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Abstract

Mixed-criticality systems, where tasks with different levels of safety criticality are integ-
rated on a single hardware platform to share resources and reduce costs: complicate design
and verification. Precision-timed (PRET) machines treat temporal behavior the same
way as functionality to achieve good predictability and, this way, attempt to solve mixed-
criticality issues.

This thesis aims to study the architectural techniques, generation, and synthesis of one
such PRET machine, called FlexPRET: a fine-grained multithreaded RISC-V-based pro-
cessor. FlexPRET was designed using Chisel, a hardware construction language that gen-
erates both C++ and Verilog code. We have deployed FlexPRET on an FPGA and also
attempted to evaluate benchmarks using the cycle-accurate emulator.

Keywords: Real-time systems, FPGA design, Chisel HDL, soft-core processor, Instruc-
tion sets, Timing, Processor scheduling, Mixed-criticality, Temporal isolation, RISC-V.
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Chapter 1

Introduction

Contents
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 2

Cyber-Physical Systems are integrations of computation, networking, and physical pro-
cesses [1]. Embedded computers and networks control the physical processes using sensing
and actuation. Application areas such as avionics, industrial automation, and medical
devices contain real-time embedded systems fulfilling their diverse requirements. These
are systems where the timing behavior affects the physical world. As a result, software
timing behavior is essential to develop.

Driven by the demands in real-time domains to reduce costs, size, and power of embed-
ded hardware while maintaining system complexity, mixed-criticality is a current trend in
real-time embedded systems. It is how embedded systems can integrate tasks with differ-
ent safety criticalities on a single hardware platform to share resources and reduce costs.
The number of criticality levels and how they are defined may vary, but more than one
level forms a mixed-criticality system. For example, the DO-178C standard describes five
safety criticality levels for avionics [2]. Tasks with higher criticality levels cost more, both
in design and verification.
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1.1 Problem Statement

Critical tasks that grow in complexity and demand expensive design and verification re-
quire temporal and spatial isolation while running in a mixed-criticality system. Isolation
can be achieved in software by a real-time operating system (RTOS). Although this can
reduce hardware costs, the RTOS itself must be verified and certified. Hardware-based isol-
ation can be achieved by deploying each task on separate components: processors, cores
on a multicore processor, or hardware threads on multithreaded processors. One task per
thread can better utilize resources by allowing multiple tasks to execute on a single pro-
cessor, but thread scheduling must preserve hardware-based temporal isolation.

Some existing fine-grained multithreaded processors can preserve isolation, but they
have inflexible thread scheduling mechanisms. PTARM isolates each thread, but precisely
four threads must be constantly active to utilize the processor fully [3]. The problem
now becomes not just meeting task deadlines but also utilizing hardware efficiently while
maintaining flexibility for the different types of deadlines (criticality levels).

1.2 Structure of this Thesis

This thesis aims to study the architectural techniques, generation, and synthesis of Flex-
PRET: a fine-grained multithreaded RISC-V-based processor. This thesis work is struc-
tured into six main chapters :

◦ The first chapter gives an introduction to the problem, the challenge, and the source
of inspiration.

◦ In the second and third chapters, we establish initial conditions and discuss various
principles necessary to understand the problem and the solution design fully.

◦ Chapter four introduces more profound concepts of the FlexPRET processor and the
implementation of the project.

◦ Finally, the fifth and sixth chapters describe results, discussions, conclusions, and
proposals of future work.
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Preliminaries

Contents
2.1 Introduction to FPGA . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Historical connection with digital electronics . . . . . . . . . . 4

2.1.2 Basic FPGA architecture . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 FPGA design flow . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Chisel HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Chisel code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Chisel development . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Chisel vs. classic HDLs . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction to FPGA

FPGA stands for Field Programmable Gate Array. FPGAs consist of massive collec-
tions of unconnected digital components like multiplexers, logic gates, and more complex
components. Programming an FPGA means creating connections between these different
components to digitally create a complex system while providing a very high level of flex-
ibility and parallelism. They are the closest one can get to simulating hardwired circuits.
This section introduces FPGA concepts and discusses how the design flow of FPGAs is
different from that of a microcontroller.



4 Chapter 2. Preliminaries

2.1.1 Historical connection with digital electronics

Digital electronics is concerned with circuits that represent information using a finite set
of output states. Most applications use just two states, often labeled ’0’ and ’1’. Different
mappings between these states and the corresponding output voltages or currents charac-
terize logic families.

From the first Transistor-Transistor logic families, improvements to satisfy the demand
of programmability have led to the invention of complex programmable logic devices(PLDs)
and FPGAs. Programmability here means the ability of a designer to affect the logic be-
havior of a chip after it has been produced in the factory. FPGAs contain many simple
logic blocks with increased programmable interconnections, illustrating the peak of pro-
grammability in modern electronics.

2.1.2 Basic FPGA architecture

Although it is logical to think of an FPGA as an array of unconnected digital components,
in reality, FPGAs still have a fixed structure. The basic architecture of a typical modern
FPGA is composed of:

◦ CLBs (configurable logic blocks) - They are the main building blocks of an FPGA
and typically consist of a few inputs, look-up tables (LUTs), multiplexers, and some
random access memory (RAM).

◦ I/O (input/output) blocks - These physical ports get data in and out of the FPGA.

◦ Configuration flash memory - FPGA uses this to configure interconnections as well
as other internal components.

FPGA architectures incorporate these essential elements along with additional computa-
tional and data storage blocks such as embedded memories or clocking. All the components
listed above typically account for less than 20% of the silicon inside an FPGA chip. The
figure does not show the large amounts of programmable interconnect and the auxiliary
circuits that ’program’ the generic block to become a well-defined piece of logic. This
silicon inefficiency is the price to pay for programmability and is the reason why FPGAs
have been more successful in high-end, low-volume applications.
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2.1.3 FPGA design flow

A microprocessor executes instructions sequentially, one after another. This only changes
when an interrupt occurs, and then the interrupt only changes the order of execution
from whatever it was doing, to doing something new. When finished with processing
the interrupt, the code returns to what was interrupted and continues to execute the
instructions where it left off. A hardware description language (HDL), like Verilog, is
different. While a program describes an algorithm or a task, the HDL describes a circuit,
or a hardware description of a design, which forms a machine to solve an algorithm or work
on a task.

The most common flow used in the design of FPGAs involves the following phases:

◦ Design entry. This step consists of transforming design ideas into some form of com-
puterized representation. This is accomplished using HDLs. The two most popular
HDLs are Verilog and VHDL (Very-High-Speed-Integrated-Circuit HDL). However,
the language we are about to deal with in this thesis will be Chisel HDL, an altern-
ative to classic HDLs. HDLs are not tools to design electronic circuits. They differ
from conventional software programming languages because they do not support the
sequential execution of statements in code.

◦ Synthesis. The synthesis tool receives HDL and a choice of FPGA vendor and model.
Using these two pieces of information, the tool generates a netlist that satisfies the
logic behavior specified in the HDL files. Most synthesis tools go through additional
steps such as logic optimization, register load balancing, and other techniques. The
resulting netlist is a very efficient implementation of the HDL design.

◦ Place and route. The placer takes the synthesized netlist and chooses a place for each
of the primitives inside the chip. The router’s task is then to interconnect all these
primitives together and satisfy the timing constraints. The most apparent constraint
for a design is the frequency of the system clock, but there are more constraints
designers can place using software packages supported by vendors.

◦ Bitstream generation. FPGAs are typically configured at their power-up time from
some kind of configuration flash memory. Once the place and route process is finished,
the resulting configuration must be stored in a file to program the flash. That file is
called a bitstream.

Out of these four phases, only the first one is human-labor intensive. Designers have to
type in the HDL code, which can be tedious, for example, lots of digital signal processing.
This tediousness is the reason for the appearance of alternative design flows, which include
a preliminary phase in which the user can draw blocks at a higher level of abstraction
and rely on software tools for the generation of the HDL. It is also one of the motivations
behind the invention of Chisel HDL.
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2.2 Chisel HDL

Chisel [4] is an open-source HDL used to describe digital electronics and circuits at the
register-transfer level. It is an alternative to classic HDLs like Verilog or VHDL. Chisel is
based on Scala as an embedded DSL (domain-specific language), and it inherits the object-
oriented and functional programming aspects of Scala. Using Scala this way provides
designers with the power of a modern programming language to write complex circuit
generators. Circuits described in Chisel can be converted to a description in Verilog for
synthesis and simulation. This generator methodology also enables the creation of reusable
components and libraries. The need for Chisel, or rather the need for alternative HDLs
that improve designer productivity, is discussed in the section titled ’Chisel vs. Classic
HDLs’.

2.2.1 Chisel code

Consider an FIR filter implementing a convolution operation, as depicted in Figure 2.1.

Figure 2.1: FIR filter

Chisel provides similar base primitives as synthesizable Verilog, and one could write ’Verilog-
like’ Chisel. That would mean control over every multiplexer (MUX) or every bit-width
in the design. That type of control is entirely possible with Chisel. In other words, Chisel
provides no loss of expressibility. As an example, given below is a Chisel module. It com-
putes a moving average, and its structure is similar to an FIR filter where we register some
input over a few cycles, then do some computations where we weight them equally and
add them together to get a moving average.
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// 3−p o i n t moving sum implemented in the s t y l e o f a FIR f i l t e r
class MovingSum3( bitWidth : Int ) extends Module {

val i o = IO(new Bundle {
val in = Input ( UInt ( bitWidth .W) )
val out = Output ( UInt ( bitWidth .W) )

})

val z1 = RegNext ( i o . in )
val z2 = RegNext ( z1 )
i o . out := ( i o . in ∗ 1 .U) + ( z1 ∗ 1 .U) + ( z2 ∗ 1 .U)

}

While this approach works perfectly, the power of Chisel comes to form the ability to create
generators. This ”Verilog-like” approach would prove inefficient if we wanted, for example,
a generic FIR filter and not this specific instance of an FIR filter.

// Genera l i zed FIR f i l t e r parameter i zed
// by c o n v o l u t i o n c o e f f i c i e n t s
class F i r F i l t e r ( bitWidth : Int , c o e f f s : Seq [ UInt ] ) extends Module {

val i o = IO(new Bundle {
val in = Input ( UInt ( bitWidth .W) )
val out = Output ( UInt ( bitWidth .W) )

})
// Create the s e r i a l −in , p a r a l l e l −out s h i f t r e g i s t e r

val zs = Reg( Vec ( c o e f f s . length , UInt ( bitWidth .W) ) )
zs (0 ) := i o . in
for ( i <− 1 u n t i l c o e f f s . l ength ) {

zs ( i ) := zs ( i −1)
}

// Do the m u l t i p l i e s
val products=VecIn i t . t abu la t e ( c o e f f s . l ength ) ( i =>zs ( i )∗ c o e f f s ( i ) )

// Sum up the product s
i o . out := products . reduce ( + )

}

This new instance shows a massive increase in parameterizability and is starting to look like
”software-like” Chisel. We are still parameterizing by the bit-width, but now we’re passing
in a sequence of coefficients for the FIR filter. Now, we can programmatically iterate over
these coefficients and construct all the registers to do the delaying and compute all the
products which we can reduce and sum together. This kind of meta-programming enables
powerful parameterization and if we think back to the three-point moving average filter,
we can call this generic FIR filter and pass in the sequence of constants.
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val movingSum3Filter=Module (new F i r F i l t e r (8 , Seq ( 1 .U, 1 .U, 1 .U) ) )
// same 3−p o i n t moving sum f i l t e r as b e f o r e

More importantly, we can now use this generic filter in lots of other places too, for example,
to create a delay filter or a triangle filter, all with the same code. This freedom to write
generic generators that capture design patents is what Chisel enables. All of which can be
converted to synthesizable Verilog.

2.2.2 Chisel development

To meet the ever-growing demand for improving computation in hardware design, Chisel
uses a software stack, but for hardware. Software development employs compilers like
clang [5], and built upon the compilers, is a powerful language like C++, and built upon
the language, are libraries and projects. Similarly, Chisel uses a compiler stack that in-
teracts with the Chisel language frontend and enables more RTL (register transfer level)
transformations. This is where FIRRTL (flexible intermediate representation for register
transfer level) comes in: it is an extendable hardware compiler framework [6]. FIRRTL
represents the standardized elaborated circuits produced by Chisel. FIRRTL’s structure is
composed of different transformations. The designer passes in a circuit and metadata and
annotations, a simple transformation occurs, and outputs a modified circuit with modified
metadata. This continues in a kind of pipelined fashion. Since it has been expressed in
this way, it is very straightforward to add a custom transform.

Figure 2.2: Software stack, but for hardware
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Figure 2.3: FIRRTL: an extendable hardware compiler framework

A FIRRTL compiler is constructed by chaining together these transformations as shown
in Figure 2.3, then writing the final circuit to a file. The Chisel-to-Verilog process takes
form in multiple stages: The Chisel stage or the frontend compiles Chisel to an intermedi-
ate circuit representation called FIR (flexible intermediate representation). The FIRRTL
stage, or ”mid-end” optimizes FIR for RTL and applies user custom transformations.
Finally, the Verilog stage or backend emits Verilog based on the optimized FIRRTL trans-
formations. The Chisel frontend can be very lightweight, and additional HDLs written in
other languages can also target FIRRTL and reuse most of the compiler toolchain.

2.2.3 Chisel vs. classic HDLs

Let’s think about comparing languages and try to find the advantages of Python over C.
We could bring up the following points:

◦ Everything that I can write in C, I can write in Python

◦ C has features that Python doesn’t, like inline assembly.

◦ Both are Turing complete.

The problem with this comparison is that it ignores the fact that Python brings new
programming paradigms that increase productivity, like object-oriented programming or
functional programming or support for libraries. This way, Python can be considered
as a stronger language from a design productivity and code reuse perspective. But the
existence of such paradigms does not force you to use them. Because it is entirely possible
to write Python code that feels just like C. This means a better question to compare the
languages would be, ”what can be built with Python that would be incredibly hard with
C?” Answering this question is quickly out of the scope of ”Hello World” comparisons.
Complex problems like building machine learning libraries would be incredibly difficult in
C, but much easier in Python because of the new programming paradigms brought by
Python.
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Chisel is a domain-specific language embedded in Scala. By its very nature, it provides
very similar constructs to Verilog. This causes the most basic Chisel examples to look pre-
cisely like Verilog. We could use this as an argument and dismiss Chisel, but that would
be analogous to making a choice based on the structure of ”Hello World” syntaxes. But
complex projects like Rocket-Chip [7] [8], which is a generator of System-on-Chip designs,
would be much easier to design in Chisel because of the new programming paradigms Chisel
brings. Rocket-Chip can be used as a library, which means that a designer can virtually
”import a RISC-V microprocessor” the same way they would ”import Matplotlib” [9].

The Chisel-to-Verilog process takes form in different stages, which enables two things:

◦ The frontend and backends are decoupled. This means that other frontends and
backends can be written. For example, Magma [10], which is another HDL embedded
in Python, can directly target the FIRRTL stage in Chisel’s compiler stack. New
frontends get all the benefits of mid-end optimizations and available backends. New
backends can also be written. For example, a VHDL backend.

◦ Chisel’s compiler framework enables automated specialization and transformation
of circuits. This means circuits that are transformed to FPGA optimized versions
run faster than unoptimized versions. The framework can also enable hardware
breakpoints or assertions and add run-time configurable fault injection capabilities.
Doing these optimizations in Verilog would be very complex and brittle.

The best way to compare Chisel to classic HDLs would be by comparing the set of pro-
gramming paradigms Chisel enables. The way to tackle this is to do deep dives on mature
Chisel codebases, which takes time. Additionally, the skillsets for reading these code bases
and making judgments are not ordinary in hardware engineers. Hardware engineers are
usually very proficient with C, but not with object-oriented programming, functional pro-
gramming, or complex projects that use modern software engineering principles. This sets
up biases against Chisel or similar languages.
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A processor is the heart of an embedded system. It is the basic unit that takes input
and produces output after processing the data. Processor architectures categorize how
data is moved around inside a processor. This includes things like pre-fetch cues, parallel
execution paths, stack operations, and caching. Processor architecture is an abstract model
of a computer and might be the most crucial type of hardware design. This chapter will
discuss architecture terminology and set foundations for the flexPRET processor design.
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3.1 ISA

An ISA (instruction set architecture) is an abstract model of a computer. In general, it
defines the supported data types, the registers, the hardware support for managing main
memory, fundamental features (such as memory consistency, addressing modes, virtual
memory), and the input/output model of a family of implementations of the ISA. The
purpose of ISAs is to allow designers to express a program at a higher level, making it
easier to understand and less implementation-specific.

Figure 3.1: The concept behind an ISA is abstraction

Most ISAs allow designers to work with a CPU using simple instructions that are bit
strings encoded with crucial information. Each instruction contains an operation code,
which defines what operation the CPU must carry out and the operation parameters.
Interestingly, the instruction itself does not necessarily say anything about which com-
ponents are in charge of doing what. Instructions are implementation-independent. This
independence provides binary compatibility between implementations.

3.2 RISC

RISC (reduced instruction set computer) is a type of processor architecture that utilizes a
small, highly optimized set of instructions rather than a more specialized set of instructions
often found in other types of architectures. RISC has five design principles:

◦ Single-cycle execution - Since RISC works with simple instructions, RISC designs
emphasize single-cycle execution even on complex CPUs.

◦ Hard-wired control with little microcode - Microcode adds a layer of interpretive
overhead, raising the number of cycles per instruction.

◦ Simple instructions, few addressing modes - Simple instructions, hence simple in-
struction decoding. Complex instructions which entail microcode or multicycle in-
structions are avoided.



3.2 RISC 13

◦ Load and Store; large number of registers - Only loads and stores access memory;
all others perform register-register operations. A large number of registers prevent
interactions with memory.

◦ Efficient, deep pipelining - Pipelining makes use of hardware parallelism without the
complexities of horizontal microcode. An n-stage pipeline keeps up to ’n’ instructions
active at once.

Pipelining is a standard feature in RISC processors. Because the processor works on
different steps of instruction at the same time, more instructions can be executed in a
shorter period of time. While different processors have different numbers of steps, they are
basically variations of these basic five:

◦ Fetch instructions from memory (IF)

◦ Read registers and decode the instruction (ID)

◦ Execute the instruction or calculate an address (EX)

◦ Access an operand in data memory (MEM)

◦ Write the result into a register (WB)

Figure 3.2: Classic five-stage RISC pipeline. In the green column, the earliest instruction
is in the WB stage, and the latest instruction is fetched.
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3.3 RISC-V ISA

RISC-V (pronounced “risk five”) is a well-organized and categorized ISA. It defines the
software interface for hardware. RISC-V is open source and can be used to build hardware
designs free of intellectual property (IP) and licensing restrictions. This leads to the reason
why there is faster adoption of RISC-V in the industry; the fact that it is open-source paves
a new business model for hardware vendors. The RISC-V ISA is on par with modern CPUs
in terms of performance, code density, and power consumption. RISC-V has a modular
design consisting of alternative base parts, with added optional extensions. The ISA base
and its extensions are developed collectively between industry, the research community,
and educational institutions.

The ISA base [11] specifies instructions (and their encoding), control flow, registers (and
their sizes), memory and addressing logic (i.e., integer), manipulation, and ancillaries.
The base alone can implement a simplified general-purpose computer with full software
support, including a general-purpose compiler. The base integer ISA has four instruction
type formats [11]:

◦ R-format:

– opcode: partially specifies operation

– funct7 + funct3: combined with opcode, describe operation to perform

– rs1: first operand

– rs2: second operand

– rd: destination register

Bit Length 7 5 5 3 5 7
Field Name funct7 rs2 rs1 func3 rd opcode

Table 3.1: R-format instruction
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◦ I-format:

– opcode: uniquely specifies instruction

– rs1: specifies register operand

– rd: specifies destination operand

– imm: 12-bit signed immediate

Bit Length 12 5 3 5 7
Field Name imm[11:0] rs1 func3 rd opcode

Table 3.2: I-format instruction

◦ S-format (store):

– rs1: register for base memory

– rs2: register for data and immediate offset

– Stores do not write to the register file, so no ’rd’

– Register names are more critical than immediate bits in hardware design

Bit Length 7 5 5 3 5 7
Field Name imm[11:5] rs2 rs1 func3 imm[4:0] opcode

Table 3.3: S-format instruction

◦ U-format (upper immediate):

– 20-bit immediate in upper 20 bits of 32-bit instruction word

– One destination register, rd

– Used for two instructions: Load upper immediate or add upper immediate to
PC

Bit Length 20 5 7
Field Name imm[31:12] rd opcode

Table 3.4: U-format instruction
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The RISC-V base integer ISA can be extended but not redefined [11]. New instructions
can be added to the set to support special semantics. One such example is real-time
semantics, a significant part of FlexPRET’s infrastructure. Instructions such as get_time
and set_compare are added for the ability to read timestamps and define time boundaries.
These extended timing instructions are also discussed in section 3.5 ”PRET machines”.

3.4 Mixed-Criticality Systems

Real-time computing refers to a real-time constraint, for example from event to system
response. Real-time systems must guarantee a response within their specified time con-
straints. These time constraints, combined with verification requirements, form the concept
of criticality. When tasks with different criticality levels (different time and verification
constraints) are executed on a single platform, it is called a mixed-criticality system.

Criticality also represents the required level of assurance against failure for a task or
a component. For domains like automotive or avionics, each criticality level has different
certifications, which specify design and verification methodologies. The number and defin-
ition of criticality levels may vary, but the minimum is two levels, one critical and the other
non-critical. Since we are concerned with cyber-physical systems, failures in critical tasks
directly impact the behavior of the physical systems they associate with. For example,
the DO-178C standard defines five design assurance levels in avionics: (A) Catastrophic,
(B) Hazardous, (C) Major, (D) Minor, and (E) No Safety Effect [2]. However, the only
criticality levels contained in the scope of this thesis will be hard real-time (must meet
deadline) and soft real-time (reduced utility with deadline miss).
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Since both critical (hard real-time) and non-critical (soft real-time) tasks bust execute
on the same hardware platform, partitioning the hardware platform in both space and
time is an essential technique used in mixed-criticality systems. This is done by privatizing
memory segments and I/O devices to partition space and allocating time segments for
processor or shared resource usage to partition time. Such isolation can either be achieved
by software (using a real-time operating system) or by hardware (using different cores or
threads). The methodology for deploying mixed-criticality applications uses a combination
of hardware-based and software-based partitioning:

◦ Only tasks of the same criticality level are assigned to each hardware thread, with
fewer tasks per hardware thread at higher criticality levels.

◦ For hardware threads with higher criticality tasks, hard real-time threads (HRTTs)
are used, and scheduling resources are over-allocated.

◦ For hardware threads with lower criticality tasks, soft real-time threads (SRTTs) are
used, and scheduling resources are under-allocated.

◦ The scheduling algorithm with the highest confidence is used if multiple tasks are
mapped on the same hardware thread. Static scheduling algorithms are preferable
over dynamic scheduling algorithms for higher criticality tasks.

A simple mixed-criticality example being executed on FlexPRET is discussed in Chapter-4.

3.5 PRET Machines

For embedded software applications, computer architecture, software, and networking have
gone too far down the path of emphasizing average-case performance over timing predict-
ability. Therefore, a complete rethinking of architecture has been necessary. In 2007,
Edwards and Lee made a case for precision timed (PRET) machines as a solution [12]:
temporal behavior is as important as logical function. This was an enormous problem
because it spanned nearly all abstraction layers in computing, including programming lan-
guages, virtual memory, memory hierarchy, pipelining techniques, power management, I/O,
etc. PRET systems ushered in a new era where predictability and performance coexist.
To describe the FlexPRET processor, this chapter begins with explaining the underlying
principle of PRET machines and then the architecture of FlexPRET.
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The PRET principle is to treat temporal behavior the same way as functionality to
achieve good predictability. Integral features of the PRET solution are:

3.5.1 Hardware Threads

A hardware thread is logically a separate processor with its own program counter and
registers, but it shares the pipeline with other hardware threads. For example, four hard-
ware threads appear to each execute at 25 MHz if interleaved on a 100 MHz pipeline
(each hardware thread enters the pipeline once every four cycles). Each hardware thread
either executes a single task or uses software-based scheduling for multiple tasks. PRET
machines employ as many hardware threads as pipeline stages, although one thread less
than the number of pipeline stages is sufficient. Furthermore, the pipeline must be thread-
interleaved. A fine-grained thread-interleaved pipeline fetches instructions from different
threads every cycle. Fine-grained multithreading also enables hardware-based isolation
between tasks that are deployed to separate hardware threads, but isolation still depends
on hardware thread scheduling.

Multithreaded processors have hardware support for thread-level parallelism through
hardware threads. Each hardware thread has its own set of registers to save its state, and
the processor switches between threads through interleaving. Similar to virtual machines in
general-purpose computing, the hardware threads in FlexPRET can be considered virtual
real-time machines; they provide guarantees on execution resources at the cycle level and
hardware support for mechanisms typically provided by a real-time operating system. Each
hardware thread can be programmed using different languages or techniques and isolated
from other threads’ interrupts. The classification and working of hardware threads in
FlexPRET are discussed in the section titled ’FlexPRET’.

3.5.2 Scratchpad Memories

Instead of a cache, processors can use scratchpad memories, which are local memories with
contents controlled by software and not by hardware [13] [14]. Scratchpad memories can be
thought of as a distinct part of the memory with their own memory addresses, and they can
be accessed in a way similar to the main memory. Scratchpad memory management has
many similarities to cache locking, with memory addressing being the primary difference.
Most scratchpad allocation techniques optimize for average-case execution time or energy
consumption, not for worst-case execution time. Techniques can be static or dynamic
depending on if the contents change during run-time. FlexPRET uses scratchpad memories
but could be adapted to use other predictable memory hierarchies.
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3.5.3 Thread-interleaved pipelines

Branch predictors do not always make correct predictions. Incorrect predictions may cause
the wrong instructions to be fetched into the pipeline, and the correct instruction may not
even be found in the cache. This would mean wasting thousands of clock cycles and missing
penalties. This makes branch predictors a significant source of unpredictability.

One way to get around this problem is to use a thread-interleaved pipeline instead of
an ordinary deep pipeline and employ as many hardware threads as pipeline stages. The
pipeline will be scheduled to fetch instruction from different threads every single cycle in a
fine-grained thread-interleaved pipeline. As a result, branches will always be resolved before
the next instruction in that thread is fetched into the pipeline, ensuring that the correct
instruction is always fetched. FlexPRET removes dynamic branch prediction and hides
branch latency with hardware thread concurrency, and it isolates interrupts to particular
hardware threads.

3.5.4 ISAs with timing instructions

ISAs are extended with timing instructions for reading time from an internal register and
putting lower and upper time bounds on program flow. Timing instructions set and clear
deadlines for each task. Most ISAs do not provide any means to control time explicitly;
time control can only be done indirectly through software and existing hardware [15], and
of course, by extending ISAs. Timing instructions add temporal semantics to programs
but do not fully specify behavior. For FlexPRET, the RISC-V ISA has been extended with
timing instructions to express real-time semantics. In FlexPRET, time is represented by
a nanosecond value instead of counting clock ticks, starting at zero when powered on.
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4.1 Description of the processor

The PRET system studied in this thesis is FlexPRET, a fine-grained thread-interleaved
RISC-V-based processor for mixed-criticality systems, developed at UC Berkeley [16]. Flex-
PRET uses a thread-interleaved 5-stage RISC pipeline. It is based on the RISC-V ISA
extended with timing instructions that use a designated platform clock. It employs a
thread scheduler that implements flexible scheduling to support mixed-criticality systems.
This section discusses the microarchitectural design techniques involved in FlexPRET.
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4.1.1 Complexity

The general complexity of a processor is the highest-level design involved. An 8-bit non-
pipelined processor is simpler and cheaper than a 64-bit superscalar processor with a
dozen pipeline stages but has lower performance. In the real-time embedded domain,
processors trade-off between cost and performance. FlexPRET is a 32-bit, 5-stage, fine-
grained multithreaded processor implementing the base RISC-V ISA. The base ISA is small
but usable and enables an efficient minimal hardware implementation, such as a soft-core
on an FPGA. Optional extensions add target-specific functionality, such as floating-point
operations, but for smaller code and hardware size, FlexPRET uses the 32-bit version
without any extensions (RV32I [11]).

4.1.2 Pipeline

FlexPRET’s pipeline is based on the classic 5-stage RISC pipeline. It supports an arbitrary
interleaving of hardware threads and enforces scheduling decisions. Once an instruction is
fetched, its execution through the pipeline is isolated from the behavior of other hardware
threads. An overview of the datapath is shown in Figure 4.1. The tall rectangles with
small triangles at the bottom represent pipeline registers that store signals between pipeline
stages.

Figure 4.1: A high-level diagram of FlexPRET’s datapath
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The fetch stage retrieves the instruction stored in the ISPM (instruction scratchpad
memory) at the program counter of the scheduled hardware thread. In the decode stage, the
control unit determines the control signals required for the datapath to properly execute the
instruction. The execute stage is the most complex in this pipeline. The ALU (arithmetic
logic unit) computes the specified operations, either producing the destination register
data, or an address used as a program counter or memory location. The execute stage also
contains the control and status register unit that handles interrupts, thread scheduling
configuration, and timing instructions. The load-store unit handles memory operations
to the ISPM read-write port, the DSPM (data scratchpad memory) , or the peripheral
bus, depending on the address provided. In the memory stage, the load-store unit returns
data for any load instruction. The destination register data, either from the load-store
or execute stage is connected to the write port of the register file. The writeback stage
registers provide a copy of the data being stored in the register file.

4.1.3 Hardware Thread Scheduler

The temporal isolation of each hardware thread depends on how it is scheduled. The most
compelling technique used in FlexPRET is its flexible, software-controlled thread sched-
uler. FlexPRET classifies hardware threads as either HRTTs (hard real-time threads) or
SRTTs (soft real-time threads). FlexPRET’s hardware thread scheduler provides predict-
able and isolated execution to HRTTs while allowing SRTTs to efficiently utilize spare
cycles. Since the pipeline will support an arbitrary interleaving of hardware threads, the
scheduler must only meet the HRTT and SRTT property requirements.

Consider a mixed-criticality system that consists of three independent periodic tasks
τA, τB, τC where each task has a deadline equal to its period Ti. Each task executes on its
own thread, with hard real-time tasks τA and τB on HRTTs and soft real-time task τC on
an SRTT. FlexPRET’s thread scheduler ensures that hard real-time tasks are executed at
a constant rate for isolation and predictability, and when a cycle is not being used for a
hard real-time task, that cycle is used by a soft real-time task.
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Figure 4.2: FlexPRET executing a simple mixed-criticality example.

In figure 4.2, the vertical direction shows the thread from which an instruction is fetched
each cycle over a four-cycle interval. In each four-cycle interval, τA is allocated the first
and third cycle, τB the second cycle, and the fourth cycle is unallocated. Initially, both
τA and τB execute during their allocated cycles. When τB completes at (t = 2,000), its
allocated cycles are not needed until its next period (t = 5,000). This means the soft real-
time task τC can use these empty cycles. τA, being a hard real-time task would be verified
to meet all deadlines with only its allocated cycles and does not benefit by completing
earlier, so τA’s scheduling is unchanged. When both τA and τB complete at (t = 8,000),
τC temporarily uses every cycle. This way, by only using their allocated cycles, the hard
real-time tasks τA and τB are temporally isolated and can be verified independently. τC ef-
ficiently uses every cycle not needed by the hard real-time tasks but has sacrificed temporal
isolation, since its timing behavior depends on when the hard real-time tasks start and end.

Each hardware thread, either an HRTT or SRTT, is always in one of two states: sleeping
if it does not need to be scheduled until some later cycle or active otherwise. The hardware
thread scheduler will only schedule active threads. If there were more than one SRTT in
the above example, the thread scheduler would select and active SRTT in a round-robin
order. FlexPRET’s thread scheduler is designed to provide flexible scheduling options for
both HRTTs and SRTTs while minimizing complexity.
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4.1.4 Timing Instructions

The RISC-V ISA has been extended and given timing instructions for expressing real-time
semantics. In contrast to PRET architectures supporting timing instructions, FlexPRET’s
design is targeted for mixed-criticality systems [17]. The first version of FlexPRET had a
64-bit register to store the number of nanoseconds since the processor was booted. However,
to reduce complexity, the revised version of FlexPRET has a 32-bit internal clock that
overflows about every 232 or 4.29 human seconds. Software support is required for longer
relative timing behavior [18]. The internal clock allows the timestamp to be read and tasks
to be bounded by time constraints.

Expressing real-time semantics has been possible by extending the RISC-V base ISA
with timing instructions. Here are some examples used by FlexPRET’s clock [18].

◦ The get_time pseudo instruction reads the current time and allows for storing the
value in a destination register.

◦ The set_compare pseudo instruction enables the compare register, which triggers
the clock by putting upper and lower bounds on timed execution.

◦ A lower time-bound is provided by the delay_until and wait_until pseudo instruc-
tions, which both stall the execution until the compare value set by set_compare

has expired.
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4.2 Implementation

The following two sections discuss the deployment of FlexPRET as a soft-core on FPGA
and the evaluation using a cycle-accurate simulator. The simulator is useful for prototyp-
ing, debugging, and benchmarking, while the FPGA deployment demonstrates the feasib-
ility and provides analytical hardware costs.

4.2.1 FlexPRET Generation

The Chisel source files are located in a Git repository [19] on GitHub. GitHub is a web-
based version-control and collaboration platform for software developers. Chisel allows
parameterization of code, which helps produce different processor variations. This means
FlexPRET can be configured in many ways by changing arguments in the ’config.mk’ file :

◦ THREADS=[1-8] Specify the number of hardware threads

◦ FLEXPRET=[true/false] Use flexible thread scheduling

◦ ISPM_KBYTES=[] Size of instruction scratchpad memory (32-bit words)

◦ DSPM_KBYTES=[] Size of instruction scratchpad memory (32-bit words)

◦ SUFFIX=[min,ex,ti,all]

– min: base RV32I

– ex: min + exceptions (necessary)

– ti: ex + timing instructions

– all: ti + all exception causes and stats

These different configurations can also be deployed on FPGAs to evaluate the incre-
mental cost of FlexPRET’s hardware device properties. Verilog can be generated by run-
ning make FPGA, and a resulting Verilog file called ”Core.v” will be created.
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4.2.2 FlexPRET simulation

We have synthesized FlexPRET in Vivado by Xilinx [20], which provides support for the
Zynq UltraScale+ family of devices [21]. The device we are synthesizing FlexPRET for
is the Zynq UltraScale+ MPSoC ZCU102 evaluation board. First, Vivado analyzes the
top-level module (generated Core.v file) for any syntax and semantic errors. Then, we
describe the behavior of the circuit using input signals, output signals, and delays. The
process is called simulation in Vivado, and it is used to verify the functionality of the
circuit. The simulation also does a RTL analysis and returns an elaborated design file.
This is a high-level representation of all the I/O banks and shows the ports connected to
their respective modules in the Verilog file, along with all unassigned ports. The RTL file
is a text file containing bits of code that represent real hardware structures. This file is
read by Vivado and converted to a diagram of abstract generic technology cells.

Figure 4.3: Elaborated design read from RTL file (netlist of generic technology cells)
(orange rectangles represent utilized cells)
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4.2.3 FlexPRET synthesis

An elaborated design is necessary since the next step (high and low-level optimizations) is
timing-driven and needs constraints. Constraints can not be applied directly to our RTL
file (which is text); they need to be applied to a netlist. Constraints are a little human-
labor intensive because writing them demands knowledge of not just the design but also
the hardware being synthesized for. Constraints in Vivado are stored in ’*.xdc’ files [22].
Although the file is applied to the design at once, it can be considered a collection of
individual tool command language (TCL) shell commands.

The first and the most important constraint we need to write is clock creation. We do
this using the create_clock TCL command [23]. Here, we connect the clock signal from
the top-level module to pin CLK_74_25. This pin is a fixed frequency onboard clock source
with a frequency of 74.25 MHz (or period 13.5 nanoseconds) to the clock signal in the
top-level module. The waveform function describes the duty cycle. The arguments 0-3.375
imply a clock ’HIGH’ of 3.375 nanoseconds out of a period of 13.5 nanoseconds, meaning
a 25% duty cycle.

c r e a t e c l o c k −add −name CLK 74 25 −period 13 . 5 −waveform{0 3 .375 }
[ g e t p o r t s {clock } ]

The next constraint is to set up input and output delays from the clock source to all
the ports being used. This was done using the set_input_delay and set_output_delay

TCL commands. The argument for max and min are the maximum and minimum delays
and the argument for the get_ports function is the relative pin or port utilizing the clock.
This needs to be written for every port or pin using the clock signal.

s e t i n p u t d e l a y −clock CLK 74 25 −max 2 .000 −min 1 .000
[ g e t p o r t s { args } ]

s e t o u t p u t d e l a y −clock CLK 74 25 −max 1 . 0 −min −0.1
[ g e t p o r t s { args } ]

The last notable constraint would be to define the I/O standards for every pin being
used by our design. I/O standards define the voltage level our interface operates on and
the kind of signaling it uses. The recommended standards for every pin can be found in
the user guide for the ZCU102 board [24] and can be written to the constraints file using
the set_property TCL command. Here, pin AE2 uses the LVCMOS18 standard [24] and
is being connected to the io_bus_data_out[0] pin in our design.

s e t p r o p e r t y −dict {PACKAGE PIN AE2 IOSTANDARD LVCMOS18}
[ g e t p o r t s { i o b u s d a t a o u t [ 0 ] } ]
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Once we have these constraints, Vivado will make high-level and low-level optimizations
and produce a synthesized design. Synthesis is essentially converting RTL code to a netlist
using our constraints. The synthesized design is an interconnected netlist of hierarchical
and basic elements like flip-flops, block RAMs, I/O elements, etc.

Figure 4.4: Synthesized design: each tile represents a collection of basic elements
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4.2.4 FlexPRET Implementation

Vivado implementation includes all steps necessary to place and route the netlist onto the
FPGA device resources while meeting the logical, physical, and timing constraints of a
design. An implemented design is structurally similar to the synthesized design in the
sense that cells have locations and nets are mapped to their specific routing channels, but
different in the sense that the implemented design is optimized for hardware placing and
routing.

Figure 4.5: Implemented design: blue tiles represent utilized elements
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4.2.5 FPGA deployment

An FPGA bitstream is a file that contains the programming information for an FPGA.
Bitstream generation is the final step in deploying our design. At a high level, a bitstream
file is similar to an executable program. It includes the description of the hardware logic,
routing, and initial values of registers and on-chip memory. We generated the bitstream
using the write_bitstream TCL command and then, used the Vivado hardware manager
to upload the bitstream to our board.

4.3 Simulator

Chisel generates not only synthesizable Verilog code but also a cycle-accurate C++ based
simulator for FlexPRET. The simulator also generates waveform files to aid debugging.
This section discusses a simple hello world program for the simulator, and the next chapter
will discuss executing our more complex benchmarks.

The RISC-V GNU toolchain consists of GCC, Binutils, newlib and gilbc ports. The
GCC port is based on GCC 6.1.0 and receives commits frequently. A script for building
the entire toolchain for RISC-V 32 is provided within the toolchain repository (located on
GitHub [25]), and no issues were encountered during the build. Once the toolchain was
built, it was possible to compile custom programs for the FlexPRET simulator.

The script file ”compile.sh” [19] compiles a RISC-V C program with a start script and
creates an objdump [26] [27]:

◦ -march=rv32i: generates code for the rv32i base integer variant of the ISA

◦ -mabi=ilp32: means that long and pointers are 32-bit wide.

◦ riscv32-unknown-elf-objdump: creates *.dump.text file for generated objdump

r i s cv32 −unknown−e l f −gcc −I i n c l u d e −g −s t a t i c −O1 −march=rv32 i \
−mabi=i l p 3 2 −n o s t a r t f i l e s −Wl,−Ttext=0x00000000 −o \
”$output name” s t a r t . S ”$@”

r i s cv32 −unknown−e l f −objdump −S −d ”$output name” > \
”$output name . dump . txt ”

The ”parse disasm.py” generates a hex file of the program for simulation. It parses the
output of the riscv32-unknown-elf-objdump and puts it into a Scala array constant or
readmemh hex file. This hex file can now be run as a simulation using the C++ emulator.
Running the emulator creates a waveform file, useful for debugging and benchmarking.
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Chapter 5

Benchnmarks

To investigate functionality and timing behavior, we executed C programs from the TACLeBench
benchmark collection [28], which was created to support worst-case execution time (WCET)
research [29].

5.1 TACLeBench

TACLeBench is a collection of open-source programs adapted to a standard coding style.
It is available from GitHub. TACLeBench is a collection of 53 benchmark programs from
several research groups and tool vendors around the world. The source codes are a hundred
percent self-contained, with no dependencies to system-specific header files via #include

directives or an operating system. All input data is part of the C source code, and poten-
tially used functions from math libraries are also provided as C source code. This makes the
TACLeBench collection useful for general embedded systems where no standard libraries
are available. The latest version of FlexPRET’s emulator has two header files with support
for I/O ports and CSR (control and status register) instructions. We experimented heavily
with combining the functions defined in these header files with those in the TACLeBench
collection.
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Since almost all benchmarks are processor-independent and can be compiled and evalu-
ated for any kind of target processor, they are executable with RV-32I. They are compiled
with the RISC-V gnu toolchain. All the benchmarks can be classified into:

◦ Kernel benchmarks: they implement small kernel functions, and the size of these
benchmarks is in the range of 18 to 992 source lines of code (SLOC).

◦ Sequential benchmarks: they implement large function blocks, such as encoders
and decoders, used in many embedded systems. The size of such benchmarks is in
the range of 117 to 2710 SLOC.

◦ Artificial test benchmarks: they are used to stress test WCET analysis tools.

◦ Application benchmarks: they are derived from real applications and provided
with a simulated input. For example, Lift is a lift controller that has been deployed
in a factory in Turkey.

FlexPRET’s microarchitectures can be divided into two interacting parts: the datapath
and the control. The datapath operates on words of data. It contains structures such as
memories, registers, ALUs, and multiplexers. FlexPRET uses a 32-bit datapath. The con-
trol unit receives the current instruction from the datapath and tells the datapath how to
execute that instruction. Specifically, the control unit produces multiplexer select, register
enable, and memory write signals to control the operation of the datapath.

Figure. 5.1 shows the waveform of a simple binary search program generated by
FlexPRET’s emulator. datapath_io_control_next_pc_sel[1:0] represents the program
counter selector for the first and only thread being utilized by the binary search program.
datapath_io_control_wb_rd_addr[4:0] represents the destination register being written
to a register file. datapath_io_imem_rw_address represents the addresses in the instruc-
tion memory being accessed every cycle.

Figure 5.1: datapath io imem rw address represents addresses in instruction memory
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Figure 5.2: Sample execution times of programs in TACLeBench range from 305 cycles up
to more than 1,600,000,000 cycles on the Patmos architecture

Figure 5.2 [29] shows the execution times of all 53 programs being executed on a Patmos
Architecture [30]. On the Patmos architecture, the execution times range from 305 cycles
(binarySearch) up to 1,658,333,567 cycles (test3). To put this into relation, the benchmark
program test3 runs approximately for 21 seconds on the Patmos platform assuming a
CPU Frequency of 80 Mhz. From this evaluation we make the main observation that
TACLeBench consists of both short and long running benchmarks with a huge variety in
execution time.
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Chapter 6

Conclusion

6.1 Conclusion

Cyber-physical and real-time embedded applications require high confidence in average-
case performance and timing predictability. Integrated hardware platforms share resources
to support the increasing functional complexity of applications, but interference and dif-
ferent levels of criticality complicate design and verification. The common approach of
running a real-time operating system (RTOS) on processors optimized for average-case
performance results in unpredictable behavior—mainly caused by interrupts and hardware
prediction mechanisms—that is difficult to verify and certify. FlexPRET’s architectures
provides high confidence in software functionality and timing behavior without sacrifi-
cing overall processor throughput. It uses fine-grained multithreading to enable trade-offs
between predictability, hardware-based isolation. By supporting the specification, repeat-
ability, and predictability of timing behavior, FlexPRET includes time in the abstraction
level between software and hardware, allowing compilers and analysis tools to optimize
and guarantee timing behavior.

6.2 Future Work

Since FlexPRET only works with the RV32I [11] base instruction set, real-world applica-
tions might not be realizable. However, promising future applications include investigation
of the RISC-V extensions M (Standard Extension for Integer Multiplication and Division),
F (Standard Extension for Single-Precision Floating-Point), P (Standard Extension for
Packed-SIMD Instructions).

Deeper investigations regarding thread synchronization with extension A (Standard
Extension for Atomic Instructions) are also required.
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Appendix A: FPGA Specifications
and Resource Utilization

The ZCU102 is a general purpose evaluation board for rapid-prototyping based on the
Zynq® UltraScale+TM XCZU9EG-2FFVB1156E MPSoC (multiprocessor system-on-chip).
High speed DDR4 SODIMM and component memory interfaces, FMC expansion ports,
multi-gigabit per second serial transceivers, and a variety of peripheral interfaces provide
a very flexible prototyping platform. Of course the scope of this thesis has been limited to
the FPGA logic.

Figure 1: ZCU102 Evaluation Board
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Onboard resources utilized by FlexPRET (post-implementation):

Resource Utilization Available Utilization%

LUT 5966 274080 2.1767
FF 1711 548160 0.3121

LUTRAM 3200 144000 2.2222
BRAM 5 912 0.5482

IO 191 328 58.232
BUFG 1 404 0.2475

Table 1: FlexPRET Resource Utilization



Appendix B: Terminal Commands

Generating FlexPRET from the Chisel source files

sudo apt-get install git

git clone https://github.com/pretis/flexpret.git

(To install Git and download the FlexPRET repository)

cd flexpret-master

make fpga

(To build a default configuration and generate Verilog)

Building the RISC-V GNU toolchain

mkdir /opt/riscv

export PATH="/opt/riscv/bin:$PATH"

git clone https://github.com/riscv/riscv-gnu-toolchain.git

cd riscv-gnu-toolchain

mkdir build

cd build

../configure --prefix=/opt/riscv --enable-multilib

sudo make

(To build either cross-compiler with support for both 32-bit and 64-bit. The multilib
compiler will have the prefix riscv64-unknown-elf- or riscv64-unknown-linux-gnu-, but will
be able to target both 32-bit and 64-bit systems.)
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Compiling and simulating custom programs

cd flexpret-emulator make emulator

(To build the simulator)

cd programs

git clone https://github.com/tacle/tacle-bench.git

./compile.sh binarySearch /tacle-bench/bench/kernel/binarysearch/binarysearch.c

(To install TACLeBench and compile a binary search program using the riscv32-unknown-
elf-gcc)

../scripts/parse_disasm.py binarySearch.dump.txt readmemh > imem.hex.txt

(To generate hex file of the program for simulation)

../emulator/flexpret-emulator

(To run the simulation and generate a waveform file from imem.hex.txt)

cd programs

sudo apt-get install -y gtkwave

gtkwave Core.vcd

(To read the waveform file Core.vcd generated by the emulator with gtkwave)



Appendix C: List of abbreviations

Abbreviation Meaning

RTOS Real-Time Operating System
FPGA Field Programmable Gate Array
PLD Programmable Logic Device
CLB Configurable Logic Blocks
LUT Look-up Table
RAM Random Access Memory
I/O Input/Output
HDL Hardware Description Language

VHDL Very-High-Speed-Integrated-Circuit HDL
DSL Domain-Specific Language
MUX Multiplexer

FIRRTL Flexible Intermediate Representation for Register Transfer Level
FIR Flexible Intermediate Representation
ISA Instruction Set Architecture

RISC Reduced Instruction Set Computer
IP Intellectual Property

PRET Precision Timed
ISPM Instruction Scratchpad Memory
ALU Arithmetic Logic Unit

DSPM Data Scratchpad Memory
HRTT Hard Real-Time Threads
SRTT Soft Real-Time Threads
RTL Register Transfer Level
TCL Tool Command Language

WCET Worst Case Execution Time
CSR Control and Status Register
SLOC Source Lines of Code

Table 2: List of Abbreviations
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