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Title: Phenomenological Modeling of Strain-Range Dependent Cyclic Har-
dening

Abstract: This doctoral thesis deals with the phenomenological modeling of
the material response of metals for large strain loading conditions. The main
focus is on the phenomenon of material cyclic hardening and its dependency
on the loading conditions, which was observed on the austenitic stainless steel
08Ch18N10T. The formulation of a metal plasticity constitutive model with
a new cyclic hardening rule is proposed to enable correct simulation of the
material response under large strain for uniaxial and torsional loading con-
ditions. Material parameters of the presented model for 08Ch18N10T steel
are identified. The constitutive model is implemented as a Fortran code in
the commercial FE-software Abaqus as a material subroutine USDFLD. The
extensive experimental program with 6 different specimen geometries made
of 08Ch18N10T steel is presented. The results of FE simulations of all these
cyclic tests are presented. A comparison of simulated and experimentally
measured response shows the prediction capability of the presented material
model.

Keywords: cyclic plasticity, extremly low-cycle fatigue, strain-range depen-
dent, finite element analysis
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Název: Fenomenologické modelováńı cyklického zpevněńı materiálu závislého
na hladině zat́ıžeńı

Abstrakt: Tato práce řeš́ı fenomenologické modelováńı odezvy kovových
materiál̊u při velkých deformaćıch. Zaměřuje se předevš́ım na jev cyklického
zpevněńı materiálu a jeho závislosti na podmı́nkách zatěžováńı, což bylo po-
zorováno např. u austenitické nerezové oceli 08Ch18N10T. Je formulován
konstitutivńı model cyklické plasticity s novou definićı cyklického zpevněńı
materiálu, která umožňuje korektně simulovat odezvu materiálu při velkých
deformaćıch pro jenoosé i torzńı namáháńı. Pro popsaný model jsou určeny
materiálové parametry pro ocel 08Ch18N10T. Je popsána implementace mo-
delu do komerčńıho konečně-prvkového softwaru Abaqus pomoćı uživatelské
subrutiny USDFLD napsané v programovaćım jazyce Fortran. Jsou prezen-
továny výsledky zkoušek rozsáhlého experimentálńıho programu provedeného
na 6 r̊uzných geometríıch zkušebńıch vzork̊u z oceli 08Ch18N10T. Na srovnáńı
výsledk̊u experiment̊u a jejich simulaćı jsou demonstrovány predičkńı schop-
nosti navrženého modelu.

Kĺıčová slova: cyklická plasticita, extrémně ńızko-cyklová únava, závislost
na hladině deformace, metoda konečných prvk̊u
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1 Introduction

Low-cycle fatigue (LCF) is a part of the fatigue phenomenon, where loading
implies higher nominal stresses than the yield strength. The maximum num-
ber of cycles to failure for common steel-like materials is usually less than
thousands of cycles [1].

The prediction of LCF on real mechanical components consists of two key
features - modeling of material response and choosing the appropriate criterion
of failure. The appropriate criterion of failure predicts when a failure occurs
in a mechanical component depending on loading conditions and its history.
Loading conditions are stress and strain tensor fields.

In low-cycle fatigue, the yield strength is exceeded in a large volume of
material, the plastic deformations occur and the relationship between stress
and strain is no longer linear - on the contrary, it can be very complex.

Low-cycle fatigue, where only few dozens of cycles to failure is reached [2, 3]
is usually called extremely-low-cycle fatigue (ELCF) [4, 2, 3] or according to
some authors ultra-low-cycle fatigue [5] or very-low-cycle fatigue [6]. Bet-
ween LCF and ELCF, there are some notable differences. Material models
based on cyclically stable material, without correct reflection of cyclic harde-
ning/softening, is unable to make an accurate prediction in the ELCF regime.
This generates one more area currently being researched in conjunction with
the LCF phenomenon, which is a material response for high-loading condi-
tions, for example on the transition between LCF and ELCF regime.

For example, austenitic stainless steel 08Ch18N10T shows so called strain-
range dependent cyclic hardening, as can be seen in Figure 1. For this material
it means that it shows almost no cyclic hardening for low-loading conditions,
a saturation of material response occurs under constant cyclic loading condi-
tions and material is cyclically stable. But it shows continuous cyclic harde-
ning with no saturation of material response under high-loading conditions.
This phenomenon has to be somehow reflected in the material model if the
fatigue prediction should give a satisfactory result.

2 State of the Art

2.1 Brief Introduction to the Theory of Plasticity

Plastic Strain

Total strain ε is defined as

ε = εe + εp, (1)
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Figure 1: Illustration of strain-range dependent cyclic hardening of
08Ch18N10T stainless steel. [A5]

where εe is elastic strain and εp is plastic strain. Using Hooke’s law, it can be
formulated as

σ = Eεe = E(ε− εp), (2)

where σ is stress and E is the Young modulus.
This simple uniaxial problem can be generalized for multiaxial loading

conditions and can be expressed using tensor notation as

σ = Cεe, (3)

where σ is elastic stress tensor, εe is elastic strain tensor and C is the elastic
stiffness matrix.

For multiaxial loading, it is necessary to choose an appropriate criterion
for determining the equivalent (sometimes also called effective) stress σe and
for von Mises criterion it can be written as

σe =
1√
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]1/2, (4)
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where σ1,2,3 are principal stresses
An equivalent (sometimes also called effective) increment of plastic strain

is defined as

dp =

(
2

3
dεp : dεp

) 1
2

'
(

2

3
dε′ : dε′

) 1
2

. (5)

Condition of Plasticity and Normal Hypothesis

For von Mises yield criterion, the plasticity function is in general defined as

f = σe − Y =

(
3

2
σ′ : σ′

) 1
2

, (6)

where Y is actual yield stress and σ′ stands for deviatoric part of stress tensor.
This function defines so-called yield surface, which for the von Mises criterion
takes the form of a cylinder wall in the space of the principal stresses. The
plasticity condition is then given as

f < 0 for elastic strain, (7)

f = 0 for plastic strain. (8)

For metal materials and von Mises plasticity is generally accepted that

dεp =
3

2
dp
σ′

σe
. (9)

The Consistency Condition

In the case of plastic loading, it is necessary to meet the so-called consistency
condition, which can be interpreted so that the point representing the load
must remain on the yield surface. This condition is given by the equation

f = σe − Y = 0 (10)

and can be further customized.

Cyclic Stress-Strain Curve

If the common steel-like material is exposed to the uniaxial cyclic loading,
the response of the material changes due to changes in microstructure. The
intensity of these changes usually decreases with increasing number of cycles
and after that, the response stabilizes [7]. The stabilized state can be illustra-
ted by the hysteresis loop. The cyclic stress-strain curve (CSSC) is created
by interposing the vertices of hysteresis loops for different εa.
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Isotropic Hardening

The plasticity condition can be written as

f = σe − Y (p) = σe − (σy +R(p)) , (11)

where σy is yield strength and R(p) is the isotropic variable. R(p) can take
various forms, for example, in commercial FE software Abaqus 6.14, the non-
linear isotropic hardening model is defined as

R(p) = Q(1− e−bp), (12)

where Q and b are material parameters [8].

Kinematic Hardening

The plasticity condition from the equation (6) then takes form

f = σe − Y =

(
3

2
(σ′ −α′) : (σ′ −α′)

) 1
2

− Y = 0, (13)

where α is the so-called back-stress.
Chaboche [9] superpose the back-stress from m parts as

α =

m∑
i

αi, (14)

dαi =
2

3
Cidε

p − γiαdp, (15)

where m is usually equal to 2 or 3. Marquis [10] came with a modification
using an evolutionary rule for the kinematic hardening for its non-linear term
as

dα =
2

3
Cdεp − φ(p)γ∞αdp, (16)

where φ is called Marquis parameter [7] or the φ function.

Combined Hardening Model

Combining the kinematic and isotropic hardening model, the plasticity con-
dition then has the form

f =

(
3

2
(σ′ −α′) : (σ′ −α′)

) 1
2

− σy +R(p). (17)
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Strain-Range Dependent Cyclic Hardening

Adjusting the plasticity equations (16) and (17), taking into account the load
level and using the memory surface concept, the plasticity function can be
written as:

f =

(
3

2
(σ′ −α′(p,RM )) : (σ′ −α′(p,RM ))

) 1
2

− σy +R(p,RM ),(18)

dα =
2

3
Cdεp − φ(p,RM ) · γ∞αdp, (19)

where RM is the size of the memory surface.

2.2 Some Important Publications Related to Strain-Range
Dependent Cyclic Plasticity

Most of this chapter is directly cited from the article [A1].
“Phenomenological models [11] are the most widely-used models in prac-

tical applications. Their goal is to provide as accurate as possible description
of the stress-strain behavior of the material, which is found on the basis of ex-
periments [12]. The stress-strain behavior of structural materials under cyclic
loading is very diverse, and a case-by-case approach is required [13].

The most progressive group of cyclic plasticity models, which are com-
monly encountered in commercial finite element method programs, are single
yield surface models based on differential equations. Their development is
closely linked to the creation of a nonlinear kinematic hardening rule with a
memory term, introduced by Armstrong and Frederick in 1966 for the evolu-
tion of back-stress [14], and the discovery by Chaboche [9] of the vast possi-
bilities offered by the superposition of several back-stress parts.

Developments in the field of non-linear kinematic hardening rules were
mapped in detail in [11]. In the current paper, we will mention only the most
important theories. In 1993, Ohno and Wang [15] proposed two nonlinear
kinematic hardening rules. For both models, it is considered that each part of
the back-stress has a certain critical state of dynamic recovery. Ohno-Wang
Model I leads to plastic shakedown under uniaxial loading with a nonzero
mean axial stress value (no ratcheting), and under multiaxial loading it gives
lower accumulated plastic strain values than have been observed in experi-
ments. The memory term of Ohno-Wang Model II [15] is partially active
before reaching the critical state of dynamic recovery, which allows a good
prediction of ratcheting under uniaxial loading and also under multiaxial
loading. The Abdel-Karim-Ohno nonlinear kinematic hardening rule [16] was
published in 2000. This rule is in fact a superposition of the Ohno-Wang I and
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Armstrong-Frederick rules. The proposed model was designed to predict the
behavior of materials that exhibit a constant increment of plastic strain du-
ring ratcheting. Other modifications to this kinematic hardening rule, leading
to a better prediction of uniaxial ratcheting and also multiaxial ratcheting,
were proposed by one of the authors of paper [17]. In order to capture the
additional effects of cyclic plasticity, the concept of kinematic and isotropic
hardening has been further modified. Basically, the available theories can be
divided into two approaches. The first approach is related to the actual dis-
tortion of the yield surface [18, 19, 20], while the second approach is related
to the memory effect of the material [9], [21]. The effect of cyclic hardening as
a function of the size of the strain amplitude is usually assumed in the second
approach.

The first comprehensive model of cyclic plasticity with a memory surface
was proposed by Chaboche and co-authors in [9]. Chaboche’s memory surface
was established in the principal plastic strain space and captures the influence
of plastic strain amplitude and also the mean value of the plastic strain. The
memory surface is associated with a non-hardening strain region in a material
point, as is explained by Ohno [21] for the general case of variable amplitude
loading. Memory surfaces established in the stress space have also been de-
veloped. Their main advantage is that they enable more accurate ratcheting
strain prediction to be achieved, as presented by Jiang and Sehitoglu in their
robust cyclic plasticity model [22]. Good agreement with experiments has
been achieved in the case of steel SS304 [23], but at the cost of defining more
than 70 material parameters.

Of recently published works, Halama et al [A1] developed a new cyclic plas-
ticity model suitable for predicting strain-range dependent cyclic hardening of
austenitic steels. The model is capable of capturing the cyclic hardening with
strain-range dependency as for example Kang advanced model [23], but with a
considerably lower number of material parameters, as has been demonstrated
in [A1].

2.3 Material Parameters Identification

E, ν and σy are usually determined from the tensile test according to [24] or
other equivalent standard. Material parameters of the Chaboche model Ci
and γi can be determined from the cyclic stress-strain curve or from the large
hysteresis loop [25].

For strain-range dependent hardening materials, material parameters fit-
ted from large hysteresis loop usually does not predict well the shape of smaller
hysteresis loops. This is usually corrected by determining the Marquis para-
meter φ and isotropic variable R as a function of accumulated plastic strain
p and memory surface RM [A1].
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3 Motivation

In the framework of the grant project of Czech Technological Agency TA04020806,
on which the author participates, extensive experimental research program
of the LCF of austenitic stainless steel 08Ch18N10T has been done. The
most advanced suitable model, that can predict strain-range dependent cyclic
hardening of this material, while still holding back the number of material
parameters, turns out to model of cyclic plasticity developed by Halama et
al [A1]. In this thesis, it will continue to be referred to as the original model.

The model shows excellent prediction capability for uniaxial loading con-
ditions. It also predicts well the response of notched specimens on three
different notched geometries.

Under torsional loading conditions, the original model does predict the
material response well only for lower loading levels. However, the origi-
nal model (as, of course, it’s predecessors) over-predicts cyclic hardening of
08Ch18N10T steel for higher loading levels. In order to minimize the ob-
served over-prediction under torsional loading conditions, a new formulation
of material model is needed.

4 Objectives of the Doctoral Thesis

The main objective of the thesis is to propose a new formulation of a consti-
tutive model that can predict the response of the material for uniaxial loading
conditions as well as for the torsional loading conditions. The key steps to
achieve this goal are:

1. The proposition of modification:

Modifications of the original model will be proposed and new constitu-
tive relations will be described.

2. Calibration of material parameters:

The material parameters of the newly proposed model will be identified
for 08Ch18N10T austenitic stainless steel. The identification process
will be described step by step, the new set of material parameters for
08Ch18N10T steel will be presented.

3. Implementation into FE:

Building FE models of specimens, that have been used for experiments
(presented in Chapter 3) will be described. The newly proposed model
will be implemented into commercial FE software Abaqus as a user sub-
routine USDFLD. The algorithm of the subroutine as well as the full
Fortran code of the subroutine will be presented.

7



5 Experimental Program

The experimental program mentioned in section 3 has been focused on LCF
of austenitic stainless steel 08Ch18N10T. The material parameters identifica-
tion series (IDF) was therefore compiled from uniform-gage (UG) specimens
(see Figure 2) and non-uniform-gage specimens with an elliptical longitudi-
nal section (E9), see Figure 3). The next series consists of E9 geometry,
notch geometry with an R = 1.2 mm (R1.2, see Figure 4), geometry with an
R = 2.5 mm notch (R2.5, see Figure 5) and geometry with an R = 5 mm
notch (R5, see Figure 6). The last series is the notched tube geometry (NT,
see Figure 7) which was exposed to torsional loading.

12

R20

6 10

Lext = 10

Figure 2: Sketch of UG geom-
etry. [A2]

ellipse

18

6

6 10

Lext = 20

Figure 3: Sketch of E9 geome-
try. [A2]

R1.2

6 10

30◦

Lext = 20

Figure 4: Sketch of R1.2 geom-
etry. [A2]

R2.5

6 10

Lext = 20

Figure 5: Sketch of R2.5 geom-
etry. [A2]
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R5

6 10

Lext = 20

Figure 6: Sketch of R5 geome-
try. [A2]

R4

4 106

Lext = 25
∆φ

Figure 7: Sketch of NT geome-
try. [A2]

6 Constitutive Model of Cyclic Plasticity

6.1 The Original Model

Yield Surface and Flow Rule

The single yield surface concept for the metallic materials, based on the von
Mises yield criterion, is used. The plasticity function is defined as

f =

√
2

3
(σ′ −α′) : (σ′ −α′)− Y = 0, (20)

where σ′ is the deviatoric part of the stress tensor σ, α′ is the deviatoric part
of the back-stress α and Y is the actual yield stress. The actual yield stress
Y is defined as

Y = σY +R, (21)

where R is the isotropic variable and σy is the yield strength.
“The associative plasticity is considered, so the normality flow rule is con-

sidered in the case of active loading

dεp = dλ
∂f

∂σ
. (22)

Accumulated plastic strain increment dp is defined as

dp =

√
2

3
dεp : dεp.” [A1] (23)

The accumulated plastic strain is generally defined as

p =

∫
dp (24)

9



Virtual Back-Stress

“A new internal variable is established to provide an easy way to calibrate
the model. The variable is the back-stress of a cyclically stable material cor-
responding to the response of the material investigated under a large strain
range. It will be referred to as the virtual back-stress. The Chaboche super-
position of the back stress parts is used in the following form

αvirt =

M∑
i=1

αivirt (25)

taking into consideration the nonlinear kinematic hardening rule of Armstrong
and Frederick [14] for each part

dαivirt =
2

3
Cidεp − γiαivirtdp, (26)

where Ci and γi are material parameters. For all calculations in this paper the
superposition of three kinematic hardening rules (M = 3) will be used.” [A1]

Memory Surface

“A scalar function is introduced to represent the memory surface in the de-
viatoric stress space

g = ‖αvirt‖ −RM ≤ 0, (27)

where RM is the size of the memory surface and ‖αvirt‖ is the magnitude of
the total virtual back-stress. The evolution equation ensuring the possibility
of memory surface expansionis therefore

dRM = H(g) 〈L : dαvirt〉 , (28)

where

L =
αvirt
‖αvirt‖

.” [A1] (29)

Kinematic Hardening Rule

“Consistent with the previous sections, the back-stress is composed of M parts

α =

M∑
i=1

αi, (30)

10



but the memory term is dependent on the size of memory surface RM and
accumulated plastic strain p, thus

dαi =
2

3
Cidεp − γiφ(p,RM )αidp, (31)

where Ci and γi are the same as in equation (26). The multiplier φ of para-
meters γi is composed of a static part and a cyclic part

φ(p,RM ) = φ0 + φcyc(p,RM ), (32)

where φ0 has the meaning of a material parameter, while the cyclic part is
variable and can change only in the case of ṘM = 0 . In this case, the
evolution equation is defined in the following way

dφcyc = ω(RM ) · (φ∞ + φcyc(p,RM )) dp. (33)

φ∞(RM ) = A∞R
4
M +B∞R

3
M + C∞R

2
M +D∞RM + F∞, (34)

ω(RM ) = Aω +BωR
−Cω

M for RM ≥ RMω, (35)

ω(RM ) = Aω +BωR
−Cω

Mω otherwise, (36)

where A∞, B∞, C∞, D∞, F∞, Aω, Bω, Cω, RMω and RM0 are additional
parameters to Chaboche’s material parameters Ci and γi.” [A1]

Isotropic Hardening Rule

“Continuous cyclic hardening has been observed for austenitic stainless steels
for a large strain range under uniaxial loading [23]. To capture this behavior,
we introduce the linear isotropic hardening rule

dR = R0(RM )dp, (37)

where parameter R0 is dependent on the size of the memory surface

R0(RM ) = ARR
2
M +BRRM + CR for RM ≥ RM0, (38)

R0(RM ) = ARR
2
M0 +BRRM0 + CR otherwise, (39)

because of the strong dependence on the strain range observed in the experi-
ments [23].” [A1]

11
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Figure 8: The evolution of actual yield stress Y during fatigue life for IDF
specimen series.

6.2 Analysis of the Original Model

Isotropic hardening, as is defined in the original model by equation (37), is
linear function of accumulated plastic strain p. But as can be seen in Figure 8,
it does not reflect how the Y evolves during the fatigue life in 08Ch08N10T
steel. This finding offers scope for a new definition of isotropic hardening that
better reflects the actual yield stress development during the fatigue life.

The modification must also be strain-range dependent and the only possi-
ble way is through the modification of the memory surface definition for shear
loading.

6.3 Modification for Shear Stress

New Formulation of Memory Surface

As the most effective way to deal with the problem of shear loading conditions,
the author choose to define two memory surfaces - the first one to control the
isotropic hardening, the second one to control the kinematic hardening. This
concept was published in [A2].

The definition of the memory surface for the kinematic hardening RMφ is
newly modified. Using one extra material parameter, Kshear, the evolution

12



equations are modified to capture the torsional loading conditions as well as
the uniaxial ones.

“The new memory surface RMφ for the kinematic hardening part is mod-
ified and is defined by analogy as

αvirtφ =

M∑
i=1

αivirtφ (40)

dαivirtφ =
2

3
Cidεp − γiKαivirtφdp (41)

where

K = (δIJ + (1− δIJ)Kshear) (42)

where δIJ is Kronecker delta, I, J are indexes of stress tensor σ and Kshear

is a new material parameter.” [A2]
“The rest of the equations for defining the memory surface of the kinematic

hardening part remain analogous to the original model [A1].
“The second modification to the original model [A1], also associated with

the memory surface, is to omit limits RMω and RM0 and to set boundaries
of the memory surfaces instead: RminM and RmaxM . The value of the memory
surface RM and RMφ used for controlling the isotropic and kinematic har-
dening part can lie only between these two bounds. For simplification, and
for mathematically correct expression, the memory surface size that is used,
RusedM , is defined as

RusedM = RminM for RM < RminM (43)

RusedM = RM for RminM < RM < RmaxM (44)

RusedM = RmaxM for RM > RmaxM (45)

and analogously for RusedMφ .” [A2]

Kinematic Hardening

The kinematic hardening equations is now defined as

dαi =
2

3
Cidεp − γiφ(p,RusedMφ )αidp (46)

φ(p,RusedMφ ) = φ0 + φcyc(p,R
used
Mφ ) (47)

13



dφcyc = ω(RusedMφ ) ·
(
φ∞ + φcyc(p,R

used
Mφ )

)
dp (48)

φ∞(RusedMφ ) = A∞(RusedMφ )4 +B∞(RusedMφ )3 + C∞(RusedMφ )2 +D∞R
used
Mφ + E∞ (49)

ω(RusedMφ ) = Aω +Bω(RusedMφ )−Cω . (50)

This modification has been published in [A2].

New Formulation of Isotropic Haredning

For higher levels of loading, the actual yield stress Y is a non-linear function
of N . For periodic loading with approximately constant amplitude, N ≈ p,
so Y also must be a non-linear function of p. For this reason, the isotropic
hardening is newly defined as a non-linear function in p (instead of a linear
definition in the original model [A1]) as

dR = AR · exp(BR ·RusedM ) · pCR , (51)

where AR, BR and CR are material parameters. This modification has been
published in [A2].

7 Material Parameters Identification

The material parameters of the proposed material model have been identified
for the original experimental data of austenitic stainless steel 08Ch18N10T
using the Matlab software.

Due to complexity of the strain-range dependent cyclic hardening of this
material, the author decided to modify the existing approaches and to develop
the new calibration method. This method is based on direct simulation of the
material response using the incremental material model of cyclic plasticity in
the same way as is used in FEA simulations. No analytical simplification has
been used, all the material parameters have been identified using multiple op-
timizations process to match the hysteresis loop shape or amplitude between
experiment and simulation.

7.1 Chaboche Material Parameters

The material parameters for uniaxial loading has been identified using 12 spe-
cimens, marked by the abbreviation IDF in the following text, each specimen
representing a different level of loading. “According to the ASTM standard
[26], the classic uniform-gage geometry of the specimen is limited up to the
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amplitude of the total strain εa = 0.5 %. For higher strain levels, an hour-
glass type geometry is required. According to this standard, the IDF spe-
cimens were compiled from uniform-gage geometry (specimens IDF1-IDF5)
and hourglass geometry (specimens IDF6-IDF12).” [A1].

The design of the hourglass geometry has been found in order to prevent
buckling during the testing. The process of finding the optimal design of the
hourglass geometry is described in detail in [A5] and [A11].

Following text is directly cited from [A1]. “The loading force F applied
to the IDF specimen was known, as was the strain field of the surface of the
specimen. The strain field was measured by the extensometer in the case of
uniform-gage geometry, or by the digital image correlation method in the case
of hourglass geometry. Considering the uniaxial stress field in the cross section
of a specimen, the stress can be determined as σ = F

A , where A is the cross
section surface of the specimen. This allows the use of a different calibration
process, based on knowledge of the shape of the stress-strain hysteresis loops
in all cycles during the experiment to failure.

Let us select one hysteresis stress-strain loop of a point on the specimen
representing one loading cycle. This can be optimally simulated by a set of
material parameters C1, γ1, C2, γ2, C3, γ3 and σy. However, in the next cycle,
the optimal set of these parameters can be slightly different, as can the set
of parameters of a specimen with different loading conditions. This material
model uses the memory surface concept by setting these material parameters
as functions of RM and making these coefficients dependent on the loading
history and the loading level conditions.

The material model did not include a simulation of the material damage
process, so only experimental data up to damage were used for the calibration.
The number of cycles used is Nd, and this number corresponded with the drop
in the loading force during the experiment by 2 %, due to crack initiation and
propagation leading to failure.

First, the fatigue life is divided into about 10 evenly spaced parts by select-
ing hysteresis loops (SHLs), and the cycle number of each selected hysteresis
loop (SHL) is given as N ' Nd/k, where k = 1, 2, . . . , 10. The Young modulus
E, the Poisson ratio ν and the yield strength σy were determined from tensile
test according to ISO standard [24].

σy can be interpreted as the point where the linear part of the static
stress-strain curve turns into the non-linear part. The root mean squared
error method (RMSE) can be applied to find the point. In the tensile test
(or in the first cycle of the cyclic test), the yield strength σy corresponded to
RMSE ≈ 8. Applying RMSE = 8 to each SHL, the actual yield stress Y
was found.

Two SHLs were chosen, the bigger one and the smaller one, each with cycle
number N = Nd (the last cycle). The Chaboche material model parameters
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C1, γ1, C2, γ2, C3, γ3 were found using an optimization process. The target
function is set to the optimal shape match between simulation and experi-
ment of the two SHLs.” [A1] The basic algorithm of Chaboche parameters
identification process has been taken from [A12]. The results of calibration
process for optimal Chaboche parameters are shown in Figure 9.
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Figure 9: Chaboche material parameters fitting: (a) small hysteresis loop,
(b) large hysteresis loop. [A1]

7.2 Cyclic Hardening Parameters

“Knowing the Chaboche material parameters, a first guess of the memory
surface size for each specimen was determined. The formulation of RM and
the constant amplitude of the loading conditions resulted in fast saturation
of the RM value for each specimen (after the first cycle), which makes the
calibration process easier.” [A1]

“It is assumed here that RMφ ' RM . Boundary parameters RminM and
RmaxM are simply the maximum and minimum values of RM computed in the
identification process.” [A2] Due to the experimental setup and the method
of controlling the cyclic test, εa is almost, but not completely constant during
the whole fatigue life for hourglass specimens, so the mean value of εa has
been calculated. Details of determining the mean value can be found in [A8].

“The yield stress is now fitted as a function of RM , using equation (51),
by finding the material parameters AR, BR and CR.” [A1]

“Using the static stress-strain curve experimental data and performing
a simulation of this curve, parameter φ0 was found using equation (46) as
an optimal value of φ for the static stress-strain curve simulation.”[A1] The
error between experimental static stress-strain curve and the simulation is
calculated discretely using the least square method.

“The value of function φ from equation (46) was found for SHLs, using
a similar optimization process as for determining the Chaboche material
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parameters.”[A1] This step defines the ideal value of the Marquis parame-
ter φ for each SHL. “φ∞ was the value of φ for N = Nd and, from equation
(49), φ∞ was then set as a function of RM by finding the material parame-
ters A∞, B∞, C∞,D∞ and F∞. The function ω determined the transition
of the function φ between its border values φ0 and φ∞. Knowing the course
of function φ during the fatigue life, ω was determined as a function of RM
by finding the material parameters Aω, Bω and Cω from equation (50). This
result was not necessarily optimal, so one more optimization was performed to
find better φ∞ and ω material parameters. The target function was set to the
best possible match of the amplitude stress response between simulation and
experiment during the whole fatigue life (not only SHLs).”[A1] Simulation
results after the final process of material parameter identification is compared
with the experimental data on Figure 10.

“The RM value for each specimen was determined only as a first guess, so
a number of iterations of the whole calibration process had to be carried out
to find the final and optimal set of material parameters.” [A1] The complete
code of the material model is used for this optimization (here only converted
from Fortran to Matlab programming language).

7.3 Torsional Loading

“For each NT geometry specimen tested, the Error value in each cycle bet-
ween the experimental amplitude of torque T expa and the simulation amplitude
of torque T sima can be defined as

Error = (T expa − T sima )/T expa · 100 [%]. (52)

The MeanError over all cycles is calculated as

MeanError =
1

Nd

Nd∑
N=1

Errorn, (53)

where index N is the number of cycles. The total error over all NT geometry
specimens tested is defined as

TotalError =
1

S

S∑
s=1

MeanErrors (54)

where s is the NT specimen index and S = 8 is the total number of NT
specimens tested ” [A2]

“For the different Kshear from equation (42), the TotalError value is
captured in Figure 11. The final Kshear material parameter is identified as
the optimal value of Kshear where the TotalError is minimal. The material
value parameters are presented in Table 1.” [A2]
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Figure 10: Experiment vs. simulations for selected IDF specimens: (a) spe-
cimen IDF1, (b) specimen IDF5, (c) specimen IDF9, (d) specimen IDF12.

8 Implementation of Proposed Model into Finite
Element Analysis

“The geometry of most specimens is not uniform, so the non-uniform stress
and strain field in their cross-section are expected and FEA must be used for
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Figure 11: Identification of the Kshear material parameter. [A2]

Table 1: Material parameters of the new proposed model
for 08Ch18N10T. [A2]

E [MPa] ν σy [MPa] C1 [MPa] γ1
210,000 0.3 150 63,400 148.6

C2 [MPa] γ2 C3 [MPa] γ3 A∞
10,000 911.4 2000 0 −1.3127× 10−9

B∞ C∞ D∞ F∞ AR [MPa−1]
1.7981× 10−6 −8.6705× 10−4 1.6678× 10−1 −10.600 3.0113× 10−1

BR CR [MPa] Rmin
M [MPa] Aω Bω

1.4865× 10−1 1.1818× 10−2 130.54 0 2.0024× 10−13

Cω Rmax
M [MPa] φ0 Kshear

-4.8591 506.59 2.3178 1.5

simulations.” [A2]. The constitutive model is implemented into Abaqus FE
software using the USDFLD subroutine. The example of practical use can be
found in [A6], where the proposed material model is used to simulate the pipe
flange load. The displacement boundary condition respects amplitude value
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as was recorded from the extensometer during the experiment.

8.1 FE Model

FE models of each of the tested geometries were created. The UG, E9,
and notched geometries R1.2, R2.5, and R5 are modeled as an axisymmetric
model, the NT geometry is modeled as a 3D model using cyclic symmetry.

8.2 Implementation of Material Model Using USDFLD
Subroutine

The result of the USDFLD subroutine code for the proposed material model
is the definition of FIELD(1) = Y and FIELD(2) = φ. The brief logic of
building the USDFLD subroutine can be summerized in following points:

• Variables and material parameters are defined.

• Vector of plastic strain εp and accumulated plastic strain p are obtained
from previous increment.

• Flow vector is calculated.

• Vectors αvirt and αvirtφ are calculated.

• The equations leading to determining the size of memory surfaces RusedM

and RusedMφ are calculated.

• The isotropic variable R is calculated, actual yield stress is determined
as Y = σy +R.

• Variables φ∞, ω and φcyc are calculated.

• Variable φ is calculated.

• Some variables are stored to user defined state variable output STATEV
(for control purposes only).

• FIELD array values for current increment are defined as FIELD(1) =
Y , FIELD(2) = φ.

9 Main Results

The error between the experiment and the FE simulation in each cycle N is
calculated simply as

Error =
F expa − F sima

F expa
· 100 %. (55)
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The mean error and the total error are calculated using equations (53) and (54)
considering the corresponding number of specimens in the series.

The Figures 12 and 13 show the experimental and simulation results of E9
geometry series representing the uniaxial loading conditions. The prediction
capability of these two models is comparable. Results have been published
in [A1] and [A2].
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Figure 12: Experiment vs. simula-
tions, specimen E9-1. [A1], [A2]
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Figure 13: Experiment vs. simula-
tions, specimen E9-17. [A1], [A2]

The NT geometry series results are shown in Figures 14 and 15. In this
case, the compared variables are the amplitudes of the torque measured during
the experiment (Ta exp) and the amplitudes computed by the FE simulations
(Ta sim). The errors are calculated using the equations (52-54). For this
geometry, the difference in the prediction capability of the original model and
the modified model is not the same - the modified model provides a better
prediction of the cyclic hardening of the material under torsional loading for
higher loading levels. The results have been published in [A2].

Finally, the notched specimen geometry series R1.2, R2.5, and R5 are
shown in Figures 16, 17, 18, 19, 20, and 21. The stress field in the cross-
section of these specimens is no longer uniaxial, for more details see [A10],
where the simulations of stress field in notched specimens has been presented.
The prediction capabilities of both models are also comparable, the results
have been published in [A2].
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Figure 14: Experiment vs. simula-
tions, specimen NT-1. [A2]
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Figure 15: Experiment vs. simula-
tions, specimen NT-6. [A2]
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Figure 16: Experiment vs. simula-
tions, specimen R1.2-1. [A2]
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Figure 17: Experiment vs. simula-
tions, specimen R1.2-18. [A2]
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Figure 18: Experiment vs. simula-
tions, specimen R2.5-1. [A2]
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Figure 19: Experiment vs. simula-
tions, specimen R2.5-21. [A2]
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Figure 20: Experiment vs. simula-
tions, specimen R5-1. [A2]
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Figure 21: Experiment vs. simula-
tions, specimen R5-24. [A2]

23



10 Outcomes

10.1 Theoretical Outcomes

The new material model, proposed in Section 6.3, is capable of capturing
strain-range dependent hardening for uniaxial and newly also for torsional
loading conditions. The proposed modification shows one of the possible
ways to deal with the anisotropy between tension and torsion of the memory
surface-based models.

The proposed material identification process, presented in Chapter 7,
shows the new, unorthodox way to identify material parameters using the in-
cremental FEA-like simulations of material response and multiple optimiza-
tion procedure to fit the material parameters as precisely as possible. The
identification process is also published in [A1], [A2], [A3] and [A7].

The implementation of the proposed model (presented in Chapter 8) is in
the form of the Abaqus FE software user-defined field (USDFLD) subroutine.
This will eventually allow other researchers to effectively modify or extend
the proposed model and speed up the development of functional FE code.

10.2 Practical Outcomes

The new material model presented in the thesis is implemented into the com-
mercial FE software Abaqus as the USDFLD subroutine. The implementation
is described in Chapter 8 and also published in [A1] and [A2]. This allows
potential users to test the proposed material model for real engineering com-
putations, as has been demonstrated for example in [A6].

The material parameters identification process is described step by step
in Chapter 7 and also published in [A1], [A2], [A4] and [A9]. Using the
procedure, material parameters can be identified for other materials. The
values of material parameters for 08Ch18N10T austenitic stainless steel are
presented in Table 1.

Combination of presented USDFLD subroutine with material parameters
for 08Ch18N10T steel, the newly proposed material model is ready for testing
for engineering computations on real components.

11 Conclusion and Future Work

11.1 Conclusion

In this thesis, the original material model of cyclic plasticity with strain-range
dependency published in [A1] is presented in Section 6. The constitutive
equations are analyzed, the isotropic hardening part of the model and the
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definition of memory surface are chosen as parts of the original model to be
modified.

The fulfillment of the main objectives of the thesis, defined in Chapter 4,
is summed up here:

1. Proposition of modification: The new formulation of the material
model is proposed in section 6.3 and is also published in [A2]. The new
formulation of isotropic hardening as a non-linear function of accumu-
lated plastic strain p is proposed. The original memory surface is newly
split into two memory surfaces - the memory surface for isotropic har-
dening, which is defined in the same way as the original one, and the
memory surface for kinematic hardening, which is defined by the new
constitutive equations. The new memory surface limits are defined.

2. Calibration of material parameters: The new calibration procedure
of material parameters is proposed in this thesis. It uses the incremental
FEA-like simulations of material response for fitting material parameters
and multiple optimization procedure to fit the material parameters as
precisely as possible. The material parameters identification process of
newly proposed model is described step by step in Chapter 7 and is
also published in [A1], [A2], [A3] and [A7]. Material parameters are
identified for 08Ch18N10T austenitic stainless steel.

3. Implementation into FE: The implementation of the newly proposed
model into FE code is described in 8 and also published in [A2]. The im-
plementation into commercial FE software Abaqus is in the form of the
user-defined field subroutine (USDFLD) written in Fortran program-
ming language.

The newly proposed model shows practically the same prediction capabi-
lity as the original for uniaxial and notched specimens, but significantly better
prediction capability under torsional loading.

11.2 Future Work

The presented material model extends the good prediction capabilities of the
original model [A1] from uniaxial to torsional loading. The dominant tensile
or torsional loading is also the limitation of model usability in the proposed
form. The next logical step is to verify the proposed model for combined
loading conditions, for example, a proportional combination of tension and
torsion and possibly propose another modification to include these loading
conditions.
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trava, Fakulta strojńı (2009).
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dent Cyclic Plasticity Material Model Calibration for the 08Ch18N10T
Steel. In: Proceedings of the 33rd conference with international partic-
ipation on Computational Mechanics 2017. Pilsen: University of West
Bohemia, p. 25-26, (2017). ISBN 978-80-261-0748-4.
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