
Czech Technical University in Prague
Faculty of Electrical Engineering

Department: Department of Cybernetics

Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science

Artificial Intelligence for the Robust Analysis of
Piezoelectric Biosensors

Umělá inteligence pro robustńı analýzu signálu z
piezoelektrických biosenzor̊u

BACHELOR’S THESIS

Author: Lukáš Frána
Supervisor: Ing. Vratislav Fabián, Ph.D.
Year: 2021

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483787Personal ID number:Frána LukášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Artificial Intelligence for the Robust Analysis of Piezoelectric Biosensors

Bachelor’s thesis title in Czech:

Umělá inteligence pro robustní analýzu signálu z piezoelektrických biosenzorů

Guidelines:
1) Make a literature search for artificial intelligence methods usable for signal analysis of piezoelectric sensors.
2) Design and implement selected artificial intelligence methods for robust signal analysis of piezoelectric sensors.
3) Compare the selected methods and evaluate the proposed methods in terms of practical applicability.

Bibliography / sources:
[1] Janshoff, Andreas, Hans-Joachim Galla, and Claudia Steinem. "Piezoelectric mass-sensing devices as biosensors—an
alternative to optical biosensors?." Angewandte Chemie International Edition 39.22 (2000): 4004-4032.
[2] Russell, Stuart, and Peter Norvig. "Artificial intelligence: a modern approach." (2002).

Name and workplace of bachelor’s thesis supervisor:

Ing. Vratislav Fabián, Ph.D., Department of Physics, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Nicholas Scott Lynn, Jr., Ph.D., Institute of Physics of the Czech Academy of Sciences, Prague

Deadline for bachelor thesis submission: 13.08.2021Date of bachelor’s thesis assignment: 10.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vratislav Fabián, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Author statement for undergraduate
thesis

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, date 12. 8. 2021

..
Lukáš Frána

vi

Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor, Ing. Vratislav
Fabián, PhD. He has been a constant source of encouragement and insight during my
research.

I would like to thank to Viktor Procházka for helping me overcome my procrastination.
Special thanks go to the staff of the Institute of Physics and especially RNDr. Hana

Ĺısalová, Ph.D., who maintained a pleasant and flexible environment for my research. I
would like to express special thanks to Nicholas S. Lynn, PhD., who helped me with nu-
merous problems and professional advancements.

Finally, my greatest thanks go to my family members, for their infinite patience and
care.

viii

Abstract/Abstrakt

Piezoelectric biosensors can be used for the detection of toxic materials in a complex
mass. Here, various techniques are discussed for signal analysis of these sensors. Methods
for data preparation, noise reduction and filtering will be introduced. The output of the data
preprocessing will be used as an input for classification algorithms based on the artificial
intelligence.

This thesis discusses the use of artificial intelligence (AI) to improve the performance
characteristics of QCM biosensors. More specifically, it will be shown that AI can be used
to classify positive and negative samples based on the changes in resonant frequency.

Keywords: artificial intelligence, machine learning, quartz crystal microbalance, sup-
port vector machine, random forest, k-nearest neighbours

Piezoelektrické biosenzory lze využ́ıt k detekci toxických materiál̊u ve komplexńıch
vzorćıch. Diskutovány budou r̊uzné techniky pro analýzu signálu z těchto senzor̊u. Budou
představeny metody pro př́ıpravu dat, redukci šumu a filtrováńı. Výstup z předzpracováńı
dat bude použit jako vstup pro klasifikačńı algoritmy založené na umělé inteligenci.

Tato práce pojednává o využit́ı umělé inteligence (UI) ke zlepšeńı výkonnostńıch charak-
teristik QCM biosenzor̊u. Konkrétněji se ukáže, že UI lze použ́ıt ke klasifikaci pozitivńıch
a negativńıch vzork̊u na základě změn rezonančńı frekvence.

Kĺıčová slova: umělá inteligence, strojové učeńı, mikrováhy z křemenných krystal̊u,
metoda podp̊urných vektor̊u, náhodný les, k-nejbližš́ıch soused̊u

x

Contents

Introduction 2

1 Making a signal 6

1.1 Raw data format . 6

1.1.1 Vizualization . 7

1.2 Noise reduction . 9

1.2.1 Least squares . 10

1.2.2 Savitzky-Golay filter . 11

1.2.3 Median filter . 12

1.2.4 Combining filters . 13

2 Preparation for classification 14

2.1 Labeled plot of resonant frequency . 14

2.2 Feature vectors . 16

2.3 Training and testing set . 17

2.3.1 Evaluation of a model . 18

2.3.2 k-fold cross-validation (CV) . 18

3 Machine Learning methods 20

3.1 SVM (Support vector machines) . 20

3.1.1 Kernel trick . 21

3.1.2 Hard-margin . 21

3.1.3 Soft-margin . 22

3.1.4 Properties . 22

3.2 Random forest . 23

3.2.1 Decision tree . 23

3.2.2 Bagging . 23

3.2.3 Random forests . 23

xi

xii CONTENTS

3.3 k-nearest neighbors . 24
3.3.1 Selection of k . 24

3.4 Results . 25
3.4.1 Parameters for the SVM . 27
3.4.2 Parameters for the random forest . 27
3.4.3 Parameters for the k-NN . 27

3.5 Comparison of the best results . 28
3.5.1 Unfiltered resonant frequency . 28
3.5.2 Filtered resonant frequency . 29

Conclusion 30

Bibliography 34

Appendix 38

List of Tables

3.1 MSE on testing set with various SVM parameters 27

3.2 MSE on testing set with various random forest parameters 27

3.3 MSE on testing set with various k-NN parameters 27

3.4 Error on unfiltered RF . 28

3.5 MSE on unfiltered RF . 28

3.6 Error on filtered RF . 29

3.7 MSE on filtered RF . 29

List of Figures

0.1 openQCM device . 3

1.1 Amplitude/phase (normalized, unitless) vs frequency (Hz after subtracting 10
MHz) . 8

1.2 Raw resonant frequency vs time (y-axis reported as RF - 10 MHz, and time
reported as the index from the beginning of measurement) 9

1.3 Fitted (thr = 0.95) resonant frequency vs time (y-axis reported as RF - 10 MHz,
and time reported as the index from the beginning of measurement) 11

xiii

xiv LIST OF FIGURES

1.4 SG filtered resonant frequency vs time, applied to the same data set in fig. 1.3
and using coefficients of m = 33, p = 2 (y-axis reported as RF - 10 MHz, and
time reported as the index from the beginning of measurement) 12

1.5 Median filtered resonant frequency vs time, applied to the same data set in fig.
1.3 and using a window size of 33 (y-axis reported as RF - 10 MHz, and time
reported as the index from the beginning of measurement) 13

1.6 Resonant frequency with combined filters vs time (y-axis reported as RF - 10
MHz, and time reported as the index from the beginning of measurement) . . . 13

2.1 Example measurement . 15
2.2 Part of the measurement with the segments . 16

3.1 Overview of 40 datasets along with manually selected segments 26

Introduction

The diagnosis and management of public health is aided by the detection of biomark-
ers in a variety of bodily fluids. Given the development of the recent Covid-19 pandemic,
measuring the presence of biological agents is now perhaps more important than ever. A
number of newly developed biosensing platforms represent a rapid and inexpensive alter-
native to currently accepted diagnostic methods; a gold standard example of these is the
widely used polymerase chain reaction (PCR) test to detect nucleic acid remnants present
in persons positive with Covid-19 [1]. However, the PCR methods are expensive and time
consuming. The result is known after approximately 4 hours, and they require a laboratory
with trained personnel.

One such novel and promising alternative method for Covid-19 diagnosis is the quartz
crystal microbalance (QCM) biosensor [2], which is a piezo-like crystal that oscillates at a
resonant frequency (in the MHz range). The transduction component of the biosensor acts
to create an electric signal that can be used to detect subtle changes in the state of the
mass present on the surface of the crystal: indicated by a change in the resonant frequency.
When made functional with a biocomponent (e.g., antibodies or DNA), these QCM sensors
allow for the quantification of the presence of a wide variety of biomarkers and, because of
their high sensitivity, have gained significant attention in the past decade [3].

The path from electrical signal generated on the device to the classification of positive
and negative samples begins with data collection. The QCM electronics sends the measured
values through the serial port to the computer, which saves them in real-time. The raw
(unprocessed) QCM biosensor output consists of two quantities, amplitude and phase, which
are both provided as a function of frequency. Due to a number of problematic factors (e.g.,
poor electrical connections), the data output from this biosensor tends to be noisy. Filtering
and classifying these data via standard algorithms is difficult, as there are a significant
number of complicated artifact types. Removing these problematic data points helps to
reduce noise, which makes later analysis easier and increases overall sensing performance.

2

LIST OF FIGURES 3

Figure 0.1: openQCM device

Artificial intelligence methods [4, 5] creates an abstraction upon complex and slow
algorithms and maintains high potential to increase the performance of QCM biosensors.
Supervised machine learning algorithms [6] can learn classification parameters from manu-
ally labeled data, and then use these parameters to make predictions on previously unseen
data. These algorithms are well researched and have been shown to have good results on
data from a broad selection of domains.

However, using time series of different lengths is highly impractical for this sort of
application. Because of this, the first half of this thesis is focused on data preparation.
Because the QCM is capable of creating a few million values in every measurement, it
is first necessary to decide which data improves the performance of pathogen detection.
Choosing the wrong properties of the collected data points can slow down the speed of
execution and decrease the precision of predictions.

The final part of this thesis is on the machine learning (ML) [7] itself, which operates
on top of a dataset prepared using the methods discussed in the 1st half. Three impor-
tant classifiers will be introduced - support vector machine, random forest and k-nearest
neighbours - along with auxiliary methods for splitting the entire dataset on (a) a first set
determined for building the classifier and, (b) a second set used for evaluating its perfor-
mance or a method for comparing models between themselves. The results are discussed at
the end as well as the influence of filters.

The methods developed in this thesis were then applied to real data concerning samples
collected from a variety of surfaces within public transportation vehicles, which were tested
for the presence of biological material related to Covid-19 [8]. Some of the measurements
were removed due to non-standard measuring process and were not suitable for analysis.
The samples were collected in a safe manner in compliance with approved hygienic methods.
These samples were analyzed at the Institute of Physics of the Czech Academy of Sciences

4 LIST OF FIGURES

in a specialized laboratory. These methods are applied towards an experimental openQCM
device (figure 0.1), an open hardware/software platform developed in Italy and based on the
Teensyduino chip. Specifically, they are applied using the Python language [9] and Jupyter
notebooks [10], along mainly with the popular packages NumPy [11], SciPy [12], SciKit
learn [13]. Python is an interpreted language and it is used worldwide for data analysis,
and Jupyter notebook is an interactive way to write Python code with graphical interface.

Chapter 1

Making a signal

1.1 Raw data format

The openQCM device communicates with the computer through its serial port. The
data collection for one point in time starts when computer sends three values: starting
frequency fstart, stop frequency fstop, and frequency step fstep. Hence, the device will
start measuring both phase and amplitude at fstart, after which a frequency counter will
increase by the value of fstep until the counter is equal or greater to fstop. The number of
steps is N = (fstop − fstart)/fstep + 1. At the end, the temperature measured on the chip
is sent. The frequencies fstart and fstop are chosen in the calibration process. This whole
cycle is repeated every 600 to 800 ms. It cannot be an exact number due to the nature
of electronics inside the QCM device and its firmware/software. These values are saved
in test files, then converted to NumPy format and finally saved in binary format for more
convenient usage. The number of points N is in these measurements always 501, which is
the defualt number set by the manufacturer of openQCM device.

The resonant frequency (RF) can be calculated from both phase and amplitude
arrays expressed as A = {A1 . . . AN} and P = {P1 . . . PN} respectively. The RF corresponds
to a point on the x-axis (frequency) where either the phase or amplitude is the highest. Both
quantities have similar properties, and same methods discussed below can be applied on
them; however, the hardware approach of how is the phase measured in the device itself
is not ideal to work with it as it is not temporally stable. Here I consider the RF only
obtained from the amplitude vs. frequency graph.

rf = argmax
i

Qi,

where i ∈ {1 . . . N}.
The signal data calculated by the equation above are not optimal to work with directly

(see figure 1.2). The reason for this is the discrete nature of the data, where the position
corresponding to the maximum of the array Q will always be a multiplication of fstep. In
reality, however, the actual RF can exist between the measured steps, because the physical

6

1.1. RAW DATA FORMAT 7

phenomena represented by Q as a function of f is continuous and the probability that
argmaxx f(x), where x ∈ R, will be at one specific rf is close to 0. Thus it is important to
introduce a method of how to determine the actual RF with sub-fstep resolution.

In theory, measurements of RF should not change if the mass on the crystal is not
changed. However, as previously mentioned, the raw data suffers from noise [14], or more
specifically, multiple measurements of amplitude at the same frequency will not return
the same value. This is caused by characteristics of electronics, electromagnetic radiation,
temperature and other external influences. To partially mitigate this issue, the device
measures amplitude 32 times at every frequency, and then exports the arithmetic mean
(equation 1.2) of those values.

Among other more complex ways how to measure the noise, computing the standard
deviation in unchanged (constant) environment provides information about the noise in the
signal. The standard deviation of an x = (x1, . . . , xn) is

std =

√√√√ 1

n

n∑
i=1

(xi − x)2, (1.1)

where

x =
1

n

n∑
i=1

xi (1.2)

is known as arithmetic mean.

1.1.1 Vizualization

Figure 1.1 shows example plots of normalized phase/amplitude vs. frequency. Since the
RF is computed only from its peak, the signal can be normalized in two steps

Qprenorm = (Q−min(Q))

and

Qnorm =
100 ·Qprenorm
max(Qprenorm)

.

This ensures that the signal is always in the interval [0, 100]. The signal maximum will
be near the center of a properly calibrated crystal, decreasing in a similar fashion on each
side. The phase has a wider peak, decreasing slower on both sides, thus it will also have
bigger noise [15]. The amplitude decreases from its maximum faster and thus will have
lower noise. It can be seen that the two maximums (highlighted with cyan dots) are not at
the same frequency. This difference is due to the physics of the acoustic waves generated
on the crystal, a topic that is beyond the scope of the analysis presented here. Because
resonant frequency is always calibrated around 10 MHz, it is normalized by subtracting
aforementioned 10 MHz.

8 CHAPTER 1. MAKING A SIGNAL

Figure 1.1: Amplitude/phase (normalized, unitless) vs frequency (Hz after subtracting 10
MHz)

For every time point, data similar to that shown in figure 1.1 is used to extract the
RF. As a first approach RF was calculated as the frequency corresponding to the absolute
maximum of Q. This time-series data, caculated from the amplitude, is plotted in figure
1.2. If not explicitly mentioned, only a part of the measurement will be shown.

It can clearly be seen that the data is divided by discrete 40 Hz differences. That makes
perfect sense, because the maximum is taken directly from values in the fstep raw data
array. Analysis of data calculated in this manner would be difficult, if not impossible, due
to the high noise. The next section introduces a method to reduce the noise to a value
below the fstep resolution.

1.2. NOISE REDUCTION 9

Figure 1.2: Raw resonant frequency vs time (y-axis reported as RF - 10 MHz, and time
reported as the index from the beginning of measurement)

1.2 Noise reduction

There exist several methods for reducing the signal noise in sensors based on a resonant
signal. One method is to fit a portion of the measure points to a suitable function using
least squares polynomial regression [16]. This method is fast enough to be implemented in
real-time, and furthermore, provides good results. The only requirement is to define several
parameters related to the fitting process algorithm, specifically in the selection of data to
be fitted as well as the polynomial used for fitting. The entire frequency interval does not
have to be used - the computational power can be saved while achieving better results with
fitting only a selected portion of data around the maximum. In addition to this, one must
guess a function to fit the points to, although this is easier with respect to data selection.
There are two options that can used to select such data to be used in curve fitting.

1. Let a number Np be defined as the number of points from the maximum to each side of
the peak. This results in total of 2 ∗Np + 1 points to be used for fitting. This method
is very simple to both understand and code, and is also fast to compute. On the other
hand, it has several drawbacks. The value Np must be set by hand or computed from
the data. With a fixed number of the measure points for each signal point this is not
an issue, but that is not always the case. For example, we can take a narrower interval
and use only 251 values (rather than the default 501), which increases the speed of
gathering the measure points. In this example Np = 50 would work well for 501 data
points (fits only around 10% of all points), whereas it might not work as well when
using 251 points (fitting around 20%). In the latter case there is twice as much data
being fitted. Even choosing fixed percentage portion of the data does not necessarily
solve this problem, as it does not reflect the nature of different signals.

10 CHAPTER 1. MAKING A SIGNAL

2. Another option is to set a threshold thr, which serves to select data above a critical
y-value for fitting. This can be accomplished by defining a signal boundary BQ,
expressed in percentage and computed as

BQ = (maxQ−minQ) · thr + minQ.

Every point above BQ boundary is then selected for the curve fitting. The number of
picked points varies as it cannot be predicted how many values will be high enough
to overcome this boundary. This approach works better, as it allows for a dynamic
selection of fitted points.

1.2.1 Least squares

The least squares method is used to approximate the solution of a system where a number
of equations is higher than a number of unknowns. This approach works by minimizing the
sum of the squares of the differences between an expected value (predicted by a model) and
the actual value. Here, using a least squares fit with a second order polynomial, the sum of
the squares can be expressed mathematically as

S(β) =
n∑
i=1

r2i =
n∑
i=1

((β2x
2
i + β1xi + β0)− yi)2,

where β = (β0, β1, β2)
T ∈ R3 are the polynomial coefficients from the formula f(x) =

β2x
2 + β1x + β0, n is number of discrete data points, and ri is residuum: the difference

between the actual y-value and the approximated one. Finding the minimum of the sum S
is an optimization problem. Clearly, S is a convex function with smooth derivatives. One
way to find the minimum of S is to find a point where the gradient of S is zero, that is

∂S

∂βj
= 2

n∑
i=1

ri ·
∂ri
∂βj

= 2
n∑
i=1

ri · xj = 0, j ∈ {0, 1, 2}.

This system of equations can be solved numerically with various methods, the most
common of which is the gradient descent method. The optimal solution can also be found
analytically using the Vandermonde matrix, which is defined as follows

V = (vi,j), vi,j = xj−1i , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},

where n is the number of data points and m is the degree of the polynomial to fit increased
by one. The optimal coefficients β that minimize S can then be computed as

β = (V TV)−1V T y.

The inverse of V TV can be calculated because the Vandermonde matrix is guaranteed
to be nonsingular due to the use of distinct data points.

1.2. NOISE REDUCTION 11

After choosing the right measure points to be fitted, one need to take a look at the
specific functions (polynomials) for curve fitting. The parabola (a 2nd order polynomial
in form of ffit(x) : ax2 + bx + c = 0) is an obvious choice and provides a satisfactory
approximation of the peak shape. Naturally, both the measured points and the 2nd order
polynomial have only one local maximum, which applies to both phase and amplitude. Once
the parameters a, b, c for parabola are found, an analytical solution can be used to find its
argument maximum - corresponding to the RF - by using the first derivative of ffit equal
to zero. This is expressed in the formula xmax = −2a/b, whereby the resonant frequency is
thus rf = xmax.

The results of this fitting method are shown in figure 1.3, which shows a drastic im-
provement over the raw data (figure 1.2). The time-series trend of the signal (determining
if there is any change of resonant frequency) is now visually apparent, which is not the case
in the data shown in figure 1.2.

Figure 1.3: Fitted (thr = 0.95) resonant frequency vs time (y-axis reported as RF - 10
MHz, and time reported as the index from the beginning of measurement)

The noise in the interval [6400, 7000] calculated via equation 1.1 was 2.601. The next
sections details the use of several filters that help to reduce the noise, which will be always
calculated from the same interval and will be always rounded to three decimal places.

1.2.2 Savitzky-Golay filter

The Savitzky-Golay filter [17] is curve smoothing method that is based on the use of
least squares polynomial regression. It replaces the original y-value in the series of points
with the new value obtained from the fit. The regression is performed on successive sub-sets
(windows) of adjacent data points: a process known as convolution. Its goal is to increase
the precision of the data via reducing the signal noise while simultaneously maintaining the
signal tendency.

12 CHAPTER 1. MAKING A SIGNAL

The filter takes two parameters, m, p ∈ N. The value p is the polynomial order, and
is typically low-degree. The value m is an odd number and defines the window length.
Starting with an input set of {(xj , yj)}, j = 1..m, the algorithm takes the point at the index
i and, using m−1

2 points on each side (number of points sums to m), performs least squares
regression using a p-th order polynomial fit as fj to those points, and then computes a new
Yj = fj(xj). The set of Yj values is the smoothed output.

Figure 1.4 shows application of SG filter with window length of 33 and polynomial
order of 2. The noise for this data is 0.635 (same interval as above), which shows great
improvement compared to the noise in the unfiltered data.

Figure 1.4: SG filtered resonant frequency vs time, applied to the same data set in fig. 1.3
and using coefficients of m = 33, p = 2 (y-axis reported as RF - 10 MHz, and time reported
as the index from the beginning of measurement)

1.2.3 Median filter

One of the disadvantages of the Savitzky-Golay filter is that the underlying least squares
method is highly sensitive to outliers. The points far from the others affect the polynomial fit
much more, because the distance here is squared. This can result in new artificial created
artefacts in the signal. A way to remove these outliers is through the use of a so-called
median filter.

The median filter [18] works with a single parameter, the window size of length m.
Instead of fitting the points in the window to polynomial, it sorts them and then outputs
the median value of the data in the window. One of the advantages is that median filter
does not create new values, but rather repeats previously seen value. This filter works well
to remove outliers, which will likely be near the edges of the sorted values.

Figure 1.5 shows the applied use of the median filter to the unfiltered data. The median
filter lowers the noise level to 0.607, which is slightly better than that calculated by the SG
filter.

1.2. NOISE REDUCTION 13

Figure 1.5: Median filtered resonant frequency vs time, applied to the same data set in fig.
1.3 and using a window size of 33 (y-axis reported as RF - 10 MHz, and time reported as
the index from the beginning of measurement)

1.2.4 Combining filters

The best results can be achieved by combining both filters. In this approach a median
filter is first applied to remove problematic outliers, after which a SG filter is used to smooth
the curve. The result of this approach can be seen in figure 1.6. This approach leads to a
noise of 0.567, which is more than 4.5× lower than the unfiltered one. If not specifically
mentioned, this combined filter will be used in the plots from now on.

Figure 1.6: Resonant frequency with combined filters vs time (y-axis reported as RF - 10
MHz, and time reported as the index from the beginning of measurement)

Chapter 2

Preparation for classification

One of the most popular methods to assign data into one of two states (e.g., positive and
negative samples) is to use a machine learning (ML) [19]. This method requires a small
subset (also known as labels y) of all elements to be manually classified by more complex
(and slower) algorithms or alternatively, by humans. This subset is then divided into two
parts: a training set and a testing set. The ML algorithm can ”learn” parameters
from the training set by creating a model and then the predictions (results labeled by a
model) are tested against known observations in the testing set.

2.1 Labeled plot of resonant frequency

The experimental protocol for measurement is divided into several stages. The prepara-
tion of the chip, including the addition of bioreceptors and the conditioning of the surface
film, takes up to 50% of the total analysis time (varies from measurement to measurement).
Discussion of this portion of the signal is beyond the scope of this thesis and furthermore,
not needed for classification, as the clinical sample is not involved.

14

2.1. LABELED PLOT OF RESONANT FREQUENCY 15

Figure 2.1: Example measurement

The other half does react with clinical samples and thus is the topic of interest for this
thesis. Data taken from a single clinical measurement is shown in figure 2.1, this data
(i.e. a sensorgram) represents the injection of five clinical samples into the sensor (each
surrounded by injections of control buffer solution). These five injections can be seen as
the ”valleys” in the sensorgram, leading to drops in the signal by 30-100 Hz. These valleys
correspond to when control buffer (non reactive on the surface) is exchanged with a clinical
sample which may contain the targeted pathogenic material - in this case biological material
composing the viral structures causing Covid-19. The first valley is a control that is used
for determining the baseline. The second one is an injection with a negative control: a
sample that certainly does not contain pathogen. The third and fourth valleys correspond
to tested samples collected from a public transport vehicle, and the last valley is a positive
control: a sample that definitely contains coronavirus.

The biggest issue with the data available to this thesis is that the device did not save
any information about when certain events (such as change the liquid, start of the pump
and others) occurred. The intervals adjacent to each valley must be manually selected by
humans, because in some cases measurements followed a different procedure than normal,
which is not suitable for later analysis. The manual labeling of these intervals is time
consuming. When this process of injecting samples in the laboratory will be automated, an
operating software can easily save information when the injection happened (followed by
change in the RF). Here we define the data for segments of interest as Si, i = 1..5, where due
to the collection protocol, the length of each segment was not constant (due to non-constant
experimental protocols).

It would be useful to have an automated method that would incorporate segmentation
of each sensorgram (the RF over time) into a preprocessing phase. This approach would
need to be universal, however, is very difficult as the experimental results do not always go
as planned. For example, if a bubble appear during the injection the RF will change in an

16 CHAPTER 2. PREPARATION FOR CLASSIFICATION

unexpected fashion. In addition, the process of measurement is constantly changing at the
Institute of Physics according to the project needs.

For this thesis, segmentation by hand is in place until there exists a standardized way
of pre-selecting these data. Figure 2.2 shows manually selected intervals (referred as the
segments) of the plot. Each segment starts with the red line and ends with the black one.

Figure 2.2: Part of the measurement with the segments

2.2 Feature vectors

In order to classify data, one must first determine the feature values (sometimes only
referred as features) that form the feature vectors used in classification. A feature value
is typically a number that represents a property of the observation. In this case, several
types of feature values are used. The requirement is that the feature vectors must have the
same length even if the corresponding segments has different lengths.

The segments should ideally remain constant over time, but a drift, caused by changes
in temperature and other uncontrollable causes, is often present. It can be approximated
as an linear function in form of cx+ d = 0 using the least squares regression. This method
gives two parameters ci and di, where i = 1..5 is index of the segment. The parameter ci
represents the slope in the interval, while the parameter di is mainly affected by calibrated
resonant frequency. Every chip has different resonant frequency due to inconsistencies in the
factory process. In order to compare two measurements with different calibrated frequency,
the parameter di must be normalized by subtracting arithmetic mean of previous segment
i− 1. This will also help to reduce effect of linear drift.

Another appropriate feature values are arithmetic mean of the valuesmeani = 1
n

∑n
j=1 Si,j ,

the minimum minSi and the maximum maxSi, where i = 1 . . . 5 is the index of segment
and n is its size. All of these values are also normalized against previous segment.

2.3. TRAINING AND TESTING SET 17

To sum up, the feature values are ci, di−meani−1, meani−meani−1, mini−meani−1,
and maxi −meani−1. Since negative and positive controls are always known (second and
last segment, respectively), they naturally create two classes for classification. These values
create five dimensional feature vectors.

If there is a negative sample, the difference in the mean of Si between two following
segments should be close to zero. In other case (a positive sample) a change is observed. The
negative control is compared with the baseline segment, which only exists as an reference
for the negative control and it is not compared with any other interval. The last comparison
is between the positive control and the previous segment with an unknown sample from a
public transport vehicle. For the last comparison it does not matter if the unknown sample
was positive or negative, as there was an injection of control solution between each sample
injection: the change in pathogenic mass before and after the final injection is almost entirely
due to the addition of mass during the final injection (where the rate at which pathogenic
material falls off the chip is relatively small) [20]. The idea presented here is thus to use
only positive and negative control to train a ML algorithm.

2.3 Training and testing set

Definition 2.3.1 (Dataset). A dataset is a list of feature vectors commonly described as
an matrix X.

Definition 2.3.2 (Labels). A labels are a list containing only 1 or 0 (for two classes)
commonly defined as a vector y.

Definition 2.3.3 (Length of dataset). The dataset length (and also length of labels) is
defined as n.

Definition 2.3.4 (Classification). Classification analysis is when the outcome of a model
is a discrete number (class 1 or 0) to which the data belongs.

Definition 2.3.5 (Regression). Regression analysis is when the outcome of a model is a
real number (e.g., price of an asset or amount of the pathogen on the chip).

Positive and negative feature vectors are separated into training set, which is used for
training machine learning algorithm, and testing set, which is used for determining the
overall quality of algorithm. The training set is usually bigger than the testing set.

To sum up, the standard procedure is similar to following

1. split the dataset into a training and a testing set,

2. train a model using only the feature vectors from the training set,

3. compare predictions of a model with known observations from the testing set.

18 CHAPTER 2. PREPARATION FOR CLASSIFICATION

2.3.1 Evaluation of a model

Performance of a trained model can be evaluated by using the mean squared error
(MSE). If predictions are close to the observed data, the MSE would be lower. This can
be expressed as [21]

MSE =
1

n

∑
(yi − f(xi))

2,

where n is a size of training set, yi is a ith observation and f(xi) is prediction of a model
based on feature vector xi. The MSE measures the performance of predictions of a model
based on previously unseen data. The issue here is that the training and the testing set
can be easily affected by a selection bias. Only by splitting the dataset in a different
fashion, the model would produce diverse accuracy. This inconsistency could result in an
inadequate and unrealistic assumption of the MSE.

2.3.2 k-fold cross-validation (CV)

A popular method for decreasing the selection bias is k-fold cross-validation [22]. It is
a statistical method that estimates the precision of prediction of a model. It is commonly
used in machine learning predictive modeling due to its simplicity and reliable results with
a lower bias [23]. The procedure is made up of following steps [21]:

1. Randomly shuffle the dataset and divide it into k groups (or folds) with a similar size.

2. Choose one holdout (testing) set and train the model on the rest of the folds. Calculate
the MSE

2.3. TRAINING AND TESTING SET 19

3. Iterate through the folds k times using a different holdout set each time

4. Take the average of the measured MSEs

As the result, the overall MSE is calculated as

MSEoverall =
1

n
∗
∑

MSEj ,

where k is number of folds and MSEj is the jth iteration of MSE. The standard deviation
is often included with the mean on MSE. Values of k are usually 5 or 10 [24]. Lower
values of k lead to lower variance, albeit at the expens of higher bias. Similarly, the higher
variance comes with higher k, but gives lower bias. This phenomenon is known as bias-
variance tradeoff [25]. There are numerous modifications of k-fold cross validation. One of
them is called leave-one-out cross-validation, where k = n, so that every feature vector
creates its own holdout set [23]. Other variations of the algorithm include stratified, nested
or repeated k-fold CV.

Chapter 3

Machine Learning methods

Definition 3.0.1 (Statistical machine learning). Statistical ML finds predictive function
based on statistics and functional analysis of the data.

Definition 3.0.2 (Empirical risk). The error on the training dataset is called the empirical
risk. This is always known.

Definition 3.0.3 (Supervised learning). Supervised learning uses known labels to train
algorithm that later predict outcomes as accurately as possible.

Definition 3.0.4 (Unsupervised learning). An unsupervised learning algorithm discovers
patterns for clustering or association problems without prior knowledge of the data. It does
not need labels to be trained.

There are several suitable algorithms to analyse the regions. Artificial neural networks
are currently popular, but they require high amount of training data, which cannot be
obtained in this case. Suitable classifiers for this application are support vector machine,
adaboost, random forest, and k-nearest neighbors. These four will be explained in detail
and then compared between themselves.

3.1 SVM (Support vector machines)

Definition 3.1.1 (Hyperplane). In a D-dimensional space V , a hyperplane is a subspace
with dimension n− 1. In context of SVM, a hyperplane is an affine subspace which divides
V into two half spaces. A hyperplane can be defined mathematically by

wTx− b = 0,

where w ∈ RD is a normal vector to the hyperplane and b ∈ R is the bias.

Support vector machine [26, 27] is a machine learning algorithm used for both classifica-
tion and regression, but the former use is more widely approached. This supervised learning

20

3.1. SVM (SUPPORT VECTOR MACHINES) 21

model was developed by Vladimir Vapnik and his colleagues at AT&T Bell Laboratories.
It falls under the category of statistical machine learning. SVM maps feature vectors from
a training set to points in a space and then finds a hyperplane that divides the set into
two categories. This approach is similar to a perceptron, but SVM also maximizes the
gap (hard-margin) between the two classes. It can work not only with linear classification
(given by the hyperplane), but also with non-linear one using the so called kernel trick [28]
that map input vectors to a higher dimension. Soft-margin can even work on non-linearly
separable data.

3.1.1 Kernel trick

When a dataset is not linearly separable in the original feature space, the datapoints
can be mapped to a higher-dimensional space where a new separating hyperplane can be
sought. However, this can become computationally expensive if approached in a naive way.
This problem can be solved by using the kernel trick.

To determine an SVM classifier’s parameters the data must be transformed to a matrix
of scalar products of the individual datapoints. Let θ : X → V be a feature map, where
X is the original feature space and V if the new higher dimensional space. Instead of first
computing θ(x) for each individual datapoint x and then 〈θ(x), θ(x′)〉V for each pair of data
points, explicit formula for a function K given by

K(x, x′) = 〈θ(x), θ(x′)〉V

can be derived. Such function is called a kernel function. Using the optimized expression
for K can reduce computational cost significantly.

One of most used kernels, the radial basis function kernel (RBF) or Gaussian
kernel, is defined as

K(x, x′) = exp(−‖x− x
′‖2

2σ2
),

where ‖x− x′‖2 is a squared Euclidean distance, x, x′ ∈ X, σ is free parameter (sometimes
expressed as γ = 1

2σ2 . This kernel is used in the code as it performs well on a given dataset.

3.1.2 Hard-margin

A hard-margin classifier in linearly separable data finds two parallel hyperplanes that
separates classes so the distance between them is maximized. The region between these two
boundaries is called the margin. The maximum margin hyperplane lies exactly between
them. Assuming a normalized dataset, the equations that describe these boundaries are

wTx− b = 1,

and

wTx− b = −1.

22 CHAPTER 3. MACHINE LEARNING METHODS

Anything above (or below) is sample of class with label 1 (or −1 respectively). The
distance between boundaries is 2

‖w‖ . Thus, in order to maximize this number, one must

minimize the parameter ‖w‖ with constraints

wTx− b ≥ 1, if yi = 1

and
wTx− b ≤ −1, if yi = −1.

A simpler form is then

yi(w
Tx− b) ≥ 1, for i ∈ 1..n.

This problem falls within the category of optimization problems and can be expressed
as

Minimize ‖w‖ subject to yi(w
Tx− b) ≥ 1, for i ∈ 1..n.

After finding the w and b parameters, the classification for given x is done by

x 7→ sgn(wTx− b),

where sgn(·) is the sign function.

3.1.3 Soft-margin

Hard-margin can be extended to cases when the data are not linearly separable by using
a hinge loss function in the form of

max{0, 1− yi(wTxi − b)}.

This function returns 0 if the data point is correctly classified (i.e., lies on the correct
side of the margin.

The optimization task then changes to[
1

n

∑
{max 0, 1− yi(wTxi − b)}

]
+ C‖w‖2,

where C is the trade-off between correctly classifying the data point and increasing the
margin size.

3.1.4 Properties

Both hard- and soft- margins shows that SVM always finds the global optimum on
a training set. The size of a feature vector is not limited and can work with infinite-
dimensional spaces. Only w and b must be known to perform a prediction, which is fast to
compute, and trained model uses a little of storage space. In addition to this, the algorithm
can be modified to use more than two classes or be used for regression.

3.2. RANDOM FOREST 23

3.2 Random forest

The member of ensemble learning algorithm is random decision forest [29, 30], which can
serve as a classifier as well as regressors. It constructs a multiple decision trees when learning
and outputs a class with majority of votes from each tree, when used in classification.
Random forests are in a way extension of the decision trees, does not suffer from overfitting
and thus generally perform better. The first algorithm of this type was developed by Tin
Kam Ho in 1995 using the random subspace method. In 2006, the term ”random forests” was
registered as an trademark by Leo Breiman and Adele Cutler, who developed an extension
of Ho’s algorithm. They require almost no configuration and are simple to use. Their
predictions are reasonable across variety of applications.

3.2.1 Decision tree

Decision tree goes from root, uses branches for different observations (based on outcome
of a test in node) and leaves for final decision. One way to think about decision trees is to
treat them as an series of conditional statements. They are not only popular in machine
learning, but also in operations research or decision analysis. Single decision tree with high
depth tend to overfit as it has low bias, but high variance, and it is sensitive to noise.

3.2.2 Bagging

A way to decrease variance, but with the same bias is a method called bagging (or
bootstrap aggregating). Choose a natural number B and select random sample of an X
with replacement B times. Then fit the trees to selected samples. This could be expressed
as an iterative two step algorithm

For b = 1..B

1. Take portion of training set X and y named Xb, yb respectively

2. Build a decision tree fb from Xb and yb

Last step is to take unseen examples x′ = X
{Xb} and predict them by taking the mode of trained trees (also known as taking the
majority rule). These trees are not correlated as they are not trained from the same training
set. This method is called bootstrap sampling. The B parameter can be found using the
cross-validation.

3.2.3 Random forests

Random forests use very similar technique as the bagging one, but they use modified
learning algorithm that selects a random subset of features. This process is called feature
bagging. A reason for doing this is that in some cases one or more feature values are strong
predictors. Hence, they will be selected in many trees and that trees become correlated.

24 CHAPTER 3. MACHINE LEARNING METHODS

The feature bagging use only a portion of features from a feature vector. If feature vector
has length p, then the idea is to use only

√
p (rounded down) of features, but the number

depend on properties of the classified data.

3.3 k-nearest neighbors

Definition 3.3.1 (Manhattan distance). The Manhattan distance is distance between two
points. The distance d of points x, y ∈ RD, where D is dimension of the space in Cartesian
coordinates, is calculated as

d(x, y) = |x− y| =

√√√√ D∑
i=1

|xi − yi|.

Definition 3.3.2 (Euclidean distance). The Euclidean distance in Euclidean space is dis-
tance between two points. The distance d of points x, y ∈ RD, where D is dimension of the
space in Cartesian coordinates, is calculated as

d(x, y) = |x− y| =

√√√√ D∑
i=1

(xi − yi)2.

The k-nearest neighbors algorithm [31, 32] was developed by Evelyn Fix and Joseph
Hodges in 1951 and later extended by Thomas Cover. This non-parametric method is used
in classification as well as regression. In classification, the outcome is based on majority
of the k nearest neighbors and will be assigned to the most common class among them.
The number k is typically small. This method depends on the distance of the feature
vectors in space. Normalizing the datasets can drastically improve performance of a model.
Neighbors can be assigned with weights showing importance of an neighbor, so the closer
neighbor is, the more important is. Commonly used function to compute weights is 1

d ,
where d is distance between input vector and its neighbor. The k-NN is sensitive to noise
in training data as it could create a local cluster of wrong classified feature vectors.

The distance metric could be Euclidean distance (for continuous data), Hamming dis-
tance (for discrete data) or others. Algorithms Large Margin Nearest Neighbor or Neigh-
borhood component analysis can learn metric distance and improve overall model accuracy.

One problem of the majority voting based on the neighbors is when one class has signif-
icantly more members than the other class. An input has much higher probability to have
more samples of the first class in its neighborhood. One way to overcome this issue is to use
weightening function that takes into account distance between the input and its neighbors.
Another approach is to apply self-organizing map (SOM).

3.3.1 Selection of k

The parameter k depends on input data and can be properly selected by heuristic
functions. The higher the k is, the lower significance of noise is, but the boundaries between

3.4. RESULTS 25

classes are less distinct. Special case is when k = 1. This method is called the nearest
neighbor algorithm. In binary classification, the k should be odd number to avoid problems
with equal votes. The k value can can selected empirically by using the bootstrap method.

3.4 Results

Every method was tested using the k-fold algorithm with random shuffling in order to
lower the selection bias. The parameter k was set to 10. A leave-one-out approach could
produce better results, but at the price of potential overfitting. The results (in percentage)
are rounded to two decimal places and may vary through the section, because the feature
vectors are shuffled. The number of measurements used in classification is 53.

These three algorithms were chosen because they represent a unique point of view in
the machine learning world. The SVM tries to separate the two classes from each other
by drawing an hyperplane between them. The random forests construct multiple decision
trees based on observations and then opts for the class with most trees that predicted it.
On the other hand, the k-NN looks at the points clustered around an input to be classified
and decides on the basis of which class has the majority of the neighbors to belong to.

The implementation was left to the SciKit learn Python library, which provides addi-
tional classifiers such as AdaBoost, Gaussian Process, and others. However, even if using
the library, one should provide correct parameters for the methods. They were chosen by
evaluating different parameters and then compared between themselves. The function from
the library accepts more parameters than the ones discussed here. Some of them were omit-
ted, because their default values are already reasonable or are too specific to be tweaked
and mentioned here. If not mentioned, the default values provided by the library were used.

Figure 3.1 shows the manually selected segments for 40 measurements (of 53 total). The
overall dataset should be larger, but the process of measuring in the laboratory is demanding
both on personnel as well as time; the size of dataset will be bigger in the future. It can be
seen that the sensorgrams for each plot are cleary different from each other. One can see
drifts in the resonant frequency that are unique to each sensorgram.

26 CHAPTER 3. MACHINE LEARNING METHODS

Figure 3.1: Overview of 40 datasets along with manually selected segments

3.4. RESULTS 27

3.4.1 Parameters for the SVM

As was already stated, the SVM accepts C parameter as a cost of wrongly classified
points (applies only to soft-margin used here) and kernel function, which is one of radial-
based (RBF), polynomial (poly) or linear. The C parameter behaves similarly throughout
different kernels, with C = 50 as the optimal parameter. The best combination is with the
RBF kernel.

Table 3.1: MSE on testing set with various SVM parameters

Kernel / C 0.5 1 5 10 50 100

RBF 9.04 % 9.04 % 9.04 % 8.21 % 6.2 % 8.54 %
Poly 15.4 % 14.66 % 12.04 % 11.09 % 9.99 % 7.6 %

Linear 13.05 % 15.05 % 15.05 % 15.05 % 15.05 % 15.05 %

3.4.2 Parameters for the random forest

Random forest takes number of trees as the only input here. The classification is con-
siderably good in every case, but the n = 25 trees preforms the best. The random forest is
highly sensitive to randomly generated values used in the algorithm, so the results are not
stable and change with every execution.

Table 3.2: MSE on testing set with various random forest parameters

10 25 50 100 150

8.51 % 6.69 % 9.5 % 10.14 % 9.54 %

3.4.3 Parameters for the k-NN

The results when using Manhattan or Euclidean distance are close to each other, how-
ever the distance for the former is slightly better. A much bigger impact on the quality
of classifier is the number of neighbours; looking at only one nearest neighbour leads to
insufficient performance. Apart from that, the rest of the results are similar, but for the
best precision one should use k = 5 neighbours. This value was superior when using both
distances.

Table 3.3: MSE on testing set with various k-NN parameters

Distance / k 1 3 5 7 9 11

Manhattan 15.43 % 8.05 % 6.61 % 7.51 % 10.57 % 7.34 %
Euclidean 16.25 % 6.77 % 6.68 % 7.67 % 9.2 % 7.09 %

28 CHAPTER 3. MACHINE LEARNING METHODS

3.5 Comparison of the best results

3.5.1 Unfiltered resonant frequency

Even when using the segments with the unfiltered signal (resonant frequency vs time) the
accuracy is at least 70 % as seen in table 3.4. The SVM and the random forest have similar
results on the testing set. The k-NN is slightly worse. The MSE follows the same trend
as the error. The low error on training set is due to the use of data that has already been
seen; this number is usually lower than the error on testing set, but is also less significant.

Table 3.4: Error on unfiltered RF

Algorithm Testing set Training set

SVM (RBF kernel, C = 50) 29.0 % 19.38 %
Random forest (25 trees) 27.36 % 0.00 %
k-NN (k = 5, Manhattan) 26.45 % 19.08 %

Table 3.5: MSE on unfiltered RF

Algorithm Testing set Training set

SVM (RBF kernel, C = 50) 10.9 % 3.8 %
Random forest (25 trees) 7.73 % 0.00 %
k-NN (k = 5, Manhattan) 7.81 % 3.68 %

3.5. COMPARISON OF THE BEST RESULTS 29

3.5.2 Filtered resonant frequency

The error rates on the signal filtered with median filter and then with Savitzky-Golay
filter are lower. The biggest change can be seen in the SVM classifier. The relative im-
provement is 24 %. For this filtered data, the random forest performs very similarly to the
unfiltered data. The k-NN experienced 10 % increase of classifying precision. The errors
on the training set are almost negligible.

Table 3.6: Error on filtered RF

Algorithm Testing set Training set

SVM (RBF kernel, C = 50) 22.0 % 18.24 %
Random forest (25 trees) 26.73 % 0.31 %
k-NN (k = 5, Manhattan) 23.73 % 18.77 %

Table 3.7: MSE on filtered RF

Algorithm Testing set Training set

SVM (RBF kernel, C = 50) 6.2 % 3.35 %
Random forest (25 trees) 9.11 % 0.00 %
k-NN (k = 5, Manhattan) 6.61 % 3.54 %

Conclusion

Usefulness and future research

Quality and quantity of dataset

Clearly, better results would be given via the use of a larger dataset. However, the
laboratory measurements are slow to process, so the expected size of dataset is a few hundred
samples at most. This calls for models, those used in this thesis, that can be trained on
small datasets. Another problem discovered by this thesis is that knowledge of change in
the resonant frequency are necessary to avoid manual segmentation: not only is manual
segmentation time consuming, but it can also introduce an additional bias.

It is recommended to use standardized measurements in order to increase the accuracy
of predictions. With a performance over 70%, this method can be compared to antigen
tests of the Covid-19 presence [33]. On the other hand, the specialists in the laboratory
can examine the curve of the resonant frequency more thoroughly: analysis of similar data
revealed that the precision of the QCM crystals can be as good as a PCR test. This analysis
conducted by humans requires expertise which should be incorporated with the machine
learning algorithms and together provide fully automated, fast, and reliable performance.

Lower level of the noise

Another goal of the additional research would be to further lower the noise. For this
adjustments to both the hardware and software portions of the sensor are required. There
are aspects of the electronics that are outside of the scope of this the thesis. However, the
experts from Institute of Physics claims that the noise will be lower and with combination of
software tweaks, the results could be close to the performance of the PCR tests. One of the
troubles with current approach is that the curve is drifting mainly because of the changes
in the temperature, which results in significant shifts in the resonant frequency. A method
how to minimize this effect was discussed, but there is definitely room for improvement.

30

3.5. COMPARISON OF THE BEST RESULTS 31

The temperature compensation will be addressed not only in the software, but mainly in
the electronics itself.

Regression

The classification can only decide the class (positive or negative) of the sample. However,
the information about an amount of the present pathogen is very insightful. In this regard
regression algorithms can be used for non-binary decisions. Their output is a real number,
in this case a quantity of a measured pathogen. All of the methods presented here can
be modified to serve as an regressors. The whole interval of real number can be split into
smaller sub-intervals. Each sub-interval then describes a category. The prediction then falls
into one of four or five categories depending on ”how much positive” the sample is. This
approach is called an histogram.

Multi-class classifiers can be used in the case that the output would belong to one of
the intervals (the case of the histogram). These classifiers do not have binary output, but
rather have several classes to which the predicted data belongs.

Results evaluation

The characteristics of quartz piezoelectric biosensing crystals were discussed, as well
as how these sensors can be adjusted to detect coronavirus in complex samples. Devices
built on this basis could help control the coronavirus spread, which is currently a global
problem, by functioning as a cheap alternative to commonly used antigen or even PCR
tests. The effectiveness of the methods used in this thesis surpasses 70% accuracy on the
test dataset, i.e. QCM devices clearly have the potential to outcompete antigen tests in
regards to precision.

The path from a raw text output of an experimental QCM to a decision whether a
sample is positive or negative has been described; this includes an explanation of the data
format and the process of converting the data into a form suitable for AI analysis. A reliable
method for computing the resonant frequency was introduced, as well as how to overcome
the challenges encountered in their usage. To reduce the level of noise, a portion of the raw
data was fitted to a parabola using the least squares regression. A Savitzky-Golay filter,
combined with a median filter, then proved to reduce the noise even more.

In the current state, the data preparation phase is perhaps where most improvement
can be done. Hyperparameters in this process were chosen experimentally by hand, further
improvement is to be expected in an attempt of more sophisticated calibration. In addition,
all of the noise filtering methods used in this thesis are based on the least squares method.
Using more rigorous statistical methods may reduce noise even more.

Before the analysis itself, the data was splitted into the training and the testing set with
the help of the k-fold cross-validation algorithm to mitigate selection bias. The eligible
features formed the feature vectors used in the learning phase of the artificial intelligence
model. The mean squared error was defined as a mean of squared ratios of the wrongly

32 CHAPTER 3. MACHINE LEARNING METHODS

predicted data points by the model. This value was then used to compare the accuracy of
the classifiers. All of these methods are commonly used to ensure robustness of the final
model.

The support vector machines divides points in space into two categories with the use of
the kernel trick and soft-margin, which leads to some points to be wrongly classified. The
random forest algorithm works in a way as to build a number of decision trees and, by a
majority vote, decides if the sample is positive. The last algorithm, k-nearest neighbor,
looks at its neighbors and classifies the sample based on its observations. All of these
methods showed considerable results and performed with less than 30% error rate.

For a continuation of this research, the data in this thesis suggest that in order to improve
accuracy, more samples need to be gathered and in much better form. In the available data,
individual experiments are often inconsistent with events occurring at largely different times,
which adds variance to the noise observed and makes classification considerably harder.
Additional features on which to train the classifier could also be supplied, but this would
have to be followed by additions to the available dataset to avoid overfitting. Adjustments
in the electronics of the QCM device should decrease noise and provide clearer signal with
less noise. With a large enough dataset, the classification can be substituted by regression
algorithms that would not only show if the sample is positive, but also provide information
how much of the pathogen is present in the sample.

Bibliography

[1] Lan Lan et al. “Positive RT-PCR test results in patients recovered from COVID-19”.
In: Jama 323.15 (2020), pp. 1502–1503.

[2] Andreas Janshoff, Hans-Joachim Galla, and Claudia Steinem. “Piezoelectric mass-
sensing devices as biosensors—an alternative to optical biosensors?” In: Angewandte
Chemie International Edition 39.22 (2000), pp. 4004–4032.

[3] Renee L Bunde, Eric J Jarvi, and Jeffrey J Rosentreter. “Piezoelectric quartz crystal
biosensors”. In: Talanta 46.6 (1998), pp. 1223–1236.

[4] Stuart Russell and Peter Norvig. “Artificial intelligence: a modern approach”. In:
(2002).

[5] John McCarthy. “What is artificial intelligence?” In: (2007).

[6] Sotiris B Kotsiantis, I Zaharakis, P Pintelas, et al. “Supervised machine learning: A
review of classification techniques”. In: Emerging artificial intelligence applications in
computer engineering 160.1 (2007), pp. 3–24.

[7] Michael I Jordan and Tom M Mitchell. “Machine learning: Trends, perspectives, and
prospects”. In: Science 349.6245 (2015), pp. 255–260.

[8] World Health Organization et al. “Coronavirus disease 2019 (COVID-19): situation
report, 73”. In: (2020).

[9] Sebastian Raschka. Python machine learning. Packt publishing ltd, 2015.

[10] Thomas Kluyver et al. Jupyter Notebooks-a publishing format for reproducible com-
putational workflows. Vol. 2016. 2016.

[11] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.
org/10.1038/s41586-020-2649-2.

[12] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

34

BIBLIOGRAPHY 35

[13] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Ma-
chine Learning Research 12 (2011), pp. 2825–2830.

[14] Cynthia Dwork et al. “Calibrating noise to sensitivity in private data analysis”. In:
Theory of cryptography conference. Springer. 2006, pp. 265–284.

[15] Thomas H Lee and Ali Hajimiri. “Oscillator phase noise: A tutorial”. In: IEEE journal
of solid-state circuits 35.3 (2000), pp. 326–336.

[16] Sanford Weisberg. Applied linear regression. Vol. 528. John Wiley & Sons, 2005.

[17] Ronald W Schafer. “What is a Savitzky-Golay filter?[lecture notes]”. In: IEEE Signal
processing magazine 28.4 (2011), pp. 111–117.

[18] BI Justusson. “Median filtering: Statistical properties”. In: Two-Dimensional Digital
Signal Processing II. Springer, 1981, pp. 161–196.

[19] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine
learning. MIT press, 2018.

[20] Todd M Squires, Robert J Messinger, and Scott R Manalis. “Making it stick: con-
vection, reaction and diffusion in surface-based biosensors”. In: Nature biotechnology
26.4 (2008), pp. 417–426.

[21] Zach. An Easy Guide to K-Fold Cross-Validation. https://www.statology.org/k-
fold-cross-validation/. [Online; accessed 08-May-2021]. 2020.

[22] Tadayoshi Fushiki. “Estimation of prediction error by using K-fold cross-validation”.
In: Statistics and Computing 21.2 (2011), pp. 137–146.

[23] Jason Brownlee. A Gentle Introduction to k-fold Cross-Validation. https://machinelearningmastery.
com/k-fold-cross-validation/. [Online; accessed 08-May-2021]. 2018.

[24] Gareth James et al. An Introduction to Statistical Learning. 2013.

[25] Mikhail Belkin et al. “Reconciling modern machine-learning practice and the classical
bias–variance trade-off”. In: Proceedings of the National Academy of Sciences 116.32
(2019), pp. 15849–15854.

[26] William S Noble. “What is a support vector machine?” In: Nature biotechnology 24.12
(2006), pp. 1565–1567.

[27] Support-vector machine. https://en.wikipedia.org/wiki/Support- vector_

machine. [Online; accessed 12-August-2021]. 2021.

[28] Bernhard Scholkopf. “The kernel trick for distances”. In: Advances in neural infor-
mation processing systems (2001), pp. 301–307.

[29] Gérard Biau and Erwan Scornet. “A random forest guided tour”. In: Test 25.2 (2016),
pp. 197–227.

[30] Random forest. https://en.wikipedia.org/wiki/Random_forest. [Online; ac-
cessed 12-August-2021]. 2021.

[31] Leif E Peterson. “K-nearest neighbor”. In: Scholarpedia 4.2 (2009), p. 1883.

36 BIBLIOGRAPHY

[32] k-nearest neighbors algorithm. https://en.wikipedia.org/wiki/K- nearest_

neighbors_algorithm. [Online; accessed 12-August-2021]. 2021.

[33] Bo Diao et al. “Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis
of SARS-CoV-2 infection”. In: Clinical Microbiology and Infection 27.2 (2021), 289–
e1.

Appendix

• thesis.pdf - the thesis itself

• thesis.zip - contains LaTeX source files

• notebooks.zip - contains various notebooks used in this thesis

38

