Adaptivní metody pro řízení hydraulických systémů
Ing. Martin Veselý

Doktorský studijní program: Strojní inženýrství

Studijní obor: Technická kybernetika

Školitel: Doc. Ing. Ivo Bukovský Ph.D.
Poděkování

Anotace

Adaptivní metody pro řízení hydraulických systémů

Annotation

Adaptive Control Method of Hydraulics Systems

This thesis presents adaptive control method of hydraulic systems with electromagnetic proportional valves. Some valve properties are considered time variable such as valve gain, hysteresis and valve's dead zones. This thesis also presents research of the design of controllers that are able to change their parameters in response to change in proportional valve behavior in real time. Model Reference Adaptive Control using polynomial neural units was chosen as the control strategy. This work proposes solution of the problem of weight learning of polynomial neural units as a controller in real time. A static reference model and new built criterion function are used for this purpose. The criterion function can also be extended with static gain and offset. Reference model adaptive control is compared with predictive model control strategy. The ability of the controller to learn in real time was tested in simulation. The ability to control real system was tested on hydraulic stand simulating a hydraulic press.
Obsah

1. Úvod .. 8
2. Současný stav poznání ... 10
 2.1. Hydraulické systémy s proporcionálními ventily ... 10
 2.1.1. Vlastnosti hydraulických systémů s proporcionálními ventily 10
 2.1.2. Adaptivní řízení hydraulických systémů .. 18
2.2. Adaptivní algoritmy řízení s referenčním modelem ... 19
 2.2.1. Polynomiální modely použité při řízení .. 20
 2.2.2. Přístupy adaptivních algoritmů řízení s referenčním modelem 23
 2.2.3. Řízení pomocí neuronových jednotek a neuronových sítí 26
 2.2.4. Učení vah neuronů metodou gradient descent 28
 2.2.5. Stabilita regulačního obvodu ... 30
2.3. Závěr rešeršní části studie ... 32
3. Cíle disertační práce .. 33
4. Teorie .. 35
 4.1. Modely soustavy pro řízení ... 35
 4.1.1. HONU jako model řízené soustavy .. 35
 4.1.2. Takagiho-Sugenův HONU modely ... 37
 4.2. Optimalizační metoda Normalizovaný Gradient Descent 39
 4.2.1. Učení modelů soustavy metodou NGD ... 40
 4.2.2. Normalizovaný stochastic mini-batch gradient descent 41
 4.3. Řízení se sériově-paralelním referenčním modelem ... 45
 4.4. Řízení adaptivním regulátorem MRAC ... 47
 4.4.1. Matematický popis HONU jako MRAC regulátor 47
 4.4.2. Matematický popis T-S HONU jako MRAC regulátor 48
 4.4.3. Učící algoritmus GD pro adaptaci vah HONU jako regulátoru 48
 4.4.4. Gradient v GD pro HONU jako regulátor a LNU jako model systému 51
 4.4.5. Gradient v GD pro HONU jako regulátor a HONU jako model systému ... 53
 4.4.6. Gradient v GD pro HONU jako regulátor a T-S HONU jako model systému ... 54
 4.5. Rozšíření kriteriální funkce o statické zesílení a posunutí 55
 4.5.1. Statické zesílení LNU .. 55
4.5.2 Statické zesílení HONU

4.5.3 Statické zesílení URO s LNU jako model systému a LNU jako regulátor

4.5.4 Statické zesílení URO s HONU jako model systému a HONU jako regulátor

4.5.5 Rozšířená kriteriální funkce

4.6 Řízení adaptivním regulátorem MPC

4.6.1 Výpočet akčních zásahů metodou GD

4.7 ISS stabilita uzavřeného regulačního obvodu

5 Simulační model lineárního hydromotoru a jeho řídícího ventilu

5.1 Sestavení pohybové rovnice šoupátka rozváděče

5.2 Sestavení pohybové rovnice lineárního hydromotoru

6 Experimentální část

6.1 Rozšíření kriteriální funkce

6.2 Identifikace

6.2.1 Identifikace modelů HONU

6.2.2 Identifikace T-S LNU modelu

6.3 Řízení modelu hydraulického systému

6.4 Řízení hydraulického standu

7 Závěr

8 Vlastní publikace

9 Ostatní publikace
Použité značky:

URO uzavřený regulační obvod
LNU lineární neuronová jednotka $r = 1$
QNU kvadratická neuronová jednotka $r = 2$
CNU kubická neuronová jednotka $r = 2$
HONU neuronová jednotka vyšších řádů
MRAC adaptivní řízení s referenčním modelem
MPC prediktivní řízení
URO uzavřený regulační obvod
k diskrétní čas $k \in \mathbb{Z}$
x vstupní vektor nebo stav systému v čase k
y regulovaná veličina
y_n výstup z modelu řízené soustavy
u akční zásah
d žádaná hodnota regulované veličiny
ξ vstupní vektor do neuronové jednotky jako regulátor
ξ_d vektor zpožděných hodnot d ve vektoru ξ
ξ_y vektor zpožděných hodnot y ve vektoru ξ
m_y počet zpožděných y ve vektoru ξ
m_d počet zpožděných d ve vektoru ξ
n_y počet zpožděných y ve vektoru x
n_u počet zpožděných u ve vektoru x
$\psi_{i,j}$ váhy neuronu jako regulátoru
$w_{i,j}$ váhy neuronu jako modelu řízené soustavy
μ_{norm} normalizovaný koeficient rychlosti učení
r řád jednotky HONU
K^{URO} statické zesílení URO

$offset_{URO}$ offset URO

w vektor vah jednotky HONU jako model řízené soustavy

W matice vah jednotky HONU jako model řízené soustavy

v vektor vah jednotky HONU jako regulátor

V matice vah jednotky HONU jako regulátor
1. Úvod

Hydraulické systémy skládající se z 4-cestného proporcionálního ventilu a lineárního hydraulického motoru jsou v praxi převážně řízeny klasickými regulátory (algoritmy řízení), jakými jsou například stavové řízení nebo PID řízení, v základních nebo přizpůsobených verzích. Tyto regulátory jsou založeny na předpokladu, že chování těchto systémů je blízko chování soustavě lineárních diferenciálních rovnic a že se toto chování nemění během procesu nebo během životnosti stroje. Obvyklými kritérií řízení u těchto systémů je rychlost ustálení na žádané hodnotě, velikost překmitu, energetická náročnost a robustnost. Aby bylo možné následující kritéria splnit, provádějí se následující opatření:

- Samotný systém je konstruován tak, aby jeho chování bylo co nejblíže lineárnímu chování a neměnilo se během procesu a životnosti stroje.
- Regulátor je pomocí znalostí daného systému sestaven a upraven.
- Regulátor je speciálně doladěn pro každý samostatný stroj dle jeho specifických vlastností.
- Regulátor je během životnosti stroje přenastavován.

Hlavní motivací pro vývoj řídících systémů je cena:

- Cena za pracovní čas kvalifikovaného inženýra, který sestaví vhodný regulátor pro daný systém. Cílem je, aby odborníci na dané systémy nemuseli být zároveň odborníci v řízení a nemuseli řízení příliš rozumět.
- Cena za doladění regulátoru pro každý kus stroje zvlášť. Je snaha, aby bylo třeba pouze jedno jediné nastavení a regulátor se sám dopadl pro daný stroj.
- Cena za servis stroje během jeho životnosti. Je požadováno použít jednodušších prvků, které jsou méně náročné na údržbu. Regulátor by se měl adaptovat během procesu a životnosti stroje.

I malá úspora na jednom stroji může znamenat velkou úsporu při větších sériích. Nižší pořizovací cena stroje a jeho následný levnější servis může znamenat rozhodující konkurenční výhodu. Sebemenší úspora může znamenat, zdali stroj bude, či nebude
prodán zákazníkovi. To je motivací pro návrh adaptivních nelineárních regulátorů pro řízení hydraulických systémů tak, aby nebylo třeba regulátor každého stroje seřizovat zvlášť, nebyl třeba jeho následný servis během životnosti stroje, výsledné chování systému s regulátorem bylo stále stejné během pracovního procesu i během životnosti stroje a nebyly kladeny vyšší nároky na lineární chování hydraulických komponentů.

Použití nelineárních adaptivních regulátorů si neklade za cíl zvýšit přesnost a rychlost řízení, ale snížit výslednou cenu stroje. Slibuji strategie řízení jsou prediktivní řízení s modelem (MPC) a řízení s referenčním modelem (MRAC). Obě tyto strategie řízení jsou schopny přizpůsobovat se chování regulátoru v závislosti na změnách chování řízeného systému a jsou též schopny řídit nelineární systémy s určitou mírou nelinearity. U obou těchto strategií řízení je však nezbytnou nutností mít matematický model řízeného systému, který dostatečně přesně postihuje chování řízeného systému a který je schopen se adaptovat na změny řízeného systému v reálném čase.
2. Současný stav poznání

Kritická rešerše je rozdělena do pěti částí. První část se zabývá problematikou hydraulických systémů, jejich vlastnostmi a požadavky na jejich řízení. Druhá se zabývá současným stavem adaptivních regulátorů s referenčním modelem a jejich rozdělením. Třetí je zaměřena na polynomiální jednotky HONU, jejich možnostmi využití a vlastnostmi. Čtvrtá se zabývá řízením s využitím neuronových jednotek a neuronových sítí. A poslední pátá část se věnuje stabilitě uzavřeného regulovaného obvodu.

2.1. Hydraulické systémy s proporcionálními ventily

2.1.1 Vlastnosti hydraulických systémů s proporcionálními ventily

Hydraulické systémy jsou používány pro vyvozování velkých sil, při malých rozměrech hydromotorů a hydraulického agregátu (na rozdíl od elektromechanických systémů). Jsou též používány pro spojité řízení rychlostí, polohy nebo síly hydromotoru. Základní schéma použití lineárního hydromotoru je znázorněno na obr. 1. Čerpadlo a přepouštěcí ventil jsou zdrojem pracovní kapaliny s konstantním tlakem. Dvoucestný elektromagneticky řízený proporcionální rozváděč vytváří tlakový rozdíl na čele pístu hydromotoru. Tlakový rozdíl pak způsobí zrychlení pístnice. Řídicím signálem je zde proud elektromagnetu. Poloha šoupátka v rozváděči je pak dana rovnováhou následujících sil: Síla od kotvy elektromagnetu (dána řídicím proudem do cívky), hydrodynamickými silami od proudící kapaliny kolem šoupátka, třecími silami šoupátka v komoře (způsobené navalením šoupátka na stěnu komory při porušení olejového řízku nebo nesouměrností šoupátka, či silou od pružiny a kotvy elektromagnetu), silou pružiny a setrvačnou silou pohybujících se hmot.

Poznámka: Práce poukazuje na nelineární vlastnosti hydraulický systémů, které je třeba zohlednit i při řízení:

- Hystereze ventilů způsobená změnou tření při nulové rychlosti šoupátka, kde třecí síla roste přímo úměrně se silou působící na šoupátko, na viskózní tření působící za pohybu šoupátko. Zvýšené tření je způsobeno přítlačnou silou kotvy elektromagnetu vlivem nesouměrného elektromagnetického pole cívky.
- Síla působící na šoupátko vlivem proudící tekutiny. Tato síla způsobí nelinearity v závislosti na rychlosti proudící tekutiny

Poznámka: Práce je spíše teoretická a některé vlastnosti systému nejsou zohledněny, jako např. tření ventilů, charakteristiky elektromagnetů nebo jejich závislost na vstupním tlaku a zátěži. Práce vychází ze zjednodušených fyzikálních modelů. Je ukázána změna hydraulického obvodu s jedním řídícím signálem a společným řízením všech hran (obr.1), na čtyři řídící signály a nezávislé řízení všech čtyř řídících hran (obr.2). Dává tím nové možnosti pro řízení, jako třeba možnost nastavení negativního či pozitivního krytí řídících hran.

Skripta [13] shrnuje poznatky ze své doby v oboru možných konceptů servomechanismů a jejich vlastností, a to i s matematickým popisem. Je zde popsána a matematicky
odvozena problematika tuhosti hydraulického systému v závislosti na aktuální poloze válce a poměru ploch ve válci (obr.3). Celý koncept řízení směřuje k linearizaci všech rovnic pro aplikaci lineárního řízení.

Článek [14] se zabývá možnostmi modelování třecích sil. Je v něm ukázané více příčin vzniku třecích sil a jsou zde sestaveny i výsledné modely tření. Článek se dále zabývá problematikou modelování a simulování tohoto systému, zejména kvůli jeho nespojitosti při nulové rychlosti, při níž třecí síla roste až do limitní hodnoty tak, aby zabraňovala možnému pohybu (obr.4). Je zde navrženo zjednodušení a nespojitost v nulové rychlosti je nahrazena velkým nárůstem třecí síly s rychlosti (obr.5).

Obr. 4: Závislost třecí síly na rychlosti
Obr. 5: Zjednodušená závislost třecí síly na rychlosti

Poznámka: Je zde ukázána možnost kompenzace třecích sil inverzním třecím modelem. Právě charakter třecích sil způsobuje hysterezi, která je u hydraulických systémů s použitím proporcionálních ventilů výrazná (na místo servo-ventilů).

Datasheet proporcionálního ventila SP08-47C [15] (obr.6) společnosti Hydraforce udává hysterezi ventila do 7%. Tab.1 udává nárůst odporu cívky s rostoucí teplotou. S rostoucím odporem pak dle Ohmova zákona klesá i proud protékající cívkou. Cívka je zahřívána právě elektrickým proudem, který cívkou protéká. Není-li proud cívkou regulován, cívka se postupně zahřívá a klesá elektromagnetické pole a cívka tzv. vadne.
Obr. 6: 4-cestný 3-polohový proporcionální rozváděče SP08-47C společnosti Hydraforce

Tabulka 1: Závislost odporu cívky elektromagnetu na teplotě ventilu SP08-47C

<table>
<thead>
<tr>
<th>Teplota cívky</th>
<th>Změna odporu cívky elektromagnetu</th>
</tr>
</thead>
<tbody>
<tr>
<td>−40 °C</td>
<td>−24%</td>
</tr>
<tr>
<td>−20 °C</td>
<td>−16%</td>
</tr>
<tr>
<td>0 °C</td>
<td>−8%</td>
</tr>
<tr>
<td>20 °C</td>
<td>0%</td>
</tr>
<tr>
<td>40 °C</td>
<td>+8%</td>
</tr>
<tr>
<td>60 °C</td>
<td>+16%</td>
</tr>
<tr>
<td>80 °C</td>
<td>+24%</td>
</tr>
</tbody>
</table>
Na obr. 7 je závislost průtoku na řídícím proudu ventilu SP08-47C společnosti Hydraforce při vstupním tlaku 240 bar a frekvenci PWM signálu 100 Hz. Šedou barvou jsou vyznačená rozsah průtoku pro daný řídicí proud.

Na obr.7 je závislost průtoku ventilem na vstupním řídícím proudu s vyznačenými rozsahy průtoku pro zvolený řídicí proud. Velikost pole je dána jak hysterezi ventilu, tak i nejistotou velikosti offsetu (minimálním proudem při kterém začne růst průtok ventilem). U ventilu SP08-47C je tento průtokový rozsah 50% jmenovitého průtoku.

Datasheet [16] proporcionálního přepouštěcího ventilu TS10-26 (obr.8) společnosti Hydraforce udává hysterezi ventilu do 3% (obr.9). Závislost odporu na teplotě cívky je stejná s ventilém SP08-47C (tab.1).

Obr. 8: Proporcionální přepouštěcí ventil TS10-26 společnosti Hydraforce [20]
U zkušebního lisu ZHL 30 společnosti Pracovní stroje Teplice, sloužící ke zkoušení skla ve stavebnictví, je požadováno řízení rychlosti hydraulického válce a řízení nárůstu síly. Pro řízení rychlosti je použít proporcionální rozváděč SP08-47C (obr.10 poz.17) a pro řízení síly je použit proporcionální přepouštěcí ventil TS10-26 (obr.10 poz.8). V obou případech hystereze a závislost otevření ventilů na teplotě cívky elektromagnetů znemožnila přímé připojení ventilů k PI regulátoru rychlosti a PI regulátoru síly v řídící jednotce. Nebylo možné dosáhnout požadované rychlosti regulace bez překmitů.

U hydraulického lisu společnosti Lukovplast sloužící ke svařování slunečních clon do automobilů s hydraulickou částí S001_849_1 využívá k řízení polohy a rychlosti pístnice proporcionální rozváděč SP08-47C. I zde nebylo možné přímě dosáhnout přímím připojením ventilů k regulátoru rychlosti a polohy požadované rychlosti regulace bez překmitů.

Hystereze a změna polohy šoupátka v závislosti na teplotě cívky elektromagnetu byla v obou výše zmíněných strojích vyřešena pomocí předřadných řídícími elektroniky EVDR-0201 od společnosti Hydraforce [17]. Obdobné elektroniky nabízejí i ostatní výrobci např. například EL6 od Argo-Hytos [18]. Elektroniky jednak eliminují hysterezi ventilů pomocí frekvence PWM řídícího signálu v řádu 40-450 Hz. Vhodná frekvence způsobí malé vibrace šoupátka ventilu, které mají zanedbatelný vliv na průtok ventilům, ale zapříčiní

![Hydraulické schéma zkušebního hydraulického lisu ZHL 30 společnosti Pracovní stroje Teplice](image)

Obr. 10: Hydraulické schéma zkušebního hydraulického lisu ZHL 30 společnosti Pracovní stroje Teplice
Elektroniky EL6 a EVDR-0201 nemají za úkol řídit hydraulický systém, pouze eliminovat hysterezi šoupátka a proudovou závislost cívky elektromagnetu na teplotě. Řídící elektronika ECU-0814A od společnosti Hydraforce je pak přímo určená k řízení hydraulických systémů především v mobilní technice a má již implementovanou zpětnovazebně řízení proudu a PWM modulaci. Hlavní nevýhodou pro použití u stacionární techniky je komunikace výhradně protokolem CANopen. To znemožňuje přímé propojení s nadřazenými řídícími jednotkami obvykle používanými ve stacionárních strojích jakými jsou např. Siemens Symatic, nebo Tecomat Foxtroth.

2.1.2 Adaptivní řízení hydraulických systémů

Poznámka: Není zde však uvažován problém hystereze, proto je navržené řešení určeno spíše pro servoventily.

Obr. 11: Schéma zapojení řídící elektroniky EL6 od Argo-Hystos [64].

Poznámka: Práce však netestuje své výsledky na proporcionálním ventílu, který má odlišné chování od servoventilu.

Poznámka: Je předpokládáno, že hystereze je v čase neměnná, nezávislá na teplotě oleje, či opotřebení ventílu.

Poznámka: Výsledky jsou testovány simulací na modelu, který nereflektuje hysterezi, a offset rozváděče.

2.2. Adaptivní algoritmy řízení s referenčním modelem

Při adaptivním řízení regulátor uzpůsobuje (adaptové) své chování v závislosti na změnách chování řízeného systému tak, aby se chování uzavřeného regulačního obvodu blížilo chování požadovanému. U regulátorů využívající vnitřní matematický model řízeného
systému se i tento model musí adaptovat (přizpůsobit své parametry, změnit svou strukturu) nebo vyměnit za jiný model. Proto jse následující podkapitola nejprve věnuje modelům, které jsou vhodné jako modely řízeného systému, tak použitelné jako samotný regulátor.

2.2.1 Polynomiální modely použité při řízení

V článku [24] jsou představeny základní typy nekonvenčních nelineárních neuronových jednotek vyšších řádů HONNU (resp. HONU) se zaměřením na jejich značení a rozhranění, a to následovně:

- Podle řádu polynomu agregační funkce na LNU, QNU, CNU.
- Podle schopnosti aproximovat dynamické systémy jako statické a dynamické.
- Podle implementace dopravního zpoždění jako variabilní dopravní zpoždění vstupů do neuronu $T_mD_1 - DNU$ či jako variabilní dopravní zpoždění jak ve vstupu do neuronu tak i ve vnitřní zpětné vazbě $T_mD_2 - DNU$.

Poznámka: Článek je z roku 2007, od značení HONNU se později upustilo a přešlo se k označení HONU (High Order Neural UNIT). Článek se spíše zaměřuje na spojité HONNU (resp. HONU). Je trochu překvapující u DNU, že vnitřní zpětná vazba je brána před saturační funkcí (somatickým operátorem). Znamená to, že pokud je neuron stále uvnitř, integruje, i když je výstup z neuronu na své limitní hodnotě. Není bližší vysvětleno.

Poznámka: Jinou možností snížení velikosti by mohlo být neaplikovat všechny kombinace vstupů v agregační funkci neuronu.

Článek [25] shrnuje dosažené poznatky o kvadratické neuronové jednotce. V práci jsou představeny neuronové jednotky vyšších řádů a jejich statické a dynamické varianty. Jsou zde ukázány základní způsoby učení s učitelem a lokální optimalizace metodou Gradient descent pro statickou NU, respektive Real-time recurrent learning pro dynamickou NU,

19
a optimalizace Levenberg-Marqvardt pro statickou NU. Dále jsou v práci ukázány tři směry využití QNU.

1. Jako identifikace systému je zde prezentována identifikace parní turbíny a výsledky jsou porovnávány se sítí MLP.

2. Jako regulátor je zde ukázáno porovnání řízení laboratorní úlohy vodní levitace s QNU a výsledky jsou porovnány s PID regulátorem.

3. Jako prediktor je zde prezentováno predikce na McClass funkci.

Jako hlavní výhody použití HONU namísto MLP jsou zmiňeny:

- Menší množství možných výstupů při trénování z různých počátečních podmínek.
- Dostatečná schopnost aproximovat nelineární systém.
- Pouze jedno lokální minimum.

Poznámka: Podmínka stability je sestavena pouze pro identifikaci. Pokud je HONU použita jako regulátor, přestává pro neuronové jednotky vyšších řádů platit linearita podle vah a nelze jednoduše sestavit matici dynamiky.

Kniha [27] shrnuje poznatky spojitých a diskrétních neuronových sítí, včetně diskrétních neuronových jednotek vyšších řádů HONU. Kapitola na stranách 469-505 se zabývá
stabilitou nelineárních diskrétních dynamických neuronových sítí. Je zde použita druhá Ljapunovova metoda. Dále se pak kniha zabývá problematikou Globální asymptotické stability.

Poznámka: Podíváme-li se na uzavřený regulační obvod s použitím HONU jako regulátoru a HONU jako modelu řízeného systému, pak uzavřený regulační obvod je nelineární dynamickou neuronovou sítí. Postupy ukázány v knize by tedy měly být aplikovatelné i pro zmíněný regulační obvod.

Další skupinou algoritmů sloužících k sestavení fuzzy relací jsou heuristické algoritmy, založené na stromovém dělení. Nejznámější je patrně LOLIMOT (Local Linear Model Tree) [32]. Strategie je založena na ortogonálním dělení vstupního prostoru, a to vždy podle oblasti fuzzy relace, která se nejvíce podílí na celkové chybově modulu. Testuje se

2.2.2 Přístupy adaptivních algoritmů řízení s referenčním modelem

Jedním z principů adaptivního řízení je řízení s referenčním modelem MRAC. Jednou z prvních prací zabývajících se MRAC je práce [33] z roku 1958 zabývající se řízením letadel. Práce položila základy řízení s referenčním modelem a je v ní sestaveno základní MIT pravidlo učení (kriteriální funkce). V témže roce byl v práci [34] sestaven koncept samo-nastavujících se regulátorů pro lineární SISO systémy s explicitní identifikací. Tento on-line identifikovaný model byl použit pro adaptaci regulátoru.

Poznámka: Struktura se sériově-paralelním referenčním modelem nebyla dosud publikována s použitím neuronových sítí. Zmiňovaný problém šumu omezující rychlost učení může být nyní eliminován adaptivními filtry, které nevnášejí do systému dopravní zpoždění a nezvyšují řád systému.

V knize [36] jsou ukázány základní směry adaptivního řízení, tj. dopředné, přímé a nepřímé zpětnovazebné adaptivní řízení. Je zde vyslovena základní hypotéza adaptivního řízení: Přizpůsobovat parametry regulátoru tak, aby regulační obvod měl stále námí požadované chování, a to i přes probíhající změny v řízeném systému a poruch působící na řízený systém. Pro přímé adaptivní řízení s referenčním modelem (MRAC) jsou zde uvedeny základní předpoklady pro určování parametrů regulátoru. Je zde ukázána
i modifikace referenčního sériově-paralelního modelu, kde výstup z referenčního modelu je počítán z žádané hodnoty a předchozích hodnot řízeného modelu (obr.12).

Obr. 12: Schéma adaptivního řízení se sériově-paralelním referenčním modelem.

Poznámka: V této knize je ukázáno použití referenčního modelu odpovídající sériově-paralelnímu referenčnímu modelu uvedeném v [35]. Daná modifikace je uvedena pouze pro lineární systémy a není použita pro adaptaci regulátoru využívající polynomiální neuronové jednotky.

Příspěvek na konferenci [38] se zabývá diskrétním návrhem regulátoru s použitím přístupu řízení s referenčním modelem a s použitím druhé Ljapunovovy podmínky stability pro výpočet parametrů regulátoru. Jako model řízeného systému byl zvolen SISO model DARMA. Použitím Ljapunovovy funkce a podmíněk stability se autoři dopracovali k podmínce pro stabilitu a učení parametrů regulátoru: Aby uzavřený regulační obvod byl stabilní a konvergoval k žádané hodnotě, referenční odchylka mezi regulovanou veličinou a referenčním výstupem musí pro čas jdoucí do nekonečna jít k nule, tedy že referenční odchylka musí v dlouhém horizontu klesat.

Poznámka: Modely DARMA jsou blízké k polymoniálním neuronovým jednotkám 1. řádu. Postup použitý u druhé Ljapunovovy metody by obdobně mohl být použit i pro uzavřené regulační obvody využívající jednotky HONU.

V kapitole knihy [40] je ukázána aplikace referenčního modelu pro řízení strategií MPC. Je zde ukázán princip referenčního modelu, který se v každém čase reinicializuje. Je předpokládáno, že predikovaný průběh žádané hodnoty nebude optimální z důvodu nepřesného výpočtu akčních signálů a predikovaného průběhu řízeného systému. Tím že je provedena reinicializace, referenční model akceptuje aktuální průběh regulované veličiny a uvede dál novou trajektorii, kterou by se měla regulovaná veličina vydat. Pokud je řízený systém se vstupním dopravním zpožděním, reinicializace proběhne až po predikci regulované veličiny o toto zpoždění.

Poznámka: V kapitole je uvedeno, že takto použitý referenční model lze interpretovat jako požadované chování referenčního modelu. Porovnáním této kapitoly se sériově-paralelním

2.2.3 Řízení pomocí neuronových jednotek a neuronových sítí

Článek [41] se zabývá použitím QNU a CNU jako zpětnochovaného regulátoru neznámého nelineárního nestabilního systému. Jsou zde diskutovány kritéria stability URO a je zde navržena struktura regulátoru. Byla navržena přídavná funkce tlumení, pro zajištění stability URO, která byla posléze nahrazena CNU. Je zde ukázáno porovnání řízení pomocí CNU jako regulátoru s lineárním stavovým regulátorem a simulace řízení se změnou vlastností řízeného systému během regulace. Je zde uvedeno spojité řízení s použitím spojitého CNU.

Poznámky: Autor použil pro řízení systému druhého řádu referenční model prvního řádu, což vede k nekonečně velkým akčním zásahům (v praxi nereálně). Stejně tak jako lineární stavový regulátor, tak i neuro-regulátor musí nějakým způsobem řešit trvalou regulační odchylku. Protože zde není ani integrační člen a ani proporcionalní zesílení. Dá se tedy předpokládat, že regulační obvod se s tím vyrovnal neustálým přeucováním vah neuronu, a protože učení probíhalo kontinuálně a parametrů regulátoru bylo málo, učící algoritmus byl schopen parametry přeladit dostatečně rychle, aniž by se to projevilo na výstupu z řízené soustavy. Vnucuje se tedy otázka, zdali mít nezbytně regulátor, pro jehož parametry existují takové hodnoty, aby byl schopen URO vnutit, nebo zda-li postačuje mít jednoduší regulátor s méně parametry a vysokou rychlostí adaptace.

Článek [42] se věnuje aplikaci HONU pro identifikaci a řízení brždění zvedáku. Je zde ukázáno použití optimalizačních metod pro statické NU, a to L-M a GD, a jejich varianty pro dynamické NU, BPTT a RTRL. Je zde rovněž ukázána možnost normalizace součinitele rychlosti učení pro metody RTRL a GD. Je sestaven výsledný regulační obvod i pravidla učení vah neuronu jako regulátoru.

Poznámka: V článku není použita obvyklá metoda s referenčním modelem, ale jako kritériální funkce byl zvolen kvadrát regulační odchylky (není dále vysvětleno proč). Vstupní vektor do neuronu jako regulátoru se skládá ze zpožděně regulační veličiny a ze zpožděných regulačních odchylek (opět není zřejmé proč). Je zde uvedena normalizace koeficientu rychlosti učení ve tvaru:

\[
\eta = \frac{\mu}{x(k)^2 + 1}
\]

(2.1)
Zcela nepochybně nepůjde o obecnou normalizaci koeficientu rychlosti učení. Normalizace musí být vždy počítána speciálně pro každou neuronovou síť.

Obr. 13: Architektura neuro-regulátoru s referenčním modelem. Obr. převzat z [44].

Poznámka: V článku je použit jako vstup do NU jako regulátor žádaná hodnota a zpožděné akční zásahy. Je zde uvedena globální optimalizační Davidsonova metoda, která je podobná kvazy Newtonové optimalizační metodě. Při adaptaci vah je zapotřebí počítat inverzní matici. Není proto vhodná pro naprogramování do jednoduchých PLC.

Poznámky: I když v článku není příliš dopodrobna popsán systém, který je řízen, je zde ukázáno reálné řízení pomocí neuro-regulátoru. Otázka řízení a otázka stability je zde opět řešena najednou, pomocí sestavení Ljapunovovy funkce.

Poznámka: Je překvapivé, že i když je v simulaci části řízen lineární model řízeného systému, pro řízení byly nejlepší výsledky pro CNU. Tedy není jasný přínos použití CNU, když v dané situaci je možné použít regulátor s lineárním popisem. Pro adaptaci vah byla použita optimalizační metoda gradient descent. Není zde ukázáno, jak je počítán gradient, i když právě tento výpočet je pro adaptaci vah dynamické neuronové jednotky zásadní.

2.2.4 Učení vah neuronů metodou gradient descent
Gradientní metody (bez rozšíření) hledají lokální extrémy funkce. Vycházejí z vhodně zvolené kriteriální funkce, která nabývá svého minima právě pro optimální stav. Při učení neuronových sítí je kriteriální funkce obvykle sestavena tak, aby nabývala svého minima právě při nulové referenční odchylce (odchylka mezi žádoucí odezvou a odezvou neuronové sítě). Hledá takové hodnoty optimalizačních parametrů, které sníží hodnotu
kritériální funkce. Kritériální funkce bývá sestavena, jako kvadratická funkce a to buď globální chyby (2.2), chyby v daném časovém kroku (2.3), nebo jako dávkové chyby (2.4).

\[Q_{GE} = \frac{1}{2} \sum_{i=k_0}^{k} (e(i))^2 \]

(2.2)

Globální kritériální funkce je počítána jako součet kvadrátu všech referenčních odchylek \(e \) přes všechny diskretní časy [47]. Výhodou tohoto uspořádání je necitlivost učení na šum. Učení neuronové sítě se snaží minimalizovat dominantní poruchy. Nevýhodou pak bývá vyšší výpočetní náročnost, daná výpočtem větších dat. Globální kritériální funkce je používána primárně pro předučení neuronové sítě, kdy učení neběží v reálném čase.

\[Q_{LE(k)} = \frac{1}{2} (e(k))^2 \]

(2.3)

\[Q_{BE(k)} = \frac{1}{2} \sum_{i=1}^{m} e_{i(k|i)}^2 \]

(2.4)

Třetí možností je pak dávkové učení. Je to kompromis mezi předchozími dvěma uspořádání kritériální funkce. Dávková kritériální funkce je počítána z \(m \) poruch v náhodných nebo nějakým způsobem vybraných časech [50]. Tím je vstupních vzorů je pouze \(m \), je tak nižší výpočetní náročnost oproti optimalizaci počítané z globální kritériální funkce. Naproti tomu vyšší počet odchylek vstupující do kritériální funkce snižuje náchylnost učení neuronové sítě na šum.

Změnu hodnot optimalizačních parametrů se provádí proti směru gradientu kritériální funkce [47]:

\[\mathbf{w}(k) = \mathbf{w}(k-1) - \mu(k) \cdot \frac{\partial Q(k)}{\partial \mathbf{w}(k-1)} \]

(2.5)

Kde \(\mu \) je parametr učení (learning rate), na jehož velikost závisí rychlost učení ale i
stabilita učení či schopnost dosažení optima. Optimalizační metoda gradient descent je proto dále vylepšena optimalizací parametru učení \(\mu \) v každém časovém kroku \(k \). Metoda SuperSAB [51] zavádí závislost \(\mu \) na optimalizovaných parametrech \(w \). Pokud derivace kriteriální funkce nemění znaménko. V opačném případě je znamená, že optimum bylo přeskočeno, tedy že učící krok byl moc velký a je třeba zmenšit hodnotu \(\mu \).

Dalším přístupem je optimalizace \(\mu \) metodou nejmenších čtverců. Je hledáno takové \(\mu \), po němž bude kriteriální funkce \(Q \) po optimalizaci parametrů nabývat minima [52]. Proto je hledána hodnota \(\mu \) následovně:

\[
\frac{d\tilde{Q}}{d\mu} = 0
\]

(2.6)

V [53] ukazuje použití (2.6) s rozšířením o konstantu \(\varepsilon \) zajišťující stabilitu při malých hodnotách vstupů do neuronové sítě. Gradientní metoda s adaptivním parametrem učení výše uvedeným způsobem je nazývána Normalized gradient descent (NGD), nebo v oblasti adaptivních filtrů jako Normalized least mean square (NLMS). V [48] se dále zabývá návrhem adaptace tohoto parametru v každém časovém kroku tak, aby učení bylo maximálně rychlé a zároveň byla stále zaručena stabilita.

Poznámka: Uvedený způsob adaptace koeficientu rychlosti učení vychází z učení statatrických neuronových sítí a vztahy uvedené v pracích neplatí obecně. Pro každou architekturu neuronové sítě je nezbytné výsledný vztah pro adaptaci \(\mu \) sestavit zvlášť, zejména pak pro dynamické architektury neuronových sítí. Stabilita učení je řešena zejména pokud vektor vstupních dat je velmi malý. Budou-li uvažovány neuronové jednotky HONU s biasem rovným jedné, vstupní vektor pod tuto hodnotu nikdy neklesne. Je proto otázku, je-li nutné \(\varepsilon \) vůbec používat.

V [26] je představena podmínka stability učení metody učení gradient descent pro statické ale i dynamické neuronové jednotky HONU pomocí spektrálního rádiusu sestavené matice dynamiky adaptace vah. Díky monitorované stabilitě v reálném čase pak lze i adaptovat koeficient učení.

Poznámka: Při odvození stability pro dynamické HONU není uvažován čas jako další proměnná optimalizovaných vah \(\text{col}W \). Proto se domnívám, že odvození není úplné. Při odvození stability pro dynamické HONU vyšších řádů vzniknou nelineární vztahy.

2.2.5 Stabilita regulačního obvodu

Jednou ze základních požadavků kladených na uzavřený regulační obvod je asymptotická
stabilita. Stabilitou můžeme rozumět schopnost systému vrátit se po vychýlení z rovnovážného stavu zpět do nějakého rovnovážného stavu, například po změně žádané hodnoty či působením poruch. Stabilitu lze určit experimentálně nebo výpočtem s použitím matematického modelu řízeného systému. Uvažujeme-li nelineární chování řízeného systému, dopravní zpoždění, či časově proměnný řízený systém, je diskutabilní použití přístupů vyšetřujících stabilitu lineárních systémů. Je zde ukázáno několik směrů vedoucích k analýze stability s ohledem na výše uvažované vlastnosti řízeného systému:

- Hledání lokální stability v každém časovém kroku pomocí linearizovaného modelu uzavřené regulační smyčky (Taylorovou řadou 1. řádu), jak je i použito v [44] při řízení neuro-regulátorem.

V článku [60] je sestavena BIBO stabilita s podmínkou ISS (Input to State Stability)
pro diskrétní rekurentní modely s posouvájícím se horizontem (Data driven approach). Na tuto práci navazuje článek [61] který sestavenou podmínku stability upravuje pro polynomiální neuronové jednotky HONU v dynamickém zapojení pomocí DDHS (Decomposed Dynamic HONU Stability). Pro uzavřený regulační obvod s HONU jako regulátorem ve zpětné vazbě a HONU jako modelem řízeného systému je stabilita sestavena v konferenčním příspěvku [62].

2.3. Závěr rešeršní části studie

Nebyl nalezeno čistě softwarové řešení, které by odstranilo nutnost použití předřadných elektronik a jejich nutnost jejich nastavení pro každý ventil zvlášť.

V kap. 2.2.2 byli ukázány 2 směry použití referenčních modelů. Paralelní (dynamický) referenční model, vedoucí k řízení po definované trajektorii nebo pro předučení regulátoru. Druhý směr je použití tzv. sériově-paralelního (statického) referenčního modelu vedoucí ke vnucovalním chování referenčního modelu uzavřenému regulačnímu obvodu a učení regulátoru v reálném čase. U regulátorů využívající jednotky HONU byla dosud vždy použita pouze varianta s paralelní referenční model.
3. Cíle disertační práce

Práce si klade za cíl vyřešit problém nutnosti využití předřadných řídících elektronik sloužících k potlačení hystereze proporcionálních ventilů a jejich závislosti zesílení ventilů na teplotách cívek elektromagnetu. Z tohoto záměru jsou pak sestaveny následující požadavky algoritmus řízení, který zmíněné předřadné elektroniky nepotřebuje:

- Schopnost adaptace regulátoru při reálném provozu, aby nebylo nutné zavádět zpětnou vazbu od proudu v cívkách elektromagnetů v závislosti na velikosti řídícího PWM signálu. Ventily mění své zesílení v závislosti na teplotě cívek elektromagnetu.

- Schopnost řídit systém s hysterezí. Identifikovaný model řízeného systému i regulátor by měly zohledňovat hysterezi i její proměnnost v čase, aby bylo možné využít ventily s předem nespecifikovanou hysterezi. Hystereze ventilu může být odlišná pro každý ventil, a to i ze stejné série výroby, a též se může měnit během životnosti ventilu či za provozu s teplotou oleje.

- Nízké nároky na výpočetní výkon, aby bylo možné algoritmus řízení implementovat do jednoduchých průmyslových jednotek (typu Siemens Symatic). Levné a běžně používané řídící jednotky mají totiž nízký takt procesoru a nejsou schopny provádět paralelní výpočty. Též je pro ně náročné provádět například výpočet větších inverzních matic.

Hypotéza: Pokud by bylo vyřešeno učení regulátoru s jednotkami HONU v reálném čase pomocí sériově-paralelního referenčního modelu, regulátor by tím byl schopen dostatečně rychle měnit své chování v reálném čase, tak aby reagoval na změny chování hydraulického systému.

Z hypotézy a vyše uvedených požadavků byli stanoveny následující cíle disertační práce:

Cíl 1: Vytvoření nového zrychleného algoritmu učení, pro regulátory s referenčním modelem, využívající polynomiální neuronové jednotky HONU, použitím adaptivního regulátoru s modifikovaným sériově-paralelním referenčním modelem s využitím jednotek HONU a využitím statické charakteristiky a statického zesílení sériově-paralelního referenčního modelu při adaptaci parametrů regulátoru.

Cíl 2: Vytvoření postupu adaptace řízení, sestavení korektního učícího algoritmu pro HONU jako regulátor se sériově-paralelním referenčním modelem a vyřešení problému
gradientní metody pro výpočet vah HONU jako regulátor.

Cíl 3: Sestavení regulátoru se zvýšenou rychlostí učení pro řízení hydraulického lisu.
4. Teorie
Strategie řízení, jakým jsou MRAC nebo MPC potřebují pro adaptaci parametrů regulátoru gradientní optimalizační metodou dobře identifikovaný model řízeného systému. Proto je kap.4.1 věnována modelům a následně kap.4.2 je věnována sestavení optimalizaci parametrů modelů metodou normalizovaný gradient descent. Kap.4.4 je věnována řízení strategií MRAC se sériově-paralerním referenčním modelem. Je zde odvozen učící algoritmus Normalizovaný gradient descent pro HONU jako regulátor určený pro učení v reálném čase. Dále je ukázáno rozšíření kriteriální funkce o statické zesílení a offset. Kap.4.6 je ukázán postup výpočtu akčních zásahů metodou MPC se sériově-paralerním referenčním modelem a s HONU jako model systému. Kap.4.7 se záveláva stability uzavřeného regulačního obvodu.

4.1. Modely soustavy pro řízení
Modely soustavy pro řízení jsou přímo součástí navrhovaného regulátoru. Slouží buď k výpočtu parametrů regulátoru (u MRAC), nebo přímo k výpočtu akčního zásahu (u MPC). Na model je kladen požadavek dostatečné aproximace chování řízeného systému. Z pohledu hydraulického modelu s vlastnostmi popsanými v kap.2.1.1 plynou následující požadavky:

- Schopnost aproximace nelineárního průtokového zesílení a celé průtokové rovnice
- Schopnost aproximace mrtvých zón šoupátka
- Schopnost aproximace hystereze šoupátka

Z pohledu řízení pak plynou následující požadavky:

- Schopnost rychlé adaptace modelu v reálném čase
- Výpočetně nenáročný model
- Možnost učit model jednoduchými gradientními algoritmy (vyžadující lineárnost podle učených parametrů)

Jako modely s potenciálem vyhovět výše zmíněným požadavkům byly vybrány HONU a Takagiho-Sugenův LNU-fuzzy modely.

4.1.1 HONU jako model řízené soustavy
Neuronové jednotky vyšších řádů HONU byly definovány v [63], a dále byly rozvíjeny v [24],[34], kde jsou použity bez agregační funkce. HONU jsou nekonvenční neuronové
jednotky s polynomiální agregační funkcí řádu r. Lineární neuronové jednotky LNU ($r=1$), kvadratické neuronové jednotky QNU ($r=2$) nebo kubické neuronové jednotky CNU ($r=3$) lze zapsat (bez přenosové funkce) následovně [mv7]:

Tabulka 2: Neuronové jednotky HONU

<table>
<thead>
<tr>
<th>Název</th>
<th>Rovnice</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNU</td>
<td>(y(k) = \sum_{i=1}^{n} w_i \cdot x_i(k))</td>
<td>1</td>
</tr>
<tr>
<td>QNU</td>
<td>(y(k) = \sum_{i=1}^{n} \sum_{j=i}^{n} w_{ij} \cdot x_i(k) \cdot x_j(k))</td>
<td>2</td>
</tr>
<tr>
<td>CNU</td>
<td>(y(k) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{g=j}^{n} w_{ijg} \cdot x_i(k) \cdot x_j(k) \cdot x_g(k))</td>
<td>3</td>
</tr>
</tbody>
</table>

Kde \(y \) je výstup z neuronu, \(\mathbf{W} \) je \(r \)-rozměrný tenzor neuronových vah \(w \), \(\mathbf{x} \) je vstupní vektor do neuronu, který lze pro dynamický systém s jedním stupněm volnosti zapsat např. jako vektor zpožděných vstupů a výstupů ze systému následovně:

\[
x(k) = [1, y(k-n), \ldots, y(k-1), u(k-m-\tau+1), \ldots, u(k-\tau)]^T
\] (4.1)

Kde \(n \) je počet zpožděných výstupů, \(m \) je počet zpožděných vstupů a \(\tau \) je diskrétní zpoždění vstupů.

Neuronové váhy \(\mathbf{W} \) použité v tab.2 jsou tenzorem řádu \(r \). Z praktických důvodů lze HONU řádu \(r \) přepsat jako násobení vektorů:

\[
y(k) = \mathbf{w} \cdot \text{col}\mathbf{x}(k)
\] (4.2)

Kde sloupcový vektor \(\text{col}\mathbf{x} \) je kombinaci členů vstupního vektoru (4.1). Například QNU je neuronová jednotka řádu \(r = 2 \), proto se každý element \(\text{col}\mathbf{x}_i \) bude skládat z kombinace 2 elementů vstupního vektoru:

\[
\text{col}\mathbf{x}_g(k) = x_i(k) \cdot x_j(k); \ i = 1 \ldots n, \ j = i \ldots n
\] (4.3)

I přesto, že HONU jsou nelineární (kromě LNU), jsou lineární podle vah \(\mathbf{w} \). Lze je proto učit pomocí optimalizačních metod hledajících lokální extrémy. S řádem polynomu \(r \) a počtem prvků \(n \) ve vektoru \(\mathbf{x} \) roste i maximální počet kombinací v \(\text{col}\mathbf{x} \). Jedná se o kombinace s opakováním. Lze je vypočítat dle (4.4) a ukázána na obr.14.
S rostoucím řádem HONU a počtem vstupních prvků roste i aproximáční schopnost HONU. Na druhé straně rose výpočetní náročnost a také klesá rychlost učení. Je proto vhodné vstupní vektor redukovat vynecháním nejméně přínosných kombinací prvků.

4.1.2 Takagiho-Sugenův HONU modely

Použitím HONU ve tvaru \((4.2)\) jako modelů konsekven

\[
y_{n(k)} = \sum_{i=1}^{d} \phi_i \cdot y_{i(k)} = \sum_{i=1}^{d} \phi_i \cdot w_i \cdot \text{col}x_{(k)} = \phi \cdot W \cdot \text{col}x
\]

(4.5)

Kde \(d\) je počet lokálních modelů HONU. \(\phi\) je normalizovaný vektor měr příslušností a lze jej spočítat podle měr příslušností \(\beta\), a to následovně:

\[
\phi_j = \frac{\beta_j}{\sum_{i=1}^{d} \beta_i}
\]

(4.6)

Pro výpočet měr příslušnosti byli použity Gaussovy funkce:

\[
\beta_i = e^{\sum_{p=1}^{P} ((z_{(p)}-S_{(i,p)})^2)}
\]

(4.7)

Kde \(S\) je střed Gaussovy funkce a \(\sigma\) udává šířku funkce. \(z\) je hodnota fuzzy parametru \(p\).

Fuzzy relace (volba S, P a \(\sigma\)) byly sestaveny strategií LOLIMOT [32] popsána níže.

\[\text{Obr. 14: počet prvků v colx v závislosti na řádu HONU } r\]
Rovnici (4.5) lze přepsat do vektorového tvaru (4.8) s níže popsaným převedením na vektory. Tento zápis je z pohledu vah W totožný se zápisem HONU (4.2) a je výhodný pro odvození učících algoritmů.

\[y_{n(k)} = w \cdot \text{col}x_{TS(k)} \]
\[w = [W(1,:), W(2,:), \ldots, W(d,:)] \]

\[\text{col}x_{TS(k)} = \begin{bmatrix} \phi_1 \cdot \text{col}x_{(k)}^T, \phi_2 \cdot \text{col}x_{(k)}^T, \ldots, \phi_d \cdot \text{col}x_{(k)}^T \end{bmatrix}^T \]

Takagiho-Sugenův HONU model lze vytvořit algoritmem LOLIMOT [31], upravený pro modely HONU:

I. Vytvoří se globální model ve tvaru (4.2) a pro zvolený fuzzy prostor proměnných z se vytvoří jediná fuzzy množina m definovaná gausovou funkcí (4.7). Střed fuzzy množin S se zvolí ve středu prostoru fuzzy proměnných z. Šířka funkce \(\sigma \) je zvolena přes celý prostor z.

II. Fuzzy množina m je rozdělena na na dvě \(m_1 \) a \(m_2 \), a to podle všech proměnných z. Středy nově vzniklých fuzzy množin budou posunuty podle (4.11), (4.12) a jejich šířka bude poloviční (4.13).

\[S(m_1, z) = S(m, z) - \frac{\sigma(m, z)}{4} \]
III. Pro všechny vytvořené modely v II. Se provede jejich doučení pomocí (4.27) a spočítá se střední kvadratická (MSE):

\[MSE_j = \frac{1}{K} \sum_{k=1}^{K} e_{(k)}^2 = \frac{1}{K} \sum_{k=1}^{K} (y_{(k)} - w \cdot colx_{TG(k)})^2 \] \hspace{1cm} (4.14)

Jako nejlepší (vítězný) model je vybrán ten s nejnižší hodnotou \(MSE_j \).

IV. Pokud vítězný model z III. je dostatečně přesný, nebo pokud bylo dosaženo maximálního povoleného počtu lokálních modelů \(M \), tak je algoritmus ukončen. Pokud ne, pak se vybere lokální model s příslušnou fuzzy množinou \(m \), který má největší vliv na nepřesnosti celého modelu. Jako nejhorší lokální model \(m \) je vybrán ten s největší střední kvadratickou chybou:

\[MSE_{i}^{local} = \frac{1}{K} \sum_{k=1}^{K} (\Phi_{i(k)} \cdot e_{k})^2 = \frac{1}{K} \sum_{k=1}^{K} \Phi_{i(k)}^2 \cdot (y_{(k)} - w \cdot colx_{TG(k)})^2 \] \hspace{1cm} (4.15)

S vybraným nejhorším lokálním modelem a k němu příslušnou fuzzy množinou se pokračuje krokem II.

\[S(m_2, z) = S(m, z) + \frac{\sigma(m, z)}{4} \] \hspace{1cm} (4.12)

\[\sigma(m_2, z) = \sigma(m_2, z) + \frac{\sigma(m, z)}{2} \] \hspace{1cm} (4.13)

4.2. Optimalizační metoda Normalizovaný Gradient Descent

Normalizovaný gradient descent (NGD) je gradientní optimalizační metoda hledající lokální extrém. Cílem identifikace je, aby se výstup z modelu \(y_{(k)} \) blížil meřené hodnotě řízeného systému \(y_{ref(k)} \) a to v libovolném stavu. Obvykle je používána následující kriteriální funkce [48]:

\[Q_{(k)} = \frac{1}{2} e_{(k)}^2 = \frac{1}{2} (y_{ref(k)} - y_{(k)})^2 \] \hspace{1cm} (4.16)

Což je kvadratická funkce nabývající svého minima právě tehdy, pokud je odchylka \(e \) nulová. Zjednodušené schéma učícího algoritmu je znázorněn na obr.16. Váhy HONU (parametry identifikovaného modelu) jsou upravovány v závislosti na odchylce výstupu modelu oproti referenčnímu výstupu.
Samotný algoritmus NGD má následující podobu pro učení vah [26]:

\[\mathbf{w}(k) = \mathbf{w}(k-1) - \mu(k) \cdot \frac{\partial Q(k)}{\partial \mathbf{w}(k-1)} \] \hspace{1cm} (4.17)

V každém diskrétním čase \(k \) je vektor vah modelu \(\mathbf{w} \) upraven proti směru gradientu kriteriální funkce \(Q \). O velikosti změny velikosti vah rozhoduje součinitel rychlosti učení \(\mu \). Hodnota \(\mu(k) \) může být stanovena tak, aby kriteriální funkce (4.16) po úpravě vah \(\hat{Q}(k) \) byla minimální. \(\mu(k) \) lze pak spočítat metodou nejmenších následující podmínkou [52]:

\[\frac{\partial \hat{Q}(k)}{\mu(k)} = 0 \] \hspace{1cm} (4.18)

4.2.1 Učení modelů soustavy metodou NGD

Jelikož výsledný zápis pro HONU (4.2) a pro T-S HONU modely (4.8) jsou stejné z pohledu vah, platí pro ně stejné odvození učení metodou NGD.

Dosazením rovnice HONU (4.2) do kriteriální funkce (4.16) se dostane:

\[Q(k) = \frac{1}{2} \hat{e}^2(k) = \frac{1}{2} (y_{ref}(k) - \mathbf{w}(k) \cdot \mathbf{colx}(k))^2 \] \hspace{1cm} (4.19)

Následným dosazením (4.19) do (4.17) a výpočtem gradientu se dostane rovnice pro učení vah:

\[\mathbf{w}(k+1) = \mathbf{w}(k) + \mu \cdot \mathbf{e}(k) \cdot \mathbf{colx}^T(k) \] \hspace{1cm} (4.20)

Pro určení součinitele rychlosti učení \(\mu \) se nejprve sestaví kriteriální funkce s vahami po učení \(\mathbf{w}(k+1) \)

\[\hat{Q}(k) = \frac{1}{2} \hat{e}^2(k) = \frac{1}{2} (y_{ref}(k) - \tilde{y}(k))^2 = \frac{1}{2} (y_{ref}(k) - \mathbf{w}(k+1) \cdot \mathbf{colx}(k))^2 \] \hspace{1cm} (4.21)
Do (4.21) se dosadí (4.20):

$$
\tilde{Q}(k) = \frac{1}{2} \left(y_{ref}(k) - \left(w(k) + \mu \cdot e(k) \cdot \text{colx}(T) \right) \cdot \text{colx}(k) \right)^2
$$

$$
= \frac{1}{2} \left(e(k) - \mu \cdot e(k) \cdot \text{colx}(T) \cdot \text{colx}(k) \right)^2
$$

(4.22)

Pak (4.22) bude nabývat svého minima, právě když bude platit (4.18). Dosazením do (4.18) a výpočtem derivace dostaneme vztah pro součinitel učení μ s maximální rychlostí učení:

$$
\mu(k) = \frac{1}{\text{colx}(T) \cdot \text{colx}(k)}
$$

(4.23)

V praxi je pak obvykle vyžadována nižší rychlost učení. Proto je (4.23) rozšířen o normalizovaný koeficient učení $\mu_{norm} \in (0, 2)$. Dle [53] je pak přidán koeficient ε k zachování stability při hodnotách blízkých nule vstupního vektoru \mathbf{x}. Výsledný vzorec pro rychlosti učení μ je následující:

$$
\mu(k) = \frac{\mu_{norm}}{\text{colx}(T) \cdot \text{colx}(k) + \epsilon}
$$

(4.24)

4.2.2 Normalizovaný stochastic mini-batch gradient descent

Tato podkapitola vychází ze studie [mv8]. Normalizovaný mini-batch gradient descent je gradientní metoda s normalizovaným koeficientem učení a kriteriální funkcí ve tvaru (4.25) [50], kde je zvolena m náhodných vzorů (dávka) v intervalu $< k - h + 1, k >$. Kde h je šířka okna.

$$
Q(k) = \frac{1}{2} \cdot \sum_{i=1}^{m} e_{i(k)}^2 = \frac{1}{2} \cdot e^T(k) \cdot e(k) = \frac{1}{2} \cdot \sum_{i=1}^{m} \left(y_{refi(k)} - y_i(k) \right)^2
$$

$$
= \frac{1}{2} \cdot \sum_{i=1}^{m} \left(y_{ref(k)} - w(k) \cdot \text{colx}(i) \right)^2
$$

(4.25)

Kriteriální funkce je počítána z aktuálních vah $w(k)$, avšak ze zpožděných vstupních vektorů colx. Bude-li například velikost šířky okna $h = 10$ a počet náhodných vzorků $m = 3$ pak kriteriální funkce může vypadat následovně:

$$
Q(k) = \frac{1}{2} \cdot \left(e_{(k-9)}^2 + e_{(k-2)}^2 + e_{(k-7)}^2 \right)
$$

$$
= \frac{1}{2} \cdot \left(y_{ref(k-9)} - w(k) \cdot \text{colx}(k-9) \right)^2 + \frac{1}{2} \cdot \left(y_{ref(k-2)} - w(k) \cdot \text{colx}(k-2) \right)^2
$$

$$
+ \frac{1}{2} \cdot \left(y_{ref(k-7)} - w(k) \cdot \text{colx}(k-7) \right)^2
$$

(4.26)
Dosazením (4.25) do (4.17) a výpočtem gradientu dostane rovnici pro učení vah:

\[
 w_{(k+1)} = w_{(k)} + \mu_{\text{norm}}(k) \cdot \sum_{i=1}^{m} e_{i(k)} \cdot \frac{\partial y_{i(k)}}{\partial w_{(k)}}
\]

\[
 = w_{(k)} + \mu_{\text{norm}}(k) \cdot \sum_{i=1}^{m} e_{i(k)} \cdot \text{col}x_{T_i(k)}
\]

\[
 = w_{(k)} + \mu_{\text{norm}}(k) \cdot \text{e}_{T_i(k)} \cdot J_k
\]

(4.27)

Kde \(J \) je Jacobiho matice a je určena následovně:

\[
 J_{(k)} = \frac{\partial y_{(k)}}{\partial w_{(k)}} = \begin{bmatrix} \text{col}x_{T_{i=1}(k)} \\ \vdots \\ \text{col}x_{T_{i=m(k)}} \end{bmatrix}
\]

(4.28)

Pro určení součinitele rychlosti učení \(\mu \) se nejprve sestaví kriteriální funkce s vahami po učení \(w_{(k+1)} \):

\[
 \hat{Q}_{(k)} = \frac{1}{2} \sum_{i=1}^{m} \left(y_{\text{ref}_{i(k)}} - w_{(k+1)} \cdot \text{col}x_{i(k)} \right)^2
\]

\[
 = \frac{1}{2} \sum_{i=1}^{m} \left(y_{\text{ref}_{i(k)}} - \left(w_{(k)} + \mu_{\text{norm}}(k) \cdot \text{e}_{T_i(k)} \cdot J_k \right) \cdot \text{col}x_{i(k)} \right)^2
\]

\[
 = \frac{1}{2} \sum_{i=1}^{m} \left(e_{i(k)} - \mu_{\text{norm}}(k) \cdot \text{e}_{T_i(k)} \cdot J_k \cdot \text{col}x_{i(k)} \right)^2
\]

\[
 = \frac{1}{2} \left[\text{e}_{(k)} - \mu_{\text{norm}}(k) \cdot J \cdot J^T \text{e}_{(k)} \right] \cdot \left[\text{e}_{(k)} - \mu_{\text{norm}}(k) \cdot J \cdot J^T \text{e}_{(k)} \right]
\]

\[
 = \text{e}_{T_i(k)} \cdot \text{e}_{(k)} - 2 \cdot \mu_{\text{norm}}(k) \cdot \text{e}_{T_i(k)} \cdot J \cdot J^T \text{e}_{(k)} + \mu_{\text{norm}}^2(k) \cdot \text{e}_{T_i(k)} \cdot (J \cdot J^T)^2 \cdot \text{e}_{(k)}
\]

(4.29)

(4.29) bude nabývat svého minima, právě když bude platit (4.18). Dosazením do (4.18) a výpočtem derivace se dostane vztah pro součinitel učení \(\mu \) s maximální rychlostí učení:

\[
 \mu_{(k)} = \frac{\text{e}_{T_i(k)} \cdot J \cdot J^T \text{e}_{(k)}}{\text{e}_{T_i(k)} \cdot (J \cdot J^T)^2 \cdot \text{e}_{(k)} + \epsilon}
\]

(4.30)

Analogicky s kap. 4.2.1 lze sestavit následující výsledný vzorec pro koeficient rychlosti učení [mv6]:

\[
 \mu_{(k)} = \mu_{\text{norm}} \cdot \frac{\text{e}_{T_i(k)} \cdot J \cdot J^T \text{e}_{(k)}}{\text{e}_{T_i(k)} \cdot (J \cdot J^T)^2 \cdot \text{e}_{(k)} + \epsilon}
\]

(4.31)

Učící algoritmus NGD (kap.4.2) provádí změny vah v závislosti na aktuálních hodnotách
vstupního vektoru $x(k)$. Pokud však bude v hodnotách signálu nějaká porucha (šum, kvantifikace signálu) bude HUNU v každém časovém kroku na tyto změny přeučován a nedojde tak k přesnému naučení. To lze eliminovat snížením rychlosti učení za cenu pomalejší adaptace regulátoru na změny řízeného systému nebo použitím právě dávkového učení.

Normalizovaný mini-batch gradient descent byl proto testován na datech, která byla zatížena bílým šumem. Velikost okna h byla zvolena schodně s periodou vstupního signálu.

Na obr. 17 je ukázáno porovnání vstupního signálu u, referenčního zašuměného signálu y_{ref} a výstupu z dynamické LNU po naučení vah s počtem vstupních vzorků $m = 256$.

Na obr. 17 je ukázáno porovnání referenčního signálu a výstupu dynamické LNU s naučenými váhami. Na obr. 18 je ukázáno porovnání chybové funkce MSE pro různé velikosti dávky m. Kde MSE je počítána z poruchy mezi teoretickým signálem bez šumu a výstupu z LNU y_{ref} a to následovně:

$$MSE_{(epoch)} = \frac{1}{K} \sum_{k=1}^{K} (y_{ref}(k) - y_n(k))^2$$

(4.32)
Kde \(K \) je velikost vstupních dat a \(epoch \) značí pokolikáté byla vstupní data pro učení použita. Z obr.18 je patrné, že s větší velikostí dávky \(m \) klesají fluktuace MSE a tedy i přeučování LNU na samotný šum.

![Obr. 18: Porovnání chybové funkce MSE pro různé velikosti dávky m, při učení metodou Normalizovaný mini-batch gradient descent.](image)
4.3. Řízení se sériově-paralelním referenčním modelem

V této práci jsou porovnávány 2 přístupy řízení. Řízení s referenčním modelem (MRAC) a prediktivní řízení (MPC). Oba zmíněné přístupy jsou schopny adaptivního řízení. Mohou využívat modely HONU a T-S HONU jako vnitřního modelu řízeného systému a též mohou oba využívat referenčního modelu.

Referenční model (RM) slouží k nastavení parametrů regulátoru nebo přímo k výpočtu akčního zásahu. Při použití paralelního referenčního modelu (obr.19a) se jedná o úlohu vnucování trajektorie v čase uzavřenému regulačnímu obvodu (URO). Paralelní referenční model je dynamický, jeho výstup záleží pouze na žádané hodnotě d, čase a počátečních podmínkách. Nezávislost jeho výstupu na okolí ho činí vhodným pro úlohy, kdy je žádaná hodnota funkci času. Jsou to úlohy kooperujících systémů, jako například navádění rakety na vesmírnou stanici obíhající kolem země, navádění rakety k sestřelení jiné letící rakety, nebo kooperující roboti.

Tato práce je zaměřena na sériově-paralelní referenční model (obr.19b). Kde RM slouží ke vnucování chování RM uzavřenému regulačnímu obvodu (URO). Na základě vzniklé odchylky mezi výstupem z RM a řízeného systému v daném čase, adaptační algoritmus upraví parametry regulátoru s cílem referenční odchylku minimalizovat v následujících časových krocích. Sériově-paralelní referenční model provádí reinicializaci v každém časovém kroku. Výstup ze sériově-paralelního RM je funkci žádané hodnoty a předchozích výstupů z URO. Referenční odchylka v daném časovém kroku je tedy závislá pouze na odlišném chování URO a RM, nikoli na historii referenční odchylky a historii poruch vstupujících do URO.

Na obr.20 je ukázán průběh referenčních odchylek, kdy URO a RM měly totožné chování, ale v časovém rozmezí 15 až 33s působila na akční zásah řízeného modelu v URO porucha (působí jako změna offsetu řízeného systému). Z obr.20 je zřejmé, že při použití paralelního RM může docházet k situacím, kdy vzniká referenční odchylka i když na
řízený systém už žádná porucha nepůsobí. Pokud není požadován průběh regulované veličiny v čase, ale pouze vnucení chování RM URO, pak použité sériově-paralelního RM může být výhodnější. Referenční odchylka je nenulová pouze tehdy, pokud jsou chování RM a URO odlišná. Dále je pak předpokládáno, že pokud se chování URO blíží chování RM, a RM přirozeně konverguje k žádané veličině \(d \), pak i URO konverguje k žádané hodnotě \(d \).

Sériově-paralelní referenční model může být obecně libovolný systém rovnic a pravidel. Ve studii je použita jako RM pouze lineární diferenciální rovnice (LDR). Použitím LDR jako RM můžeme požadované vlastnosti URO definovat kořeny charakteristické rovnice a jeho statickým zesílením. Jelikož je požadováno dosažení žádané hodnoty \(d \) regulovanou veličinou \(y \), bude mít RM vždy statické zesílení rovno jedné.

Pro diskrétní řízení je pro RM třeba provést diskreditaci vhodnou metodou nebo RM nahradit vhodným polynomem. V tomto případě je LDR nahrazena jednotkou HONU 1. řádu, tzv. lineární neuronová jednotka LNU (4.34), z důvodu menší náchynnosti na šum.

\[
y_{\text{ref}}(k) = w_{\text{ref}} \cdot x_{\text{ref}}(k)
\]

(4.33)

Kde \(w_{\text{ref}} \) jsou váhy neuronu a \(x_{\text{ref}} \) je vstupní vektor sestaven z žádané hodnoty \(d \) a předchozích měřených veličin řízené soustavy. Vstupní vektor \(x_{\text{ref}} \) pak může vypadat následovně [mv3].

\[
x_{\text{ref}}(k) = [y(k-n_0), \ldots, y(k-1), d(k-\eta_{d-1}), \ldots, d(k)]^T
\]

(4.34)

Implementace RM do samotného řízení je popsána v následujících kapitolách.

Obr. 20: Referenční odchylky vzniklé poruchou v řízeném modelu
4.4. Řízení adaptivním regulátorem MRAC

Adaptivním regulátorem s referenčním modelem (MRAC) je obecně funkce, jejíž výstupem je akční zásah u. Při stavovém řízení je akční zásah vypočítán ze zpožděných měrených veličin ξ_y a ze zpožděných žádaných hodnot ξ_d. Obecně lze tedy funkci pro výpočet akčního zásahu zapsat následovně:

$$u(k) = f_R(\xi_d(k), \xi_y(k))$$ \hspace{1cm} (4.35)

Parametry této funkce jsou navrženy tak, aby uzavřený regulační obvod měl stejné chování jako zvolený referenční model. Parametry této funkce jsou nastaveny pomocí modelu řízeného systému a RM. Jelikož je pro nelineární systémy obtížné či neřešitelné explicitní vyjádření akčního zásahu do tvaru, je funkce (4.35) s výhodou nahrazena vhodnou neuronovou sítí, v tomto případě polynomiální neuronovou jednotkou HONU a T-S LNU modelem. Hlavními výhodami použití HONU T-S LNU pro danou úlohu jsou:

- Explicitní vyjádření $u(k)$ respektive $y_n(k)$.
- Schopnost učení v reálném čase (adaptace regulátoru).
- Schopnost postihnout nelineární chování řízeného systému.
- Funkce s jediným lokálním minimem

4.4.1 Matematický popis HONU jako MRAC regulátor

Diskrétní regulátor s jedním vstupem a jedním výstupem (SISO) se skládá z jednotky HONU. V uvedeném případě jako LNU (4.36) nebo obecně pro HONU (4.37) [mv2].

$$u(k) = \nu(k) \cdot \xi(k) = \sum_{g=1}^{m} \xi_g(k) \cdot \nu_g(k)$$ \hspace{1cm} (4.36)

$$u(k) = \nu \cdot \text{col} \xi(k)$$ \hspace{1cm} (4.37)

Kde ν je vektor vah HONU jako regulátor. Jedná se podstatě o parametry regulátoru, kterými lze nastavit chování URO. ξ je vstupním vektorom dávající informaci o aktuálním stavu řízeného systému a žádané hodnoty. V případě, má-li systém pouze jeden stupeň volnosti a je-li řiditelný a pozorovatelný, může se jednat o zpožděné regulační veličiny a žádané hodnoty.

$$\xi(k) = [1, y(k-m_y), \ldots, y(k-1), d(k-m_d+1), \ldots, d(k)]^T$$ \hspace{1cm} (4.38)

Vektor $\text{col} \xi$ (4.39) je sestaven kombinací prvků ze vstupního vektoru ξ stejným způsobem
jako vektor \(\text{col} \mathbf{x} \) pro HONU (4.3) nebo pro T-S HONU (4.10).

\[
\text{col}\xi_{g(k)} = \xi_{i(k)} \cdot \xi_{j(k)}; \quad i = 1...n, \quad j = i...n
\] (4.39)

Počet zpožděných hodnot \(m_y \) a \(m_d \) závisí na řádu řízeného systému, šumu v naměřené regulované veličině, rychlosti vzorkování a ostatních vlastnostech. Pro neuronové sítě neexistuje vztah pro určení velikosti vstupního vektoru. Jeho určení se provádí na základě zkušeností s podobně řízenými soustavami nebo experimentálně s optimalizací.

Při řízení v reálném čase, dojde-li ke změně chování řízeného systému, dojde k přeučení vah modelu \(\mathbf{w} \) a následně i k přeučení vah regulátoru \(\nu \).

4.4.2 Matematický popis T-S HONU jako MRAC regulátor

Obdobně jako použití HONU jako regulátoru lze použít i Takagi-Sugeno model jako regulátor s HONU jako lokálními modely, a to následovně [mv9]:

\[
u(k) = \Phi u(k) \cdot \mathbf{V}(k) \cdot \text{col}\xi(k) \] (4.40)

Kde \(\Phi_u \) vektor normalizovaných měr příslušnosti sestavenou analogicky s (4.6). Matice \(\mathbf{V} \) představuje váhy lokálních neuronů, parametry regulátoru. Vektor \(\text{col}\xi \) je totožný s (4.39). Rovnici regulátoru (4.40) lze přepsat do vektorového tvaru:

\[
u(k) = \nu(k) \cdot \text{col}\xi_{TG(k)} \] (4.41)

Kde vektor vah \(\nu \) je sestaven dle (4.42) a vektor \(\text{col}\xi_{TS(k)} \) podle (4.43). Tento zápis je výhodný pro odvození učících algoritmu. Z pohledu vah je zápis totožný se zápisem samotné HONU (4.37).

\[
u(k) = [\mathbf{V}(k)(1,:), \mathbf{V}(k)(2,:), ..., \mathbf{V}(k)(d,:)]
\] (4.42)

\[
\text{col}_{TS(k)} = [\phi_{u1(k)} \cdot \text{col}\xi_{T(k)}^T, \phi_{u2(k)} \cdot \text{col}\xi_{T(k)}^T, ..., \phi_{ud(k)} \cdot \text{col}\xi_{T(k)}^T]^T
\] (4.43)

Výsledný zápis T-S HONU modulu (4.41) je z pohledu vah stejný s HONU modelem (4.37). Odvození učících algoritmů vah je proto pro něj stejně.

4.4.3 Učící algoritmus GD pro adaptaci vah HONU jako regulátoru

Samotný algoritmus GD (4.44) i kriteriální funkce (4.45) jsou stejné jako pro HONU jako model soustavy (4.2).

\[
u(k+1) = \nu(k) - \mu_{\text{norm}}(k) \cdot \frac{\partial Q(k)}{\partial \nu(k)}
\] (4.44)
Rovnice (4.44) je interpretována následovně: V každém časovém kroku jsou váhy regulátoru upraveny z předchozího časového kroku proti směru gradientu kriteriální funkce. Kriteriální funkce \(Q(k) \) je přitom sestavena tak, aby dávala informaci o chybovosti vah regulátoru v předchozím časovém kroku a nabývala svého minima pro nulovou referenční odchylku.

Na rozdíl od učení vah HONU jako modelu soustavy, v kriteriální funkci (4.45) není přímo výstup z neuronu (4.37). Závislost mezi regulovanou veličinou \(y(k) \) a akčním zásahem \(u(k) \) je určena pomocí modelu řízeného systému (4.2).

Předpokládá se, že chování modelu je blízké chování řízeného systému, tedy že pro libovolný diskrétní čas \(k \) platí:

\[
y(k) \approx y_n(k)
\]

Jelikož je řízený systém vždy alespoň o jeden diskrétní časový krok zpožděn, výstup z regulátoru (4.37) nemá vliv na regulovanou veličinu. Tedy ani váhy HONU jako regulátoru \(\nu(k) \) se na \(y(k) \) nepodílejí, není na nich závislá ani kriteriální funkce (4.45). Gradient v (4.44) je proto nulový. Daným způsobem nelze proto korektně váhy \(\nu(k) \) učit.

Regulovaná veličina \(y(k) \) je funkcí zpožděných akčních zásahů \(u(k-\tau) \) až \(u(k-\tau-m_u+1) \), což je dáno vstupním vektorem \(x(k) \) (4.1). Regulovaná veličina \(y(k) \) je proto závislá na vahách z časového kroku \(k - \tau \) a starší.

Jako řešení výše zmíněného problému je počítán tzv. fiktivní výstup z řízeného systému \(\tilde{y}(k) \), který by nastal, kdyby i v předchozích časových krocích byly použity váhy \(\nu(k) \) pro výpočet akčních zásahů \(u(k-\tau) \) až \(u(k-\tau-m_u+1) \). Fiktivní výstup \(\tilde{y}(k) \) není použit pro samotné řízení, ale pouze pro optimalizaci vah regulátoru. Kriteriální funkce je pak z (4.45) upravena následovně [mv3]:

\[
Q(k) = \frac{1}{2}(y_{ref}(k) - \tilde{y}_n(k))^2
\]

také náhodné a může být i nestabilní. Pro předučení regulátoru je proto zvoleno schéma obr.21 [mv6], kde je použit dynamický referenční model a statický HONU jako URO (statický model je vždy stabilní). Vstupem do HONU jako regulátoru jsou zpožděné žádané hodnoty d a zpožděné výstupy z referenčního modelu y_{ref}. Vstupem do HONU jako modelu řízeného systému jsou pak zpožděné výstupy z HONU jako regulátoru u a zpožděné výstupy z referenčního modelu y_{ref}.

\[y_{ref}(k-m_y) \quad \ldots \quad \begin{bmatrix} x_{ref}(k) \end{bmatrix} \quad \ldots \quad y_{ref}(k) \]

Obr. 21: Předučení vah $\nu(k)$ HONU jako regulátoru v zapojení referenčního modelu jako dynamická LNU

Při učení vah $\nu(k)$ za provozu je známa regulovaná veličina a je požadováno, aby se regulátor adaptoval na aktuální změny chování řízeného systému. Referenční model proto přejde na statickou LNU, v jehož vstupu je zpožděná regulační veličina (obr.22) [mv10].

\[y(k-m_y) \quad \ldots \quad \begin{bmatrix} x_{ref}(k) \end{bmatrix} \quad \ldots \quad y_{ref}(k) \]

Obr. 22: Učení vah $\nu(k)$ HONU jako regulátoru během procesu v zapojení referenčního modelu jako statická LNU
Při změnách chování řízeného systému v reálném čase dochází k přeučování modelu řízeného systému a současně i regulátoru.

4.4.4 Gradient v GD pro HONU jako regulátor a LNU jako model systému

LNU jako model řízeného systému byl použit ve tvaru (4.48) se vstupním vektorem (4.49).

\[y_{n(k)} = \mathbf{w} \cdot \mathbf{x}(k) = \sum_{i=1}^{n} x_{i(k)} w_i \]
\[(4.48) \]

\[\mathbf{x}(k) = \begin{bmatrix} 1, \mathbf{x}_{y(k)}^T, \mathbf{x}_{u(k)}^T \end{bmatrix}^T = \begin{bmatrix} 1, y(k-ny), \ldots, y(k-1), u(k-\tau-nu+1), \ldots, u(k-\tau) \end{bmatrix}^T \]
\[(4.49) \]

Bude-li použit LNU jako regulátor (4.36) a LNU jako model řízené soustavy (4.48) se vstupním vektorem (4.49), pak dosazením LNU jako regulátoru (4.36) v příslušných časech do (4.49) dostáváme:

\[\mathbf{x}(k) = \begin{bmatrix} 1 \\ y(k-ny) \\ \vdots \\ u(k-nu) = \sum_{g=1}^{m} y(k-1) \\ \vdots \\ u(k-1) = \sum_{g=1}^{m} \text{col} \mathbf{\xi}_{g(k-nu)} \cdot \mathbf{v}_{g(k-nu)} \end{bmatrix} \]
\[(4.50) \]

Fiktivní řízenou veličinu pak vypočítáme jako:

\[\tilde{y}_{n(k)} = \mathbf{w} \cdot \tilde{\mathbf{x}}(k) = \sum_{i=1}^{n} \tilde{x}_{i(k)} \cdot w_i \]
\[(4.51) \]

Kde vektor \(\tilde{\mathbf{x}}(k) \) bude funkcí pouze aktuálních vah \(\mathbf{v}(k) \) (4.52):

\[\tilde{\mathbf{x}}(k) = \begin{bmatrix} 1 \\ y(k-ny) \\ \vdots \\ \tilde{u}(k-nu) = \sum_{g=1}^{m} y(k-1) \\ \vdots \\ \tilde{u}(k-1) = \sum_{g=1}^{m} \text{col} \mathbf{\xi}_{g(k-\tau)} \cdot \mathbf{v}_{g(k)} \end{bmatrix} \]
\[(4.52) \]

Gradient potřebný pro adaptaci vah v (4.44) dostaneme dosazením (4.52) do (4.51) a následně do (4.47) [mv3]:

50
\[
\frac{\partial Q_{(k)}}{\partial v_{gL(k)}} = \frac{1}{2} \frac{\partial}{\partial v_{gL(k)}} (y_{ref(k)} - w_{(k)} \cdot \tilde{x}_{(k)})^2 = -\tilde{e}_{ref(k)} \cdot \left[w_{(k)} \cdot \frac{\partial \tilde{x}_{(k)}}{\partial v_{gL(k)}} \right]
\]

(4.53)

Virtuální referenční odchylka \(\tilde{e}_{ref(k)}\) je počítána podle vztahu (4.54) a gradient v (4.53) g-tým sloupcem v Jacobího matici J (4.28).

\[
\tilde{e}_{ref(k)} = y_{ref(k)} - \tilde{y}_{(k)}
\]

(4.54)

\[
J_{(k)} = \frac{\partial \tilde{x}_{(k)}}{\partial v_{(k)}} = \begin{bmatrix}
\frac{\partial \tilde{x}_{1(k-\tau)}}{\partial v_{1(k)}} & \cdots & \frac{\partial \tilde{x}_{1(k)}}{\partial v_{m(k)}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \tilde{x}_{n(k-\tau)}}{\partial v_{1(k)}} & \cdots & \frac{\partial \tilde{x}_{n(k-\tau-nu+1)}}{\partial v_{m(k)}}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial \tilde{y}_{1}}{\partial v} \\
\vdots \\
\frac{\partial \tilde{y}_{n}}{\partial v}
\end{bmatrix} = \begin{bmatrix}
\tilde{0} \\
\tilde{0} \\
\vdots \\
\tilde{0} \\
\text{col} \xi_{(k-\tau-nu+1)}^T \\
\vdots \\
\text{col} \xi_{(k-\tau)}^T
\end{bmatrix}
\]

(4.55)

Výsledný vzorec pro učení vah HONU jako regulátoru je pak po dosazení (4.53) do (4.44) následující:

\[
\nu_{(k+1)} = \nu_{(k)} + \mu_{C(k)} \cdot \tilde{e}_{ref(k)} \cdot w_{(k)} \cdot J_{(k)}
\]

(4.56)

Pro určení normalizovaného koeficientu učení \(\mu_{\text{norm}(k)}\) v kap. 4.2. je požadováno, aby kriteriální funkce (4.47) po učení vah (4.56) nabývala menší hodnoty. Svého minima dosáhne pokud platí:

\[
\frac{\partial \hat{Q}_{(k)}}{\partial \mu_{C(k)}} = 0
\]

(4.57)

Vstupní vektor (4.52) je upraven na (4.31) po dosazení (4.56) na místo \(v_{(k)}\):

\[
\hat{x}_{(k)} = \begin{bmatrix}
1 \\
y_{(k-\tau-ny)} \\
\vdots \\
y_{(k-1)} \\
\nu_{(k+1)} \cdot \text{col} \xi_{(k-\tau-nu+1)} \\
\vdots \\
\nu_{(k+1)} \cdot \text{col} \xi_{(k-\tau)}
\end{bmatrix} = \begin{bmatrix}
1 \\
y_{(k-\tau-ny)} \\
\vdots \\
y_{(k-1)} \\
\nu_{(k+1)} \cdot \text{col} \xi_{(k-\tau-nu+1)} \\
\vdots \\
\nu_{(k+1)} \cdot \text{col} \xi_{(k-\tau)}
\end{bmatrix} \begin{bmatrix}
\nu_{(k)} + \mu_{C(k)} \cdot \hat{e}_{ref(k)} \cdot w_{(k)} \cdot J_{(k)} \\
\vdots \\
\nu_{(k)} + \mu_{C(k)} \cdot \hat{e}_{ref(k)} \cdot w_{(k)} \cdot J^T_{(j)} \cdot w^T_{(k)}
\end{bmatrix}
\]

(4.58)

Kriteriální funkce po učení vah \(\hat{Q}_{(k)}\) se vypočítá následovně:
Aplikací (4.57) na (4.59) dostaneme (4.60) a následně i vztah pro maximální rychlost učení (4.62).

\[
0 = 1 - \mu C(k) \cdot w \cdot J(k) \cdot (w \cdot J(k))^T \quad (4.60)
\]

\[
\mu C(k) = \frac{1}{w \cdot J(k) \cdot (w \cdot J(k))^T} \quad (4.61)
\]

V praxi je však obvykle vyžadována nižší rychlost učení, proto je (4.61) rozšířen o normalizovaný koeficient učení \(\mu_{C_{\text{norm}}} \in <0,1> \). Dle [48] je pak přidán koeficient tlumení \(\epsilon \). Výsledný vzorec pro rychlosti učení \(\mu \) je následující:

\[
\mu C(k) = \frac{\mu_{C_{\text{norm}}}}{w \cdot J(k) \cdot (w \cdot J(k))^T + \epsilon} \quad (4.62)
\]

4.4.5 Gradient v GD pro HONU jako regulátor a HONU jako model sytého

Postup sestavení je analogický jako v kap. 4.4.4. Je vycházeno ze zápisů HONU tab.2. Nejprve je ukázáno odvození pro QNU jako model řízeného systému zapsaný ve tvaru (4.63) se vstupním vektorem (4.49), kde fiktivní výstup z regulovaného systému bude mít tvar (4.64).

\[
y_n(k) = \sum_{i=1}^{n} \sum_{j=i}^{n} x_i(k) \cdot x_j(k) \cdot w_{ij} \quad (4.63)
\]

\[
\tilde{y}(k) = \sum_{i=1}^{n} \sum_{j=i}^{n} \tilde{x}_i(k) \cdot \tilde{x}_j(k) \cdot w_{ij} \quad (4.64)
\]

Fiktivní vstupní vektor (4.64) lze napsat následovně:

\[
\tilde{x}(k) = \begin{bmatrix}
1 \\
y(k-n_y) \\
\vdots \\
y(k-1) \\
\tilde{u}_{k-n_u} = \nu(k) \cdot \text{col} \xi_{(k-\tau-n_u+1)} \\
\vdots \\
\tilde{u}(k-1) = \nu(k) \cdot \text{col} \xi_{(k-\tau)}
\end{bmatrix} \quad (4.65)
\]
Gradient potřebný pro adaptaci vah v (4.44) dostaneme dosazením do (4.55) a následně do (4.39):

\[\frac{\partial Q_{(k)}}{\partial v_{g(k)}} = \frac{1}{2} \frac{\partial}{\partial v_{g(k)}} \left(y_{ref} - \sum_{i=1}^{n} \sum_{j=i}^{n} \bar{x}_{i(k)} \cdot \bar{x}_{j(k)} \cdot w_{ij} \right)^2 \]

\[= -e_{ref} \cdot \sum_{i=1}^{n} \sum_{j=i}^{n} \left(\frac{\partial \bar{x}_{i(k)}}{\partial v_{g(k)}} \cdot \bar{x}_{j(k)} + \bar{x}_{i(k)} \cdot \frac{\partial \bar{x}_{j(k)}}{\partial v_{g(k)}} \right) \cdot w_{ij} \]

Gradient v (4.66) je počítán následovně:

\[\frac{\partial \bar{x}_{(k)}}{\partial v_{g(k)}} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ c_{o} \xi_{g(k-\tau-nu+1)} \\ \vdots \\ c_{o} \xi_{g(k-\tau)} \end{bmatrix} \]
(4.67)

Pro všechny vyšší řády HONU použité jako model řízeného systému je sestavení gradientu stejné, pouze v (4.66) se zvýší počet členů v sumě. Například pro CNU bude gradient následující [mv3]:

\[\frac{\partial Q_{(k)}}{\partial v_{g(k)}} = \frac{1}{2} \frac{\partial}{\partial v_{g(k)}} \left(y_{ref} - \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{h=1}^{n} \bar{x}_{i(h)} \cdot \bar{x}_{j(h)} \cdot \bar{x}_{h(k)} \cdot w_{ij} \right)^2 = -e_{ref} \]

\[\cdot \sum_{i=1}^{n} \sum_{j=i}^{n} \left(\frac{\partial \bar{x}_{i(h)}}{\partial v_{g(k)}} \cdot \bar{x}_{j(h)} + \bar{x}_{i(h)} \cdot \frac{\partial \bar{x}_{j(h)}}{\partial v_{g(k)}} \cdot \bar{x}_{h(k)} + \bar{x}_{i(h)} \cdot \bar{x}_{j(h)} \cdot \frac{\partial \bar{x}_{h(k)}}{\partial v_{g(k)}} \right) \cdot w_{ij} \]

(4.68)

4.4.6 Gradient v GD pro HONU jako regulátor a T-S HONU jako model systému

T-S HONU model se skládá z lokálních modelů, jejichž výstupy budou sčítány podle normalizované míry příslušnosti \(\Phi \). Gradienty lokálních modelů, jež byly sestaveny pro LNU (4.53), QNU (4.66), CNU (4.68), pro T-S HONU přejdou na tvar (4.69) pro LNU, (4.70) pro QNU a (4.71) pro CNU.

\[\frac{\partial Q_{(k)}}{\partial v_{mg(k)}} = -e_{ref} \cdot \phi_{m(k)} \cdot \sum_{i=1}^{n} \frac{\partial \bar{x}_{i(k)}}{\partial v_{mg(k)}} \cdot w_{mi(k)} \]
(4.69)
Protože je uvažován vstupní vektor \mathbf{x} do všech lokálních modelů stejný, bude parciální derivace v (4.69), (4.70) a (4.71) shodná s (4.67).

4.5. Rozšíření kriteriální funkce o statické zesílení a posunutí

Pokud je možné explicitně vypočítat offset, statické zesílení nebo statickou charakteristiku uzavřeného regulačního obvodu, pak tyto informace mohou být použity k rozšíření kriteriální funkce. Neboť statické zesílení a offset referenčního modelu jsou známé, protože vždy požadujeme statické zesílení RM rovno 1 a nulový offset.

4.5.1 Statické zesílení LNU

Statické zesílení dynamického systému je vztah mezi výstupem a vstupem v ustáleném stavu. Ustálený stav znamená, že vstup a výstup jsou v čase neměnné. Potom vstupní vektor (4.49) lze přepsat do statické podoby následovně:

$$ \mathbf{x}_{st} = [1, y_{st}, \ldots, y_{st}, u_{st}, \ldots, u_{st}, \ldots]^T $$ (4.72)

Potom (4.51) přejde do statického stavu:

$$ y_{st} = \sum_{i=1}^{n} x_{st,i} w_i = w_1 + y_{st} \cdot \sum_{i=2}^{n y+1} w_i + u_{st} \cdot \sum_{i=n y+2}^{n} w_i $$ (4.73)

Z rovnice (4.73) lze pak vyjádřit statické zesílení K_{st} (4.74) a offset (4.75).

$$ K_{st} = \frac{\partial y_{st}}{\partial u_{st}} = \frac{\sum_{i=n y+2}^{n y+1} w_i}{1 - \sum_{i=2}^{n y+2} w_i} $$ (4.74)
\[
offset = \frac{w_1}{1 - \sum_{i=2}^{ny+1} w_i}
\] (4.75)

4.5.2 Statické zesílení HONU

Obdobně jako pro LNU lze postupovat i pro HONU vyšších řádů. Z pohledu \(x \) se však jedná o nelineární funkci, statické zesílení a offset nebudou konstantní. Jelikož však pro rozšíření kriteriální funkce \(Q_{(k)} \) je zapotřebí znát \(K_{st} \) a offset pouze \(y_{(k)} \), lze k jejich výpočtu použít linearizovanou funkci podle \(x_{(k)} \). Linearizovaná funkce má v bodě linearizace stejné \(K_{st(k)} \) a \(offset_{(k)} \) jako původní funkce. Linearizaci lze provést pomocí Taylorova rozvoje do řádu 1 pro HONU následovně:

\[
y(k) = y(x_0) + \frac{\partial y}{\partial x} \bigg|_{x_0} \cdot (x_{(k)} - x_0)
\] (4.76)

Po výpočtu gradientu pro zvolenou jednotku HONU nebo T-S HONU a dosazením samotných hodnot vektoru \(x_{(k)} \) za \(x_0 \) se dostane linearizovaný model ve tvaru LNU:

\[
y(k) = w_{LIN}(x_{(k)}) \cdot x(k)
\] (4.77)

Kde \(w_{LIN}(k) \) jsou linearizované váhy. Linearizované váhy však nejsou konstantní a je nutné je v každém časovém kroku \(k \) přepočítat pro hodnoty vstupního vektoru \(x_{(k)} \). Pro (4.77) pak lze \(K_{st(k)} \) spočítat podle (4.74) a \(offset_{(k)} \) podle (4.75).

4.5.3 Statické zesílení URO s LNU jako model systému a LNU jako regulátor

Vstupní vektor do regulátoru ve statickém stavu (4.38) lze přepsat pro ustálené hodnoty:

\[
\xi_{st} = [1, y_{st}, \ldots, y_{st}, d_{st}, \ldots, d_{st}]^T
\] (4.78)

Potom statická charakteristika LNU jako regulátor lze sestavit analogicky s LNU jako model:

\[
u_{st} = v_1 + y_{st} \sum_{i=2}^{my+1} v_i + d_{st} \sum_{i=my+2}^{m} v_i
\] (4.79)

Vložením (4.79) do (4.73) a zjednodušením, dostaneme statickou charakteristiku (4.82), statické zesílení (4.80) a offset (4.81).

\[
K_{CL} = \frac{\partial y_{st}}{\partial d_{st}} = \frac{\sum_{i=my+2}^{m} v_i \cdot \sum_{i=ny+2}^{n} w_i}{1 - \sum_{i=2}^{ny+1} w_i - \sum_{i=2}^{ny+1} v_i \cdot \sum_{i=ny+2}^{n} w_i}
\] (4.80)
4.5.4 Statické zesílení URO s HONU jako model systému a HONU jako regulačor

Analogicky ke kap. 4.5.2 lze linearizovat HONU nebo T-S HONU jako regulačor do tvaru (4.83) pro hodnoty $\xi_0 = \xi(k)$

$$u(k) = v_{LIN}(\xi_{k}) \cdot \xi(k)$$ (4.83)

Protože je použit linearizovaný model regulačoru (4.83) a linearizovaný model řízeného systému (4.77), lze pro výpočet lokálního statického zesílení a offsetu použít postup v kap. 4.5.3.

4.5.5 Rozšířená kriteriální funkce

Kriteriální funkci (4.47) lze pomocí (4.80) a (4.81) rozšířit následovně [mv8]:

$$Q(k) = \alpha_1 \frac{1}{2} (y_{ref}(k) - y_{n}(k))^2 + \alpha_2 \frac{1}{2} (1 - K_{CL}^{L}(k))^2 + \alpha_3 \frac{1}{2} (off_{set}^{CL}(k))^2$$ (4.84)

Kriteriální funkce (4.84) znamená, že optimum nastane pokud výstup z referenčního modelu je roven výstupu regulovaného systému, statické zesílení je rovné jedné a offset je nulový.

4.6. Řízení adaptivním regulačorem MPC

U modelu prediktivního řízení (MPC) je výpočet akční veličiny založen na minimalizaci odchylky žádaných hodnot regulované veličiny a predikovaných hodnotách regulované veličiny do zvoleného horizontu řízení N. Žádané hodnoty regulované veličiny jsou buď pevně dané v čase, nebo jsou počítány pomocí referenčního modelu. V každém diskrétním čase je prováděna optimalizace budoucích akčních zásahů (minimalizace kriteriální funkce). Výhodami MPC jsou:

- Respektování dopravního zpoždění, je-li zohledněno v modelu řízené soustavy.
- Respektování omezení regulační veličiny i vnitřních proměnných, a to již při výpočtu regulační veličiny.
- Všechny požadavky na optimální řízení lze zohlednit v kriteriální funkci a referenčním modelu a lze je měnit během procesu.
Jedinou avšak významnou nevýhodou MPC může být výpočetní náročnost a požadavek na model blížící se chování realitě.

Požadujeme-li, aby uzavřený regulační obvod měl námí požadované chování, obdobně jako u zpětnovazebné stavové regulace, lze využít sériově-paralelní referenční model, jaký byl použit i u strategie řízení MRAC kap. 4.3 ve tvaru (4.33) a se vstupním vektorom (4.34). Zvolený postup výpočtu MPC je ukázán na následujícím příkladu:

Jako model řízeného systému byly zvoleny modely HONU tab. 2 a T-S HONU model (4.5). Jako vstupní model je zvolen (4.85) se vstupním zpožděním vzorků τ a s rozdělením vstupního vektoru na zpožděné vstupy $x_{u(k)}$ a část zpožděných výstupů $x_{y(k)}$

$$
x(k) = \begin{bmatrix}
1 \\
y(k-ny) \\
\vdots \\
y(k-1) \\
u(k-nu-\tau+1) \\
\vdots \\
u(k-\tau)
\end{bmatrix}
= \begin{bmatrix}
1 \\
y(k-ny) \\
\vdots \\
y(k-1) \\
u(k-nu-\tau+1) \\
\vdots \\
u(k-\tau)
\end{bmatrix}
\tag{4.85}
$$

Nachází-li se řízený systém v diskrétním čase k, je nutné vypočítat akční zásah $u(k)$ a budoucí akční zásahy $U(k)$:

$$
U(k) = [u(k), u(k+1), \ldots, u(k+N-1)]
\tag{4.86}
$$

Do času $k + \tau - 1$ je řízený systém nezávislý na $U(k)$. Do tohoto času je proto třeba nejprve predikovat regulovanou veličinu pomocí modelu postupným dosazováním výstupu
z modelu y_{n} do vstupního vektoru:

$$
\begin{align*}
\mathbf{x}(k+1|k) &= \begin{bmatrix} y(k-ny+1), \ldots, y(k), u(k-nu-\tau+2), \ldots, u(k-\tau+1) \end{bmatrix}^T \quad (4.87)
\end{align*}
$$

$$
\begin{align*}
\mathbf{x}(k+2|k) &= \begin{bmatrix} y(k-ny+2), \ldots, y(k), y_n(k+1|k), u(k-nu-\tau+3), \ldots, u(k-\tau+2) \end{bmatrix}^T \quad (4.88)
\end{align*}
$$

V (4.88) je člen $y_{n(k+1|k)}$ vypočítán pomocí modelu se vstupním vektorom z předchozího predikovaného kroku (4.87). Stejným způsobem by se pokračovalo až do predikovaného času $k + \tau - 1$.Od času $U(k-1)$ již výstupy závisejí na (4.86). Od tohoto času je proveden odhad výstupu z modelu pomocí akčních zásahů vypočítaných v předchozím časovém kroku $U(k-1)$. Od času $k + \tau$ bude odhad regulované veličiny $y_{n(k+\tau|k)}$ vypočítán pomocí:

$$
\begin{align*}
\mathbf{x}(k+\tau|k) &= \begin{bmatrix} y(k-ny+\tau), \ldots, y_n(k-1+\tau), u(k-nu+1), \ldots, u(k) \end{bmatrix}^T \quad (4.89)
\end{align*}
$$

$$
\begin{align*}
\mathbf{x}(k+\tau+1|k) &= \begin{bmatrix} y(k-ny+\tau+1), \ldots, y_n(k+\tau), u(k-nu+2), \ldots, u(k), u(k+1) \end{bmatrix}^T \quad (4.90)
\end{align*}
$$

V (4.90) je člen $y_{n(k+tau|k)}$ vypočítán pomocí modelu se vstupním vektorom z předchozího predikovaného kroku (4.89). Stejným iteračním způsobem je pak vypočítán odhad regulované veličiny až do času $k + \tau + N - 1$. Rovněž je do tohoto času vypočítáno požadovaný průběh regulační veličiny pomocí referenčního modelu s následujícími vstupními vektory v daných predikovaných časech:

$$
\begin{align*}
\mathbf{x}_{ref}(k+\tau|k) &= \begin{bmatrix} y(k-my+\tau), \ldots, y(k+\tau-1), d(k-md+\tau), \ldots, d(k+\tau) \end{bmatrix}^T \quad (4.91)
\end{align*}
$$

$$
\begin{align*}
\mathbf{x}_{ref}(k+\tau+1|k) &= \begin{bmatrix} y(k-my+\tau+1), \ldots, y(k+\tau-1), y_{ref}(k+\tau), d(k-md+\tau+1), \ldots, d(k+\tau+1) \end{bmatrix}^T \quad (4.92)
\end{align*}
$$

V (4.92) je člen $y_{ref(k+tau|k)}$ vypočítán pomocí modelu se vstupním vektorom z předchozího predikovaného kroku (4.91). Následně je vypočítán vektor referenčních odchylek $E_{(k)}$ mezi predikovanými výstupy z referenčního modelu a výstupy z modelu systému:

$$
\begin{bmatrix}
y_{ref}(k+\tau+1) \\
\vdots \\
y_{ref}(k+\tau+N)
\end{bmatrix} -
\begin{bmatrix}
y_n(k+\tau+1) \\
\vdots \\
y_n(k+\tau+N)
\end{bmatrix} = Y_{ref(k)} - Y_{n(k)} \quad (4.93)
$$

Pomocí $E_{(k)}$ jsou pak hledány vhodnou optimalizační metodou nové akční zásahy tak, aby nově vniklé odchylky $\hat{E}_{(k)}$ byly minimální. Optimalizaci lze provést s následující
kriteriální funkci [mv9]:

\[
Q(k) = \frac{1}{2} \cdot E^T(k) \cdot E(k) = \frac{1}{2} \sum_{p=\tau}^{\tau+N-1} e^2_{(k+p|k)} = \frac{1}{2} \sum_{p=\tau}^{\tau+N-1} \left(y_{ref(k+p|k)} - y_{n(k+p|k)} \right)^2
\]

(4.94)

4.6.1 Výpočet akčních zásahů metodou GD

Akční zásahy jsou hledány optimalizační metodou Gradient descent (4.95) s použitím kriteriální funkce:

\[
\hat{U}(k) = U(k) - \mu C(k) \cdot \frac{\partial Q(k)}{\partial U(k)}
\]

(4.95)

Kde \(\hat{U}(k)\) akční zásahy po provedení jejich optimalizace. Gradient v (4.95) lze vypočítat podle (4.97). V závislosti na zvoleném modelu jsou pak počítány gradienty \(y_{w(k+p|k)}\) jako (4.97) pro LNU, (4.98) pro QNU, nebo (4.99) pro T-S LNU model.

\[
\frac{\partial Q(k)}{\partial U(k)} = \frac{\partial}{\partial U(k)} \sum_{p=\tau}^{\tau+N-1} \left(y_{ref(k+p|k)} - y_{n(k+p|k)} \right)^2 = - \sum_{p=\tau}^{\tau+N-1} \left(e_{ref(k+p|k)} \cdot \frac{\partial y_{n(k+p|k)}}{\partial U(k)} \right)
\]

(4.96)

\[
\frac{\partial y_{w(k+p|k)}}{\partial U(k)} = \sum_{i=1}^{n} \frac{\partial x_{i(k+p|k)}}{\partial U(k)} \cdot w_i
\]

(4.97)

\[
\frac{\partial y_{(k+p|k)}}{\partial U(k)} = \sum_{i=1}^{n} \sum_{j=i}^{n} \left(\frac{\partial x_{i(k+p|k)}}{\partial U(k)} \cdot x_{j(k+p|k)} + x_{i(k+p|k)} \cdot \frac{\partial x_{j(k+p|k)}}{\partial U(k)} \right) \cdot w_{ij}
\]

(4.98)

\[
\frac{\partial y_{n((k+p|k)}}{\partial U(k)} = \sum_{m=1}^{M} \phi_{m(k+p|k)} \cdot \sum_{i=1}^{n} \frac{\partial x_{i(k+p|k)}}{\partial U(k)} \cdot w_i
\]

(4.99)

Výpočet Jacobiho matice \(x\) v (4.97), (4.99) a (4.96) byl pro jednotlivé časy \(k + p\) proveden separátně pro \(x_{y(k+p|k)}\) a \(x_{w(k+p|k)}\):

\[
\frac{\partial x_{(k+p|k)}}{\partial U(k)} = \begin{bmatrix} 0 \\ \frac{\partial x_{y(k+p|k)}}{\partial U(k)} \\ \frac{\partial x_{w(k+p|k)}}{\partial U(k)} \\ \frac{\partial x_{n(k+p|k)}}{\partial U(k)} \end{bmatrix}
\]

(4.100)

Gradienty v (4.100) jsou počítány nejprve pro predikovaný čas \(k + \tau\), a protože v (4.89) je funkci \(U(k)\) pouze \(u(k)\), budou části Jacobiho matice vypočítány následovně:
\[\frac{\partial x_{u(k+\tau|k)}}{\partial U(k)} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \] (4.101)

\[\frac{\partial x_{y(k+\tau|k)}}{\partial U(k)} = \begin{bmatrix} \vec{0} \\ \vdots \\ \vec{0} \end{bmatrix} \] (4.102)

V následujícím predikovaném čase \(k + \tau + 1 \) budou v \(x_{(k+\tau+1|k)} \) členy \(u(k), u(k+1) \) a \(y(k+\tau) \). Části Jacobyho matice (4.100) se budou skládat z následujících členů:

\[\frac{\partial x_{u(k+\tau+1|k)}}{\partial U(k)} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \] (4.103)

\[\frac{\partial x_{y(k+\tau+1|k)}}{\partial U(k)} = \begin{bmatrix} \vec{0} \\ \vdots \\ \vec{0} \\ \frac{\partial y_{n(k+\tau|k)}}{\partial U(k)} \end{bmatrix} \] (4.104)

Poslední člen v (4.104) lze vypočítat pomocí (4.97), (4.98) nebo (4.99) dosazením (4.100) z předchozího časového kroku. Stejným způsobem by se pokračovalo až do predikovaného času \(k + \tau + N - 1 \).
4.7. ISS stabilita uzavřeného regulačního obvodu
Je vycházeno z definice BIBO (Bounded Input Bounded Output) a ISS (Input State Stability) [60] která byla následně uplatněna na rekurentní HONU pomocí DDHS (Decomposed Dynamics HONU Stability) [65]. Podmínka stability (4.105) [mv4] říká, že pokud existuje diskrétní čas k_0 v němž je dynamický systém stabilní, pak je stabilní i v čase k platí-li, že $S<0$.

$$S = \left\| \dot{\mathbf{x}}_{(k)} \right\| - \left[\prod_{i=k_0}^{k-1} \mathbf{M}_i \right] \cdot \left\| \dot{\mathbf{x}}_{(k_0)} \right\| + \sum_{j=k_0}^{k-1} \left[\prod_{i=k_0}^{k-1} \mathbf{M}_i \cdot \mathbf{N}_j \right] \cdot \left\| \mathbf{u}_{(j)} \right\| \leq 0$$

(4.105)

Kde \mathbf{M}, \mathbf{N} jsou lokální matice stavového popisu (4.106), které jsou závislé na w, v, x, ξ.

$$\dot{\mathbf{x}}_{(k)} = \dot{\mathbf{M}}_{(k-1)} \cdot \dot{\mathbf{x}}_{(k-1)} + \dot{\mathbf{N}} \cdot \dot{\mathbf{u}}_{(k-1)} ; \ y_n(k) = \dot{\mathbf{C}} \cdot \dot{\mathbf{x}}_{(k-1)}$$

(4.106)

Pro sestavení stavového popisu je využita metoda DDHS uplatněná na HONU jako modelu řízeného systému pro LNU (4.107), QNU (4.108) a CNU (4.109).

$$y_n = \sum_{i=1}^{n} x_i \cdot w_i = \sum_{i=2}^{n+1} x_i \cdot w_i + \sum_{i=n+2}^{n} x_i \cdot w_i + w_1$$

(4.107)

$$y_{n(k)} = \sum_{i=1}^{n} \sum_{j=i}^{n} x_{i(k)} \cdot x_{j(k)} \cdot w_{ij}$$

$$= \sum_{i=2}^{n+1} x_i(k) \cdot \left(w_{i0} + \sum_{j=i}^{n} x_{j(k)} \cdot w_{ij} \right)$$

$$+ \sum_{i=n+2}^{n} x_i(k) \cdot \left(w_{i0} + \sum_{j=i}^{n} x_{j(k)} \cdot w_{ij} \right) + w_{11}$$

(4.108)
\[y_{n(k)} = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{g=j}^{n} x_{i(k)} \cdot x_{j(k)} \cdot x_{g(k)} \cdot w_{ijg} \]
\[= \sum_{i=2}^{n_y+1} x_{i(k)} \cdot \left(w_{i00} + \sum_{j=i}^{n} \sum_{g=j}^{n} x_{j(k)} x_{g(k)} \cdot w_{ijg} \right) \]
\[+ \sum_{n_y+2}^{n} x_{i(k)} \cdot \left(w_{i00} + \sum_{j=i}^{n} \sum_{g=j}^{n} x_{j(k)} x_{g(k)} \cdot w_{ijg} \right) + w_{11} \quad (4.109) \]

Rovnice (4.107), (4.108), (4.109) lze přepsat do jednotného tvaru (4.110), kde \(\mathbf{x}_{y(k)} \) je podle (4.111) a \(\mathbf{u}_{s(k)} \) je podle (4.112).

\[y_{n(k)} = a_{s(k)} \cdot \mathbf{x}_{y(k)} + b_{s(k)} \cdot \mathbf{u}_{s(k)} \quad (4.110) \]
\[\mathbf{x}_{y(k)} = \left[y_{(k-ny)}, \ldots, y_{(k-1)} \right]^T \quad (4.111) \]
\[\mathbf{u}_{s(k)} = \left[1, u_{(k-nu-\tau+1)}, \ldots, u_{(k-\tau)} \right]^T = \left[1, \mathbf{x}_{u(k)} \right]^T \quad (4.112) \]

Vektory \(a_{s(k)} \) a \(b_{s(k)} \) jsou vypočítány podle (4.113) a (4.114) pro LNU, (4.115) a (4.116) pro QNU, (4.117) a (4.118) pro CNU.

\[a_{si(k)} = w_i ; \ i = 2, \ldots, ny + 1 \quad (4.113) \]
\[b_{si(k)} = w_i ; \ i = 1, ny + 2, \ldots, n \quad (4.114) \]
\[a_{si(k)} = w_{i0} + \sum_{j=i}^{n} x_{j(k)} \cdot w_{ij} ; \ i = 2, \ldots, ny + 1 \quad (4.115) \]
\[b_{si(k)} = w_{i0} + \sum_{j=i}^{n} x_{j(k)} \cdot w_{ij} ; \ i = 1, ny + 2, \ldots, n \quad (4.116) \]
\[a_{si(k)} = w_{i00} + \sum_{j=i}^{n} \sum_{g=j}^{n} x_{j(k)} x_{g(k)} \cdot w_{ijg} ; \ i = 2, \ldots, ny + 1 \quad (4.117) \]
\[b_{si(k)} = w_{i00} + \sum_{j=i}^{n} \sum_{g=j}^{n} x_{j(k)} x_{g(k)} \cdot w_{ijg} ; \ i = 1, ny + 2, \ldots, n \quad (4.118) \]

Vektor \(\mathbf{x}_{u(k)} \) v (4.112) lze vypočítat pomocí stavového popisu (4.119) se členy popsanými v (4.120) až (4.123).

\[\mathbf{u}_{s(k)} = \mathbf{M}_{c(k)} \cdot \mathbf{\xi}_{y(k)} + \mathbf{N}_{c(k)} \cdot \mathbf{\xi}_{c(k)} \quad (4.119) \]
\[\mathbf{\xi}_{y(k)} = \left[y_{(k-my-\tau)}, \ldots, y_{(k-1-\tau)} \right]^T \quad (4.120) \]
\[
\hat{u}_{(k)} = [1, d_{(k-md+1-\tau)}, \ldots, d_{(k-\tau)}]^T = [1, \xi d_{(k-\tau)}]^T
\]
(4.121)

\[
M_{c(k)} = \begin{bmatrix}
0 & 0 & \ldots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots \\
\alpha_{c,1(k)} & \alpha_{c,2(k)} & \ldots & \alpha_{c,my(k)} & 1
\end{bmatrix}
\]
(4.122)

\[
N_{c(k)} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
v_1 & b_{c,1(k)} & b_{c,2(k)} & \ldots & b_{c,md+1(k)}
\end{bmatrix}
\]
(4.123)

Kde \(a_{c,i(k)}\) a \(b_{c,i(k)}\) v (4.122) a (4.123) lze sestavit analogicky s \(a_{s,i(k)}\) a \(b_{s,i(k)}\) nahrazením \(m\) za \(n\) a \(\xi\) za \(x\) v rovnicích (4.113) až (4.118). Dosazením (4.119) do (4.110) dostaneme dekomponovanou dynamickou rovnici uzavřeného regulačního obvodu (4.124) s proměnnými popsanými v (4.125) až (4.127).

\[
y_{n(k)} = a_{s(k)} \cdot x_{y(k)} + b_{s(k)} \cdot M_{c(k)} \cdot \xi_{y(k)} + b_{s(k)} \cdot N_{c(k)} \cdot \hat{u}_{(k)}
\]

\[
= \hat{a}_{(k)} \cdot \hat{x}_{(k)} + \hat{b}_{(k)} \cdot \hat{u}_{(k)}
\]
(4.124)

\[
\hat{x}_{(k)} = \begin{cases}
x_{y(k)} \text{ pro } ny \geq my \\
\xi_{y(k)} \text{ pro } ny < my
\end{cases}
\]
(4.125)

\[
\hat{a}_{(k)} = \begin{cases}
a_{s(k)} + [0, \ldots, 0, b_{s(k)} \cdot M_{c(k)}] \text{ pro } ny \geq my \\
[0, \ldots, 0, a_{s(k)}] + b_{s(k)} \cdot M_{c(k)} \text{ pro } ny < my
\end{cases}
\]
(4.126)

\[
\hat{b}_{(k)} = b_{s(k)} \cdot N_{c(k)}
\]
(4.127)

Z porovnání (4.124) s (4.106) vyplývá následné sestavení matic \(\hat{M}_{(k)}\) a \(\hat{N}_{(k)}\):

\[
\hat{M}_{(k)} = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & \ddots \\
\hat{a}_{1(k)} & \hat{a}_{2(k)} & \ldots & \hat{a}_{\max(ny,my)(k)} & 1
\end{bmatrix}
\]
(4.128)

\[
\hat{N}_{(k)} = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
w_1 & \hat{b}_{1(k)} & \hat{b}_{2(k)} & \ldots & \hat{b}_{nu+1(k)}
\end{bmatrix}
\]
(4.129)

Výsledným dosazením (4.128), (4.129), (4.125), (4.121) do (4.105) v příslušných časech lze dopočítat stabilitu uzavřeného regulačního obvodu.

V případě využití T-S LNU modelů lze míry příslušnosti a váhy přepsat pomocí
redukovaných vah (4.130) a dále postupovat výše popsaným způsobem.

\[y_{n(k)} = \Phi_{(k)} \cdot W \cdot x_{(k)} = w_{red(k)} \cdot x_{(k)} \quad (4.130) \]

V případě MPC řízení lze identifikovat samotný regulátor jednotkou HONU (obr.24) a následně využít identifikovaný model pro vyšetření stability výše popsaným způsobem.

Obr. 24: Identifikace HONU jako modelu regulátoru a HONU jako modelu řízeného systému
5. Simulační model lineárního hydromotoru a jeho řídícího ventilu

Model byl sestaven kombinací fyzikálních modelů a aproximačních modelů nastavených z reálných dat. Model byl sestaven tak, aby chováním odpovídal hydraulickému standu použitého při experimentech, ale zároveň abys nebyl zbytečně složitý. Zjednodušené schéma modelu je na obr.1.

5.1. Sestavení pohybové rovnice šoupátka rozváděče

Průtok tekutiny rozváděčem lze odvodit z Bernoulliho rovnic a z rovnice kontinuity pro ideální tekutinu. Po zavedení průtokového součinitele \(K_Q \) lze průtok kanály A a B napsat následovně:

\[
Q = x \cdot B_k(x_s) \cdot \sqrt{p_0 - p_z \cdot \text{sign}(x_s)} \quad (5.1)
\]

Kde \(p_z = p_A - p_B \) je rozdíl tlaků v komorách hydromotoru, \(p_0 \) je vstupní tlak, \(B_k(x_s) \) je průtokový součinitel, zohledňující mrtvé pásma šoupátka a opotřebení hran. \(B_k(x_s) \) je spočítány interpolací dat ze statické charakteristiky ventilu.
5.2. Sestavení pohybové rovnice lineárního hydromotoru

Sílu působící na píst hydromotoru od působící tekutiny lze vyjádřit dle (5.2) a výslednou pohybovou rovnici dle (5.3).

\[F_p = S \cdot p_A - S \cdot p_B = S \cdot p_z \] \hspace{1cm} (5.2)

\[m \cdot \ddot{y} + b \cdot \dot{y} = S \cdot p_z - F \] \hspace{1cm} (5.3)

Kde \(S \) je plocha pístu, \(m \) je redukovaná pohybová hmota, \(y \) je poloha pístnice a \(F \) síla působící na pístnici (porucha). Z rovnice kontinuity pro stlačitelnou tekutinu lze vyjádřit derivace tlaků:

\[\frac{\Delta V}{V} = \frac{\Delta p}{E_k} \] \hspace{1cm} (5.4)

\[\dot{p}_A = E_k \cdot \frac{\dot{V}_A}{V_A} = E_k \cdot \frac{1}{V_A} \cdot (Q - S \cdot \dot{y}) \] \hspace{1cm} (5.5)

\[\dot{p}_B = E_k \cdot \frac{\dot{V}_B}{V_B} = E_k \cdot \frac{1}{V_B} \cdot (-Q + S \cdot \dot{y}) \] \hspace{1cm} (5.6)

Kde \(V_A \) a \(V_B \) jsou objemy v obou komorách hydromotoru a lze je spočítat dle (5.7) a (5.8). \(V_0 \) je objem přívodního potrubí.

\[V_A = y \cdot S + V_0 \] \hspace{1cm} (5.7)

\[V_B = (H - y) \cdot S + V_0 \] \hspace{1cm} (5.8)

Pro provedení rozdílu Laplaceových transformací (5.5) a (5.6) dostáváme rovnici tlaku zátěže:

\[P_z(s) = P_{A(s)} - P_{B(s)} = \frac{Q - S \cdot Y(s) \cdot \dot{s}}{\frac{V_0}{2E_k} \cdot s} \] \hspace{1cm} (5.9)

Tabulka 3: Parametry hydraulického modelu

<table>
<thead>
<tr>
<th>Veličina</th>
<th>Proměnná</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vstupní tlak</td>
<td>$p_0 = 50\text{[bar]}$</td>
</tr>
<tr>
<td>Součinitel tlumení hydromotoru</td>
<td>$b = 1.81 \cdot 10^{-3} \text{[kg/s}^2\text{]}$</td>
</tr>
<tr>
<td>Objem přívodního potrubí</td>
<td>$V_0 = 300 \cdot 10^{-6} \text{[m}^3\text{]}$</td>
</tr>
<tr>
<td>Modul pružnosti oleje</td>
<td>$E_k = 1,3 \cdot 10^9 \text{[N/m}^2\text{]}$</td>
</tr>
<tr>
<td>Redukovaná pohybující se hmota</td>
<td>$m = 50\text{[kg]}$</td>
</tr>
<tr>
<td>Činná plocha pístnice</td>
<td>$S = 132,7\text{[mm}^2\text{]}$</td>
</tr>
<tr>
<td>Zdvih hydromotoru</td>
<td>$H = 1\text{[m]}$</td>
</tr>
</tbody>
</table>

Pro zvolené parametry dle tab.3 lze maximální tuhost hydromotoru spočítat dle [13] vstahem (5.10) a vlastní frekvenci netlumených kmitů dle (5.11).

$$k(y = 0,5) = E_k \cdot \left(\frac{S_A^2}{S_A \cdot y + V_0} + \frac{S_B^2}{S_B \cdot (H - y) + V_0} \right) = 5,3 \cdot 10^5 \text{[N/m]} \quad (5.10)$$

$$\Omega = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = 16,4 \text{[Hz]} \quad (5.11)$$
Obr. 25: Simulační model v Matlab/Simulink
Obr. 26: Simulační model 4-cestného proporcionálního rozváděče a lineárního hydrotoru vytvořeného v simulačním prostředí Matlab/Simulink
Experimentální část

Experimentální část je rozdělena na 4 části. První část testuje vliv rozšíření kriteriální funkce kap.4.5. Druhá část se zabývá identifikací simulačního modelu pomocí modelů z kap.4.1 použitých pro řízení. Třetí část je pak věnována samotnému řízení se sériově-paralelním referenčním modelem, testováním schopnosti regulátoru adaptovat se na změnu vlastností řízeného modelu. Ve čtvrté části je pak reálné řízení hydraulického standu a slouží k ověření schopností řídit reálný hydraulický systém.

6.1. Rozšíření kriteriální funkce

Rozšíření kriteriální funkce (4.84) bylo testováno nejprve pro LNU jako model řízeného systému a LNU jako regulátor. Kde model řízeného systému byl popsán pomocí následující lineární diferenciální rovnice:

\[u(t) = 0.14\dot{y}(t) + 0.12\ddot{y}(t) + 0.16\dddot{y}(t) \] \hspace{1cm} (6.1)

Vlastnosti řízeného systému a požadované vlastnosti uzavřeného regulačního obvodu (vlastnosti referenčního modelu) jsou v tab.4.

Tabulka 4: Vlastnosti řízeného systému a referenčního modelu

<table>
<thead>
<tr>
<th></th>
<th>Účastý systém</th>
<th>Referenční model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statické zesílení</td>
<td>6,07</td>
<td>1</td>
</tr>
<tr>
<td>Póly</td>
<td>(-0,45 \pm i)</td>
<td>(-0,64; -1,58)</td>
</tr>
<tr>
<td>Vstupní dopravné zpoždění</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Před provedením testu byly předučeny váhy modelu \(w\) a váhy referenčního modelu \(w_{ref}\). Váhy LNU \(\zeta_{(k=0)}\) jako regulátor byly nastaveny nulové.
Výsledek testu je ukázán na obr. 27. Test byl proveden jako by se jednalo o řízení a učení v reálném čase, tedy v zapojení modelu řízeného systému a regulátoru jako dynamického systému. Je zde patrné zlepšení po rozšíření kriteriální funkce ve tvaru (4.84). Výstup z LNU jako model řízeného systému rychleji inklinuje k referenčnímu signálu bez větších překmitů.

Druhý test byl proveden pro QNU jako model řízeného systému a QNU jako regulátor. Model řízeného systému byl popsán pomocí následující nelineární diferenciální rovnice:

$$u(t) = 0.14\ddot{y}(t) + 0.12\dot{y}(t) + 0.16\sin(y(t))$$

(6.2)

Vlastnosti (6.2) závisí na aktuální hodnotě $y(t)$ Její vlastnosti jsou ukázány na obr.28. Imaginární část pólů a statické zesílení je závislé na hodnotě y. Referenční model byl použit stejný jako v tab.4.
Stejně jako v minulém testu byly předučeny váhy modelu \(w \) a váhy referenčního modelu \(w_{ref} \). Váhy QNU \(\zeta_{(k=0)} \) jako regulátor byly nastaveny nulové. Výsledek testu je ukázán na obr. 29 [mv8]. I zde bylo znatelné zlepšení, pokud bylo použito rozšíření kritériální funkce.

Obr. 28: Póly a statické zesílení nelineárního řízeného systému

Obr. 29: Porovnání učení vah QNU jako regulátoru s rozšířením a bez rozšíření kritériální funkce
6.2. Identifikace

Identifikace HONU a T-S HONU modelů jsou porovnávány, nejprve z dat Simulačního modelu (kap.5), a následně je testována schopnost modelů přeučit se při změnách parametrů simulačního modelu.

6.2.1 Identifikace modelů HONU

Pro simulační model kap.5 byly zvoleny parametry podle tab.3 [mv5]. Jako HONU modely byly vybrány LNU, QNU, CNU a HONU 5. řádu s redukovaným vstupním vektorom colx podle tab.5 se vstupním vektorom (4.1) a s \(n = 10, m = 2 \) a \(\tau = 4 \).

Tabulka 5: Identifikované modely HONU

<table>
<thead>
<tr>
<th></th>
<th>LNU</th>
<th>QNU</th>
<th>CNU</th>
<th>redukovaný HONU (_{r5})</th>
</tr>
</thead>
</table>
| colx | \[x_1 = 1 \]
 | \[x_2 = y(k-10) \]
 | \[\vdots \]
 | \[x_{11} = y(k-1) \]
 | \[x_{12} = u(k-5) \]
 | \[x_{13} = u(k-4) \]
| Počet prvků \(n_{colx} \) | 12 | 78 | 364 | 20 |

Tabulka 5: Identifikované modely HONU

Modely HONU použité jako modely řízeného systému jsou samy o sobě statické modely. Pro vyhodnocení jejich chování oproti referenčnímu řízenému systému není vhodné použít pouze referenční odchylku dle obr.16. (referenční odchylky mají relativní význam při porovnávání naučení modelů mezi sebou, nebo při samotném učení). Pro vyhodnocení
vlastností HONU bylo použito dynamické zapojení, kdy do vstupního vektoru \(x \) vstupují zpožděné výstupy z HONU (obr.30).

\[
\begin{align*}
\text{Řízený systém} & \quad y_{\text{ref}}(k) \\
\uparrow & \\
\vdots & \\
\downarrow & \\
\text{Obr. 30: Zjednodušené schéma porovnání výstupů z řízeného systému a dynamické HONU jako dynamického systému}
\end{align*}
\]

Při porovnávání výstupů z HONU v dynamickém zapojení oproti referenčnímu modelu je třeba uvažovat s následujícími vlastnostmi: Hydraulický systém popsaný v kap.5 je integračního charakteru. Chyba mezi referenčním výstupem a výstupem z modelu (poloha pístnice) se proto integruje a není proto významné ji porovnávat. Odchylku výstupů lze však porovnávat v jejich derivaci (rychlost pístnice), kde se integrace poruchy neprojeví. Identifikovaný model HONU bude sloužit k nastavení regulátoru polohy pístnice, a proto je nejvýznamnější schodnost rychlostí v blízkosti nuly (kdy pístnice dojíždí na žádanou polohu).

Na obr.31 jsou ukázány výsledky porovnání výstupů jednotlivých HONU modelů v dynamickém zapojení dle tab.5. Je zde znázorněna schopnost reagovat na změny vstupního (akčního) signálu. Obr.32 ukazuje statickou závislost rychlosti \(v \) na akčním signálu \(u \). Tyto závislosti ukazují rychlostní charakteristiku, mrtvé pásmo ventilu a její hysterezi. Pro vytvoření statických charakteristik byl použit vstupní signál s nízkou frekvencí tak, aby dynamika systému byla zanedbatelná.
Obr. 31: Identifikace HONU
Z porovnání výsledků na obr. 31 a obr. 32 jsou vyvozeny následující závěry:

- Modely HONU jsou schopny akceptovat dopravní zpoždění vstupu referenčního systému. To je dáno vstupním vektorům se zpožděnými vstupy o dané dopravní zpoždění \(\tau \) dle (4.1).

- Modely HONU jsou schopny akceptovat hysterezi referenčního systému. Pro vstupní signál může existovat více výstupních signálů v závislosti na předešlých vstupních signálech. Do vstupního vektoru \(x \) vstupuje vždy několik zpožděných vstupů \(u \) (4.1).

- Modely LNU a QNU nejsou schopny reflektovat mrtvá pásma šoupátka. To je dáno nízkou vnitřní složitostí modelů (řádem HONU, tab. 5). Modely CNU a HUNU\(_{r5} \) jsou schopny reflektovat mrtvá pásma šoupátka, nejsou však schopny držet konstantní rychlost pro různý vstupní signál.

- Nejlepšího výsledku bylo dosaženo HONU 5. řádu HUNU\(_{r5} \) s redukovaným vstupním vektorom. A to i přesto, že jeho vstupní vektor \(\text{colx} \) obsahuje pouze

Obr. 32: Statické charakteristiky HONU
20 prvků oproti 78 prvkům QNU a 364 CNU. To je dáno vyšším řádem HONU a zároveň odstraněním méně podstatných kombinací (redukcí) prvků vstupního vektoru.

6.2.2 Identifikace T-S LNU modelu

T-S HONU model byl vybrán s lineárními vnitřními modely LNU (dále značeno jako T-S LNU model). T-S LNU model byl sestaven strategií LOLIMOT popsanou v kap. 4.1.2. Jako počáteční model byl vybrán LNU se vstupním vektorem z tab. 5w. Vektor fuzzy parametrů \(z \) byl zvolen totožný se vstupním vektorem do modelů HONU \(z = x \).

Při vytváření T-S modelu se potvrdilo, že hlavní nelineáritou modelu je statická rychlostní charakteristika. Ta je závislá pouze na zpožděném vstupním signálu \(u \). Pro identifikaci tedy vyplynulo, že fuzzy parametr je pouze jeden, a to následující:

\[
z = u_{(k-\tau)} \quad (6.3)
\]

Na obr. 33 je ukázáno postupné generování fuzzy množin strategií LOLIMOT. Výsledné rozdělení do 10 lokálních modelů vyšlo se symetricky umístěnými středy fuzzy množin. To je dáno symetričností statické rychlostní charakteristiky ventilu.

![Obr. 33: Postupné generování fuzzy množin strategií LOLIMOT od počáteční \(M=1 \) po výsledný počet množin \(M=10 \).](image)
Obr. 35 pak ukazuje zlepšení střední kvadratické chyby (MSE) při zvýšení počtu lokálních modelů. Při jednotlivých rozdělení lokálních modelů LNU si oba nově vzniklé LNU převzaly váhy \(w \) z původního lokálního modelu LNU. Nově vzniklý globální model pak bylo třeba pouze doučit. Proto bylo při každém dělení použito pouze 100 učících epoch.

Obr. 34: Porovnání identifikace HONU,r a T-S LNU modelu
Z porovnání výsledků na obr. 34 a obr. 36 jsou vyvozeny následující závěry:

- Model T-S LNU je schopen stejně jako HONU modely akceptovat vstupní dopravní zpoždění.
- Model T-S LNU je schopen akceptovat hysterezi identifikovaného systému.
- Model T-S LNU je schopen reflektovat mrtvá pásma šoupátka. To je dáno lokálními modely, jejichž míra příslušnosti je funkci vstupního signálu \(u \), což přibližně odpovídá i poloze šoupátka.
- Model T-S LNU je schopen lépe identifikovat hydraulický model nežli HONU 5. řádu \(H\text{NU}_r^5 \) s redukovaným vstupním vektorem.
6.3. Řízení modelu hydraulického systému

K testování řízení metodou MRAC a MPC byl použit model hydraulického systému popsaný v kap.5 s parametry dle tab.3. Pro řízení byly použity regulátory s parametry dle tab.6.

Tabulka 6: Regulátory pro experimentální řízení

<table>
<thead>
<tr>
<th>Typ regulátoru</th>
<th>HONU jako model</th>
<th>HONU jako regulátor</th>
<th>Vlastnosti referenčního modelu</th>
<th>Značení regulátoru v grafech</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRAC</td>
<td>LNU</td>
<td>LNU</td>
<td>$G_{ref}(s) = \frac{1}{0.027s^3 + 0.27s^2 + 0.9s + 1}$</td>
<td>\bar{Y}_{LNU}</td>
</tr>
<tr>
<td></td>
<td>HONU r=5</td>
<td>HONU r=5</td>
<td></td>
<td>$\bar{Y}_{HONU r=5}$</td>
</tr>
<tr>
<td></td>
<td>T-S LNU</td>
<td>T-S LNU</td>
<td>půly: $p_{1,2,3} = -3.3$</td>
<td>$\bar{Y}_{T-S LNU}$</td>
</tr>
<tr>
<td>MPC</td>
<td>LNU</td>
<td>---</td>
<td></td>
<td>\bar{Y}_{MPC}</td>
</tr>
</tbody>
</table>

Identifikace HONU jako modelu řízené soustavy je ukázána v kap.6.2. Parametry regulátorů MRAC jsou uvedeny v tab.7. Jako regulátor nebyly testovány neuronové jednotky QNU a CNU z důvodu vysokého počtu prvků ve vstupním vektoru ξ. Pro takto vysoký počet parametrů společně s parametry modelu by čas pro výpočet akčního signálu a čas pro učení přesáhl pro PC s taktem procesoru 2,48GHz reálný čas. Jsou proto pro následné řízení reálné úlohy nepoužitelné.
Tabulka 7: Vstupní vektory do HONU jako MRAC regulátor

<table>
<thead>
<tr>
<th></th>
<th>LNU</th>
<th>HONU r=5</th>
<th>T-S LNU</th>
</tr>
</thead>
</table>
| col ξ | $\xi_1 = 1$
$\xi_2 = y_{(k-10)}$
\vdots
$\xi_{11} = y_{(k-1)}$
$\xi_{12} = d_{(k-9)}$
\vdots
$\xi_{21} = d_{(k)}$ | ξ_1
ξ_2
\vdots
ξ_{21}
$\xi_{19} \cdot \xi_{21}$
$\xi_{19} \cdot \xi_{21}$
$\xi_{19} \cdot \xi_{21}$ | $\phi_{1u} \cdot$
\vdots
ξ_1
ξ_2
\vdots
ξ_{21} |
| Počet prvků | 21 | 25 | 210 |

Pro metodu MPC byl zvolen LNU model z kap. 6.2 a horizont predikce N=30 vzorků.

První 2 experimenty se zabývají chováním uzavřeného regulačního obvodu při změně vlastností řídícího ventilu, změně hystereze ventilu a změně mrtvého pásma ventilu. Tyto změny probíhají u reálného ventilu velmi pozvolně během jeho životnosti, což je většinou dáno opotřebováním šoupátka nebo znečištěním ventilu. Aby změny byly patrné, jsou zde tyto změny testovány skokově, a to jako změna statické rychlostní charakteristiky na statickou charakteristiku s hysterezí a na statickou charakteristiku s mrtvými pásmy šoupátka (obr.37).
První experiment byl zaměřen na řízení hydraulického systému s hysterezí šoupátka ventilu. Na obr. 38 byl řízený model hydraulického systému do času 30 s bez hystereze, od tohoto času byla pak hystereze skokově zapnuta. Černou barvou je značena žádaná hodnota d, která je pouze 2 hodnotová. Skokové změny žádané hodnoty odpovídají řízení hydraulického lisu, kde je buď lis otevřen a do lisu je připravován polotovar, nebo je požadováno lisování na určitou polohu. Červenou barvou je pak značen teoretický referenční průběh polohy pístnice, který by nastal pouze pokud by model použitý pro predikci dokonale aproximoval chování řízeného systému, v systému by nenastaly žádné poruchy a nebylo by žádné omezení maximálního akčního signálu. V prvních fázích simulace je vidět zakolisání polohy pístnice pro všechny regulátory. To bylo zapříčiněno počátečními hodnotami regulátoru v případě MRAC a horším výpočtem regulační veličiny v případě MPC, protože regulátor ještě neměl jejich odhad z předchozích časových kroků. Po změně hystereze není vidět žádná změna na průbězích regulované veličiny. Jsou však patrné změny v akčním signálu, kde došlo k posunutí akčního signálu u. K posunutí musí dojít pokud dojde k změně akčního signálu z kladného na záporný nebo naopak. Což se také ve všech případech stalo, protože došlo k přejetí žádané hodnoty u MRAC o 0,01mm.

Obr. 37: Statické charakteristiky hydraulického systému, závislost rychlosti pístnice v na řídícím signálu ventilu u
Druhá simulace byla zaměřena na mrtvé pásmo šoupátka. Mrtvé pásmo je vidět i u ventilu SP08-20A se statickou charakteristikou (obr. 7). Na obr. 39 je ukázána simulace, ve které bylo v čase 30 s změněno mrtvé pásmo šoupátka z 0 na 0,3 v obou směrech vysouvání (z normalizovaného rozsahu <-1,1>). Při změně požadovaného akčního signálu musí tedy šoupátko ujet dráhu 0,6 nežli dojde k opětovnému otevírání kanálů ventilu. To se v simulaci projevilo jednak posunutím akčního signálu pro nulovou rychlost pistnice a také zpožděním oproti teoretické referenční trajektorii. Toto zpoždění bylo dáno časem potřebným k přesunutí šoupátka přes mrtvé pásmo. Dále došlo k potřebnému navýšení maximálního signálu, aby daný průběh regulované veličiny odpovídal referenčnímu. Akční signál je však omezen na \(u \in <-1,1> \). Proto byla i nižší maximální rychlost pistnice. MRAC T-S LNU po změně mrtvých pásem šoupátka vykazovala rozkolísání.

Obr. 38: Řízení modelu hydraulického systému se skokovou změnou hystereze šoupátka ventilu
akčního signálu, ačkoli samotný průběh regulované veličiny byl stále dostačující. T-S LNU model má sníženou rychlost učení tím, že je vždy dominantně učen jen jeden lokální model, jeho učení proto probíhá pouze omezenou dobu v závislosti na hodnotách fuzzy proměnných. Zhoršená regulace po změně mrtvých pásem šoupátka však neznámá, že by se regulátor touto změnou nedokázal vypořádat. Pouze samotné učení trvá delší dobu. Na obr.40 jsou při řízení se zátěží už váhy regulátoru MRAC a váhy HONU jako modelů naučeny na posunutí mrtvých pásem šoupátka a hystereze a kvalita regulace je o poznání lepší, než-li při skokové změně mrtvých pásem.

Obr. 39: Řízení hydraulického systému se skokovou změnou statické charakteristiky ventilu, změna mrtvého pásma šoupátka

Třetí simulace byla zaměřena na poruchu způsobenou silou působící na pístnici (obr.40). Při lisování hydraulickým lisem jede obvykle v první fázi horní část lisu s pístnicí na prázdno a až v určitém místě dojde k nárazu na polotovar a k samotnému lisování. Proto bylo testováno řízení polohy pístnice, kde zátěžná síla působí pouze pokud je pístnice vysunuta více než 60 mm. Test byl proveden se statickou charakteristikou
ventilu, která má mrtvá pásma i hysterezi. Při nárazu, kdy dojde k působení zátěžné síly, je vidět jednak zakmitání pístnice a též snížení maximální rychlosti při vysouvání. Jinak však regulace u všech testovaných regulátorů probíhala obdobně.

Obr. 40: Řízení modelu hydraulického systému se zátěži působící proti pístnici. Sila $F = 2000 \, N$ působí, pokud je vysunutí pístnice větší než $y > 60\, \text{mm}$
Pátá simulace se zaměřuje na poruchu regulační veličiny. Při řízení hydraulického systému tato porucha nemůže fyzikálně nastat, pístnice nemůže skokově změnit svou polohu. Je zde však vidět, jaká je odezva regulační veličiny na tuto poruchu (obr. 42). Na této simulaci se projevuje zapojení referenčního modelu, který je reinicializován v každém časovém kroku. Při skokové změně regulační veličiny byl i referenční model posunut o tento skok. To je dáno vstupním vektorem do referenčního modelu (4.91), do kterého vstupují právě měřené regulované veličiny nebo predikované u MPC. Proto i v simulaci odezva na poruchu regulované veličiny má totožný průběh, jako při změně žádané hodnoty.

Obr. 41: Řízení modelu hydraulického systému se změnou zesílení ventilu Ksv, v závislosti na ohřevu elektromagnetických cívek
Následující 2 simulace se týkají pouze regulátorů MRAC. V předchozích simulacích byla vždy spuštěna maximální rychlost učení vah HONU jako regulátoru. Následující simulace ukazují regulaci bez a se zapnutým učením regulátorů. Na obr. 43 je simulace řízení hydraulického modelu bez hystereze a bez mrtvých pásem šoupátka. Váhy HONU jako regulátoru \(v \) i váhy HONU jako modelu \(w \) byly pro daný systém předučeny, avšak do času 30 s nebylo spuštěno učení v reálném čase. Od tohoto času pak učení spuštěno bylo. Simulace ukázala schopnost určit daný systém všemi testovanými regulátory i bez spuštěného učení v reálném čase, avšak pro přesné řízení bez překmitu a trvalé regulační odchylky je nezbytné mít trvale spuštěno doučování vah.

Obr. 42: Řízení modelu hydraulického systému s poruchami polohy pístnice

Následující 2 simulace se týkají pouze regulátorů MRAC. V předchozích simulacích byla vždy spuštěna maximální rychlost učení vah HONU jako regulátoru. Následující simulace ukazují regulaci bez a se zapnutým učením regulátorů. Na obr. 43 je simulace řízení hydraulického modelu bez hystereze a bez mrtvých pásem šoupátka. Váhy HONU jako regulátoru \(v \) i váhy HONU jako modelu \(w \) byly pro daný systém předučeny, avšak do času 30 s nebylo spuštěno učení v reálném čase. Od tohoto času pak učení spuštěno bylo. Simulace ukázala schopnost určit daný systém všemi testovanými regulátory i bez spuštěného učení v reálném čase, avšak pro přesné řízení bez překmitu a trvalé regulační odchylky je nezbytné mít trvale spuštěno doučování vah.
Na obr. 44 je ukázána angiologická simulace řízení jako v předchozím případě, avšak pro model hydraulického systému s hysterezi a mrtvými pásmi šoupátk. Ze simulace vyplývá, že nemá smysl používat složitějších modelů schopných lépe aproximovat chování hydraulického systému a k nim příslušných regulátorů, protože regulace nebyla v nicem lepší než řízení s lineárním regulátorem. Pokud je zapnuto doučování vah během procesu, lze použít pouze LNU jako regulátor a LNU jako model řízeného systému se stejně kvalitními výsledky regulace, jako při použití redukovaného HONU 5 řádu nebo Takagi-Sugeno modelu s LNU.

Obr. 43: Řízení MRAC modelu bez hystereze a mrtvých pásem šoupátek bez učení vah regulátoru a se spuštěným učením
Obr. 44: Řízení MRAC modelu s hysterezi a s mrtvými pásmy šoupátek a bez učení vah regulátoru a se spuštěným učením
6.4. Řízení hydraulického standu

Řízení bylo testováno na hydraulickém standu (obr.46) [mv9] s hydraulickým obvodem zapojeným podle obr.45. Spodní lineární hydro-motor V1 byl řízen pomocí 4-cestného proporcionálního ventilu Hydraforce SP08-20A se statikou průtokovou charakteristikou (obr.7) a se vstupním řídicím signálem \(u \). Regulovanou veličinou je poloha pístnice \(y \). Horní hydromotor V2 slouží jako zátěž a simuluje lisování materiálu. Test řízení proběhl ve firmě FMV-Design v Trutnově.

Tabulka 8: Vlastnosti hydraulického standu

<table>
<thead>
<tr>
<th>Vlastnost hydraulického standu</th>
<th>(p_1 = 50\text{bar})</th>
<th>(p_2 = 20\text{bar})</th>
<th>(F_{v1} = 1100\text{N})</th>
<th>(F_{v2} = 400\text{N})</th>
<th>(v_{1\text{max}} = 150\text{mm/s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tlak v řízeném spodním hydromotoru</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tlak v horním zátěžovém hydromotoru</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Síla řízeného spodním hydromotoru</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Síla horního zátěžového hydromotoru</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximální rychlost spodního hydromotoru</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Obr. 45: Zjednodušené hydraulické schéma zkušebního hydraulického systému
Při provádění simulací (kap. 6.3) se ukázalo, že nejjednodušší navrhovaná metoda řízení s LNU jako regulátorem a LNU jako modelem řízeného systému s permanentním doučováním vah dosahuje rovnocenných výsledků regulace, tak jako ostatní regulátory. Navíc je LNU jako regulátor výpočetně nejméně náročný. Proto byl LNU jako MRAC regulátor vybrán jako nejvhodnější pro řešenou úlohu a byla i zkouška na reálném hydraulickém systému. Nastavení regulátoru bylo stejné jako v simulaci (tab. 7), se vstupním vektorem do LNU sloužícím k predikci (tab. 5). Samotný výpočet akčního signálu byl prováděn v PC v prostředí Matlab-Simulink. PC komunikoval se snímačem polohy Balluff BTL5-H112-M0100-P-S92 a řídící jednotkou Hydraforce EVDR0102. Komunikace mezi PC snímačem polohy a řídící jednotkou probíhala po sériové lince s protokolem CANopen. Komunikace po sériové lince měla následující vliv na samotné řízení:

- Na rozdíl od simulací, zde dochází ke kvantifikaci regulační veličiny. Použitý snímač předával polohu s nejméně indikovanou vzdáleností 0,005 mm.

Na obr. 47 je ukázán průběh řízení. Při řízení reálných lisů je obvykle požadováno kromě rychlosti dosažení žádané hodnoty také přesnost dosažení a velikost maximálního překmitu. Velikost překmitu a přesnost dosažení žádané hodnoty je obvykle 0,1 mm při
řízení s proporcionálními ventily, a této přesnosti bylo i dosaženo.

Obr. 47: Řízení hydraulického standu
7. Závěr

Práce se zabývá identifikací a řízením hydraulického systému s využitím elektromagneticky řízených proporcionálních ventilů a úlohou řízení polohy pístnice hydromotoru. Z pohledu reálné aplikace byla uvažována úloha řízení hydraulických lisů. Z této úlohy plynuly i základní požadavky na kvalitu řízení, maximální překmit a rychlost dosažení žádané hodnoty.

Motivací samotné práce bylo snížení výsledné ceny hydraulického systému tím, že bude možné použití levných proporcionálních ventilů bez využití předřadných řídících elektronik řídících proud do cívek kap.2.1.1, a tím, že regulátor uzpůsobí své chování v závislosti na chování pro každý proporcionalní ventil bez nutnosti kvalifikované obsluhy a též bez nutnosti přelaďovat regulátor během životnosti stroje. Pro vyhovění zmíněných požadavků, byla sestavena hypotéza: Pokud by byl sestaven učící algoritmus pro HONU jako regulátor, který by umožnil rychlou adaptaci regulátoru během procesu, tak takovýto adaptivní regulátor by mohl splnit výše zmíněné požadavky na řízení.

V kap. 4.3 je popsán princip sériově-paralelního referenčního modelu (statický referenční model) a ukázán rozdíl v použití oproti paralelnímu modelu (dynamický referenční model). Sériově paralelní referenční model byl následně použit v kap.4.4.3 při sestavení kriteriální funkce k učení HONU jako regulátoru (optimalizace parametrů regulátoru) v reálném čase. V kap.4.6.1 je sériově-paralelní referenční model využit pro sestavení kriteriální funkce sloužící k výpočtu akčních zásahů. V kap. 4.5 je vypočítáno statické zesílení a offset modelů HONU i uzavřeného regulačního obvodu skládajícího se z HONU jako regulátoru a HONU jako modelu řízené soustavy. Při řízení na žádanou polohu je vždy požadováno, aby statistické zesílení uzavřeného regulačního obvodu bylo rovno jedné a offset (trvalá regulační odchylka) byla nulová. Pomocí této znalosti a výpočtu aktuálního statického zesílení a offsetu byla rozšířena kriteriální funkce sloužící k optimalizaci vah regulátoru. Schopnost učení byla testována na jednoduchém příkladu. Tím byl splněn 1. cíl práce Vytvoření nového zrychleného algoritmu učení, pro regulátory s referenčním modelem, využívající polynomiální neuronové jednotky HONU

V kap.4.4 je sestaven matematický popis MRAC regulátoru s HONU a T-S LNU jako regulátoru, a následně je řešena otázka sestavení kriteriální funkce pro učení vah regulátoru v reálném čase. Byla řešena problematika, kde regulovaná veličina není závislá na váhách regulátoru v tomtéž diskrétním čase, nýbrž na váhách různě zpožděných
v závislosti na vstupním vektoru do modelu řízeného systému. Tento problém byl vyřešen sestavením kriteriální funkce závisící nikoliv na reálně změřené regulované veličině, ale na fiktivním výstupu z modelu. Fiktivní výstup byl vypočítán pouze z aktuálních vah (parametrů) regulátoru a fiktivně by nastal pouze pokud by všechny zpožděné akční zásahy vstupující do modelu řízeného systému byly vypočítány právě z těchto aktuálních vah regulátoru. V kap. 4.7 je proveden rozbor stability uzavřeného regulačního obvodu s využitím jednotek HONU. Byla využita definice stability BIBO ISS, která je popsána i pro modely HONU. V práci byl ukázán pouze výpočet stability pro zvolené zapojení regulátoru a modelu řízeného systému. Tím byl splněn 2. cíl práce Vytvoření postupu adaptace řízení, sestavení korektního učícího algoritmu pro HONU

systém bez trvalých regulačních odchylek, aniž by nebylo zapnuto doučování vah. Z provedených simulací vyplynulo, že pokud je zapnuto doučování vah HONU jako regulátoru, není pro danou úlohu nutné využívat HONU vyšších řádů, ale postačí LNU jako regulátor i jako model řízeného systému. Právě pro LNU jako regulátor byl proveden experiment řízení kap.6.4 hydraulického standu. Kvalita regulace vyhověla požadavkům při řízení hydraulických lisů. Tím byl splněn 2. cíl práce Sestavení regulátoru se zvýšenou rychlostí učení pro řízení hydraulického lisu.

Nově sestavený algoritmus učení HONU jako regulátor, splnil hypotézu. Zvolený regulátor s nově sestaveným algoritmem učení je schopen řídit hydraulický systém bez použití předřadných elektronik a je schopen reagovat na změny řízeného systému v reálném čase.
8. Vlastní publikace

9. Ostatní publikace

výpočtů, Disertační Práce. Vysoká škola báňská - Technická univerzita Ostrava,

[12] KONAŘÍK, Petr. Syntéza řízení mechatronického systému s využitím simulačních
metod a prostorových modelů virtuální reality, Disertační Práce. Vysoká škola

středisko Českého vysokého učení technického, 1982, s. 73–92.

LISCHINSKY. Friction Models and Friction Compensation. In: European Journal
of Control. 1998, 4(3), s.176–195. ISSN 0947-3580

[15] Datasheet SP08-47CL Spool-Type 4-Way 3-Position, Closed-Center, Electro-
Proportional Hydraulic Valve. [vid. 2020-06-30]. Dostupné
z: http://hydraforce.com/Proport/Prop_html/2-111-1_SP08-47CL/2-111-1_SP08-
47CL.htm#view8

[vid. 2020-07-01]. Dostupné z: https://www.hydraforce.com/Proport/Prop_html/2-
852-1_TS10-26/2-852-1_TS10-26.htm#view6

[17] Datasheet EVDR-0201 A Dual/Single Valve Driver, Plug-In Style, General Purpose
drivers/evdr-0201a/

[18] Datasheet EL6 | Digitální řídicí elektronika v provedení nástrčky DIN konektoru |

[19] WANG, C., L. QUAN, Z. JIAO a S. ZHANG. Nonlinear Adaptive Control of
Hydraulic System With Observing and Compensating Mismatching Uncertainties.
In: EEE Transactions on Control Systems Technology 2018, 26(3), s.927–938. ISSN 1063-6536

[20] GU, W., J. YAO, Z. YAO a J. ZHENG. Robust Adaptive Control of Hydraulic
System With Input Saturation and Valve Dead-Zone. In: IEEE Access, 2018, 6,
s.53521–53532. ISSN 2169-3536

LuGre Model-Based Friction Compensation. In: IEEE Transactions on Industrial
Electronics 2015, 62(10), s.6469–6477. ISSN 0278-0046

[22] JOHANASTROM, K. a C. CANUDAS-DE-WIT. Revisiting the LuGre friction
model. In: IEEE Control Systems Magazine, 2008, 28(6), s.01–114. ISSN 1066-
033X

[34] KALMAN, R.E. Design of a Self-optimizing Control System. In: Transactions of ACME, (Vol 80), 1958, s.468-478

