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Department of Computer Science
Supervisor: Ing. Matej Uhŕın
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Abstrakt

Tato bakalářská práce zkoumá př́ıležitosti pro generováńı profitu na sázkařských
trźıch pro smı́̌sená bojová uměńı (MMA) za pomoci strojového učeńı. Oficiálńı
data z Ultimate Fighting Championship (UFC) byla shromážděna za účelem
předpov́ıdáńı výsledk̊u budoućıch zápas̊u pomoćı navržené neuronové śıtě. Ex-
perimentálńı ztrátové funkce byly použity ke sńıžeńı korelace s předpovědmi
bookmakera s ćılem využ́ıt výhodněǰśı pozice sázkaře v porovnáńı s bookmak-
erem. Kellyho kritérium a jeho alternativńı podoba pro v́ıce souběžně ko-
naných zápas̊u byly následně aplikovány jako kritérium pro alokaci finančńıch
zdroj̊u na sázkařské př́ıležitosti. Pro zhodnoceńı navrženého modelu společně
s dvěma strategiemi sázeńı byla využita metoda bootstrap, která zvyšuje
pravděpodobnost, že dosažený profit neńı výsledkem náhody.

Kĺıčová slova bojové sporty, smı́̌sená bojová uměńı, sázkařské trhy, stro-
jové učeńı, neuronové śıtě, sportovńı analýza, strategie sázeńı
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Abstract

This work examines the opportunities for profit generation on the mixed mar-
tial arts (MMA) betting market using machine learning. Official data from
the Ultimate Fighting Championship (UFC) was acquired and processed to
be used by the proposed neural network model to predict fight outcomes. Ex-
perimental loss functions decreasing correlation with bookmaker’s estimates
were used in the training process to exploit the discussed advantage a bettor
holds over a bookmaker. The Kelly Criterion and its alternative for simulta-
neous games were then applied as wealth allocation policies on historical odds.
The model and the two betting strategies were assessed using the bootstrap
method to rule out any randomness of the achieved betting returns.

Keywords combat sports, mixed martial arts, betting markets, machine
learning, neural networks, sport analysis, betting strategies
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Chapter 1
Combat sports

To defeat an opponent using allowed techniques in a one-on-one fight is the ul-
timate objective of combat sports. Rules of individual combat sports, though,
differ a lot. Differences are found mainly in the techniques contestants are
allowed (or forbidden) to execute, but even definitions of victory vary across
different sports.

1.1 History

Thousands of years old cave paintings depicting men taking part in wrestling
activities from different corners of the world serve as proof, that forms of mock
combat were a worldwide phenomenon long before globalization took place.

In terms of modern sport, boxing was the first combat sport to achieve
mass recognition. Amateur boxing has been part of the Olympic Games ever
since their re-introduction in 1904 and professional boxing was undoubtedly
one of the most popular sports in the 20th century, producing celebrities like
Muhammad Ali or Mike Tyson. Many more combat sports emerged during
the 20th century though, usually built on the foundations of various martial
arts or their combinations.

And it was the blatant differences across different combat sports and mar-
tial arts that gave birth to the arguably most popular combat sport of the
21st century which will be the main point of focus of this thesis.

1.2 Mixed Martial Arts

The name of the wealthiest promotion - The Ultimate Fighting Championship
- tells a lot about the nature of Mixed Martial Arts (hereafter referred to as
MMA). It was born to find the superior fighting style. The initial lack of
rules lured masses of fans, but eventually proved controversial and resulted in
political backlash.
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1. Combat sports

In the search for lawfulness and thus business profitability, efforts were
made to standardize MMA in the early 21st century. Despite there still being
countries not recognizing MMA as a sport or even banning it, these now rep-
resent minority and their numbers are further diminishing. Globally, though,
most big markets already recognize MMA as a legitimate sport rather than a
no-rules spectacle. This transition allowed sports betting companies to start
booking the fights and, consequently, MMA to become dubbed the world’s
fastest-growing sport.

1.2.1 Fighting promotions

As in professional boxing, MMA events are organized by promotions. The
aforementioned Ultimate Fighting Championship (UFC) is by far the most
successful and popular promotion worldwide. Examples of other promotions
are Absolute Championship Berkut based in Russia or the Czech-Slovakian
Oktagon. The rules might differ slightly across promotions, all must comply
with the Unified Rules of MMA [1], though.

1.2.2 Techniques

Techniques used in MMA can be categorized into two categories: striking and
grappling. Striking techniques include kicks, knee strikes, punches, and elbow
strikes. Grappling techniques include clinch holds, pinning holds, submission
holds, sweeps, throws, and takedowns.

1.2.3 Bout outcome

A fight usually results in a victory achieved by:

• judges’ decision after an allotted amount of time has elapsed or

• knockout/technical knockout or

• submission.

Judges’ decision can result in a draw, this is, however, very unusual. Disqual-
ification or ’No contest’ decision can occur in case of breach of rules.

1.2.4 Rounds

Traditionally, MMA matches are separated into 5-minute rounds. The major-
ity of fights consist of three rounds, title bouts being an exception and lasting
five rounds. There is a 1-minute break between rounds.
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1.3. Betting

1.2.5 Combat area

All MMA contests take place in either a cage or a ring that meet certain
requirements.

1.2.6 Attire

All fighters are required to fight with gloves and a mouthguard for protection.
Male fighters must wear shorts, a protective genital cap, and be barechested.
Female fighters ought to wear short shorts and a snug-fitting top such as sports
bras.

1.2.7 Weight Divisions

To ensure fairness and an entertaining spectacle, only fighters of similar weight
can fight each other. Promotions define their weight divisions with strict
boundaries and every match is scheduled for a fixed weight division.

1.2.8 Events

On the professional level, fights are not stand-alone events. Rather than that,
about a dozen of fights are usually grouped to form a fight night.

1.3 Betting

Betting has accompanied sport ever since the ancient Olympic Games [2] and
the link is just as tight when it comes to combat sports.

1.3.1 Betting opportunities

Due to the ever-increasing regularity of sports events and accessibility of online
gambling services, the number of opportunities bettors can place their bets
on keeps growing. In combat sports, two types of betting opportunities can
be distinguished: betting on a winner and propositional bets.

Betting on the winner of a fight is the most traditional form of betting.
Noticeably in MMA, a bet cannot be placed on a draw even though it is a
possible outcome.

Propositional bets allow betting on a fight in other ways. Bets can be
placed on whether the fight would end in a submission, knockout, or judges’
decision, other opportunities offer odds on the length of the fight, etc. These
opportunities vary a lot across different bookmakers and they also depend on
the eminence of a fight.
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1. Combat sports

1.3.2 Odds

Betting odds reflect the bookmakers’ estimation of how likely is an event to
happen. Depending on available information and market movements, odds
can change in time. From this perspective, we distinguish between opening
odds (first odds issued by the bookmaker on an opportunity) and closing odds
(odds just before the start of the event).

1.3.3 In-play betting

Online gambling gave birth to a whole new form of betting. In-play betting
refers to wagering on an event that has started but not yet finished. Here,
gamblers have the option to continue to bet once an event has started, and
adapt their bets depending on how the event is progressing [3].

In UFC, the popularity of in-play betting is still very low with only 8% of
bets placed in-play, compared to 70% in tennis [4]. This, however, is likely to
change thanks to the UFC Event Centre which is the industry’s first sports bet-
ting product created specifically for a major sports brand offering live statistics
and live betting opportunities [5].
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Chapter 2
Existing research

With the surge in popularity and with a substantial amount of publicly avail-
able data, MMA has recently enjoyed an increasing volume of analysis.

2.1 Sport analysis

Most of the works have focused on describing the sport in terms of underlying
numbers, trying to objectively find trends, patterns, implicit rules, or any
sort of regularity in otherwise very subjective and unpredictable sport. The
ultimate goal of these studies is to find implications with regards to improving
training design, training efficiency, or in-fight strategies.

In [6], authors tried to determine performance indicators (and their com-
binations) contributing the most to the bout outcome. Rate-dependent data
(relative to fight length) proved superior when analyzing data for an outcome.
Their findings, that landed ground strikes, grappling activity, and striking
accuracy are the decisive indicators, are, however, in sharp contrast with the
results of a different work [7] which identifies striking while keeping distance
as the ”best approach to increase the athletes’ chance of performing well in
a bout.” The authors contemplate the difference potentially being caused by
the usage of different statistical methods or the usage of parametric data in
a non-parametric setting. In other research, [8] provides insights into statis-
tical differences between individual weight classes, frequencies of actions in
individual rounds of a fight, or the ratio of high and low-intensity effort.

2.2 Outcome prediction

Another way to use data, statistics and machine learning methods is to try to
predict future outcomes, in our context meaning prediction of the winner of a
bout yet to occur. The main dissimilarity between these two approaches stems
from the different information used to train classifiers (training data). The
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2. Existing research

already presented studies’ training data consisted of data collected exclusively
within the given fight. This approach yields valuable information about how
much each variable contributes to the final outcome. However, it cannot be
used for predictive purposes as the necessary data is only available after the
fight has finished.

Arguably due to the unpredictability and novelty of MMA, the research
conducted on predicting outcomes is relatively sparse in this domain.

In [9], the author uses logistic regression for building a prediction model
using cumulative career statistics for each fighter prior to the examined fight.
He compares the performance of models trained on data including either ba-
sic count variables (e.g. total strikes landed) or second-level variables (e.g.
striking ratio). Separately, the former outperformed the latter, but the best
predictive accuracy was achieved by combining the most significant variables
from both categories. Such model was also superior to simple prediction mod-
els based on random chance or winning percentage.

In [10], multiple learning algorithm for UFC fight prediction are compared.
The Support Vector Machine (SVM) method proved to be the most resilient
and, paradoxically, achieved the best performance when trained on raw data.
Worth noting, the authors believe the used dataset has much room for im-
provement that could, possibly, have a positive impact on the performance of
the whole model.

Even though these works show promising results, they do not try to fully
optimize the models for either predictive accuracy or profitability. Some meth-
ods, for example, neural networks, multi-level models, or the introduction of
more advanced features have all been untapped in the context of MMA, as has
been the application of machine learning methods on MMA betting markets.

More profound research of this type has been carried out in other sport
disciplines.

2.3 Other sports

Apart from other combat sports, such as boxing, which to our knowledge is yet
to be analyzed in any way, drawing comparisons to other disciplines is fairly
difficult due to the one-on-one nature of MMA and the fact, that fighters
usually take months-long breaks between individual bouts. Among popular
sports, the highest degree of similarity with MMA can be found in tennis,
table tennis, and badminton.

Compared to previous state-of-the-art tennis prediction models, improve-
ment in profitability on tennis betting markets has been achieved with an
artificial neural network-based model in [11]. The model owes its success
partly to weighting historical matches during feature extraction. More rele-
vant matches such as those played recently or on a given surface carry more
weight than other matches.
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2.3. Other sports

Instead of maximizing predictive accuracy, authors in [12] introduce and
confirm a hypothesis that ”correlation of outcome predictions with the book-
maker’s predictions is detrimental for the bettor, and that suppressing such
correlation will result in models allowing for higher profits”. Using convolu-
tional neural networks and adapting modern portfolio theory they arrive at
a model systematically generating cumulative profits in experiments on NBA
data. Models trained with decorrelation loss function yielded higher profits,
despite lower prediction accuracy.

An extensive overview of the use of machine learning in sport outcome
prediction is provided in [13], where over a hundred papers were analyzed, yet
no piece on the topic of combat sports was included in the final work.
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Chapter 3
Problem definition

This work aims to maximize profit on the MMA betting market with a fo-
cus on long-term robustness. This includes finding a predictive model and
implementing a betting strategy.

3.1 Constraints

Since propositional bet offers vary a lot among individual fights, we limit
ourselves to wagering on an outright winner.

We also leave out any in-play betting opportunities as this would require
collection and processing of real-time data which is beyond the scope of this
work.

3.2 Measurement of profit

Return on investment will be used throughout this work as a measure of
profitability. It uses the following simple formula:

ROI = W cur −W 0

W 0 (3.1)

where

W cur . . .Wealth in the moment of measurement
W 0 . . . Initial wealth
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Chapter 4
Proposed solution

This chapter describes the proposed solution to achieving the goal set in Chap-
ter 3. It explains in detail the data and the methods used, plus the reasoning
for their selection.

Models were implemented in Python using the PyTorch library [14], data
were manipulated using the Pandas library [15]. The entire codebase, plus
information on how to navigate within the project, can be found in a public
repository [16].

4.1 Data

Historical data about UFC fights were acquired from publicly available on-
line sources. Three types of data were obtained: fighters’ information and
fights stats from the official UFC website ufcstats.com, and betting odds from
bestfightodds.com.

4.1.1 Fighter details

The fighter detail pages at ufcstats.com provide information on all fighters
who have ever taken a fight in the UFC. It contains personal information such
as date of birth, height, weight, reach and stance and also career statistics
such as the average number of significant strikes landed per minute.

The provided career statistics, however, hold no value to us. That is
because the values are calculated relative to the day the data were acquired,
which would represent future information in the training process of a classifier.
Thus, these data were discarded and will not appear further in this work.

A similar argument could be raised regarding the fighters’ personal infor-
mation, as, apart from the date of birth, all other attributes are potentially
volatile. This issue may be comfortably ignored for the height and reach of
a fighter since no fighter younger than 19 years or older than 47 years has
ever taken part in a UFC bout and this range provides certainty of little-to-no
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4. Proposed solution

change in these aspects. As per weight, we choose to discard this information
as well thanks to the fact that fighters often change weight divisions through-
out their careers.

The stance attribute describes which foot the fighter favours as his front
foot when facing an opponent. Three categories of stance exist - orthodox
(right foot preference), southpaw (left foot preference), and switch (no pref-
erence). With the assumption, that any change in a stance within a career
would result in the fighter falling into the switch category, we decide to keep
using this piece of information.

4.1.2 Fights data

This dataset contains information on individual fights. It includes basic infor-
mation about the bouts such as names of participants, weight division, result,
and length of a fight, but importantly also statistics recorded during the fight.

In total 28 measured statistics were obtained for each fight. Generally
speaking, they describe the number of strikes landed or attempted by each
fighter, the part of the opponent’s body they targeted, takedown and submis-
sion attempts, knockdowns, reversals, and for how long they controlled the
opponent.

R TOTAL STR. R TD R SUB ATT R CTRL R HEAD R BODY R DISTANCE R GROUND
9 of 14 0 of 2 0 2:12:00 6 of 11 1 of 1 9 of 14 0 of 0

Table 4.1: Example of the statistics collected within a fight (does not include
all collected variables)

4.1.3 Odds data

Closing odds on the outright winner for 4240 UFC fights that took place
between 21st March, 2010 and 14th March, 2020 were obtained from best-
fightodds.com. Hereafter, we only take into consideration these 4240 fights we
managed to obtain odds data for and the contestants who took part in them.

4.2 Feature extraction

4.2.1 MMA bout representation

Before explaining how data were manipulated to produce features, let us first
discuss the representation of data in the learning and prediction process.

To train a predictive model using supervised machine learning methods,
a set of labeled examples is needed. In the case of MMA bout prediction,
one example corresponds to one historical bout. Each entry in a training set
consists of two parts:

12
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4.2. Feature extraction

1. A vector of features (X), in our case representing the characteristics of
the bout and the contestants

2. A label (y), in our case representing the bout outcome.

A trained model can then be used to compute result probability estimation
for future bout using a vector of the same features describing the upcoming
match.

4.2.2 Bout outcome representation

In a UFC bout, fighters are distinguished by the colour of their corner. The
higher ranked contestant fights out of a red corner, their opponent out of a blue
corner. Hereafter, I will refer to the former as a ’Red fighter’ and the latter
as a ’Blue fighter’. Since we are restricted to betting on an outright winner,
our representation of bout outcome is equivalent to a representation of bout
winner, which only allows two values thus making it a binary representation.
The label value can be accordingly defined as:

y =
{

1, if Red fighter won
0, if Blue fighter won

All matches that did not end in a victory of either contestant were removed
from the training dataset.

4.2.3 Missing values

Thanks to different sources of data, inconsistencies in the fighters’ names
occurred across individual datasets resulting in us not being able to match
some entries. Furthermore, some fighters’ personal information is also missing.
This reduces the number of fights with all information available to 3712.

4.2.4 Historical averaging

To be able to effectively predict an outcome of a fight, information on both
fighters is needed. As described in 4.1.1, some values are easily accessible
before the bout commences, however, for the vast majority of performance
indicators, values must be estimated based on past performances. Historical
averaging represents a simple method of doing so.

In Table 4.2, the process of obtaining historical averages is illustrated on
the Khabib Nurmagomedov vs. Pat Healy fight from 21st September, 2013.
In this example, the number of significant strikes landed by Nurmagomedov
is estimated by finding all his previous bouts, extracting the desired statistics
from each respective bout, and computing an arithmetic mean from these
values.

13



4. Proposed solution

Fight Significant strikes landed Fight length (s)
vs. Trujillo 23 900
vs. Tavares 22 115
vs. Tibau 25 900

vs. Shalorus 35 848
Per bout average 26.25

Per minute average 2.28013

Table 4.2: Illustration of historical averaging

Using simple arithmetic mean has its flaws that stem mainly from the
nature of MMA. Looking at the example, the higher the estimated value of
significant strikes landed for Nurmagomedov, the better we expect he had
done in his past fights. Yet in one of the most glorified bouts in UFC history,
the winner landed mere 5 significant strikes as Connor McGregor achieved
victory by knockout within 13 seconds of the first round. MMA bouts can
last anywhere between a couple of seconds and 25 minutes, therefore adjusting
estimates to bout length should provide more accurate estimates.

For that reason, instead of using naive ’per bout’ averaging, we decide to
obtain per minute averages which can be defined as:

x =
∑n

i=1 xi∑n

i=1 ti

60

(4.1)

where:

x . . . target statistic estimate
xi . . . statistic recorded in ith past fight
ti . . . length of the ith past fight in seconds

4.2.5 Weighted averaging

Even when accounting for the length of a fight, we still assume that each of
the fighter’s past bouts contributes equally to their current state, which is a
rather naive approach, considering the wide range of factors influencing the
significance of a past bout in the assessment of fighters current abilities. This
problem can be addressed by implementing weighted averages, giving higher
weights to bouts with higher relevance.

With regards to 4.1, we define weighted per minute average as:

x =
∑n

i=1wi · xi∑n

i=1 wi·ti

60

(4.2)
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4.2. Feature extraction

where:

wi . . .weight of ith past fight, wi ∈ (0, 1)

The most evident factor that influences the relevance of a fight is the
amount of time elapsed since it took place as we can expect that fighter’s
recent bout reflects their current abilities more accurately than an older bout.
This can be reflected by assigning weights using different functions. We opt
to compute the weights by an exponential function:

wi = δ∆t (4.3)

where

δ . . .discount rate, δ ∈ (0, 1)
∆t . . . time elapsed since the ith fight

Weights could be potentially fine-tuned to reflect things such as past head-
to-head matches or fights with common opponents. Another potentially huge
factor might be the styles of previous opponents as before each match, one of
the most discussed topics in the MMA community is the difference in styles
of each fighter and how they can cope against a given style. If these debates
are justified, past bouts against fighters with similar attributes to those the
contestant is about the face might be assigned higher weights.

4.2.6 Form-related features

It is hard to deny that psychology has a great effect on all performers, MMA
fighters included. Fighters’ mental states could therefore offer a very im-
portant indicator of the outcome of an upcoming fight. Unfortunately, such
information is difficult to represent and even more difficult to capture without
access to fighters.

But what we can do with our data, is to take into account the recent and
overall form of a fighter, assuming that past performances have an effect on
future performances. For this reason, we added three features to our existing
set of features - winning streak, losing streak, and winning percentage.

4.2.7 Debuts

An issue that arises with historical averaging is the representation of fighters
making their UFC debuts. Despite the fact that the fighter entering UFC for
the first time could be very experienced with tens of wins to his name, his
UFC record is nonexistent, making it impossible to extract features from our
bout database. We decide to leave out all fights including at least one fighter
making their debut.
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4. Proposed solution

4.3 Model selection

Any supervised machine learning method could be used for the problem of
predicting MMA bouts [10]. A technique that is yet to be explored in the
context of combat sports, despite its global popularity in both research and
industry, is the artificial neural network.

4.3.1 Artificial neural networks

Inspired by the functioning of the human brain, an artificial neural network
is based around the concept of neurons that combine inputs to an output
which is then passed to other neurons. Neurons are represented by nodes
which are typically organized into layers. The output of a neuron in a layer
is first computed using its input values and weights and then fed forward to
all neurons in the following layer. The output is calculated using a nonlinear
function:

f(x) = σ(wT x + b) (4.4)

where

σ . . .nonlinear activation function
w . . . vector of neuron’s weights
x . . . vector of input values
b . . .bias

4.3.2 Network architecture

Regarding the network structure of our choice, single hidden layer neural
networks with any continuous bounded nonlinear activation functions can form
decision regions with arbitrary shapes [17] and approximate any continuous
function [18], therefore we stick to such architecture in this work.

Our output layer, producing the probability of Red fighters’ win, employs
the Sigmoid activation function which is useful for the representation of prob-
ability as it only produces a positive outcome in the range from 0 to 1:

σ(x) = 1
1 + e−x

(4.5)

The hidden layer could be used with a plethora of activation functions.
We decide to implement a novel activation function dubbed either Swish or
Sigmoid Linear Unit (SiLu), which has the potential to outperform the much
recognized ReLu function [19]. Its definition uses the Sigmoid function defined
in 4.5:

SiLu(x) = x · σ(x) (4.6)
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Figure 4.1: Artificial neural network architecture

4.3.3 Training algorithm

Neural networks can be trained in a variety of ways, but the most common
approach is called back-propagation. In the training process, the model com-
putes and propagates values through the network to the output layer which
is called the forward pass. The quality of the output values in comparison
with the ground truth target values is then evaluated using a chosen criterion
- a loss function. The results are propagated back (hence back propagation)
through the network in order to update the model’s weights [20].

The network iterates over many cycles until reaching an acceptable loss
function value. Most commonly, Gradient-based methods, which are known to
converge to a local minimum, are utilized for minimization of the loss function.
The weights update in iteration t+1 can be described as [21]:

wt+1 = wt − µ · ∇J(wt) (4.7)

where
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µ . . . learning rate
∇J(wt) . . . gradient of the loss function

In our implementation, we stick with the trusted algorithm of stochastic
gradient descent (SGD) with momentum. The bouts are propagated through
the network in batches of a certain size, the propagation of all training samples
(in 1 or more batches) is labeled as an epoch.

4.3.4 Loss functions

Traditionally, binary cross-entropy (BCE) loss function is used in binary clas-
sification problems. However, the choice of a loss function is typically regarded
as an empirical problem and for all convex loss functions, the sign of the min-
imum of the expected risk coincides with the Bayes optimal solution [22].

BCE = y · log(x) + (1− y) · log(1− x) (4.8)

where

x . . . output of a neural network
y . . . ground truth target value

4.3.5 Regularization

Prevention of overfitting is one of the biggest challenges when searching for a
classifier. Dropout represents a simple method addressing the problem for neu-
ral networks with little extra computational effort. The idea behind dropout is
to simulate training of multiple neural networks at once, resulting in a superior
classifier that is less prone to overfitting. This is achieved by randomly (with
a predefined probability) dropping out units and their connections from a net-
work during training. A network with n nodes can then be seen as collection
of 2n different possible reduced neural networks [23].

Another cheap way to improve generalization is early stopping. In the
optimal scenario, once overfitting begins to happen in the training process,
validation loss begins to rise which might be seen as the moment to cease the
training loop. In practice, validation loss might be reaching multiple local
minima before severe overfitting emerges [24]. We utilize this fact by letting
the training loop run over a fixed number of epochs and saving the model that
achieved the all-time lowest validation loss.

4.3.6 Hyperparameter optimization

Based on experiments, observations, and suggestions in other works, some
parameters were fixed and others’ values were restricted to a reasonable range
to reduce the computational complexity of hyperparameter optimization.
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Figure 4.2: The left figure shows a standard neural network with two hidden
layers. The right figure represents an example of a neural network reduced by
applying dropout during the training process. Image retrieved from [23].

Discount rate for time-discounting of past bouts
After training a neural network with fixed parameters on different datasets
using different discount rates, we measured the performance of the neural
network on the validation dataset. The different discount rates yielded very
similar results with no major trend or relationship apparent. We decide to
fix the discount rate at δ = 0.4 which marginally achieved the best validation
loss, but we assume that the discount rate should not have drastic effects on
the classifier.

Figure 4.3: Results of a neural network trained using datasets with different
discount rates for time-discounting
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Learning rate of the SGD optimizer
With a relatively small training dataset, we can afford to set the learning rate
low, which is said to significantly improve generalization on complex problems
[25], without suffering from too long training times. Using a trial-error ap-
proach we arrived at the learning rate µ = 0.00008.

The rest of the hyperparameters, including the number of nodes in a hidden
layer, the momentum of the SGD optimizer, dropout rate, and batch size,
were optimized using a hyperparameter optimization framework Optuna [26].
Computational resources for finding the optimal hyperparameters were sup-
plied by the project ”e-Infrastruktura CZ” (e-INFRA LM2018140) provided
within the program Projects of Large Research, Development, and Innovations
Infrastructures.

4.4 Accuracy versus profit

Forecasting accurately and forecasting profitably are not equivalent. None of
the two necessary implications, which are often implicitly present in (sports)
forecasting studies, are valid. Both implications fail due to more complex re-
lationships caused by the presence of a bookmaker, whose error distribution
in comparison with bettor’s error distribution vastly influences the betting
returns. In some cases, profitable strategies might also be a result of ran-
domness, but chances of arriving at such strategy decrease with an increasing
number of bets placed [27].

More often than not, maximization of accuracy is the default approach
when training a predictive model and that is well justifiable in many appli-
cations, where reaching the highest possible accuracy is the ultimate goal of
the model. This might include models used by individual sportsmen or sports
teams to analyze their own or opponent’s game, ranking systems, bookmakers’
models, or, specifically in the combat sports field, models for creating equal
and therefore likely entertaining match-ups. However, such an approach can
lead to sub-optimal results on the betting markets.

By aiming for a model that optimizes predictive accuracy, a bettor gives
away one of the biggest advantages he holds over a bookmaker. While book-
maker has no option but to try to predict the real probabilities of uncertain
events, a bettor has the freedom to choose the opportunities he finds profitable
given the bookmakers’ offered odds. In other words, the bettor does not need
to predict the exact probability of any event, it is enough for him to identify
opportunities where the bookmaker undervalued the probability and therefore
offers higher odds. This task is substantially easier than the one bookmakers
face [28].

This concept is rather theoretical and indeed, success on betting markets
can be achieved with a model trained for maximal accuracy, but even in prac-
tice, it is becoming increasingly difficult to beat a bookmaker through a model
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with higher predictive accuracy as betting companies employ teams of data
analysts and likely possess richer and more granular data from third-party
data providers. Moreover, betting companies’ odds are not a direct reflection
of bookmakers’ probability estimates since they incorporate a profit margin,
which offers them space for error and, in the long run, guarantees them profit.

4.4.1 Decorrelation

As shown in [27], in situations where the bettor’s predictive model achieves
equal or lower predictive accuracy than the bookmaker’s model, betting re-
turns decrease with increasing error correlation between the two models. To
put it another way, if a bettor is unable to beat a bookmaker in predictive
accuracy (which is very likely as described in previous paragraphs), then hav-
ing similar estimates as bookmaker results in lower profit. Therefore, it might
be desirable for a bettor to intentionally decrease the correlation between his
model’s and bookmaker’s probability estimates. I will further refer to this
concept as decorrelation.

Figure 4.4: Effect of error correlation on betting returns. Numbers in the
scenario descriptions refer to the bookmaker and bettor errors respectively.
Image retrieved from [27].

In the context of machine learning, decorrelation can be encouraged in
several ways. One approach could lie in playing with the weights of training
examples based on the bookmaker’s odds by highlighting the importance of
opportunities, where the underdog (in terms of odds) succeeds, with higher
weights. While the actual calculation of weights may differ as explored in [12],
they all cause high-odds outcomes to contribute more to the training error.
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This, in theory, forces the model to identify opportunities where bookmaker
underestimates the underdog’s chances.

Another, more subtle, neural network-specific solution lies in slightly chang-
ing the objective of the training process by adjusting the loss function. The
idea is, that instead of only measuring our estimates’ distance from the ground-
truth, distance from the bookmaker’s estimates is calculated too, and during
the training process, the error is minimized while maximizing the distance
from the bookmaker. Generally, we can define such loss function as:

Loss = D(M ‖ T )− c ·D(M ‖ B) (4.9)

where

D(M ‖ T ) . . . distance between model’s estimates and ground-truth
D(M ‖ B) . . . distance between model’s and bookmaker’s estimates
c . . . decorrelation constant defining the significance of the

decorrelation term

The balance between minimizing prediction error and maximizing distance
from the bookmaker depends heavily on the decorrelation constant c of the
decorrelation term in 4.9. The optimal value of c subsequently depends on
the distance function we use in the decorrelation term as can be seen in 4.5.
Numerous functions are available for computation of both distances in 4.9,
however, we restrict ourselves to these four:

1. Binary cross-entropy (BCE)
As established in 4.3.4, binary cross-entropy is the default function for
the calculation of the distance between the model’s estimates and ground
truth.

2. Mean squared error (MSE)
MSE is often used for the computation of the model’s average error in
comparison with ground truth. It was also suggested in [12] as a possible
distance measure for the decorrelation term in 4.9.

MSE = 1
N

N∑
i=1

(pi − p̂i)2

3. Kullback-Leibler divergence
The Kullback-Leibler divergence [29] is a measure of how far distribution
Q is from distribution P. It is not technically a statistical distance func-
tion due to its asymmetric nature, but in practice, it serves very similar
purposes. For the two probability distributions on the same probability
space X, it can be defined as:
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DKL(Q ‖ P ) =
N∑

x∈X

P (x) · log
(
P (x)
Q(x)

)

4. Jensen-Shannon divergence
The Jensen-Shannon divergence is another method of measuring the dis-
tance between two probability distributions. It is based on the Kullback-
Leibler divergence but is tweaked to be symmetric and to always produce
a finite value.

DJS(Q ‖ P ) = 1
2DKL(Q ‖M) + 1

2DKL(P ‖M)

where
M = 1

2(Q+ P )

To reduce the complexity of the task at hand, we fix the function used
for the calculation of the distance between the model’s estimates and ground
truth to be binary cross-entropy thus the number of variations of the two
distance functions drops from 16 to 4.

The figure 4.5 shows, how individual distance functions used in the decor-
relation term differ in sensitivity to the decorrelation constant c. For this
reason, the value of c ought to be optimized separately for each distance func-
tion. However, it is very unclear what the optimum is. Results in 4.4 suggest
that the lower the correlation the higher the betting returns, yet this rela-
tionship is likely to be more complex in a real-life scenario. Usually, hyper
parameters are selected based on the highest predictive accuracy or lowest
value of loss function. None of these, though, are reasonable in our scenario
where predictive accuracy is not the main objective and the loss function is
directly influenced by the value of c. Consequently, betting returns on the
validation set will be our criterion for selecting optimal hyper parameters’
values.

Decorrelation term Optimal value of c Betting returns on validation set
BCE 0.4 1.014
MSE 2.6 0.623
KL 0.5 1.198
JS 1.9 0.851

Table 4.3: Results of optimization of decorrelation constant c for loss functions
using different distance measures.

The results of optimization on the validation set 4.4.1 back up our hy-
potheses that different values of c are required for each distance function. On
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Figure 4.5: Effect of the decorrelation constant on predictive accuracy and
correlation of model’s and bookmaker’s probability estimates.

the other hand, with such small margins in the betting returns and the small
sample size of the validation set, it would be naive to jump to conclusions on
the ordering of individual functions. We will further compare all four versions
of our custom loss functions in Chapter 5.

4.5 Betting strategies

With the predictive model complete, the last step needed before placing bets is
to determine the amount of money we want to bet on any single opportunity.
Multiple approaches to optimal wealth allocation are being used by gamblers
and investors trying to exploit different markets.

4.5.1 Reinvestment

All strategies can be executed in one of two ways - using a flat stake or
reinvesting the obtained winnings. In the case of flat stake, all accumulated
profit goes directly into the bettor’s pocket and is not further used for betting.
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Therefore, the fraction of the bettor’s wealth he decides to allocate to an
opportunity will always be a fraction of his initial budget.

In contrast, a bettor adopting the reinvestment strategy uses his achieved
profit to extend his betting budget. When the bettor possesses a profitable
model, then reinvestment obviously leads to much higher profits than flat
stake as the amounts of money he is placing on opportunities grows with the
growing bank.

Although there are scenarios, where constant bets are justified, reinvest-
ment is the more sensible and realistic strategy in the sports betting context.
Online betting services also limit the minimal figures one can withdraw from
the betting account, hence withdrawing money after every winning bet is
practically unrealizable.

All results on betting markets in this work were achieved employing the
reinvestment strategy.

4.5.2 Kelly Criterion

One of the most common and significant wealth allocation strategies is the
Kelly Criterion which optimizes wealth growth rate using logarithmic utility
function [30]. The goal of maximization of average logarithmic growth rate
for a single binary betting opportunity can be defined as:

maximize
b

E[G(b)] = p · log(1 + (o− 1) · b) + q · log(1− b) (4.10)

where:

p . . .win probability
o . . . offered odds
b . . . fraction of our wealth we decide to bet
q . . . loss probability

If we differentiate E[G(b)] with respect to b and set the derivative equal
to zero, we get the maximum and the optimal strategy:

bmax = p · (o− 1)− q
o− 1 (4.11)

For games where the win and loss probabilities are known, the Kelly bet-
ting strategy guarantees optimal wealth growth with the zero probability of
going bankrupt. In cases where probability distributions are not known, these
guarantees, as might be expected, vanish. Therefore using such a strategy
in cases where bettor only possesses probability estimates (as we do) is very
likely to lead to overbetting and bankruptcy.

To mitigate the risks and avoid overbetting, we implement the fractional
Kelly strategy, using a static constant ω ∈ (0, 1] to adjust the fraction of
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wealth we are betting. The constant ω will hereafter be referred to as Kelly
fraction.

b = ω · p · (o− 1)− q
o− 1 (4.12)

The value of ω affects the potential betting returns and the variance a bet-
tor will experience. The higher the value, the more volatile wealth trajectories
can be expected and the bigger is the risk of going bankrupt as can be seen
in Figure 4.5.2.

Figure 4.6: Wealth trajectories achieved with the same predictive model but
different Kelly fractions used for determining the wealth the bettor places on
each opportunity.

In this example, the riskiest strategy achieves the highest profit after the
first approximately 50 bets but ends up bankrupt after a series of losses making
the bettor unable to place any more bets. The second most aggressive strategy
meets a similar fate as these two approaches are the only ones not to generate
profit. This is of huge importance with regards to our goal which is long-term
profit as specified in 3, hence the effects of the value of ω will be further
examined after defining our evaluation framework.

26



4.5. Betting strategies

4.5.3 Kelly strategy for simultaneous fights

As mentioned in 1.2.8, MMA fights are usually grouped into events called
fight nights, where multiple fights take place one after another with about 30-
minute breaks between them. Indeed, treating each fight as a unique binary
opportunity in a sequential manner as described above is viable, yet it might
prove advantageous to handle bouts within one fight night as simultaneous
opportunities.

The main difference between these two approaches can be described using
a simple example. Imagine yourself as a bettor with information on two up-
coming fights. In the first one, you estimate the probability of the red fighter
winning slightly higher than the bookmaker, in the second one, you are almost
certain that the blue fighter will take the win, despite being the underdog in
terms of odds (due to, for example, private information about an injury of the
favourite). If you treat the opportunities separately in chronological order,
the Kelly criterion will suggest allocating let us say 10% and 40% of wealth
respectively. But would it not be better to allocate more money on the second
opportunity and ignore the first one when you know there is a much higher
chance of success and a larger payout?

What happens is that the sequential Kelly strategy does not take into
account the opportunities of future fights, even though all information about
these fights is already known at the moment of making the decision as this
process will, in practice, take place just before the start of a fight night, and
neither odds nor the possessed prediction model is likely to change during the
duration of a single fight night.

To define the Kelly strategy for simultaneous games, we first need to gen-
eralize the Kelly criterion definition to include more than one opportunity:

maximize
b

E[log(R · b)]

subject to
K∑

i=1
bi = 1.0, bi ≥ 0

(4.13)

The idea is obviously the same - we are trying to maximize the growth rate
using the logarithmic utility function. What is different is the representation
of opportunities as we need to accommodate multiple assets at once. For this
reason, we introduce the return matrix R, where each column stands for a
single asset (a bet we can place). We also add to our return matrix a risk-free
asset allowing our strategy to put money aside, hence the total number of
opportunities for a fight night with n fights is going to be 2n+ 1.

The matrix R will then consist of returns of all possible combinations of
outcomes as each row in R represents one possible sequence of results. This
gives us a matrix of size 2n × (2n + 1). For 2 simultaneous fights, R would
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look like this:

R =


o1

r 0 o2
r 0 1

o1
r 0 0 o2

b 1
0 o1

b o2
r 0 1

0 o1
b 0 o2

b 1

 (4.14)

Where o stands for odds, superscript is a fight identifier, and subscript repre-
sents the fighter (red or blue).

The matrix b ∈ R(2n+1)×1 stands for the wealth fractions we shall place
on each of the 2n+ 1 available assets.

b =


b1
b2
...

b2n+1

 (4.15)

The constraints on b defined in 4.13 are self-explanatory as one cannot
possibly bet more money than he possesses.

The expectation of returns is then realized using our probability estimates
for each opportunity.

E[log(R · b)] = p · log(R · b) (4.16)

Reflecting the representation of R, the matrix p ∈ R1×2n includes esti-
mates of probabilities for each of the 2n possible outcome sequences.

p =
[
p1, p2, . . . , p2n

]
(4.17)

Continuing with the example of 2 simultaneous fights, the probability of
the sequence defined on the first line in 4.14 would be

p1 = P (r1) ∩ P (r2) ∩ P (1)
= P (r1) · P (r2) · P (1)
= P (r1) · P (r2)

(4.18)

as individual fights are independent events. If we calculate the probabilities
for the remaining outcome sequences in the same way, we arrive at

p =
[
P (r1) · P (r2), P (r1) · P (b2), P (b1) · P (r2), P (b1) · P (b2)

]
(4.19)

In practice, we implemented the Kelly strategy for simultaneous fights
using the cvxpy optimization framework [31][32]. The number of simultaneous
fights was fixed to 10 to mimic the real fight nights.
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Similar to the original Kelly criterion for a single opportunity, overbetting
is an issue when dealing with probability estimates. This can be tackled using
the exact same trick of betting only fractions of the optimal value suggested
by the Kelly strategy.
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Chapter 5
Results

5.1 Evaluation framework

5.1.1 Data separation

To be able to objectively evaluate and compare the performance of predictive
models and betting strategies, it is appropriate to do so with predictions on
data not used to train the model. This is usually done in one of two ways -
using k-fold cross-validation or train-test split.

K-fold cross-validation represents an easy way of making less biased es-
timations of models’ performances. It is performed by shuffling the dataset,
splitting it into k groups, and for each group training the model on remain-
ing (k − 1) groups and evaluating the performance on the group itself. The
performance of the model is then summarized by aggregating all k individual
performance indicators.

The train-test split method, on the other hand, is an even more straight-
forward solution where the dataset is separated into two subsets. The per-
formance of the model is then evaluated based on the predictions and results
achieved on the subset unseen by the machine learning algorithm during the
learning process.

While k-fold cross-validation is the preferred choice when dealing with
smaller datasets as we are, the train-test split method is the more sensible
method to use in our scenario. The reasoning behind this decision is the
distribution of fights in time.

Thanks to ever-increasing funding, advances in sport sciences and sports
data analysis, many sports have changed significantly and the tactics used by
contemporary sportsmen or sports teams are very different from those of just
10 years ago. A great example of this is football where players take much less
low-value shots from long range and instead try to stay patient and create
opportunities closer to the opponent’s goal which present higher chances of
scoring. Similarly, MMA has its trends too, and even though they are more
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difficult to identify, there is no doubt that current fighters utilize a different
range of techniques and tactics compared to their predecessors.

Therefore, evaluation of betting results in MMA makes the most sense on
the most recent data available. With that in mind, we opt for the train-test
split approach and take away the most recent 20% of fights as a hold-out test
set which we will evaluate performance on. The remaining 80% of fights are
used in the training process of our neural network.

5.1.2 Bootstrap method

To increase the statistical significance of our findings and ensure that any
generation of positive betting returns is not random and coincidental, we
introduce a different technique that goes by the name of the bootstrap method.
Generally speaking, it is a resampling method frequently used in statistics to
more accurately estimate properties of observed data and the whole statistical
distribution by repeatedly sampling random samples with replacement from
the observed distribution realization [33].

We will use the method in a slightly different manner - to literary enlarge
our test dataset and thus create significantly more ”alternative histories” on
which we can test our model and betting strategies. Instead of having one
sequence of n = 536 fights, we can retrieve hundreds or thousands of different
sequences by randomly drawing samples of size n with replacement. This
allows us to further explore the robustness of the results achieved on betting
markets.

5.1.3 Evaluation

With 4 proposed prediction models (trained using different decorrelation terms
in the loss function) and 2 proposed betting strategies, we will now compare
how they perform on the hold-out test dataset.

Each combination of model and betting strategy was evaluated using the
following workflow.

1. Obtain probability estimates for fights from the test dataset

2. Draw 1000 or 100 bootstrap samples from the test dataset

3. Run a betting strategy on each of the bootstrap samples

4. Observe the achieved results

Due to different computational demands of the two proposed betting strate-
gies, the number of bootstrap samples drawn was set at 1000 for the sequential
Kelly and 100 for the simultaneous Kelly.
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5.2 Betting returns

5.2.1 Sequential Kelly criterion

As shown in 5.2.1, all models were able to generate positive betting returns
when conservative values of the Kelly fraction were applied in the betting
strategy. Also, as expected, none of the models can sustain profitability with
the riskier Kelly fraction values and the return on investment median of all
models using the full Kelly strategy was very close or equal to −1 meaning at
least half of the bootstrap sample histories ended in bankruptcy.

Figure 5.1: Median of betting returns of sequential Kelly betting strategy run
on 1000 bootstrap samples with different loss functions and Kelly fractions.

Out of the four models, the one using binary cross-entropy as a measure
of distance between model’s and bookmaker’s estimates in our custom loss
function proves the most profitable with the ROI median of over 10 for certain
Kelly fractions.
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5.2.2 Simultaneous Kelly criterion

Similar patterns can be recognized in the results of the Kelly strategy for 10
simultaneous fights. Model using BCE in decorrelation term of loss function
again outperforms the other models, but all of them successfully generate
profit for the smaller Kelly fractions.

Figure 5.2: Median of betting returns of Kelly betting strategy for 10 simul-
taneous fights run on 100 bootstrap samples with different loss functions and
Kelly fractions.

The main difference of the two strategies are higher betting returns achieved
with Kelly fraction ω = 0.5 and ω = 0.75. This goes hand in hand with the
notion of higher stability of the optimal Kelly for simultaneous games, as it
has the opportunity to compare multiple opportunities at hand before decid-
ing the wealth allocation. This might not result in higher betting returns than
achieved by sequential Kelly (potential winnings cannot be reinvested imme-
diately, but only after all simultaneous games have taken place), but should
lower the associated risk.
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5.3 Robustness

Despite very promising betting returns, the results presented so far do not
paint the full picture. Although median values are, in our scenario, much
more informative than simple mean values (ROI values range from −1 to ∞,
therefore means are stretched by positive outliers), we still ought to take a
closer look at the distribution of achieved returns.

5.3.1 Sequential Kelly criterion

A simple, yet telling indicator is the percentage of bootstrap samples we man-
aged to achieve positive profit on. All models offer relatively reasonable ratios
for low-risk Kelly fractions, but only the model using BCE in decorrelation
term maintains likeable percentages for ω values other than 0.05 or 0.1.

Decorrelation term \Kelly fraction 0.05 0.1 0.25 0.5 0.75 1
BCE 99.2 98.0 93.3 78.7 47.7 19.3
MSE 84.3 78.1 48.3 5.9 0.2 0.0
KL 91.0 87.9 75.7 44.0 18.6 3.6
JS 92.9 90.3 71.1 21.2 1.6 0.0

Table 5.1: Percentages of simulation runs that resulted in a positive betting
return for different Kelly fractions and decorrelation functions using the se-
quential Kelly betting strategy.

On the other end, we shall also examine the probabilities of reaching a state
where betting is no longer possible. Bettors often define a risk constraint for
their strategy to be reasonable such that

P (Wmin ≤ α) ≤ β (5.1)

where

Wmin . . . lowest value recorded in a wealth trajectory
α . . .minimum wealth threshold
β . . . desired maximum likelihood of falling below α

As shown in Table 5.2, the chances of going bankrupt are significant for
any value of ω greater than 0.25.

5.3.2 Simultaneous Kelly criterion

Looking at both tables 5.3 and 5.4, we can clearly see how much safer the Kelly
strategy for simultaneous games is. Still, it should be underscored that these
numbers were achieved on a smaller number of bootstrap samples compared
to the sequential strategy.
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Decorrelation term \Kelly fraction 0.05 0.1 0.25 0.5 0.75 1
BCE 0.0 0.0 0.9 21.8 64.7 89.7
MSE 0.0 0.8 44.7 96.3 100.0 100.0
KL 0.0 0.0 4.3 52.4 85.3 98.6
JS 0.0 0.1 21.2 84.6 99.6 100.0

Table 5.2: Percentages of simulation runs that involved a drop of wealth below
a tenth of the initial wealth using the sequential Kelly strategy. Approximation
of the probabilities P (Wmin ≤ 0.1 ·W 0) (in %).

Decorrelation term \Kelly fraction 0.05 0.1 0.25 0.5 0.75 1
BCE 100.0 100.0 96.0 89.0 73.0 45.0
MSE 98.0 86.0 73.0 35.0 11.0 0.0
KL 88.0 87.0 84.0 66.0 43.0 12.0
JS 97.0 94.0 86.0 60.0 25.0 5.0

Table 5.3: Percentages of simulation runs that resulted in a positive betting
return for different Kelly fractions and decorrelation functions using the Kelly
betting strategy for simultaneous fights.

Decorrelation term \Kelly fraction 0.05 0.1 0.25 0.5 0.75 1
BCE 0.0 0.0 0.0 5.0 31.0 66.0
MSE 0.0 0.0 6.0 57.0 93.0 100.0
KL 0.0 0.0 0.0 18.0 54.0 90.0
JS 0.0 0.0 2.0 35.0 76.0 98.0

Table 5.4: Percentages of simulation runs that involved a drop of wealth below
a tenth of the initial wealth using the Kelly strategy for simultaneous fights.
Approximation of the probabilities P (Wmin ≤ 0.1 ·W 0) (in %).

Interestingly, if we set our risk constraint from 5.1 reasonably such that
α = 0.1 ·W 0 and β = 0.1, the optimal strategy in terms of betting returns will
successfully pass the risk constraint. This is generally an unlikely scenario as
bettors often need to make trade-offs between optimality and safety.

5.4 Wealth trajectories

The wealth trajectories of the optimal models for sequential and simultaneous
Kelly strategy - models with BCE decorrelation term and Kelly fraction of 0.25
and 0.5 respectively - provide further insight into the distribution of betting
returns achieved across different simulation runs with the initial wealth set to
1000 units, as shown in Figure 5.4.
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5.4. Wealth trajectories

For both strategies, the lower quartile, upper quartile and median seem to
be steadily growing, which is another sign of promise. Indeed, the minimums
drop below the initial wealth or even all the way to zero as some of the
strategies remain profitless or hit bankruptcy, but that is just a reflection of
the risks already discussed in Section 5.3.

Figure 5.3: Comparison of wealth trajectories of the two most optimal com-
binations of a model and betting strategy.
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Chapter 6
Conclusion

In Chapter 1 we introduced the domain of combat sports with an emphasis on
the sport of mixed martial arts which has been particularly trending in the last
couple of years. In previous works, as explained in Chapter 2, various machine
learning and analysis methods have been applied in order to describe the
nature of MMA or to correctly predict the outcome of MMA fights. However,
to my knowledge, there has been no attempt to apply these methods with
the goal of generating profit on MMA betting markets. Thus, in this thesis,
the goal was set to use machine learning and betting strategies to generate
positive betting returns.

First, we obtained publicly available data on fighters, historical fights,
and corresponding odds to work with. We processed these data to produce
a set of features and selected an artificial neural network as the model of
our choice. In the vast majority of applications, predictive accuracy is the
main priority and consequently, prediction models are optimized to correctly
classify as many presented examples as possible. But as we discussed in section
4.4, it is worth considering a different approach when applying the model on
betting markets. Four experimental loss functions for our neural network were
introduced to enforce a lower correlation between model’s and bookmaker’s
probability estimates. To finally exploit the betting markets, we introduced
two different implementations of the Kelly wagering strategy in section 4.5.

Results on a hold-out dataset show that all suggested models were able to
generate significant profit with certain configurations of the betting strategies.
The results also support the already widely accepted fact that the full Kelly
strategy for wealth allocation is rather unsustainable when making decisions
based on probability estimates. This uncertainty was in our case successfully
overcome using the fractional Kelly approach.

Best average betting returns were achieved using binary cross-entropy
function as a measure of distance in the custom loss functions, with return on
investment values climbing up to around 1200% for both betting strategies.
For the same model, 93.3% and 89% of simulated runs resulted in a profit
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6. Conclusion

which indicates respectable generalization.

6.1 Future work

This work provides much potential for future work and could be improved or
expanded in numerous ways. Utilization of more data or findings of important
performance indicators could result in higher informational efficiency, poten-
tially leading to the ability to incorporate gambling on the in-game betting
markets or propositional bets. Also worth exploring would be different betting
strategies such as the Modern Portfolio Theory.

Also, the usage of custom loss functions to decrease correlation between
model’s and bookmaker’s estimates is highly experimental. There might be
a plethora of other practices that would encourage the desired behaviour of
prediction models. A more rigid analysis is also required to enlighten the rela-
tionship between the distance functions used in the two terms of the decorre-
lation loss functions. Potentially, some combinations could be more powerful
than other. A similar analysis could then be applied to the relationship of the
form of a loss function and the subsequently applied betting strategy.
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