0.444
potholes400 400 4.580 5.106
potholes50 50 0.008 0.010
warehouse100 100 0.049 0.053
warehouse200 200 0.398 0.417
warehouse400 400 4.430 5.260
warehouse50 50 0.009 0.011

Table B.14: Comparison of two types of PCP solver as a part of GLNS-CETSP
on computational time of GLNS-CETSP. The first one is without precomputation
Simplified and the second one is with table of precomputed values Precomputed.
Instances consisting of disjoint circles with equal-sized radii.
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CETSP instances Nc Lopt Simplified Precomputed

%PDB %PDM %PDB %PDM

jari-huge100rdmRad 100 225.54 0.24 1.86 0.00 1.95
jari-huge200rdmRad 200 283.24 0.00 1.86 0.34 1.84
jari-huge400rdmRad 400 402.75 0.05 1.78 0.00 1.61
jari-huge50rdmRad 50 158.63 0.00 3.30 0.00 3.02
large100rdmRad 100 368.23 0.00 2.38 0.07 2.50
large200rdmRad 200 498.39 0.00 1.87 0.29 2.03
large400rdmRad 400 660.21 0.00 2.83 0.17 2.66
large50rdmRad 50 290.98 0.00 1.31 0.00 1.42
potholes100rdmRad 100 216.10 0.00 2.00 0.64 2.02
potholes200rdmRad 200 271.52 0.00 3.23 1.05 3.58
potholes400rdmRad 400 388.41 0.26 2.11 0.00 1.90
potholes50rdmRad 50 154.54 0.00 1.35 0.00 1.40
warehouse100rdmRad 100 196.55 0.31 2.96 0.00 3.21
warehouse200rdmRad 200 268.86 0.19 2.33 0.00 2.44
warehouse400rdmRad 400 355.87 0.33 2.86 0.00 2.95
warehouse50rdmRad 50 156.60 0.00 0.59 0.03 0.69

Table B.15: Comparison of two types of PCP solver as a part of GLNS-CETSP
on found results by GLNS-CETSP algorithm with GSOA initialization heuristic.
The first one is without precomputation Simplified and the second one is with
table of precomputed values Precomputed. Instances consisting of disjoint circles
with arbitrary radii.
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CETSP instances Nc Simplified Precomputed

T[s] T[s]

jari-huge100rdmRad 100 0.050 0.052
jari-huge200rdmRad 200 0.380 0.375
jari-huge400rdmRad 400 4.280 5.121
jari-huge50rdmRad 50 0.009 0.010
large100rdmRad 100 0.048 0.052
large200rdmRad 200 0.387 0.461
large400rdmRad 400 4.259 5.203
large50rdmRad 50 0.010 0.011
potholes100rdmRad 100 0.045 0.055
potholes200rdmRad 200 0.403 0.449
potholes400rdmRad 400 4.683 5.191
potholes50rdmRad 50 0.009 0.010
warehouse100rdmRad 100 0.046 0.049
warehouse200rdmRad 200 0.372 0.436
warehouse400rdmRad 400 4.270 4.964
warehouse50rdmRad 50 0.009 0.010

Table B.16: Comparison of two types of PCP solver as a part of GLNS-CETSP
on computational time of GLNS-CETSP. The first one is without precomputation
Simplified and the second one is with table of precomputed values Precomputed.
Instances consisting of disjoint circles with arbitrary radii.
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CETSP instances Nc SZ2 GLNS-CETSP GLNS-GTSP GSOA

T[s] T[s] T[s] T[s]

bonus1000 1001 2.426 277.887 1075.338 0.880
bubbles1 37 0.043 0.007 0.023 0.002
bubbles2 77 1.329 0.030 0.169 0.007
bubbles3 127 0.535 0.120 0.758 0.018
bubbles4 185 0.387 0.333 2.186 0.041
bubbles5 251 2.062 0.844 5.796 0.073
bubbles6 325 0.680 1.984 14.302 0.120
bubbles7 407 1.117 4.471 30.433 0.190
bubbles8 497 1.469 9.904 58.793 0.292
bubbles9 595 2.864 19.415 117.254 0.423
chaoSingleDep 201 0.207 0.331 3.388 0.049
concentricCircles1 17 0.028 0.002 0.004 0.001
concentricCircles2 37 0.059 0.007 0.023 0.003
concentricCircles3 61 0.062 0.018 0.095 0.007
concentricCircles4 105 0.137 0.072 0.405 0.019
concentricCircles5 149 0.359 0.154 1.053 0.035
rotatingDiamonds1 21 0.024 0.003 0.006 0.001
rotatingDiamonds2 61 0.070 0.016 0.090 0.006
rotatingDiamonds3 181 0.250 0.248 2.259 0.038
rotatingDiamonds4 321 0.504 1.502 14.705 0.121
rotatingDiamonds5 681 1.344 24.159 205.019 0.465
team1_100 101 0.157 0.069 0.416 0.012
team2_200 201 0.317 0.882 2.955 0.036
team3_300 301 0.555 1.779 10.778 0.089
team4_400 401 0.715 4.798 25.611 0.178
team5_499 500 1.308 8.664 57.685 0.288
team6_500 501 0.543 34.950 61.013 0.196

Table B.18: Comparison of computational times of four algorithms (SZ2, GLNS-
CETSP, GLNS-GTSP, GSOA). Instances consisting of intersected circles with
equal-sized radii. The shortest computational time for a given instance is
highlighted
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CETSP instances Nc GLNS-CETSP GLNS-GTSP GSOA

T[s] T[s] T[s]

bonus1000rdmRad 1001 222.364 880.681 1.090
d493rdmRad 493 26.458 58.243 0.205
dsj1000rdmRad 1000 289.768 999.042 0.937
kroD100rdmRad 100 0.051 0.346 0.014
lin318rdmRad 318 2.358 12.129 0.101
pcb442rdmRad 442 7.419 38.461 0.189
rat195rdmRad 195 1.301 2.871 0.024
rd400rdmRad 400 4.875 18.537 0.244
team1_100rdmRad 101 0.056 0.368 0.013
team2_200rdmRad 201 0.419 2.753 0.052
team3_300rdmRad 301 4.124 10.784 0.077
team4_400rdmRad 401 4.666 20.619 0.229
team5_499rdmRad 500 19.611 63.823 0.204
team6_500rdmRad 501 14.939 60.647 0.242

Table B.20: Comparison of computational times of three algorithms (GLNS-
CETSP, GLNS-GTSP, GSOA). Instances consisting of intersected circles with
arbitrary radii. The shortest computational time for a given instance is high-
lighted.
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CETSP instances Nc SZ2 GLNS-CETSP GLNS-GTSP GSOA

T[s] T[s] T[s] T[s]

Overlap ratio R = 0.02
d493 493 1.262 9.369 53.819 0.274
dsj1000 1000 4.598 202.530 939.654 1.209
kroD100 100 0.148 0.052 0.335 0.015
lin318 318 0.739 1.856 10.598 0.137
pcb442 442 0.723 6.151 30.848 0.273
rat195 195 0.270 0.344 2.187 0.054
rd400 400 0.910 4.562 19.993 0.229

Overlap ratio R = 0.10
d493 493 0.891 21.383 65.101 0.200
dsj1000 1000 2.329 251.683 1099.317 0.873
kroD100 100 0.125 0.064 0.405 0.011
lin318 318 0.429 2.179 13.737 0.090
pcb442 442 0.797 7.251 39.007 0.171
rat195 195 0.227 0.618 2.888 0.034
rd400 400 0.399 4.656 29.454 0.144

Overlap ratio R = 0.30
d493 493 0.340 29.151 55.459 0.097
dsj1000 1000 1.301 660.775 837.807 0.884
kroD100 100 0.067 0.131 0.395 0.007
lin318 318 0.297 7.091 11.843 0.073
pcb442 442 0.359 23.329 34.416 0.141
rat195 195 0.168 1.056 2.635 0.024
rd400 400 0.433 17.674 24.212 0.123

Table B.22: Comparison of computational times of three algorithms (GLNS-
CETSP, GLNS-GTSP, GSOA). Instances contain only the intersected circles and
are sorted by three different overlap ratios. The shortest computational time for
a given instance is highlighted.
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CETSP instances Nc GLNS-CETSP GLNS-GTSP GSOA

T[s] T[s] T[s]

jari-huge50 50 0.011 0.046 0.004
jari-huge100 100 0.053 0.300 0.015
jari-huge200 200 0.401 2.205 0.055
jari-huge400 400 4.759 18.879 0.216
large50 50 0.009 0.044 0.004
large100 100 0.048 0.309 0.014
large200 200 0.373 2.335 0.055
large400 400 4.463 19.671 0.217
potholes50 50 0.008 0.043 0.004
potholes100 100 0.046 0.296 0.015
potholes200 200 0.368 2.280 0.055
potholes400 400 4.580 19.509 0.211
warehouse50 50 0.009 0.044 0.004
warehouse100 100 0.049 0.305 0.015
warehouse200 200 0.398 2.344 0.056
warehouse400 400 4.430 19.710 0.215

Table B.24: Comparison of computational times of three algorithms (GLNS-
CETSP, GLNS-GTSP, GSOA). Instances contain only the disjointed circles
with equal-sized radii. The shortest computational time for a given instance is
highlighted.
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CETSP instances Nc GLNS-CETSP GLNS-GTSP GSOA

T[s] T[s] T[s]

jari-huge100rdmRad 100 0.050 0.297 0.015
jari-huge200rdmRad 200 0.380 2.302 0.054
jari-huge400rdmRad 400 4.280 19.188 0.215
jari-huge50rdmRad 50 0.009 0.042 0.004
large100rdmRad 100 0.048 0.304 0.014
large200rdmRad 200 0.387 2.384 0.054
large400rdmRad 400 4.259 20.507 0.217
large50rdmRad 50 0.010 0.042 0.004
potholes100rdmRad 100 0.045 0.320 0.015
potholes200rdmRad 200 0.403 2.385 0.054
potholes400rdmRad 400 4.683 18.661 0.214
potholes50rdmRad 50 0.009 0.042 0.004
warehouse100rdmRad 100 0.046 0.320 0.015
warehouse200rdmRad 200 0.372 2.304 0.055
warehouse400rdmRad 400 4.270 21.185 0.213
warehouse50rdmRad 50 0.009 0.044 0.004

Table B.26: Comparison of computational times of three algorithms (GLNS-
CETSP, GLNS-GTSP, GSOA). Instances contain only the disjointed circles
with arbitrary radii. The shortest computational time for a given instance is
highlighted.
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CETSP instances Nc GLNS-CETSP GSOA GSOA + TCP

T[s] T[s] T[s]

bonus1000 1001 277.887 0.880 1.000
bubbles1 37 0.007 0.002 0.003
bubbles2 77 0.030 0.007 0.008
bubbles3 127 0.120 0.018 0.021
bubbles4 185 0.333 0.041 0.046
bubbles5 251 0.844 0.073 0.081
bubbles6 325 1.984 0.120 0.131
bubbles7 407 4.471 0.190 0.216
bubbles8 497 9.904 0.292 0.333
bubbles9 595 19.415 0.423 0.456
chaoSingleDep 201 0.331 0.049 0.059
concentricCircles1 17 0.002 0.001 0.001
concentricCircles2 37 0.007 0.003 0.003
concentricCircles3 61 0.018 0.007 0.008
concentricCircles4 105 0.072 0.019 0.021
concentricCircles5 149 0.154 0.035 0.039
rotatingDiamonds1 21 0.003 0.001 0.001
rotatingDiamonds2 61 0.016 0.006 0.006
rotatingDiamonds3 181 0.248 0.038 0.042
rotatingDiamonds4 321 1.502 0.121 0.135
rotatingDiamonds5 681 24.159 0.465 0.557
team1_100 101 0.069 0.012 0.014
team2_200 201 0.882 0.036 0.044
team3_300 301 1.779 0.089 0.105
team4_400 401 4.798 0.178 0.203
team5_499 500 8.664 0.288 0.324
team6_500 501 34.950 0.196 0.210

Table B.28: Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms
based on the computational time. Instances with intersecting circles with equal-
sized radii.
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CETSP instances Nc GLNS-CETSP GSOA GSOA + TCP

T[s] T[s] T[s]

bonus1000rdmRad 1001 222.364 1.090 1.112
d493rdmRad 493 26.458 0.205 0.260
dsj1000rdmRad 1000 289.768 0.937 1.111
kroD100rdmRad 100 0.051 0.014 0.015
lin318rdmRad 318 2.358 0.101 0.138
pcb442rdmRad 442 7.419 0.189 0.218
rat195rdmRad 195 1.301 0.024 0.036
rd400rdmRad 400 4.875 0.244 0.278
team1_100rdmRad 101 0.056 0.013 0.015
team2_200rdmRad 201 0.419 0.052 0.057
team3_300rdmRad 301 4.124 0.077 0.102
team4_400rdmRad 401 4.666 0.229 0.236
team5_499rdmRad 500 19.611 0.204 0.238
team6_500rdmRad 501 14.939 0.242 0.303

Table B.30: Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms
based on the computational time. Instances with intersecting circles with
arbitrary radii.
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CETSP instances Nc GLNS-CETSP GSOA GSOA + TCP

T[s] T[s] T[s]

Overlap ratio R = 0.02
d493 493 9.369 0.274 0.305
dsj1000 1000 202.530 1.209 1.308
kroD100 100 0.052 0.015 0.017
lin318 318 1.856 0.137 0.152
pcb442 442 6.151 0.273 0.308
rat195 195 0.344 0.054 0.060
rd400 400 4.562 0.229 0.254

Overlap ratio R = 0.10
d493 493 21.383 0.200 0.236
dsj1000 1000 251.683 0.873 0.968
kroD100 100 0.064 0.011 0.012
lin318 318 2.179 0.090 0.107
pcb442 442 7.251 0.171 0.206
rat195 195 0.618 0.034 0.040
rd400 400 4.656 0.144 0.160

Overlap ratio R = 0.30
d493 493 29.151 0.097 0.118
dsj1000 1000 660.775 0.836 0.893
kroD100 100 0.131 0.007 0.010
lin318 318 7.091 0.073 0.092
pcb442 442 23.329 0.141 0.172
rat195 195 1.056 0.024 0.032
rd400 400 17.674 0.123 0.144

Table B.32: Comparison of GLNS-CETSP, GSOA and GSOA+TCP algorithms
based on the computational time. Instances with intersecting circles and sorted
based on the overlap ratios.
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0.09
387.59

4.69
0.09

217.21
1.81

0.07
237.82

11.66
0.09
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386.29

11.17
0.62

519.25
5.90

0.75
282.09

2.86
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318.34
6.72

0.61
disjoint200rdm

R
ad

367.92
11.12

0.54
519.16

6.05
0.57

272.44
3.75

0.51
312.55

7.98
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525.88
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5.28

682.19
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5.61
392.38
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404.17
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5.52
disjoint400rdm
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595.12
10.76

5.46
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3.71
8.40

385.03
3.14

5.30
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122.52

3.06
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258.02
1.66

0.04
128.57

0.72
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138.95
1.74

0.03
intersect50rdm

R
ad

144.81
8.90

0.03
244.08

2.93
0.04

152.57
0.19

0.02
159.90

7.00
0.03
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212.57

13.05
0.13

284.02
5.39

0.14
183.86

1.45
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177.61
4.16

0.15
intersect100rdm

R
ad

209.98
19.16

0.12
307.15

1.99
0.13

190.69
1.11

0.09
185.81

8.78
0.12

intersect200
243.91

16.11
0.74

371.62
3.76

0.89
202.11

3.53
0.68

235.67
4.38
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intersect200rdm

R
ad

298.73
12.23

0.80
392.13

4.16
0.84

230.96
2.77

0.59
264.31

5.92
0.66
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363.49

9.00
8.62

489.78
5.76

6.29
291.86

2.71
5.35

304.48
6.77

6.71
intersect400rdm

R
ad

393.65
10.03

6.76
578.09

3.05
6.52

308.74
2.48

5.33
310.57

6.45
6.48

Table
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R
esults

com
puted

by
G
LN

S-C
ET

SP
w
ith

sim
plified

PC
P

solver
and

G
SO

A
initialization

heuristic
on

four
different

m
aps

w
ith

obstacles:
jari-huge,large,potholes,warehouse.

Solutions
on

each
m
ap

contain
the

best
found

tour
L

o
p

t ,its
%
P
D
M

value
and

execution
tim

e
T

in
seconds.

Instances
contain

from
50

to
400

disjointed
and

intersected
circles

w
ith

arbitrary
and

equal-sized
radii.
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Appendix C

Contents of the attached CD

Code .......................................All code implementations
tables ..Continuous tables of results for given version of algorithm
report ...........................Continuous report of the theses
Matlab .........Helping matlab code to solve the complex equation
CETSP ......................Final implementation of all algorithms

Results.........................................All measured results
The_Close_Enough_Travelling_Salesman_Problem_in_polygonal_domain.pdf
Diploma thesis in pdf format
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