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Abstract

This doctoral thesis deals with the phenomenological modeling of the material re-
sponse of metals for large strain loading conditions. The main focus is on the phe-
nomenon of material cyclic hardening and its dependency on the loading conditions,
which was observed on the austenitic stainless steel 08Ch18N10T. The formulation
of a metal plasticity constitutive model with a new cyclic hardening rule is proposed
to enable correct simulation of the material response under large strain for uniaxial
and torsional loading conditions. Material parameters of the presented model for
08Ch18N10T steel are identified. The constitutive model is implemented as a For-
tran code in the commercial FE-software Abaqus as a material subroutine USDFLD.
The extensive experimental program with 6 different specimen geometries made of
08Ch18N10T steel is presented. The results of FE simulations of all these cyclic tests
are presented. A comparison of simulated and experimentally measured response
shows the prediction capability of the presented material model.

Keywords:

cyclic plasticity, extremly low-cycle fatigue, strain-range dependent, finite element
analysis
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Abstrakt

Tato práce řeš́ı fenomenologické modelováńı odezvy kovových materiál̊u při velkých
deformaćıch. Zaměřuje se předevš́ım na jev cyklického zpevněńı materiálu a jeho
závislosti na podmı́nkách zatěžováńı, což bylo pozorováno např. u austenitické
nerezové oceli 08Ch18N10T. Je formulován konstitutivńı model cyklické plasticity
s novou definićı cyklického zpevněńı materiálu, která umožňuje korektně simulovat
odezvu materiálu při velkých deformaćıch pro jenoosé i torzńı namáháńı. Pro pop-
saný model jsou určeny materiálové parametry pro ocel 08Ch18N10T. Je popsána
implementace modelu do komerčńıho konečně-prvkového softwaru Abaqus pomoćı
uživatelské subrutiny USDFLD napsané v programovaćım jazyce Fortran. Jsou
prezentovány výsledky zkoušek rozsáhlého experimentálńıho programu provedeného
na 6 r̊uzných geometríıch zkušebńıch vzork̊u z oceli 08Ch18N10T. Na srovnáńı
výsledk̊u experiment̊u a jejich simulaćı jsou demonstrovány predičkńı schopnosti
navrženého modelu.

Kĺıčová slova:

cyklická plasticita, extrémně ńızko-cyklová únava, závislost na hladině deformace,
metoda konečných prvk̊u
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Chapter 1

Introduction

Low-cycle fatigue (LCF) is a part of the fatigue phenomenon, where loading implies
higher nominal stresses than the yield strength. The maximum number of cycles to
failure for common steel-like materials is usually less than thousands of cycles [1].

The prediction of LCF on real mechanical components consists of two key fea-
tures - modeling of material response and choosing the appropriate criterion of
failure. The appropriate criterion of failure predicts when a failure occurs in a
mechanical component depending on loading conditions and its history. Loading
conditions are stress and strain tensor fields. In high-cycle fatigue (HCF), where
elastic deformations are completely dominant (except very small areas at crack tips
in the phase of crack propagation phase), the extended Hooke’s law can determines
the linear relationship between stress and strain and modeling of material response
can be very accurate. The inputs for the failure criterion (stress and strain fields and
their history) can be calculated or simulated very precisely and setting or choosing
the right failure criterion is the key to the fatigue prediction.

In low-cycle fatigue, the yield strength is exceeded in a large volume of material,
the plastic deformations occur and the relationship between stress and strain is no
longer linear - on the contrary, it can be very complex. For the uniaxial loading, it
can depends on a number of parameters like loading level applied, history of loading,
and its sequence, the ratcheting or relaxation of material can occurs. For multiaxial
loading, the whole phenomenon can become about the order more complex. Conse-
quently, even if a perfect criterion for low-cycle fatigue exists, the fatigue prediction
can fail if inputs for the criterion are incorrect because of badly determined mate-
rial response modeling in general, mainly the badly determined relationship between
stress and strain. This makes the modeling of material response at least as important
as setting the appropriate failure criterion for the low-cycle fatigue.

In material response modeling in LCF, there are several main areas currently
being researched, for example, LCF in combination with thermo-mechanical fatigue,
ratcheting and creep, LCF combined with radiation, each field focusing as well on
uniaxial and multiaxial loading conditions. Professor J.L. Chaboche summarized
most of the prominent models dealing with these phenomena in his great review
published in [2].

Low-cycle fatigue, where only few dozens of cycles to failure is reached [3, 4]
is usually called extremely-low-cycle fatigue (ELCF) [5, 3, 4] or according to some
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authors ultra-low-cycle fatigue [6] or very-low-cycle fatigue [7]. Between LCF and
ELCF, there are some notable differences as has been nicely summarized in [3]:

• Different microstructure evolution in the ELCF regime due to extremely large
strain amplitude and huge accumulated plastic strain. This was also observed
by Ye in [8] for austenitic stainless steel SUS304-HP. “Microstructure observa-
tions using optical and transmission electron microscopy (TEM) revealed that
with increasing total strain amplitudes, the slip band density increased and
the dislocation structure changed from a planar array to a more cellular-like
structure. Cyclic deformation-induced austenite/martensite transformation
was observed at higher cyclic strain amplitudes. The change in microstructures
during cycling is responsible for the fatigue hardening/softening behaviour of
the material.” [8]

• Different hardening/softening behavior - due to extremely short cyclic life, the
proportion of stabilized cycles is smaller or there can be no stabilization at all
and material just cyclically hardens/softens until the crack occurs.

Material models based on cyclically stable material, without correct reflection of
cyclic hardening/softening, is unable to make an accurate prediction in the ELCF
regime. This generates one more area currently being researched in conjunction with
the LCF phenomenon, which is a material response for high-loading conditions, for
example on the transition between LCF and ELCF regime.

For example, austenitic stainless steel 08Ch18N10T shows so called strain-range
dependent cyclic hardening, as can be seen in Figure 1.1. For this material it means
that it shows almost no cyclic hardening for low-loading conditions, a saturation
of material response occurs under constant cyclic loading conditions and material
is cyclically stable. But it shows continuous cyclic hardening with no saturation
of material response under high-loading conditions. This phenomenon has to be
somehow reflected in the material model if the fatigue prediction should give a
satisfactory result.
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Figure 1.1: Illustration of strain-range dependent cyclic hardening of 08Ch18N10T
stainless steel. [A5]
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Chapter 2

State of the Art

2.1 Brief Introduction to the Theory of Plasticity

At first, it would be useful to review some generally know constitutive relation-
ships and equations of continuum mechanics, specifically the elasto-plasticity. Some
equations will be referred to in subsequent chapters of this thesis.

2.1.1 Plastic Strain

If the load is applied to common steel-like material, for example during the tensile
test, the relationship between stress and strain can be simply illustrated by the
static stress-strain curve, see Figure 2.1.1. If the stress applied to the specimen is
lower than a yield strength σy, the total strain ε is only elastic and after unloading,
the specimen returns to its initial shape. If the stress applied is higher than the
yield strength, plastic strain appears and after unloading, the specimens remains
permanently deformed and total strain is given as

ε = εe + εp, (2.1)

where εe is elastic strain and εp is plastic strain.
Using Hooke’s law, it can be formulated as

σ = Eεe = E(ε− εp), (2.2)

where σ is stress and E is the Young modulus.
This simple uniaxial problem can be generalized for multiaxial loading conditions

and can be expressed using tensor notation as

σ = Cεe, (2.3)

where σ is elastic stress tensor, εe is elastic strain tensor and C is the elastic stiffness
matrix. For example, the stress tensor σ is formulated as

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 . (2.4)
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Figure 2.1: Static stress-strain curve.

Elastic strain tensor is defined analogously as the stress tensor.
When metals are exposed to plastic strain, they do not change in volume, which

is called the condition of incompressibility and it can be expressed as

dεpx + dεpy + dεpz = 0, (2.5)

where symbol d stands for an increment and x, y and z are Cartesian coordinates.
For multiaxial loading, it is necessary to choose an appropriate criterion for de-

termining the equivalent (sometimes also called effective) stress σe. For the plasticity
of metals, the von Mises criterion is the most commonly used, mainly because of
advantages when implementing in numerical calculations (eg. smoothness of the
plasticity surface ensures finding a normal at any point) and can be written as

σe =
1√
2

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]1/2, (2.6)

where σ1,2,3 are principal stresses, and in case of expression using general stress
components σij, i, j = 1, 2, 3 as

σe =

[
3

2
(σ2

11 + σ2
22 + σ2

33 + 2σ2
12 + 2σ2

23 + 2σ2
31)

]1/2
. (2.7)

Stress tensor can be decomposed to a hydrostatic and deviatoric component defined
as

σ =
1

3
Tr(σ)I + σ′, (2.8)

where I is the unity 3 x 3 matrix and the apostrophe symbol stands for deviatoric
part. The von Mises stress can then be written as

σe =

(
3

2
σ′ : σ′

) 1
2

. (2.9)
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It should be pointed out that the colon used in the equation (2.9) denotes contracted
tensor product. For example, for second order tensors A and B,

A : B =
n∑
i=1

n∑
j=1

AijBij. (2.10)

An equivalent (sometimes also called effective) increment of plastic strain is
defined as

dp =

(
2

3
dεp : dεp

) 1
2

'
(

2

3
dε′ : dε′

) 1
2

. (2.11)

Here, it is worth remembering that plastic strain is also a deviator due to the
condition of incompressibility.

2.1.2 Condition of Plasticity and Normal Hypothesis

For von Mises yield criterion, the plasticity function is in general defined as

f = σe − Y =

(
3

2
σ′ : σ′

) 1
2

, (2.12)

where Y is actual yield stress. This function defines so-called yield surface, which
for the von Mises criterion takes the form of a cylinder wall in the space of the
principal stresses. The plasticity condition is then given as

f < 0 for elastic strain, (2.13)

f = 0 for plastic strain. (2.14)

Graphically, this condition can be interpreted so that the point representing the load
and having the components representing the coordinates in the form of the principal
stresses lies either within the yield surface, when the load is elastic, or on the yield
surface if the load is plastic.

If the loading is plastic, the direction of plastic strain shall be determined. For
metals it is generally accepted to use the so-called associated law of plasticity con-
sidering the normal hypothesis, ie that the resulting direction of plastic strain is
perpendicular to the normal to the yield surface. This can be mathematically writ-
ten as

dεp = dλ
∂f

∂σ
. (2.15)

Here, the symbols ∂ stands for partial derivative, dλ is a lambda multiplier and it
can be deduced that for the von Mises criterion it can be written that

∂f

∂σ
=
σ′

σe
. (2.16)

Furthermore, a relationship can be derived (and for metal materials and von Mises
plasticity is generally accepted)

dp = dλ, (2.17)
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from which we can write the resulting relation for the calculation of plastic strain
tensor as

dεp =
3

2
dp
σ′

σe
. (2.18)

2.1.3 The Consistency Condition

In the case of plastic loading, it is necessary to meet the so-called consistency condi-
tion, which can be interpreted so that the point representing the load must remain
on the yield surface. This condition is given by the equation

f = σe − Y = 0. (2.19)

In case of material hardening or softening (the size of the yield surface or its shape
changes), it is necessary to consider the dependence of the function f on some
cumulative quantity, most often by accumulated plastic strain p, ie

f = σe(σ)− Y (p) = 0. (2.20)

This relationship can be expressed by an incremental form and modified into a
general expression

dλ =
∂f
∂σ
·C · dε

∂f
∂σ
·C · ∂f

∂σ
− ∂f

∂p

(
2
3
∂f
∂σ

∂f
∂σ

) 1
2

, (2.21)

which can be further customized as

dσ =

C −C ∂f

∂σ
·

∂f
∂σ
·C · dε

∂f
∂σ
·C · ∂f

∂σ
− ∂f

∂p

(
2
3
∂f
∂σ

∂f
∂σ

) 1
2

 dε = Cepdε, (2.22)

whereCep is an elasto-plastic tangential stiffness matrix (sometimes called Jacobian)
that determines the relationship between stress and strain [9]. However, it is not
constant and depends on the current material state and load history. It is also worth
noting that the consistency condition is necessary to resolve constitutive relations.

2.1.4 Cyclic Stress-Strain Curve

If the common steel-like material is exposed to the uniaxial cyclic loading, the re-
sponse of the material changes due to changes in microstructure. The intensity of
these changes usually decreases with increasing number of cycles and after that, the
response stabilizes [10]. The stabilized state can be illustrated by the hysteresis
loop. The cyclic stress-strain curve (CSSC) is created by interposing the vertices of
hysteresis loops for different amplitudes of strain εa, see Figure 2.1.4 for illustration.
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Figure 2.2: Illustration of cyclic stress-strain curve.

2.1.5 Isotropic Hardening

Most materials show material hardening under plastic loading conditions. Usually,
the hardening function is mathematically written as a function of the accumulated
plastic strain p. In the case of isotropic hardening, the plasticity area expands and
therefore Y changes as a function of p and the plasticity condition can be written
as

f = σe − Y (p) = σe − (σy +R(p)) , (2.23)

where σy is yield strength and R(p) is the isotropic variable. R(p) can take various
forms, for example, in commercial FE software Abaqus 6.14, the non-linear isotropic
hardening model is defined as

R(p) = Q(1− e−bp), (2.24)

where Q and b are material parameters [11].
The illustration of yield surface expansion in principal stress space for isotropic

hardening model is shown in the Figure 2.3. The index 0 denotes the initial state
and the actual state is without index.

2.1.6 Kinematic Hardening

The isotropic hardening model is sufficient and widely used in the modeling of
monotonic loading, for example, ductile fracture. However, it is not able to capture
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Figure 2.3: Isotropic hardening.

the Bauchinger effect during reversal loading. This is possible with the kinematic
hardening model which describes the displacement of the yield surface in the space
of the principal stresses. Its size remains the same in the case of a pure kinematic
hardening model, ie dY = 0.

The plasticity condition from the equation (2.12) then takes form

f = σe − Y =

(
3

2
(σ′ −α′) : (σ′ −α′)

) 1
2

− Y = 0, (2.25)

where α is the so-called back-stress, which is a tensor describing the position of the
center of the yield surface relative to the origin of the coordinate system in the space
of the principal stresses.

The simplest model that attempted to describe the kinematic hardening of the
material is Prager’s linear kinematic hardening model [12], where the back-stress
increment is a linear function of the plastic strain tensor

dα =
2

3
Cdεp, (2.26)

where C is a material parameter. Armstrong-Frederick model [13] already considers
nonlinear hardening under plastic loading, where the increment of the back-stress is
given by the equation

dα =
2

3
Cdεp − γαdp, (2.27)

where γ is material parameter.
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The simple non-linear kinematic hardening model can be further upgraded. For
example Chaboche [14] superpose the back-stress from m parts as

α =
m∑
i

αi, (2.28)

dαi =
2

3
Cidε

p − γiαdp, (2.29)

where m is usually equal to 2 or 3. The back-stress component i is calculated in
the same way as in the default Armstrong-Frederick model [13], and with proper
selection of Ci and γi, it allows a much better description of the steady-state hys-
teresis loop shape. The extension of the kinematic model by isotropic hardening,
given by the equation (2.34), makes it possible to capture the pre-saturation phase,
ie the transition from the initial cycles to the saturated cycles. It is not necessary
to model the cyclic hardening using only the isotropic hardening model. Marquis
[15] came with a modification of the Armstrong-Frederick based models using an
evolutionary rule for the kinematic hardening for its non-linear term as

dα =
2

3
C dεp − γ(p)αdp (2.30)

γ(p) = γ∞ − (γ∞ − γ0) e−ωp, (2.31)

where γ0 is the initial value of γ, which gradually turns into a stabilized value of γ∞,
ω is the stabilization rate, and p =

∑
dp, which can also be overridden assuming

γ(p) = φ · γ∞ into shape

dα =
2

3
Cdεp − φγ∞αdp, (2.32)

where

φ = 1−
(

1− γ0
γ∞

)
e−ωp (2.33)

and is called Marquis parameter [10] or the φ function. Various forms of the φ
function are often used to modify a non-linear kinematic hardening rule.

The illustration of the yield surface translation in principal stress space for kine-
matic hardening model is shown in Figure 2.4, where α denotes the back-stress,
index 0 denotes the initial state, and the actual state is without index.

2.1.7 Combined Hardening Model

Although a saturated hysteresis loop can be modeled for a variety of materials only
with the kinematic hardening model, a combination of the kinematic hardening
model and the isotropic hardening model must be used to capture the process before
saturation or cyclic hardening in general. Thus, the yield surface can shift in the
space of the principal stresses and it can also change its size. The plasticity condition
then has the form

f =

(
3

2
(σ′ −α′) : (σ′ −α′)

) 1
2

− σy +R(p). (2.34)

10



σ2

σ1

σ3

O0

O
α

initial surface

actual surface

Y0

Y = Y0

Figure 2.4: Kinematic hardening.

The illustration of yield surface expansion and translation for combined harden-
ing model is shown in Figure 2.5.
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Y 6= Y0

Figure 2.5: Combined hardening.
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2.1.8 Strain-Range Dependent Cyclic Hardening

Some construction materials shows saturation of the material response to a certain
limited load range under cyclic loading. For example, the response for a strain
controlled loading at a constant amplitude of the total strain stabilizes after a few
cycles and hysteresis loops of saturated cycles differ only slightly. In this case,
a simple combination of kinematic hardening together with isotropic hardening is
sufficient and as it is now quite commonly implemented in commercial FE software,
such as Abaqus or ANSYS.

E.g. the austenitic stainless steel 08Ch18N10T shows a saturation of the cyclic
response up to a load level of approximately εa = 0.75% (see Figure 1.1). At higher
load levels, however, the material cyclic hardening appears, and, for example, at a
load level of εa = 3%, the saturation of material response does not appear.

The first attempt to include the influence of the load amplitude into constitutive
relations came from Chaboche in [14] with the so-called Memory Surface concept.
It is an extension of the basic single-surface model by the memory surface model.
In this particular model, the memory surface is defined in the principal strain space,
taking into account the influence of the achieved load level during loading. The
cyclic hardening is then a function of the size of the memory surface and it is realized
by means of an isotropic hardening mechanism. Ohno [16] added a so-called non-
hardening region, an area in which isotropic hardening does not apply and thus
there is no cyclical hardening of the material. Above this area (ie for higher load
levels) isotropic hardening is applied and the material cyclically hardens.

In general, the memory surface can change its position and size depending on the
achieved load level in a similar way as the yield surface. Its size may vary (increase
or decrease) depending on the load achieved and its history. E.g. its current size can
then be a parameter of the functions describing the dependence of cyclic hardening
on the load level.

[17] points out that the isotropic hardening mechanism can simulate the ampli-
tude values of cyclic hardening, but it is not sufficient to describe the shape of the
hysteresis loop. For this reason, it is necessary to extend the kinematic model of
cyclic hardening using the concept of memory surface. [18] mentions the possibility
to modify the C parameter in the equation (2.29), but it is much more common to
modify the γ parameter using differently defined φ function in equation (2.32), see
eg. [19], [17] or [20].

The memory surface does not need to be defined in the strain space, but it
can be also defined in the deviatoric stress space. This approach can be found, for
example, in [21]. The introduction of the memory surface in the deviatoric stress
space is mainly advantageous due to the effort to better predict ratcheting and
disproportionate hardening.

Adjusting the plasticity equations (2.32) and (2.34), taking into account the load
level and using the memory surface concept, the plasticity function can be written
as:

f =

(
3

2
(σ′ −α′(p,RM)) : (σ′ −α′(p,RM))

) 1
2

− σy +R(p,RM), (2.35)
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dα =
2

3
Cdεp − φ(p,RM) · γ∞αdp, (2.36)

where RM is the size of the memory surface.

2.2 Some Important Publications Related to Strain-

Range Dependent Cyclic Plasticity

Most of this chapter is directly cited from the article [A1].
“Austenitic stainless steel 08Ch18N10T is a chrome-nickel steel that is stabilized

by titanium. This steel is widely used in the nuclear industry for piping systems
and reactor internals in the Russian-designed VVER water-water power reactors for
nuclear power plants (NPP). Reactor internals are the part of an NPP that provides
support, guidance and protection for the reactor core and for the control elements.
The block of guided tubes, the core barrel, the core barrel bottom and the core
shroud are some of the internal components that are exposed to very harsh operating
regimes. The operating regime, e.g. heating and shut-downs, has a significant
influence on the service life of the components. The vibration and pressure pulsation
of the water pumps also have to be taken into account. These regimes expose the
reactor internals to cyclic loading.

In practice, cyclic loading of structural parts can lead to the formation and
propagation of cracks through the process referred to as fatigue. In all areas of
industry, the operational safety of machinery depends on an appropriate design
process, which includes an analysis of all possible critical states. In the low-cycle
fatigue domain, seismic analysis and the simulation of operational tests of the piping
systems of NPPs may be used as an example. In these cases, it is crucial to have
an accurate description of the stress-strain behavior of the material that is being
considered.

Phenomenological models [22] are the most widely-used models in practical ap-
plications. Their goal is to provide as accurate as possible description of the stress-
strain behavior of the material, which is found on the basis of experiments [23]. The
stress-strain behavior of structural materials under cyclic loading is very diverse,
and a case-by-case approach is required [24].

The most progressive group of cyclic plasticity models, which are commonly
encountered in commercial finite element method programs, are single yield surface
models based on differential equations. Their development is closely linked to the
creation of a nonlinear kinematic hardening rule with a memory term, introduced
by Armstrong and Frederick in 1966 for the evolution of back-stress [13], and the
discovery by Chaboche [14] of the vast possibilities offered by the superposition of
several back-stress parts.

Developments in the field of non-linear kinematic hardening rules were mapped
in detail in [22]. In the current paper, we will mention only the most important
theories. In 1993, Ohno and Wang [25] proposed two nonlinear kinematic harden-
ing rules. For both models, it is considered that each part of the back-stress has
a certain critical state of dynamic recovery. Ohno-Wang Model I leads to plastic
shakedown under uniaxial loading with a nonzero mean axial stress value (no ratch-
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eting), and under multiaxial loading it gives lower accumulated plastic strain values
than have been observed in experiments. The memory term of Ohno-Wang Model II
[25] is partially active before reaching the critical state of dynamic recovery, which
allows a good prediction of ratcheting under uniaxial loading and also under multi-
axial loading. The Abdel-Karim-Ohno nonlinear kinematic hardening rule [26] was
published in 2000. This rule is in fact a superposition of the Ohno-Wang I and
Armstrong-Frederick rules. The proposed model was designed to predict the behav-
ior of materials that exhibit a constant increment of plastic strain during ratcheting.
Other modifications to this kinematic hardening rule, leading to a better prediction
of uniaxial ratcheting and also multiaxial ratcheting, were proposed by one of the
authors of paper [27]. In order to capture the additional effects of cyclic plasticity,
the concept of kinematic and isotropic hardening has been further modified. Basi-
cally, the available theories can be divided into two approaches. The first approach
is related to the actual distortion of the yield surface [28, 29, 30], while the second
approach is related to the memory effect of the material [14], [16]. The effect of
cyclic hardening as a function of the size of the strain amplitude is usually assumed
in the second approach.

The first comprehensive model of cyclic plasticity with a memory surface was
proposed by Chaboche and co-authors in [14]. Chaboche’s memory surface was
established in the principal plastic strain space and captures the influence of plastic
strain amplitude and also the mean value of the plastic strain. The memory surface
is associated with a non-hardening strain region in a material point, as is explained
by Ohno [16] for the general case of variable amplitude loading. Memory surfaces
established in the stress space have also been developed. Their main advantage
is that they enable more accurate ratcheting strain prediction to be achieved, as
presented by Jiang and Sehitoglu in their robust cyclic plasticity model [21].

It should be mentioned that both of these memory surface concepts lead to
an increase in the number of material parameters and in the number of evolution
equations, which complicates their use in engineering practice.

The original application of the memory surface, introduced by Jiang and Sehi-
toglu, was extended by some authors of the present paper to capture the memory
effect of ST52 material, in [31]. Uniaxial experiments indicate that, in the case of a
cyclically softening/hardening material, larger strain amplitudes cause a significant
change in the shape of the hysteresis loops. Only a very small number of researchers
in the field of cyclic plasticity have investigated the influence of strain amplitude on
the cyclic hardening effect. Good agreement with experiments has been achieved
in the case of steel SS304 [32], but at the cost of defining more than 70 material
parameters.

Some of the material models have been used to capture cyclic material behavior.
To describe the cyclic behavior of SAE 4150 martensitic steel [33], Schäfer et al
considered three kinematic hardening models, i.e. the Chaboche [14], Armstrong
Frederick [13] and Ohno-Wang [25] models. They used these kinematic approaches
to simulate the micromechanical behavior of the selected material. Moeini et al
[34] used the Chaboche model [14] to predict the low-cyclic behavior of dual-phase
steel. Selected kinematic hardening model provides good agreement with experimen-
tal results. Msolli used the unified viscoplastic model [35] developed by Chaboche
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when modeling the elastoviscoplastic behavior of JLF-1 steel at higher temperatures
(400 ◦C and 600 ◦C). In this study, the Chaboche model was slightly modified to cap-
ture cyclic hardening followed by cyclic softening. The material model also falls into
the category of coupled damage models. The material model shows good agreement
with the experimental results. The effect of torsional pre-strain on low-cycle fatigue
performance of SS304 was studied in [36]. Kang et al [37], used the visco-plastic
constitutive model with the extended Abdel-Karim-Ohno nonlinear kinematic hard-
ening rule with some temperature-dependent terms. This constitutive model was
verified on uniaxial and non-proportional multiaxial ratcheting experimental results
at room temperature and at elevated temperatures. Another visco-plastic constitu-
tive model was used by Kang, Gao and Yang [38] in their study to simulate uniaxial
and multiaxial ratcheting of cyclically hardening materials. They used the Ohno-
Wang kinematic hardening rule with critical state of dynamic recovery. The effect of
loading history was also considered by introducing a fading memorization function
for the maximum plastic strain amplitude.” [A1]

Of recently published works, Halama et al [A1] developed a new cyclic plasticity
model suitable for predicting strain-range dependent cyclic hardening of austenitic
steels. This model uses the idea of memory surface defined in the principal stress
space established by Jiang and Sehitoglu [21], the kinematic hardening rule based on
Chaboche model, and takes into account a new internal variable referred to as virtual
back-stress, corresponding to a cyclically stable material. The model is capable of
capturing the cyclic hardening with strain-range dependency as for example Kang
advanced model [32], but with a considerably lower number of material parameters,
as has been demonstrated in [A1].

2.3 Material Parameters Identification

Young modulus E, Poisson ration ν and yield strength σy are usually determined
from the tensile test according to [39] or other equivalent standard. Material pa-
rameters of the Chaboche model Ci and γi from (2.29) can be determined from
the cyclic stress-strain curve or from the large hysteresis loop [40]. It is com-
monly used for fitting hysteresis loop parameters, as can be seen for example in
[40, 10, 41, 42, 20, 22, A1].

In [41], Bari and Hassan propose to use a simplified analytical relation defining
the loading part of the stabilized hysteresis loop from the stress – plastic strain
diagram as

σx = σy +
C1

γ1

(
1− 2e−γ1(ε

p−εpL))
)

+
C2

γ2

(
1− 2e−γ2(ε

p−εpL))
)

+ C3εp, (2.37)

where σx is the axial stress, εpL is the plastic strain corresponding to the compressive
strain amplitude, it is assumed γ3 = 0. A least square method is usually used for
fitting material parameters Ci and γi [22].

For strain-range dependent hardening materials, material parameters fitted from
large hysteresis loop usually does not predict well the shape of smaller hystere-
sis loops. This is usually corrected by determining the Marquis parameter φ and
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isotropic variable R as a function of accumulated plastic strain p and memory surface
RM [A1].

The reflection of the static strain curve, while simulating for example the mono-
tonic tensile test, is made by combination of (2.37) and (2.36) into expression

σ = σy +
C1

γ1φ0

(
1− 2e−γ1φ0ε

p)
+

C2

γ2φ0

(
1− 2e−γ2φ0ε

p)
+ C3εp, (2.38)

where φ0 is initial value of Marquis parameter and it is a constant.
For fitting the cyclic stress-strain curve, the relation between σa and εpa can be

expressed as [40]

σa = σy +
C1

γ1
tanh(γ1ε

p
a) +

C2

γ2
tanh(γ2ε

p
a) + C3ε

p
a. (2.39)

Combining with equations (2.39) and (2.36) it can be written as

σa = Y +
C1

γ1φ
tanh(γ1φε

p
a) +

C2

γ2φ
tanh(γ2φε

p
a) + C3ε

p
a. (2.40)

Here, φ = φ(p,RM) and isotropic variable Y = Y (p,RM) are functions and can be
fitted from this equation.
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Chapter 3

Motivation

In the framework of the grant project of Czech Technological Agency TA04020806,
on which the author participates, extensive experimental research program of the
LCF of austenitic stainless steel 08Ch18N10T has been done. This material is used
in the internals of VVER pressurized water nuclear reactors and shows significant
strain-range dependent cyclic hardening, as has been demonstrated in Figure 1.1.

The illustration of austenitic stainless steel 08Ch18N10T significant strain-range
dependent cyclic hardening can be seen in Figure 1.1. The most advanced suitable
model, that can predict this behavior, while still holding back the number of material
parameters, turns out to model of cyclic plasticity developed by Halama et al [A1].
In this thesis, it will continue to be referred to as the original model.

The material parameters of this model for 08Ch18N10T were identified by the
author and published in [A1]. The model shows excellent prediction capability for
uniaxial loading conditions, as can be seen for illustration on the following Figu-
res 3.1 and 3.2, where the amplitude of force Fa of the experiments is compared
with results of FE simulations using the original model with an accetable error up
to 5 %.

The model also predicts well the response of notched specimens on all three
notched geometries as can be seen in Figures 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8. The
stress-strain field in notched specimens is no longer uniaxial, but the axial component
of stress and strain is still dominant.

Under torsional loading conditions, the original model does predict the material
response well only for lower loading levels as can be seen, for example, in Figure 3.9
for εa = 1.5 %. However, the original model (as, of course, it’s predecessors) over-
predicts cyclic hardening of 08Ch18N10T steel for higher loading levels [A9]. This
can be seen, for example, in Figure 3.10 for εa = 2.5 %, where the over-prediction is
most evident.

In order to minimize the observed over-prediction under torsional loading con-
ditions, a new formulation of material model is needed.
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Figure 3.1: Experiment vs. simu-
lation of the original model, spec-
imen E9-1. [A1]
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Figure 3.2: Experiment vs. simu-
lation of the original model, spec-
imen E9-17. [A1]
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Figure 3.3: Experiment vs. simu-
lation of the original model, spec-
imen R1.2-2.
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Figure 3.4: Experiment vs. simu-
lation of the original model, spec-
imen R1.2-17.
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Figure 3.5: Experiment vs. simu-
lation of the original model, spec-
imen R2.5-2.
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Figure 3.6: Experiment vs. simu-
lation of the original model, spec-
imen R2.5-20.
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Figure 3.7: Experiment vs. simu-
lation of the original model, spec-
imen R5-2.
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Figure 3.8: Experiment vs. simu-
lation of the original model, spec-
imen R5-23.
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Figure 3.9: Experiment and simu-
lation of the original model, spec-
imen NT-1. [A9]
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Figure 3.10: Experiment and sim-
ulation of the original model,
specimen NT-6. [A9]
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Chapter 4

Objectives of the Doctoral Thesis

From the literature review presented in Chapter 2, it was found that there is no
published cyclic plasticity material model that is capable of good prediction of strain-
range dependent cyclic hardening of 08Ch18N10T steel under uniaxial and torsional
loading conditions, as has been presented in Chapter 3.

The original model [A1], which has been used for the illustration in Chapter 3,
has been chosen by the author as the model to start with. It is one of the most
recent and most advanced material model that deals with strain-range dependent
cyclic hardening of material and it still uses a minimalistic number of material
parameters at the same time.

The main objective of the thesis is to propose a new formulation of a constitutive
model that can predict the response of the material for uniaxial loading conditions
as well as for the torsional loading conditions. The key steps to achieve this goal
are:

1. The proposition of modification:

Modifications of the original model will be proposed and new constitutive
relations will be described.

2. Calibration of material parameters:

The material parameters of the newly proposed model will be identified for
08Ch18N10T austenitic stainless steel. The identification process will be de-
scribed step by step, the new set of material parameters for 08Ch18N10T steel
will be presented.

3. Implementation into FE:

Building FE models of specimens, that have been used for experiments (pre-
sented in Chapter 3) will be described. The newly proposed model will be im-
plemented into commercial FE software Abaqus as a user subroutine USDFLD.
The algorithm of the subroutine as well as the full Fortran code of the sub-
routine will be presented.
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To demonstrate the prediction capability, all the experiments mentioned in Chap-
ter 3 will be simulated using the newly proposed model and its implementation into
FE. The results of simulations of the newly proposed model compared with the
original model will be presented.
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Chapter 5

Experimental Program

The experimental program mentioned in Chapter 3 has been focused on LCF of
austenitic stainless steel 08Ch18N10T. The experimental setup enables to record
hysteresis loops during the fatigue life and is described more in detail in [A2].

“The experimental program consists of 6 series of specimens. The first series is
used for the material parameter identification process. According to the ASTM E606
standard [43], the classic uniform-gage geometry of a specimen is limited to a total
strain amplitude of εa = 0.5 %. For higher strain levels, non-uniform hour-glass type
geometry is required in order to prevent buckling. The material parameters identifi-
cation series (IDF) was therefore compiled from uniform-gage (UG) specimens (see
Figure 5.1) and non-uniform-gage specimens with an elliptical longitudinal section
(E9, see Figure 5.2).

To identify the material parameters (described in detail in [A1]), it is neces-
sary to know the stress-strain curves in the cycles. For UG specimen geometry,
tested according to [43], this can be calculated directly from the elongation of the
extensometer and from the force measured during the experiment. For E9 speci-
men geometry, the strain was measured by the DIC (due to the experimental setup,
the strain cannot be calculated directly from the elongation of the extensometer for
non-uniform gage geometries).” [A2]
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R20

6 10

Lext = 10

Figure 5.1: Sketch of UG geome-
try. [A2]

ellipse
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Figure 5.2: Sketch of E9 geome-
try. [A2]

“The next series consists of E9 geometry (see Figure 5.2), notch geometry with
an R = 1.2 mm (R1.2, see Figure 5.3), geometry with an R = 2.5 mm notch (R2.5,
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see Figure 5.4) and geometry with an R = 5 mm notch (R5, see Figure 5.5). The
last series is the notched tube geometry (NT, see Figure 5.6), which was exposed to
torsional loading.” [A2]

Boundary conditions of the experiments are listed in Appendix A.
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Figure 5.3: Sketch of R1.2 geom-
etry. [A2]
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Figure 5.4: Sketch of R2.5 geom-
etry. [A2]
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Figure 5.5: Sketch of R5 geome-
try. [A2]
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Figure 5.6: Sketch of NT geome-
try. [A2]
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Chapter 6

Constitutive Model of Cyclic
Plasticity

A cyclic plasticity model tries to capture the response of the material to the applied
load as precisely as possible. The objective is usually to capture the relationship
between stress and strain variables. For uniaxial loading, this relationship can be
illustrated for example by the hysteresis loop.

To capture the material response, the combined hardening model with memory
surface is being used and this has been defined in section 2.1. The kinematic and
isotropic hardening rules are then controlled by the size of the memory surface.
This allows to control the cyclic hardening (isotropic and kinematic) depending on
a strain-range applied to the material and it’s history.

In this thesis, the influence of the strain-rate is neglected and only isothermal
conditions, at room temperature, are considered.

6.1 The Original Model

6.1.1 Yield Surface and Flow Rule

The single yield surface concept for the metallic materials, based on the von Mises
yield criterion, is used. The plasticity function is defined as in equation (2.12)

f =

√
2

3
(σ′ −α′) : (σ′ −α′)− Y = 0, (6.1)

where σ′ is the deviatoric part of the stress tensor σ, α′ is the deviatoric part of the
back-stress α and Y is the actual yield stress. The actual yield stress Y is defined
as

Y = σY +R, (6.2)

where R is the isotropic variable and σy is the yield strength.
“The associative plasticity is considered, so the normality flow rule is considered

in the case of active loading

dεp = dλ
∂f

∂σ
. (6.3)
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This expresses mathematically that the plastic strain increment dεp is collinear with
the exterior normal to the yield surface for the current stress state. In associa-
tive plasticity, the scalar multiplier dλ is equal to the accumulated plastic strain
increment dp, which is defined as

dp =

√
2

3
dεp : dεp.” [A1] (6.4)

The accumulated plastic strain is generally defined as

p =

∫
dp (6.5)

6.1.2 Virtual Back-Stress

“A new internal variable is established to provide an easy way to calibrate the model.
The variable is the back-stress of a cyclically stable material corresponding to the
response of the material investigated under a large strain range. It will be referred
to as the virtual back-stress. The Chaboche superposition of the back stress parts
is used in the following form

αvirt =
M∑
i=1

αivirt (6.6)

taking into consideration the nonlinear kinematic hardening rule of Armstrong and
Frederick [13] for each part

dαivirt =
2

3
Cidεp − γiαivirtdp, (6.7)

where Ci and γi are material parameters. For all calculations in this paper the
superposition of three kinematic hardening rules (M = 3) will be used.” [A1]

“It should be mentioned that the virtual back-stress is used only in the definition
of the memory surface, which will be described in the next section. Zero components
of the virtual back-stress are considered in the initial state. The increment of the
virtual back-stress is calculated according to equations (6.6) and (6.7) assuming the
current increment of accumulated plastic strain dp and the current increment of
plastic strain tensor dεp in each iteration of the local problem. Further details of the
implementation algorithm that is used can be found in [44], where a more complex
model with the memory surface of Jiang and Sehitoglu [21] was considered.” [A1]

6.1.3 Memory Surface

“To provide a correct description of the cyclic hardening for various strain ranges, a
memory surface in the stress space is established. The concept is analogous to the
theory of Jiang and Sehitoglu [21]. A scalar function is introduced to represent the
memory surface in the deviatoric stress space

g = ‖αvirt‖ −RM ≤ 0, (6.8)
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where RM is the size of the memory surface and ‖αvirt‖ is the magnitude of the
total virtual back-stress, which is defined as ‖αvirt‖ =

√
αvirt : αvirt. The evolu-

tion equation ensuring the possibility of memory surface expansion, Figure 6.1, is
therefore

dRM = H(g) 〈L : dαvirt〉 , (6.9)

where

L =
αvirt
‖αvirt‖

.” [A1] (6.10)

The angle brackets in equation (6.9) stands for Macaulay brackets, defined as 〈x〉 = x
for x ≥ 0 and 〈x〉 = 0 for x < 0.

RM

αvirt

RM = ‖αvirt‖

O

Locus of αvirt

σ3

σ1σ2

dαvirt

dRM = L : dαvirt

O

αvirt

L

(a) (b)

RM

Figure 6.1: Expansion of the memory surface and the stabilized memory surface:
(a) Equation (6.14) is not active (ṘM > 0); (b) Equation (6.14) is active (ṘM = 0).
[A1]

6.1.4 Kinematic Hardening Rule

“Consistent with the previous sections, the back-stress is composed of M parts

α =
M∑
i=1

αi, (6.11)

but the memory term is dependent on the size of memory surface RM and accumu-
lated plastic strain p, thus

dαi =
2

3
Cidεp − γiφ(p,RM)αidp, (6.12)

where Ci and γi are the same as in equation (6.7). The multiplier φ of parameters
γi is composed of a static part and a cyclic part

φ(p,RM) = φ0 + φcyc(p,RM), (6.13)
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where φ0 has the meaning of a material parameter, while the cyclic part is variable
and can change only in the case of ṘM = 0 . In this case, the evolution equation is
defined in the following way

dφcyc = ω(RM) · (φ∞ + φcyc(p,RM)) dp, (6.14)

φ∞(RM) = A∞R
4
M +B∞R

3
M + C∞R

2
M +D∞RM + F∞, (6.15)

ω(RM) = Aω +BωR
−Cω
M for RM ≥ RMω, (6.16)

ω(RM) = Aω +BωR
−Cω
Mω otherwise, (6.17)

where A∞, B∞, C∞, D∞, F∞, Aω, Bω, Cω, RMω and RM0 are additional parameters
to Chaboche’s material parameters Ci and γi. The evolution parameter ω directs
the rate of cyclic hardening behavior according to the current size of memory surface
RM .” [A1]

6.1.5 Isotropic Hardening Rule

“Continuous cyclic hardening has been observed for austenitic stainless steels for a
large strain range under uniaxial loading [32]. To capture this behavior, we introduce
the linear isotropic hardening rule

dR = R0(RM)dp, (6.18)

where parameter R0 is dependent on the size of the memory surface

R0(RM) = ARR
2
M +BRRM + CR for RM ≥ RM0, (6.19)

R0(RM) = ARR
2
M0 +BRRM0 + CR otherwise, (6.20)

because of the strong dependence on the strain range observed in the experiments
[32].” [A1]

6.2 Analysis of the Original Model

As has been mentioned in section 2.1, there are two ways to capture the relationship
between stress and strain in cyclic plasticity - the isotropic and kinematic hardening.
With the memory surface concept, the development of both mechanisms can be
defined depending on the applied load and the number of cycles. To capture material
behavior for both uniaxial and torsional loading conditions correctly, some of the
principles must be revisited and modified.

Isotropic hardening, as is defined in the original model by equation (6.18), is
linear function of accumulated plastic strain p. For periodic loading with constant
amplitude, e.g. cyclic tests, value of accumulated plastic strain per cycle is almost
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constant, which means that R and actual yield stress Y grows practically linearly
with number of cycles. But as can be seen in Figure 6.2, it does not reflect how the
Y evolves during the fatigue life in 08Ch08N10T steel (the determination of Y from
measured experimental data will be described in Chapter 7). In fact, with many
cycles, value of Y can theoretically get higher than the stress value and the computed
deformation becomes only elastic. This finding offers scope for a new definition of
isotropic hardening that better reflects the actual yield stress development during
the fatigue life.
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Figure 6.2: The evolution of actual yield stress Y during fatigue life for IDF specimen
series.

Let’s suppose that the modified isotropic hardening definition is set, new mate-
rial parameters are identified, the model ability to predict the uniaxial loading is
acceptable, but the prediction for torsional loading is still not satisfactory. The pro-
posed modification has to somehow reflect the dominant shear loading. As has been
mentioned in Chapter 3, the original model prediction is acceptable for lower loading
levels and the over-prediction of cyclic hardening is obvious for higher loading le-
vels. This means that the modification must be strain-range dependent and the only
possible way is through the modification of the memory surface definition for shear
loading.
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6.3 Modification for Shear Stress

In this section, the modification of the original model published in [A1] will be
proposed and the new formulation of the constitutive equations of the material
model will be presented.

6.3.1 New Formulation of Memory Surface

Professor Chaboche notes in his famous paper [14], which is considered as the first
publication dealing with strain-range dependency: “In the last twenty years large
improvements have been done in the description of material straining with constitu-
tive equations, including isotropic as well as kinematic hardening parameters. The
introduction of such internal variables can be justified through general thermody-
namical frameworks but, when identification of macroscopic processes is needed, we
choose the following strategy:

• the simplest constitutive equations are used as long as they give a sufficiently
good description,

• when a poor modelization is observed (even with an optimized choice of coeffi-
cients) we consider that a new macroscopic process is identified and look after
new internal variable or new flow equation with more degrees of freedom.” [14]

Following this strategy, the author decided to modify the flow1 equation of me-
mory surface to improve the poor prediction capabilities of the current model under
torsional loading conditions.

For functionality and mathematics, the actual size of the memory surface defined
in [A1] controls the cyclic hardening for both isotropic and kinematic hardening. As
the most effective way to deal with the problem of shear loading conditions, the
author choose to define two memory surfaces - the first one to control the isotropic
hardening, the second one to control the kinematic hardening. This concept was
published in [A2].

The definition of the memory surface for isotropic hardening RM remains the
same as the original one in [A1] defined by the set of equations (6.6-6.10). The
definition of the memory surface for the kinematic hardening RMφ is newly modified.
The basic equations remain almost the same as for the isotropic model, but using one
extra material parameter, Kshear, the evolution equations are modified to capture
the torsional loading conditions as well as the uniaxial ones.

“The new memory surface RMφ for the kinematic hardening part is modified and
is defined by analogy as

αvirtφ =
M∑
i=1

αivirtφ (6.21)

dαivirtφ =
2

3
Cidεp − γiKαivirtφdp (6.22)

1The meaning of flow is in sense of equation (6.3)
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where

K = (δIJ + (1− δIJ)Kshear) (6.23)

where δIJ is Kronecker delta, I, J are indexes of stress tensor σ and Kshear is a
new material parameter.” [A2] Mathematical analysis of equation 6.23 can be easily
summarized as K = 1 for tensile components of tensor σ and K = Kshear for the
shear components of the tensor σ.

“The rest of the equations for defining the memory surface of the kinematic
hardening part remain analogous to the original model [A1]:

dRMφ = H(gφ) 〈Lφ : dαvirtφ〉 (6.24)

where

gφ = ‖αvirtφ‖ −RMφ <= 0 (6.25)

and

Lφ =
αvirtφ
‖αvirtφ‖

” [A2]. (6.26)

“A quick analysis of this modified formulation shows that it provides practically
the same prediction in uniaxial loading conditions (because RMφ ' RM) as the
original formulation. However, depending on the value of Kshear, it can give a
different prediction under shear loading conditions: it is more effective for higher
loading levels than for lower loading levels, and it can reduce the over prediction of
the model for Kshear > 1.” [A2]

“The second modification to the original model [A1], also associated with the
memory surface, is to omit limits RMω and RM0 and to set boundaries of the memory
surfaces instead: Rmin

M and Rmax
M . The value of the memory surface RM and RMφ

used for controlling the isotropic and kinematic hardening part can lie only between
these two bounds. For simplification, and for mathematically correct expression,
the memory surface size that is used, Rused

M , is defined as

Rused
M = Rmin

M for RM < Rmin
M (6.27)

Rused
M = RM for Rmin

M < RM < Rmax
M (6.28)

Rused
M = Rmax

M for RM > Rmax
M (6.29)

and analogously for Rused
Mφ ” [A2]:

Rused
Mφ = Rmin

M for RMφ < Rmin
M (6.30)

Rused
Mφ = RMφ for Rmin

M < RMφ < Rmax
M (6.31)

Rused
Mφ = Rmax

M for RMφ > Rmax
M . (6.32)
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6.3.2 Kinematic Hardening

The definition of kinematic hardening remains almost the same as in the original
model [A1], but now the memory surface size RM in equations (6.12-6.17) of the
original model is replaced by the variable Rused

Mφ . The kinematic hardening equations
is now defined as

dαi =
2

3
Cidεp − γiφ(p,Rused

Mφ )αidp (6.33)

φ(p,Rused
Mφ ) = φ0 + φcyc(p,R

used
Mφ ) (6.34)

dφcyc = ω(Rused
Mφ ) ·

(
φ∞ + φcyc(p,R

used
Mφ )

)
dp (6.35)

φ∞(Rused
Mφ ) = A∞(Rused

Mφ )4 +B∞(Rused
Mφ )3 + C∞(Rused

Mφ )2 +D∞R
used
Mφ + E∞ (6.36)

ω(Rused
Mφ ) = Aω +Bω(Rused

Mφ )−Cω . (6.37)

This modification has been published in [A2].

6.3.3 New Formulation of Isotropic Haredning

As can be seen in Figure 6.2, for higher levels of loading, the actual yield stress
Y is a non-linear function of N . For periodic loading with approximately constant
amplitude, N ≈ p, so Y also must be a non-linear function of p. For this reason,
the isotropic hardening is newly defined as a non-linear function in p (instead of a
linear definition in the original model [A1]) as

dR = AR · exp(BR ·Rused
M ) · pCR , (6.38)

where AR, BR and CR are material parameters. This modification has been pub-
lished in [A2].
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Chapter 7

Material Parameters Identification

The material parameters of the proposed material model have been identified for
the original experimental data of austenitic stainless steel 08Ch18N10T using the
Matlab software. As has been reviewed in section 2.3, the usual way of material
parameters identification is throug fitting the parameters on static and cyclic stress
strain curve.

Due to complexity of the strain-range dependent cyclic hardening of 08Ch18N10T
steel, the author decided to modify the existing approaches and to develop the new
calibration method. This method is based on direct simulation of the material re-
sponse using the incremental material model of cyclic plasticity in the same way as is
used in FEA simulations. No analytical simplification in the sense of (2.37-2.40) has
been used, all the material parameters have been identified using multiple optimiza-
tions process to match the hysteresis loop shape or amplitude between experiment
and simulation.

This process requires complete records of the experiments including the hysteresis
loops data in good resolution during the whole fatigue life and for all specimens used
for the calibration process. This process is also very demanding on computing power
and in a reasonable amount of time, it can only be performed on high performance
computers. On the other hand, this approach should lead to a better results for more
complex material behavior, because it simulates the behavior of the material in the
same way as the subsequent FEM computations, so, for same inputs, it leads to the
same results as the simulation. The material parameters identification process has
been published in [A1], [A2], [A3] and [A7].

7.1 Chaboche Material Parameters

The material parameters for uniaxial loading has been identified using 12 specimens,
marked by the abbreviation IDF in the following text, each specimen representing
a different level of loading. “According to the ASTM standard [43], the classic
uniform-gage geometry of the specimen is limited up to the amplitude of the total
strain εa = 0.5 %. For higher strain levels, an hour-glass type geometry is required.
According to this standard, the IDF specimens were compiled from uniform-gage
geometry (specimens IDF1-IDF5) and hourglass geometry (specimens IDF6-IDF12),
see Figures 5.1 and 5.2 in Chapter 3.” [A1].
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The design of the hourglass geometry has been found in order to prevent buck-
ling during the testing. The process of finding the optimal design of the hourglass
geometry is described in detail in [A5] and [A11].

Following text is directly cited from [A1]. “The loading force F applied to the
IDF specimen was known, as was the strain field of the surface of the specimen. The
strain field was measured by the extensometer in the case of uniform-gage geometry,
or by the digital image correlation method in the case of hourglass geometry. Con-
sidering the uniaxial stress field in the cross-section of a specimen, the stress can be
determined as

σ =
F

A
, (7.1)

where A is the cross-section surface of the specimen. This allows the use of a different
calibration process, based on knowledge of the shape of the stress-strain hysteresis
loops in all cycles during the experiment to failure.

Let us select one hysteresis stress-strain loop of a point on the specimen rep-
resenting one loading cycle. This can be optimally simulated by a set of material
parameters C1, γ1, C2, γ2, C3, γ3 and σy. However, in the next cycle, the optimal
set of these parameters can be slightly different, as can the set of parameters of a
specimen with different loading conditions. This material model uses the memory
surface concept by setting these material parameters as functions of RM and making
these coefficients dependent on the loading history and the loading level conditions.

The material model did not include a simulation of the material damage process,
so only experimental data up to damage were used for the calibration. The number
of cycles used is Nd, and this number corresponded with the drop in the loading
force during the experiment by 2 %, due to crack initiation and propagation leading
to failure.

First, the fatigue life is divided into about 10 evenly spaced parts by selecting
hysteresis loops (SHLs), and the cycle number of each selected hysteresis loop (SHL)
is given as N ' Nd/k, where k = 1, 2, . . . , 10. The Young modulus E, the Poisson
ratio ν and the yield strength σy were determined from tensile test according to ISO
standard [39].

σy can be interpreted as the point where the linear part of the static stress-strain
curve turns into the non-linear part (see Figure 7.1). The root mean squared error
method (RMSE) can be applied to find the point. In the tensile test (or in the
first cycle of the cyclic test), the yield strength σy corresponded to RMSE ≈ 8.
Applying RMSE = 8 to each SHL, the actual yield stress Y was found. This shows
the development of the actual yield stress Y during the fatigue life, see Figure 6.2
in Chapter 6.

Two SHLs were chosen, the bigger one and the smaller one, each with cycle
number N = Nd (the last cycle). The Chaboche material model parameters C1,
γ1, C2, γ2, C3, γ3 were found using an optimization process. The target function
is set to the optimal shape match between simulation and experiment of the two
SHLs.” [A1] The shape match of hysteresis loops is compared in discrete points,
the least square method is used to calculate the error between experiment and
simulation. This discrete comparison can be done because of the simulation of
hysteresis loop is controlled by the same discrete values of strain ε as the experiment
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Figure 7.1: Actual yield stress determination. [A1]

and only the computed values of stress σ are different. The experimental data are
centered in strain axis for the purpose of this calibration step. The basic algorithm of
Chaboche parameters identification process has been taken from [A12]. The results
of calibration process for optimal Chaboche parameters are shown in Figure 7.2.
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Figure 7.2: Chaboche material parameters fitting: (a) small hysteresis loop, (b)
large hysteresis loop. [A1]

7.2 Cyclic Hardening Parameters

“Knowing the Chaboche material parameters, a first guess of the memory surface size
for each specimen was determined, using equations (6.22-6.26). The formulation of
RM and the constant amplitude of the loading conditions resulted in fast saturation
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of the RM value for each specimen (after the first cycle), which makes the calibration
process easier.” [A1]

“It is assumed here that RMφ ' RM . Boundary parameters Rmin
M and Rmax

M are
simply the maximum and minimum values of RM computed in the identification
process.” [A2] The illustration of memory surface size fitting for loading level given
by the amplitude of strain εa is in Figure 7.3. Due to the experimental setup and
the method of controlling the cyclic test, εa is almost, but not completely constant
during the whole fatigue life for hourglass specimens, so the mean value of εa has
been calculated. Details of determining the mean value can be found in [A8].
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Figure 7.3: RM for given εa.

“The yield stress is now fitted as a function of RM , using equation (6.38), by
finding the material parameters AR, BR and CR.” [A1] For illustration of actual
yield stress fitting, see Figure 7.4.

“Using the static stress-strain curve experimental data and performing a simu-
lation of this curve, parameter φ0 was found using equation (6.33) as an optimal
value of φ for the static stress-strain curve simulation.”[A1] The error between expe-
rimental static stress-strain curve and the simulation is calculated discretely using
the least square method. The illustration of fitting the material parameter φ0 and
the discretization is in Figure 7.5.

“The value of function φ from equation (6.33) was found for SHLs, using a simi-
lar optimization process as for determining the Chaboche material parameters.”[A1]
This step defines the ideal value of the Marquis parameter φ for each SHL. “φ∞ was
the value of φ for N = Nd and, from equation (6.36), φ∞ was then set as a function
of RM by finding the material parameters A∞, B∞, C∞,D∞ and F∞. The function
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Figure 7.4: Example of Y fitting: (a) specimen IDF1, (b) specimen IDF5, (c)
specimen IDF9, (d) specimen IDF12.

ω determined the transition of the function φ between its border values φ0 and φ∞.
Knowing the course of function φ during the fatigue life, ω was determined as a
function of RM by finding the material parameters Aω, Bω and Cω from equation
(6.37). This result was not necessarily optimal, so one more optimization was per-
formed to find better φ∞ and ω material parameters. The target function was set
to the best possible match of the amplitude stress response between simulation and
experiment during the whole fatigue life (not only SHLs).”[A1] The match is also
calculated using the incremental hysteresis loop simulation. The illustration of fit-
ting φ∞ and ω as a function of RM is in Figures 7.6 and 7.7. Results of final fit (after
iteration process) of the Marquis parameter φ during the fatigue life of selected IDF
specimens are in Figure 7.8. Simulation results after the final process of material
parameter identification is compared with the experimental data on Figure 7.9.

“The RM value for each specimen was determined only as a first guess, so a
number of iterations of the whole calibration process had to be carried out to find
the final and optimal set of material parameters.” [A1] The complete code of the
material model, that will be presented in section 8.2.3, is used for this optimization
(here only converted from Fortran to Matlab programming language).
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Figure 7.7: Fitting the ω as a function of RM .

7.3 Torsional Loading

“For each NT geometry specimen tested, the Error value in each cycle between the
experimental amplitude of torque T expa and the simulation amplitude of torque T sima

can be defined as

Error = (T expa − T sima )/T expa · 100 [%]. (7.2)

The MeanError over all cycles is calculated as

MeanError =
1

Nd

Nd∑
N=1

Errorn, (7.3)

where index N is the number of cycles. The total error over all NT geometry
specimens tested is defined as

TotalError =
1

S

S∑
s=1

MeanErrors (7.4)

where s is the NT specimen index and S = 8 is the total number of NT specimens
tested (see Table A.3 in Appendix A for details).” [A2]

“For the different Kshear from equation (6.23), the TotalError value is captured
in Figure 7.10. The final Kshear material parameter is identified as the optimal
value of Kshear where the TotalError is minimal. The material value parameters
are presented in Table 7.1.” [A2]
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Figure 7.8: Example of the φ function fitting for SHLs: (a) specimen IDF1, (b)
specimen IDF5, (c) specimen IDF9, (d) specimen IDF12.

Table 7.1: Material parameters of the new proposed model for 08Ch18N10T. [A2]

E [MPa] ν σy [MPa] C1 [MPa] γ1
210,000 0.3 150 63,400 148.6
C2 [MPa] γ2 C3 [MPa] γ3 A∞

10,000 911.4 2000 0 −1.3127× 10−9

B∞ C∞ D∞ F∞ AR [MPa−1]
1.7981× 10−6 −8.6705× 10−4 1.6678× 10−1 −10.600 3.0113× 10−1

BR CR [MPa] Rmin
M [MPa] Aω Bω

1.4865× 10−1 1.1818× 10−2 130.54 0 2.0024× 10−13

Cω Rmax
M [MPa] φ0 Kshear

-4.8591 506.59 2.3178 1.5
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Figure 7.9: Experiment vs. simulations for selected IDF specimens: (a) specimen
IDF1, (b) specimen IDF5, (c) specimen IDF9, (d) specimen IDF12.
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Figure 7.10: Identification of the Kshear material parameter. [A2]
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Chapter 8

Implementation of Proposed
Model into Finite Element
Analysis

“The geometry of most specimens is not uniform, so the non-uniform stress and
strain field in their cross-section are expected and FEA must be used for simula-
tions.” [A2] In this chapter, the FE model is described as well as the implementation
of presented material model into commercial FE software Abaqus using the USDFLD
subroutine. “This subroutine makes possible to use the material model presented
here in engineering computations. Combined with the material parameters identifi-
cation process described in Chapter 7, it can also be used for other materials.” [A2]
The example of practical use can be found in [A6], where the proposed material
model is used to simulate the pipe flange load.

8.1 FE Model

FE models of each of the tested geometries were created, see Figures 8.1-8.6. The
UG, E9, and notched geometries R1.2, R2.5, and R5 are modeled as an axisymmetric
model, the NT geometry is modeled as a 3D model using cyclic symmetry. “The
symmetry boundary condition is defined on the right edge of the model. The left
edge of the model always corresponds with the cross-section where the extensometer
is attached to the body of the specimen during the experiment. The displacement
boundary condition on the left edge of the FE model is created with the same
amplitude value as was recorded from the extensometer during the experiment.
Abaqus CAX8R mesh elements are used for the axisymmetric models and C3D8R
elements are used for the NT geometry.” [A2]. Using sensitivity study, the element
size in fine mesh areas has been determined to be 0.1 mm except for the UG geometry,
where the element size is 0.5 mm for the whole model.
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Figure 8.3: FE model of NT speci-
men. [A2]

Z T

R

  RP−1

Figure 8.4: FE model of R1.2 speci-
men. [A2]
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Figure 8.5: FE model of R2.5 speci-
men. [A2]
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Figure 8.6: FE model of R5 specimen.
[A2]

8.2 Implementation of Material Model Using USDFLD

Subroutine

8.2.1 A general description of USDFLD Subroutine

There are several ways how to implement proposed material model into commercial
FE software Abaqus. One possible way is the UMAT (User MATerial) subroutine,
where the material behavior must be fully programmed by the user. For a given
increment of the strain tensor, the user must program the constitutive equations
to define the internal variables, stress tensor, and the consistent Jacobian matrix.
The coding of non-linear plasticity model is lengthy, laborious and the definition of
consistent Jacobian matrix (see equation (2.22)) is very complicated and requires
considerable mathematical skills.

The easier way is to use USDFLD (USer Defined FieLD) subroutine. In this
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subroutine, the user must define the array called FIELD, which can contain one
or more components. The combined hardening model of plasticity, as defined in
equation (2.34), is already implemented in Abaqus. The material parameters Ci,
γi, and Y can be defined as constants or as a function of the FIELD array, so
the material parameters may change during the simulation as the FIELD values
changes. In USDFLD subroutine, the user has to define the calculation of FIELD
components and it can be defined as a function of some input variables. The choice
of inputs is up to the user. The values of material parameters Ci, γi, and Y , for
a specific value of FIELD components, is then defined by the user in the Abaqus
input file in the form of the text table.

For example, if the user choose the FIELD array to contain 2 components,
FIELD(1) and FIELD(2), the user must define a table row values of Ci, γi, and Y
for some values FIELD(1) and FIELD(2) and then on the next row values of Ci,
γi, and Y for different values FIELD(1) and FIELD(2). Abaqus uses the linear
interpolation (or extrapolation) between the data in the table for given values of
FIELD array to find the exact values of the material parameters.

A very clear way to select variables, to be the FIELD array variables, is to select
FIELD(1) = Y and FIELD(2) = φ. The material parameters are then calculated
as Ci = Ci, γi = γi · φ, and Y = Y .

There are several advantages of using USDFLD instead of UMAT:

• Abaqus has already implemented a combined model of plasticity, which has
been already optimized by Abaqus developers for speed and effectiveness, so
it is way faster than UMAT.

• The user does not have to define a complete constitutive model of cyclic plas-
ticity, only the definition of FIELD array, the code is several times shorter.

• The user does not have to define a consistent Jacobian matrix, which is com-
plicated and advanced mathematical skill demanding process. Also, with even
minor modification of constitutive equations of plasticity, a consistent Jacobian
matrix has to be redefined in case of using the UMAT subroutine.

The disadvantage of USDFLD compared to UMAT is that all input variables, for
the current increment, are taken from the end of the previous increment and they
are not updated during the current increment. Due to this limitation, the USDFLD
is sensitive to maximal increment size, therefore, for the given model, material pa-
rameters, and loading conditions, the sensitivity study has to be done to determine
the highest applicable increment. But there is a convergence in increment size in a
similar way as in the element size of the mesh.

8.2.2 Building the USDFLD Subroutine of Proposed Model

As has been mentioned in section 8.2.1, the result of the USDFLD subroutine
code for the proposed material model is the definition of FIELD(1) = Y and
FIELD(2) = φ. The brief logic of building the USDFLD subroutine can be sum-
merized in following points:

• Variables and material parameters are defined.
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• Vector1 of plastic strain εp and accumulated plastic strain p are obtained from
previous increment.

• Flow vector from equation (6.3) is calculated.

• Vectors αvirt and αvirtφ from equations (6.6-6.7) and (6.21-6.22) are calcu-
lated.

• The equations (6.8-6.10), (6.25-6.26) and (6.27-6.32) leading to determining
the size of memory surfaces Rused

M and Rused
Mφ are calculated.

• The isotropic variable R from equation (6.38) is calculated, actual yield stress
is determined as Y = σy +R.

• Variables φ∞, ω, and φcyc from equations (6.36), (6.37) and (6.35) are calcu-
lated.

• Variable φ from equation (6.34) is calculated.

• Some variables are stored to user defined state variable output STATEV (for
control purposes only).

• FIELD array values for current increment are defined as FIELD(1) = Y ,
FIELD(2) = φ.

8.2.3 USDFLD Subroutine Code

The full Abaqus USDFLD subroutine code written in Fortran programming language
is presented including the material parameters definition in the Abaqus input file.
The Fortran code of the subroutine has been published in [A2].

Full Fortran Code of Abaqus USDFLD Subroutine [A2]

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C Mater ia l model by Miro Fumfera C
C ve r s i on 2019−11−10 C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C USDFLD Subrout ine f o r 08Ch18N10T Aus t en i t i c S t a i n l e s s S t e e l
C Or i g i na l modely by Radim Halama
C modi f i ed by Miro Fumfera f o r 08Ch18N10T

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,
1 TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,
2 KSPT,KSTEP,KINC,NDI ,NSHR,COORD,JMAC,JMATYP,MATLAYO,LACCFLA)
INCLUDE ’ABAPARAM. INC ’
CHARACTER∗80 CMNAME,ORNAME
CHARACTER∗3 FLGRAY(15)
DIMENSION FIELD(NFIELD) ,STATEV(NSTATV) ,DIRECT(3 , 3 ) ,T(3 , 3 ) ,TIME(2)
DIMENSION ARRAY(15) ,JARRAY(15) ,JMAC(∗ ) ,JMATYP(∗ ) ,COORD(∗ )
parameter ZERO=0D0,ONE=1D0,TWO=2D0,THREE=3D0,TOLER=1D−12,

1Abaqus (and other FE softwares) uses Voigt 6 component vector notation for 3x3 symmetric
tensor.
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+ NTENS=6 !NTENS=4 f o r Axisymetric , NTENS=6 f o r 3D
r e a l ∗8 RMused ,RM,RMmax,RMmin,oRM,dRM, RMRused ,RMR,oRMR,dRMR,

+ heavis ideG ,DDP,G, DirVec (NTENS) , DirVecR (NTENS)
r e a l ∗8 ALPHAv(NTENS) ,dALPHA1v(NTENS) ,ALPHA1v(NTENS) ,

+ dALPHA2v(NTENS) ,ALPHA2v(NTENS) ,dALPHA3v(NTENS) ,ALPHA3v(NTENS) ,
+ dALPHAv(NTENS) ,oALPHAv(NTENS) ,magALPHAv
r e a l ∗8 ALPHAr(NTENS) ,dALPHA1r(NTENS) ,ALPHA1r(NTENS) ,

+ dALPHA2r(NTENS) ,ALPHA2r(NTENS) ,dALPHA3r(NTENS) ,ALPHA3r(NTENS) ,
+ dALPHAr(NTENS) ,oALPHAr(NTENS) ,magALPHAr
r e a l ∗8 EPLAS(NTENS) ,oEPLAS(NTENS) ,dEPLAS(NTENS) ,EQPLAS,oEQPLAS,

+ dEQPLAS,FLOW(NTENS)
r e a l ∗8 R, oR ,dR,AR,BR,CR,ER
r e a l ∗8 PhiInfty , dPHIcyc , PHIcyc , oPHIcyc , PHI0 , PHI
r e a l ∗8 AInfty , BInfty , CInfty , DInfty , EInfty
r e a l ∗8 AOmega,BOmega,COmega
r e a l ∗8 KShear
r e a l ∗8 C1 ,GAMMA1,C2 ,GAMMA2,C3 ,GAMMA3
in t e g e r K1, iEPLAS , iALPHA1v , iALPHA2v , iALPHA3v , iEQPLAS, iRM, iPHI ,

+ iPHIcyc , iALPHAv, iR , iFIELD1 , iFIELD2 , iALPHA1r , iALPHA2r , iALPHA3r ,
+ iRMR, iALPHAr
parameter ( iEPLAS=7,iALPHA1v=31,iALPHA2v=37,iALPHA3v=43,iEQPLAS=49,

+ iR=50,iRM=51, iPHI=52, iPHIcyc=53, iPh i I n f t y =54,iRMR=61,iALPHA1r=71,
+ iALPHA2r=77,iALPHA3r=83,iRMRused=95,iRMused=96,iALPHAv=97,
+ iALPHAr=94,iFIELD1=98,iFIELD2=99)

C Mater ia l parameters
C1 = 6.339971 e+04
GAMMA1 = 1.485569 e+02
C2 = 9.999778 e+03
GAMMA2 = 9.113512 e+02
C3 = 2000
GAMMA3 = 0
SYIELD = 150
PHI0 = 2.317802 e+00
AInfty = −1.312737e−09
BInfty = 1.798138 e−06
CInfty = −8.670490e−04
DInfty = 1.667770 e−01
EInfty = −1.060028 e+01
RMmin = 1.305410 e+02
RMmax = 5.065918 e+02
BR = 3.011316 e−01
CR = 1.486489 e−01
ER = 1.181843 e−02
AOmega = 0
BOmega = 2.002387 e−13
COmega = −4.859126 e+00
KShear = 1.50

C get PE components
c a l l GETVRM( ’PE’ ,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,

+ MATLAYO,LACCFLA)
C EQPLAS

EQPLAS = ARRAY(7)
oEQPLAS = STATEV(iEQPLAS)
dEQPLAS = EQPLAS − oEQPLAS

C get PE
do K1=1,NTENS
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oEPLAS(K1) = STATEV(iEPLAS−1+K1)
EPLAS(K1) = ARRAY(K1)
dEPLAS(K1) = EPLAS(K1) − oEPLAS(K1)

enddo
C get ALPHAv

do K1=1,NTENS
ALPHA1v(K1) = STATEV(iALPHA1v−1+K1)
ALPHA2v(K1) = STATEV(iALPHA2v−1+K1)
ALPHA3v(K1) = STATEV(iALPHA3v−1+K1)
oALPHAv(K1) = STATEV(iALPHAv−1+K1)

ALPHA1r(K1) = STATEV(iALPHA1r−1+K1)
ALPHA2r(K1) = STATEV(iALPHA2r−1+K1)
ALPHA3r(K1) = STATEV(iALPHA3r−1+K1)
oALPHAr(K1) = STATEV(iALPHAr−1+K1)

enddo
C get FLOW vector

i f (dEQPLAS. gt .ZERO) then
do K1=1,NDI

FLOW(K1) = dEPLAS(K1)/dEQPLAS
enddo
do K1=NDI+1,NTENS

FLOW(K1) = dEPLAS(K1)/TWO/dEQPLAS
enddo

e l s e
do K1=1,NTENS

FLOW(K1) = ZERO
enddo

end i f
C RM

RM = STATEV(iRM)
oRM = RM

C dALPHAv
do K1=1, NDI

dALPHA1v(K1) = (TWO/THREE∗C1∗dEQPLAS∗FLOW(K1) −
+ GAMMA1∗ALPHA1v(K1)∗dEQPLAS)/(ONE+GAMMA1∗dEQPLAS)

dALPHA2v(K1) = (TWO/THREE∗C2∗dEQPLAS∗FLOW(K1) −
+ GAMMA2∗ALPHA2v(K1)∗dEQPLAS)/(ONE+GAMMA2∗dEQPLAS)

dALPHA3v(K1) = (TWO/THREE∗C3∗dEQPLAS∗FLOW(K1) −
+ GAMMA3∗ALPHA3v(K1)∗dEQPLAS)/(ONE+GAMMA3∗dEQPLAS)

ALPHAv(K1) = (ALPHA1v(K1)+dALPHA1v(K1) ) +
+ (ALPHA2v(K1)+dALPHA2v(K1) ) + (ALPHA3v(K1)+dALPHA3v(K1) )

!dALPHAv(K1) = ALPHAv(K1)−oALPHAv(K1)
dALPHAv(K1) = dALPHA1v(K1) + dALPHA2v(K1) + dALPHA3v(K1)

enddo
do K1=NDI+1, NTENS

dALPHA1v(K1) = (TWO/THREE∗C1∗dEQPLAS∗FLOW(K1) −
+ GAMMA1∗KShear∗ALPHA1v(K1)∗dEQPLAS)/(ONE+GAMMA1∗dEQPLAS)

dALPHA2v(K1) = (TWO/THREE∗C2∗dEQPLAS∗FLOW(K1) −
+ GAMMA2∗KShear∗ALPHA2v(K1)∗dEQPLAS)/(ONE+GAMMA2∗dEQPLAS)

dALPHA3v(K1) = (TWO/THREE∗C3∗dEQPLAS∗FLOW(K1) −
+ GAMMA3∗KShear∗ALPHA3v(K1)∗dEQPLAS)/(ONE+GAMMA3∗dEQPLAS)

ALPHAv(K1) = (ALPHA1v(K1)+dALPHA1v(K1) ) +
+ (ALPHA2v(K1)+dALPHA2v(K1) ) + (ALPHA3v(K1)+dALPHA3v(K1) )

!dALPHAv(K1) = ALPHAv(K1)−oALPHAv(K1)
dALPHAv(K1) = dALPHA1v(K1) + dALPHA2v(K1) + dALPHA3v(K1)
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enddo
do K1=1, NTENS

ALPHA1v(K1) = ALPHA1v(K1) + dALPHA1v(K1)
ALPHA2v(K1) = ALPHA2v(K1) + dALPHA2v(K1)
ALPHA3v(K1) = ALPHA3v(K1) + dALPHA3v(K1)
ALPHAv(K1) = ALPHA1v(K1) + ALPHA2v(K1) + ALPHA3v(K1)

enddo
C magALPHAv

magALPHAv = ZERO
do K1=1, NDI

magALPHAv = magALPHAv + ALPHAv(K1)∗∗2
enddo
do K1=NDI+1, NTENS

magALPHAv = magALPHAv + TWO∗ALPHAv(K1)∗∗2
enddo
magALPHAv = sq r t (THREE/TWO∗magALPHAv)

C G func t i on
G = magALPHAv − RM
i f (magALPHAv. gt .ZERO) then

do K1 = 1 , NTENS
DirVec (K1)=ALPHAv(K1)/magALPHAv

enddo
e l s e

do K1 = 1 , NTENS
DirVec (K1) = ZERO

enddo
end i f

C double dot product DDP
DDP = ZERO
do K1 = 1 , NDI

DDP = DDP+DirVec (K1)∗dALPHAv(K1)
enddo
do K1 = NDI+1, NTENS

DDP = DDP+TWO∗DirVec (K1)∗dALPHAv(K1)
enddo

C heav i s i d e func t i on o f G
i f (G. gt .ZERO) then

heavis ideG = ONE
e l s e i f ( abs (G) . l t .TOLER) then

heavis ideG = ONE/TWO
e l s e

heavis ideG = ZERO
end i f

C memory su r f a c e RM
dRM = heavis ideG ∗abs (DDP)
RM = oRM + dRM
i f (RM. l t .RMmin) then
RMused = RMmin

e l s e i f (RM. gt .RMmax) then
RMused = RMmax

e l s e
RMused = RM

end i f
C RMR

RMR = STATEV(iRMR)
oRMR = RMR
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do K1=1, NDI
dALPHA1r(K1) = (TWO/THREE∗C1∗dEQPLAS∗FLOW(K1) −

+ GAMMA1∗ALPHA1r(K1)∗dEQPLAS)/(ONE+GAMMA1∗dEQPLAS)
dALPHA2r(K1) = (TWO/THREE∗C2∗dEQPLAS∗FLOW(K1) −

+ GAMMA2∗ALPHA2r(K1)∗dEQPLAS)/(ONE+GAMMA2∗dEQPLAS)
dALPHA3r(K1) = (TWO/THREE∗C3∗dEQPLAS∗FLOW(K1) −

+ GAMMA3∗ALPHA3r(K1)∗dEQPLAS)/(ONE+GAMMA3∗dEQPLAS)
ALPHAr(K1) = (ALPHA1r(K1)+dALPHA1r(K1) ) +

+ (ALPHA2r(K1)+dALPHA2r(K1) ) + (ALPHA3r(K1)+dALPHA3r(K1) )
!dALPHAr(K1) = ALPHAr(K1)−oALPHAr(K1)
dALPHAr(K1) = dALPHA1r(K1) + dALPHA2r(K1) + dALPHA3r(K1)

enddo
do K1=NDI+1, NTENS

dALPHA1r(K1) = (TWO/THREE∗C1∗dEQPLAS∗FLOW(K1) −
+ GAMMA1∗KShear∗ALPHA1r(K1)∗dEQPLAS)/(ONE+GAMMA1∗dEQPLAS)

dALPHA2r(K1) = (TWO/THREE∗C2∗dEQPLAS∗FLOW(K1) −
+ GAMMA2∗KShear∗ALPHA2r(K1)∗dEQPLAS)/(ONE+GAMMA2∗dEQPLAS)

dALPHA3r(K1) = (TWO/THREE∗C3∗dEQPLAS∗FLOW(K1) −
+ GAMMA3∗KShear∗ALPHA3r(K1)∗dEQPLAS)/(ONE+GAMMA3∗dEQPLAS)

ALPHAr(K1) = (ALPHA1r(K1)+dALPHA1r(K1) ) +
+ (ALPHA2r(K1)+dALPHA2r(K1) ) + (ALPHA3r(K1)+dALPHA3r(K1) )

!dALPHAr(K1) = ALPHAr(K1)−oALPHAr(K1)
dALPHAr(K1) = dALPHA1r(K1) + dALPHA2r(K1) + dALPHA3r(K1)

enddo
do K1=1, NTENS

ALPHA1r(K1) = ALPHA1r(K1) + dALPHA1r(K1)
ALPHA2r(K1) = ALPHA2r(K1) + dALPHA2r(K1)
ALPHA3r(K1) = ALPHA3r(K1) + dALPHA3r(K1)
ALPHAr(K1) = ALPHA1r(K1) + ALPHA2r(K1) + ALPHA3r(K1)

enddo
C magALPHAr

magALPHAr = ZERO
do K1=1, NDI

magALPHAr = magALPHAr + ALPHAr(K1)∗∗2
enddo
do K1=NDI+1, NTENS

magALPHAr = magALPHAr + TWO∗ALPHAr(K1)∗∗2
enddo
magALPHAr = sq r t (THREE/TWO∗magALPHAr)

C G func t i on
G = magALPHAr − RMR
i f (magALPHAr. gt .ZERO) then

do K1 = 1 , NTENS
DirVecR (K1)=ALPHAr(K1)/magALPHAr

enddo
e l s e

do K1 = 1 , NTENS
DirVecR (K1) = ZERO

enddo
end i f

C double dot product DDP
DDP = ZERO
do K1 = 1 , NDI

DDP = DDP+DirVecR (K1)∗dALPHAr(K1)
enddo
do K1 = NDI+1, NTENS
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DDP = DDP+TWO∗DirVecR (K1)∗dALPHAr(K1)
enddo

C heav i s i d e func t i on o f G
i f (G. gt .ZERO) then

heavis ideG = ONE
e l s e i f ( abs (G) . l t .TOLER) then

heavis ideG = ONE/TWO
e l s e

heavis ideG = ZERO
end i f

C memory su r f a c e RMR
dRMR = heavis ideG ∗abs (DDP)
RMR = oRMR + dRMR
i f (RMR. l t .RMmin) then
RMRused = RMmin

e l s e i f (RMR. gt .RMmax) then
RMRused = RMmax

e l s e
RMRused = RMR

end i f
C R

oR = STATEV( iR )
AR = CR∗exp (ER∗RMRused)
dR = AR∗ ( (EQPLAS+dEQPLAS)∗∗BR−EQPLAS∗∗BR)
R = oR + dR;

C PHIinfty
Ph i In f ty = AInfty ∗RMused∗∗4 + BInfty ∗RMused∗∗3 +

+ CInfty ∗RMused∗∗2 + DInfty∗RMused + EInfty
C Omega

OMEGA = AOmega+BOmega∗(RMused)∗∗−COmega
C PHIcyc

oPHIcyc = STATEV( iPHIcyc )
dPHIcyc = OMEGA∗( PhiInfty−oPHIcyc )∗DEQPLAS
PHIcyc = oPHIcyc + dPHIcyc

C PHI
PHI = PHI0 + PHIcyc

C save STATEV
STATEV(iEQPLAS) = EQPLAS
do K1=1,NTENS

STATEV(iEPLAS−1+K1) = EPLAS(K1)
STATEV(iALPHA1v−1+K1) = ALPHA1v(K1)
STATEV(iALPHA2v−1+K1) = ALPHA2v(K1)
STATEV(iALPHA3v−1+K1) = ALPHA3v(K1)
STATEV(iALPHAv−1+K1) = ALPHAv(K1)
STATEV(iALPHA1r−1+K1) = ALPHA1r(K1)
STATEV(iALPHA2r−1+K1) = ALPHA2r(K1)
STATEV(iALPHA3r−1+K1) = ALPHA3r(K1)
STATEV(iALPHAr−1+K1) = ALPHAr(K1)
STATEV(120+K1) = dALPHAv(K1)

enddo
STATEV( iR ) = R
STATEV(iRM) = RM
STATEV(iRMR) = RMR
STATEV( iRMused ) = RMused
STATEV( iRMRused) = RMRused
STATEV( iPHIcyc ) = PHIcyc
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STATEV( iPHI ) = PHI
STATEV( iPh i I n f t y ) = Phi In f ty

STATEV(127) = SYIELD+R
STATEV(128) = DDP

C FIELD(1)
FIELD(1) = SYIELD+R
STATEV( iFIELD1 ) = FIELD(1)

C FIELD(2)
FIELD(2) = PHI
STATEV( iFIELD2 ) = FIELD(2)
RETURN
END

Material Parameters Definition in the Abaqus Input File [A2]

The example of material parameters definition in Abaqus input file:

∗Mater ia l , name=Mater ia l−1
∗Depvar

128
∗ E l a s t i c
210000 .0 , 0 . 3
∗Pla s t i c , dependenc ies=2, hardening=COMBINED, datatype=PARAMETERS,
number ba ck s t r e s s e s=3
∗∗ Mater ia l data as a func t i on o f FIELD1 and FIELD2 f o l l ow s :
SYIELD,C1 ,GAMMA1,C2 ,GAMMA2,C3 ,GAMMA3,FIDEL1 , FIELD2

In the last material data line, the numeric values of material parameters are writ-
ten. The material data line repeats for different values of variables FIELD1 and
FIELD2. Variables definitions are: SY IELD = Y , C1 = C1, GAMMA1 = φ ·γ1,
C2 = C2, GAMMA2 = φ · γ2, C3 = C3, GAMMA3 = φ · γ3, FIELD1 = Y ,
FIELD2 = φ. So, for presented material model, few material data lines can look
like this:

∗∗ Mater ia l data as a func t i on o f FIELD1 and FIELD2 f o l l ow s :
∗∗ . . .
2 50 . 0 , 63399 . 70889 , 222 . 83539 , 9999 . 77788 , 1367 . 02686 , 2000 . 0 , 0 . 0 , 250 . 0 , 1 . 5
150 . 0 , 63399 . 70889 , 237 . 69108 , 9999 . 77788 , 1458 . 16199 , 2000 . 0 , 0 . 0 , 150 . 0 , 1 . 6
151 . 0 , 63399 . 70889 , 237 . 69108 , 9999 . 77788 , 1458 . 16199 , 2000 . 0 , 0 . 0 , 151 . 0 , 1 . 6
∗∗ . . .
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Chapter 9

Main Results

9.1 Introduction

In this part of the thesis, the results of FE simulations are presented. The expe-
rimental program presented in Chapter 3 has been completely simulated using the
material model proposed in this thesis. The FE simulation results are compared
with the experimental results and also with FE simulation results of the original
model [A1]. The error between the prediction of both models and experimental
results is quantified.

9.2 FE Simulation Results

The error between the experiment and the FE simulation in each cycle N is calcu-
lated simply as

Error =
F exp
a − F sim

a

F exp
a

· 100 % (9.1)

The mean error and the total error are calculated using equations (7.3) and (7.4)
considering the corresponding number of specimens in the series.

The Figures 9.1 and 9.2 and Table 9.1 show the experimental and simulation
results of E9 geometry series representing the uniaxial loading conditions. The
prediction capability of these two models is comparable. Results have been published
in [A1] and [A2].
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Figure 9.1: Experiment vs. simulations, specimen E9-1. [A1], [A2]
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Figure 9.2: Experiment vs. simulations, specimen E9-17. [A1], [A2]
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Table 9.1: Mean error of all E9 specimens tested - experiment vs. simula-
tions. [A1], [A2].

Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%]
E9-1 2.9226 1.8207
E9-2 2.3311 1.2756
E9-3 2.4027 1.1938
E9-4 1.6977 0.7773
E9-5 8.0687 7.0447
E9-6 8.8658 7.4521
E9-7 11.7310 10.4229
E9-8 3.8241 3.9171
E9-9 9.8245 9.5508
E9-10 7.8144 8.8757
E9-11 2.5028 3.9003
E9-12 4.3523 6.5915
E9-13 4.0929 3.4343
E9-14 2.1610 3.8515
E9-15 2.9195 2.9485
E9-16 1.8601 2.7524
E9-17 4.9766 2.7579

The NT geometry series results are shown in Figures 9.3 and 9.4 and Table 9.2.
In this case, the compared variables are the amplitudes of the torque measured
during the experiment (Ta exp) and the amplitudes computed by the FE simulations
(Ta sim). The errors are calculated using the equations (7.2-7.4). For this geometry,
the difference in the prediction capability of the original model and the modified
model is not the same - the modified model provides a better prediction of the
cyclic hardening of the material under torsional loading for higher loading levels.
The results have been published in [A2].
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Figure 9.3: Experiment vs. simulations, specimen NT-1. [A2]
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Figure 9.4: Experiment vs. simulations, specimen NT-6. [A2]
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Table 9.2: Mean error of all NT specimens tested - experiment vs. simulations. [A2]

Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%]
NT-1 1.9100 4.0682
NT-2 0.8367 5.9823
NT-3 11.2048 1.3797
NT-4 11.1021 1.0934
NT-5 14.2137 1.3947
NT-6 15.5549 2.2815
NT-7 13.1168 1.5014
NT-8 8.8054 4.7887

Finally, the notched specimen geometry series R1.2, R2.5, and R5 are shown in
Figures 9.5, 9.6, 9.7, 9.8, 9.9, and 9.10 and Tables 9.3, 9.4, and 9.5. The stress field in
the cross-section of these specimens is no longer uniaxial, for more details see [A10],
where the simulations of stress field in notched specimens has been presented. The
prediction capabilities of both models are also comparable, the results have been
published in [A2].
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Figure 9.5: Experiment vs. simulations, specimen R1.2-1. [A2]
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Figure 9.6: Experiment vs. simulations, specimen R1.2-18. [A2]

Table 9.3: Mean error of all R1.2 specimens tested - experiment vs. simulations. [A2]

Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%]
R1.2-1 2.8075 2.4172
R1.2-2 3.7011 3.1679
R1.2-3 2.2438 2.2027
R1.2-4 2.8530 2.7056
R1.2-5 2.8984 2.7105
R1.2-6 4.7877 4.4405
R1.2-7 1.4888 1.4897
R1.2-8 7.1382 6.7943
R1.2-9 2.4171 2.2355
R1.2-10 1.6518 1.7538
R1.2-11 2.0827 2.2332
R1.2-12 3.9411 3.2028
R1.2-13 2.5308 3.1540
R1.2-14 1.4521 1.8444
R1.2-15 3.6781 2.6435
R1.2-16 1.5820 1.9106
R1.2-17 1.6089 2.5930
R1.2-18 1.2789 2.2219
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Figure 9.7: Experiment vs. simulations, specimen R2.5-1. [A2]
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Figure 9.8: Experiment vs. simulations, specimen R2.5-21. [A2]
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Table 9.4: Mean error of all R2.5 specimens tested - experiment vs. simulations. [A2]

Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%]
R2.5-1 7.3714 7.1025
R2.5-2 8.1586 7.6327
R2.5-3 9.1468 8.6587
R2.5-4 6.8139 6.8130
R2.5-5 6.6714 6.6118
R2.5-6 9.9838 9.1708
R2.5-7 4.3249 3.4860
R2.5-8 3.8551 3.8250
R2.5-9 1.0034 0.9027
R2.5-10 4.7921 4.9816
R2.5-11 1.9673 2.1464
R2.5-12 2.1944 1.6489
R2.5-13 1.2466 1.0057
R2.5-14 8.7778 9.1473
R2.5-15 2.6624 3.0678
R2.5-16 1.4643 1.3563
R2.5-17 0.9873 1.5697
R2.5-18 1.4020 1.4515
R2.5-19 1.6099 2.6423
R2.5-20 0.9634 2.4069
R2.5-21 4.1944 3.2605
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Figure 9.9: Experiment vs. simulations, specimen R5-1. [A2]
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Figure 9.10: Experiment vs. simulations, specimen R5-24. [A2]
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Table 9.5: Mean error of all R5 specimens tested - experiment vs. simulations. [A2]

Specimen Orig. Model Mod. Model
Name Mean Err. [%] Mean Err. [%]
R5-1 2.1303 1.4186
R5-2 2.0673 1.8112
R5-3 0.7021 0.8284
R5-4 0.9757 0.9284
R5-5 1.4847 1.4209
R5-6 1.7435 1.6993
R5-7 2.9066 2.7548
R5-8 5.3372 5.4106
R5-9 4.9004 4.5530
R5-10 2.3623 2.6227
R5-11 7.0110 6.8065
R5-12 2.3912 3.1025
R5-13 6.7479 6.8700
R5-14 5.1055 5.4414
R5-15 1.3043 1.4251
R5-16 1.1829 1.3661
R5-17 3.6903 3.6048
R5-18 3.1399 2.9518
R5-19 6.1649 6.1226
R5-20 2.8263 2.6683
R5-21 1.0485 1.2882
R5-22 8.2167 7.6119
R5-23 2.2011 1.6441
R5-24 3.5803 3.1425
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Chapter 10

Outcomes

10.1 Theoretical Outcomes

The new material model, proposed in Section 6.3, is capable of capturing strain-range
dependent hardening for uniaxial and newly also for torsional loading conditions.
The proposed modification shows one of the possible ways to deal with the anisotropy
between tension and torsion of the memory surface-based models.

The analysis of the original model presented in Section 6.2 shows in general
how to identify suitable parts of the original model that do not properly reflect the
observed response of the material.

The proposed material identification process, presented in Chapter 7, shows the
new, unorthodox way to identify material parameters using the incremental FEA-
like simulations of material response and multiple optimization procedure to fit
the material parameters as precisely as possible. The identification process is also
published in [A1], [A2], [A3] and [A7].

The complete results of the experimental LCF program are presented in the
extensive form in Chapter 9 and in Appendix B and most of the data are also
published in [A1] and [A2].

The implementation of the proposed model (presented in Chapter 8) is in the
form of the Abaqus FE software user-defined field (USDFLD) subroutine. The full
Fortran code of the subroutine is presented in section 8.2.3 and is also published
in [A2]. This will eventually allow other researchers to effectively modify or extend
the proposed model and speed up the development of functional FE code.

10.2 Practical Outcomes

The new material model presented in the thesis is implemented into the commercial
FE software Abaqus as the USDFLD subroutine. The implementation is described
in Chapter 8 and also published in [A1] and [A2], the full Fortran code of the
USDFLD subroutine is presented in section 8.2.3 and also published in [A2]. This
allows potential users to test the proposed material model for real engineering com-
putations, as has been demonstrated for example in [A6]. Compared with more
commonly used Abaqus user material (UMAT) subroutine, the use of the USDLFD
subroutine has several advantages. It uses the Abaqus default Chaboche plasticity
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model computational core, which is optimized for a high computation speed and is
noticeably faster than UMAT. USDFLD does not require a definition of consistent
tangent modulus, which is, for a quite complex model like this one, complicated to
derive. An adjustment of constitutive equations may lead to the need to re-derive
the consistent tangent modulus. The disadvantage of the USDFLD subroutine is
that the FIELD variables (for example, the actual size of yield surface) are constant
during the computational increment, so the increment size must be chosen with
caution using sensitivity study.

The material parameters identification process is described step by step in Chap-
ter 7 and also published in [A1], [A2], [A4] and [A9]. Using the procedure, material
parameters can be identified for other materials. The values of material parameters
for 08Ch18N10T austenitic stainless steel are presented in Table 7.1.

Combination of presented USDFLD subroutine with material parameters for
08Ch18N10T steel, the newly proposed material model is ready for testing for engi-
neering computations on real components.

The use of the proposed model is currently limited to the conditions for which
it was developed and tested. These conditions are uniaxial loading (including non-
uniaxial stress-strain field in case of notched specimens) and torsional loading (do-
minant shear stress-strain). The model has not been tested for combined loading
conditions, for example for the proportional or non-proportional combination of
tension and torsion.
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Chapter 11

Conclusion and Future Work

11.1 Conclusion

In this thesis, the original material model of cyclic plasticity with strain-range de-
pendency published in [A1] is presented in Chapter 6. The constitutive equations
are analyzed, the isotropic hardening part of the model and the definition of memory
surface are chosen as parts of the original model to be modified.

The fulfillment of the main objectives of the thesis, defined in Chapter 4, is
summed up here:

1. Proposition of modification:

The new formulation of the material model is proposed in section 6.3 and is
also published in [A2]. The new formulation of isotropic hardening as a non-
linear function of accumulated plastic strain p is proposed. The original me-
mory surface is newly split into two memory surfaces - the memory surface
for isotropic hardening, which is defined in the same way as the original one,
and the memory surface for kinematic hardening, which is defined by the new
constitutive equations. The new memory surface limits are defined.

2. Calibration of material parameters:

The new calibration procedure of material parameters is proposed in this the-
sis. It uses the incremental FEA-like simulations of material response for fitting
material parameters and multiple optimization procedure to fit the material
parameters as precisely as possible. The material parameters identification
process of newly proposed model is described step by step in Chapter 7 and is
also published in [A1], [A2], [A3] and [A7]. Material parameters are identified
for 08Ch18N10T austenitic stainless steel.

3. Implementation into FE:

The implementation of the newly proposed model into FE code is described
in 8 and also published in [A2]. The implementation into commercial FE soft-
ware Abaqus is in the form of the user-defined field subroutine (USDFLD)
written in Fortran programming language.
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The experimental program presented in Chapter 3 is completely simulated using
the newly proposed model. The prediction capability of the newly proposed model
and the comparison with the original one are presented in Chapter 9 and are also
published in [A2]. The newly proposed model shows practically the same prediction
capability as the original for uniaxial and notched specimens, but significantly better
prediction capability under torsional loading.

11.2 Future Work

The presented material model extends the good prediction capabilities of the original
model [A1] from uniaxial to torsional loading. The dominant tensile or torsional
loading is also the limitation of model usability in the proposed form. The next
logical step is to verify the proposed model for combined loading conditions, for
example, a proportional combination of tension and torsion and possibly propose
another modification to include these loading conditions.

After handling the proportional loading conditions, the non-proportional loading
conditions are then the next step which is slowly approaching to the final goal of
material response modeling - general loading conditions.
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report]. Prague: Czech Technical University in Prague, Faculty of Mechanical
Engineering, (2017). [in Czech].
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Appendix A

Boundary Conditions of
Simulations

In this appendix, boundary conditions of all specimens tested are presented. These
data have been published in [A2].

Table A.1: Boundary conditions of IDF specimens. [A2]

Specimen name Geometry type ∆Lext [mm] Nd

IDF-1 UG 0.030 37509
IDF-2 UG 0.050 4285
IDF-3 UG 0.075 916
IDF-4 UG 0.100 580
IDF-5 UG 0.125 254
IDF-6 E9 0.132 159
IDF-7 E9 0.154 381
IDF-8 E9 0.176 370
IDF-9 E9 0.198 161
IDF-10 E9 0.245 156
IDF-11 E9 0.264 124
IDF-12 E9 0.353 93
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Table A.2: Boundary conditions of E9 specimens. [A2]

Specimen name Geometry type ∆Lext [mm] Nd

E9-1 E9 0.0447 13382
E9-2 E9 0.0446 15104
E9-3 E9 0.0662 4053
E9-4 E9 0.0662 3887
E9-5 E9 0.0881 1529
E9-6 E9 0.0880 1853
E9-7 E9 0.1100 1158
E9-8 E9 0.1100 631
E9-9 E9 0.1320 748
E9-10 E9 0.1540 546
E9-11 E9 0.1770 406
E9-12 E9 0.1980 332
E9-13 E9 0.2200 253
E9-14 E9 0.2420 181
E9-15 E9 0.2420 195
E9-16 E9 0.2640 220
E9-17 E9 0.3520 128

Table A.3: Boundary conditions of NT specimens. [A2]

Specimen name Geometry type ∆φext [◦] Nd

NT-1 NT 0.8703 5006
NT-2 NT 0.8694 6894
NT-3 NT 1.1423 2222
NT-4 NT 1.1414 2289
NT-5 NT 1.4031 2045
NT-6 NT 1.3772 1532
NT-7 NT 1.6554 1170
NT-8 NT 2.1492 925
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Table A.4: Boundary conditions of R1.2 specimens. [A2]

Specimen name Geometry type ∆Lext [mm] Nd

R1.2-1 R1.2 0.0245 1429
R1.2-2 R1.2 0.0246 946
R1.2-3 R1.2 0.0326 715
R1.2-4 R1.2 0.0406 523
R1.2-5 R1.2 0.0407 490
R1.2-6 R1.2 0.0489 290
R1.2-7 R1.2 0.0485 356
R1.2-8 R1.2 0.0560 241
R1.2-9 R1.2 0.0563 256
R1.2-10 R1.2 0.0639 134
R1.2-11 R1.2 0.0642 202
R1.2-12 R1.2 0.0721 171
R1.2-13 R1.2 0.0718 164
R1.2-14 R1.2 0.0794 112
R1.2-15 R1.2 0.0868 145
R1.2-16 R1.2 0.0869 114
R1.2-17 R1.2 0.0945 96
R1.2-18 R1.2 0.0944 105

Table A.5: Boundary conditions of R2.5 specimens. [A2]

Specimen name Geometry type ∆Lext [mm] Nd

R2.5-1 R2.5 0.0228 5875
R2.5-2 R2.5 0.0341 1245
R2.5-3 R2.5 0.0340 1041
R2.5-4 R2.5 0.0454 607
R2.5-5 R2.5 0.0454 761
R2.5-6 R2.5 0.0568 378
R2.5-7 R2.5 0.0567 429
R2.5-8 R2.5 0.0718 242
R2.5-9 R2.5 0.0679 346
R2.5-10 R2.5 0.0794 265
R2.5-11 R2.5 0.0791 212
R2.5-12 R2.5 0.0904 210
R2.5-13 R2.5 0.0903 221
R2.5-14 R2.5 0.1015 205
R2.5-15 R2.5 0.1015 163
R2.5-16 R2.5 0.1126 189
R2.5-17 R2.5 0.1126 156
R2.5-18 R2.5 0.1237 132
R2.5-19 R2.5 0.1237 129
R2.5-20 R2.5 0.1419 106
R2.5-21 R2.5 0.1346 114
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Table A.6: Boundary conditions of R5 specimens. [A2]

Specimen name Geometry type ∆Lext [mm] Nd

R5-1 R5 0.0308 4427
R5-2 R5 0.0461 1700
R5-3 R5 0.0457 1072
R5-4 R5 0.0603 733
R5-5 R5 0.0589 953
R5-6 R5 0.0727 623
R5-7 R5 0.0747 527
R5-8 R5 0.0893 342
R5-9 R5 0.0869 543
R5-10 R5 0.1050 297
R5-12 R5 0.1010 374
R5-13 R5 0.1154 264
R5-14 R5 0.1156 290
R5-15 R5 0.1146 228
R5-16 R5 0.1287 152
R5-17 R5 0.1276 272
R5-18 R5 0.1418 179
R5-19 R5 0.1467 155
R5-20 R5 0.1403 177
R5-21 R5 0.1540 163
R5-22 R5 0.1531 174
R5-23 R5 0.1663 144
R5-24 R5 0.1685 189
R5-25 R5 0.1652 163

76



Appendix B

Remaining Results of Simulations

In this appendix, remaining results of simulations of proposed model are presented
in the graphical form. The following figures show the amplitude of loading (force or
torque) of the experiment and simulations for both presented model - the original
and the modified one. Error of both models between both simulations and the
experiment is also presented in the figure.
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Figure B.1: Experiment vs. simulations, specimen E9-2. [A1]
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Figure B.2: Experiment vs. simulations, specimen E9-3. [A1]
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Figure B.3: Experiment vs. simulations, specimen E9-4. [A1]
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Figure B.4: Experiment vs. simulations, specimen E9-5. [A1]
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Figure B.5: Experiment vs. simulations, specimen E9-6. [A1]
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Figure B.6: Experiment vs. simulations, specimen E9-7. [A1]
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Figure B.7: Experiment vs. simulations, specimen E9-8. [A1]
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Figure B.8: Experiment vs. simulations, specimen E9-9. [A1]
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Figure B.9: Experiment vs. simulations, specimen E9-10. [A1]
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Figure B.10: Experiment vs. simulations, specimen E9-11. [A1]
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Figure B.11: Experiment vs. simulations, specimen E9-12. [A1]
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Figure B.12: Experiment vs. simulations, specimen E9-13. [A1]
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Figure B.13: Experiment vs. simulations, specimen E9-14. [A1]
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Figure B.14: Experiment vs. simulations, specimen E9-15. [A1]
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Figure B.15: Experiment vs. simulations, specimen E9-16. [A1]
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B.2 NT Geometry
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Figure B.16: Experiment vs. simulations, specimen NT-2.
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Figure B.17: Experiment vs. simulations, specimen NT-3.
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Figure B.18: Experiment vs. simulations, specimen NT-4.
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Figure B.19: Experiment vs. simulations, specimen NT-5.
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Figure B.20: Experiment vs. simulations, specimen NT-7.
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Figure B.21: Experiment vs. simulations, specimen NT-8.
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B.3 R1.2 Geometry
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Figure B.22: Experiment vs. simulations, specimen R1.2-2.

0 200 400 600 800
Number of Cycles [-]

11

11.2

11.4

11.6

11.8

12

12.2

A
m

pl
itu

de
 o

f F
or

ce
 [k

N
]

0

5

10

15

20
E

rr
or

 [%
]

Experiment
Simulation (orig. model)
Simulation (mod. model)
Error (orig. model)
Mean Error (orig. model)
Error (mod. model)
Mean Error (mod. model)

Figure B.23: Experiment vs. simulations, specimen R1.2-3.
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Figure B.24: Experiment vs. simulations, specimen R1.2-4.
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Figure B.25: Experiment vs. simulations, specimen R1.2-5.
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Figure B.26: Experiment vs. simulations, specimen R1.2-6.
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Figure B.27: Experiment vs. simulations, specimen R1.2-7.
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Figure B.28: Experiment vs. simulations, specimen R1.2-8.
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Figure B.29: Experiment vs. simulations, specimen R1.2-9.
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Figure B.30: Experiment vs. simulations, specimen R1.2-10.
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Figure B.31: Experiment vs. simulations, specimen R1.2-11.
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Figure B.32: Experiment vs. simulations, specimen R1.2-12.
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Figure B.33: Experiment vs. simulations, specimen R1.2-13.
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Figure B.34: Experiment vs. simulations, specimen R1.2-14.
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Figure B.35: Experiment vs. simulations, specimen R1.2-15.
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Figure B.36: Experiment vs. simulations, specimen R1.2-16.
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Figure B.37: Experiment vs. simulations, specimen R1.2-17.
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B.4 R2.5 Geometry
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Figure B.38: Experiment vs. simulations, specimen R2.5-2.
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Figure B.39: Experiment vs. simulations, specimen R2.5-3.
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Figure B.40: Experiment vs. simulations, specimen R2.5-4.
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Figure B.41: Experiment vs. simulations, specimen R2.5-5.
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Figure B.42: Experiment vs. simulations, specimen R2.5-6.
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Figure B.43: Experiment vs. simulations, specimen R2.5-7.
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Figure B.44: Experiment vs. simulations, specimen R2.5-8.
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Figure B.45: Experiment vs. simulations, specimen R2.5-9.
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Figure B.46: Experiment vs. simulations, specimen R2.5-10.
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Figure B.47: Experiment vs. simulations, specimen R2.5-11.
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Figure B.48: Experiment vs. simulations, specimen R2.5-12.
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Figure B.49: Experiment vs. simulations, specimen R2.5-13.
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Figure B.50: Experiment vs. simulations, specimen R2.5-14.
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Figure B.51: Experiment vs. simulations, specimen R2.5-15.
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Figure B.52: Experiment vs. simulations, specimen R2.5-16.
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Figure B.53: Experiment vs. simulations, specimen R2.5-17.
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Figure B.54: Experiment vs. simulations, specimen R2.5-18.
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Figure B.55: Experiment vs. simulations, specimen R2.5-19.
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Figure B.56: Experiment vs. simulations, specimen R2.5-20.
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Figure B.57: Experiment vs. simulations, specimen R5-2.
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Figure B.58: Experiment vs. simulations, specimen R5-3.
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Figure B.59: Experiment vs. simulations, specimen R5-4.
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Figure B.60: Experiment vs. simulations, specimen R5-5.
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Figure B.61: Experiment vs. simulations, specimen R5-6.
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Figure B.62: Experiment vs. simulations, specimen R5-7.
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Figure B.63: Experiment vs. simulations, specimen R5-8.
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Figure B.64: Experiment vs. simulations, specimen R5-9.
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Figure B.65: Experiment vs. simulations, specimen R5-10.
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Figure B.66: Experiment vs. simulations, specimen R5-11.
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Figure B.67: Experiment vs. simulations, specimen R5-12.
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Figure B.68: Experiment vs. simulations, specimen R5-13.

0 50 100 150 200 250
Number of Cycles [-]

13

14

15

16

17

18

A
m

pl
itu

de
 o

f F
or

ce
 [k

N
]

0

5

10

15

20

E
rr

or
 [%

]
Experiment
Simulation (orig. model)
Simulation (mod. model)
Error (orig. model)
Mean Error (orig. model)
Error (mod. model)
Mean Error (mod. model)

Figure B.69: Experiment vs. simulations, specimen R5-14.

0 50 100 150
Number of Cycles [-]

14

15

16

17

18

19

A
m

pl
itu

de
 o

f F
or

ce
 [k

N
]

0

5

10

15

20

E
rr

or
 [%

]

Experiment
Simulation (orig. model)
Simulation (mod. model)
Error (orig. model)
Mean Error (orig. model)
Error (mod. model)
Mean Error (mod. model)

Figure B.70: Experiment vs. simulations, specimen R5-15.
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Figure B.71: Experiment vs. simulations, specimen R5-16.
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Figure B.72: Experiment vs. simulations, specimen R5-17.
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Figure B.73: Experiment vs. simulations, specimen R5-18.
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Figure B.74: Experiment vs. simulations, specimen R5-19.
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Figure B.75: Experiment vs. simulations, specimen R5-20.
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Figure B.76: Experiment vs. simulations, specimen R5-21.
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Figure B.77: Experiment vs. simulations, specimen R5-22.
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Figure B.78: Experiment vs. simulations, specimen R5-23.
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