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This paper describes a new tool developed for the detection of operating faults in ventilation units with heat re-
covery. In principle, the tool is based on the APAR (Air Handling Unit Performance Assessment Rules) method.
By following the semantic data description in accordance with the BrickSchema and Project Haystack initiatives,
the tool is portable. The executive part of the fault detection system consists of several dozen detection rules,
which simultaneously seeks to estimate wasted energy, the threat to user comfort, or the risk of reduced device
lifespan, so that the detected faults can be sorted according to their severity.The developed detection tool was
validated on real devices incorporated in a pilot plant. For validation purposes, the method of fault induction
on real HVAC (Heating, Ventilation and Air Conditioning system) units was used, with subsequent inspection of
whether the faults were revealed or not. The results revealed a 90% detection rate. The data set created as a
result of this pilot plant is published as an annex to this article.In addition, the ability of the detection tool to
reveal faults was also verified on the basis of data sets of measurements taken during the standard operation of
several dozen HVAC units. The elimination of the identified operating faults generated energy savings of several
thousands of dollars per year.

AHU o © 2021
Continuous commissioning
BMS
SCADA
Dataset
Nomenclature HRE
Heat recovery exchanger
Abbreviations HVAC
Heating, ventilation and air-conditioning
Shortcut IAQ
Meaning Indoor Air Quality
AFDD IoT
Automated fault detection and diagnostics Internet of Things
AHU SCADA
Air Handling Unit Supervisory Control And Data Acquisition
APAR SUP
Air Handling Unit Performance Assessment Rules Supply air
BMS VAV
Building Management System Variable Air volume
ETA
Extract air
FDD 1. Introduction
Fault detection and diagnostics

* Corresponding author at: CTU UCEEB, Ttinecka 1024, Bustéhrad; 273 43, Czech

Republic.
E-mail address: ondrej.nehasil@cvut.cz (O. Nehasil)

https://doi.org/10.1016/j.enbuild.2021.110781
0378-7788/© 2021.

It is widely known that buildings consume 20-40% of the total
amount of consumed energy [13,31]. At the core of every building is
the heating, ventilation and air conditioning (HVAC) system, the pur-
pose of which is to make the internal environment comfortable for
users. However, due to the increasing requirements being placed on the
quality of the internal environment and the need to decrease energy
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consumption, these systems and those that control them are becoming
more and more complex. For non-residential buildings, the running of
HVAC systems accounts for almost 50% of the total consumed energy in
a building and about 10-20% of the total energy consumption in devel-
oped countries [31,46]. It is estimated that fixing of existing problems
in building infrastructure, which would improve the operating efficiency
of such systems, could reduce annual energy consumption inside build-
ings by 29% on average [15]. According to Granderson et al. [17], fail-
ures in controlling HVAC systems waste 3-30% of the energy consumed
by them. Research in the United Kingdom indicates that the extent of
the energy wasted may be much higher, from 25 to 50%; with timely
fault detection this could be reduced to under 15% [9]. According to
a study by the International Energy Agency [22], it is possible to save
20-30% of the energy they consume through the re-commissioning of
current HVAC systems, in particular air handling unit (AHU) operations.
Another study on a set of more than 80 sample buildings proved that
ongoing re-commissioning on average saves more than 20% of overall
energy costs [33].

1.1. Failures in HVAC systems

Failures in HVAC systems may occur during the entire lifespan of the
device. Surprisingly, failures may already occur in the project phase. It
is not rare that commercial buildings are designed without knowledge of
their future use and their operating conditions. For example, an admin-
istrative building in which offices will be leased to different end users.
During the project phase, neither the future space occupancy nor spe-
cific requirements are known, so it is difficult to design the air handling
system accordingly. Failures and excessive energy waste may also occur
during the selection or installation of the equipment, or as a result of the
inappropriate operation thereof. Unfortunately, these faults (including
construction faults) may not reveal themselves during the entire operat-
ing period.

The most critical faults are those caused by the inappropriate opera-
tion of HVAC systems. Such faults may not only be caused by changes in
building usage, but also by inadequately trained operators, a lack of reg-
ular servicing, control system faults, or just due to improperly defined
requirements in the Building Management System (BMS). Some failures,
for example fan failures, can be detected using the standard tools incor-
porated in BMSs. However, in more complex systems (e.g. the AHU),
there are many faults that cannot be detected by typical BMS alarms.
Faults may occur that can be compensated for directly by the AHU (e.g.
non-optimal heat recovery is compensated with heating or cooling [25].
Information about the fault is still included in the operating data but is
not directly visible.

1.2. Fault detection and diagnosis

The application of fault detection methods in buildings began in the
1970s, expanding rapidly in the 1990s [23]. In the 1990s, the Interna-
tional Energy Agency initiated a research project named Annex. The re-
sults of Annex are summarized in Hyvarinen and Karki [21] and Dexter
and Pekanen [11]. The theme of the project centered on fault detection
and diagnosis (FDD) methods for buildings. It covered several topics,
each requiring a different degree of engineering knowledge. Particular
attention was given to a comprehensive overview of typical HVAC sys-
tem faults and the presentation of a wide range of fault detection meth-
ods.

Comprehensive literature review of artificial intelligence-based FDD
methods for building energy systems in the past twenty years from
1998 to 2018 is provided in [55]. This article summarizes the strengths
and shortcomings of the existing artificial intelligence-based methods
and reveals the most important research tasks in the future. The au-
thors point out that improvements in reliability, robustness and gener-

alization of FDD methods are more valuable than the improvement of
accuracy only. This finding agrees with the goals of this paper. Another
comprehensive review was recently provided by [28] or [26].

There are various classifications of FFD methods, see for example the
classifications in Katipamula and Brambley [23] and Yang et al. [51].
However, two main groups can be distinguished. First are data-driven
methods such as artificial neural networks, pattern recognition tech-
niques and statistical methods. The second group consists of methods
based on a priori knowledge. This group includes first-principle meth-
ods, expert systems, physical model-based methods or simple limits and
alarms. The method presented in this paper is an example of an expert
system. A detailed review of the literature is provided in chapter 1.6.

1.3. Portability and testing of fault detection tools

An analysis of operating data may help reveal important operating
faults. However, automatic analysis is complicated because AHU units
vary, not only across different types of buildings and operations, but also
across different configuration. Under current conditions, it is not eco-
nomical to create an analytic tool tailored to a specific AHU. A more
general approach covering various AHU schemes, dimensions and pur-
poses is therefore more useful. However, this approach often leads to
simplifications or the ignoring of certain problems during the opera-
tional data analysis because the specifications of the appropriate AHU
are more difficult to follow. On the other hand, this method is consid-
ered progressive because the requirement to implement analytic func-
tions decreases. The portability of the tool to other units requires the
operating data to be machine readable. This can be achieved by use of
semantic data description (metadata).

The development of detection tools must not only overcome the vari-
ety of AHU units, but also the variety of communication protocols inside
buildings and local hardware. This implies that any detection tool must
be as universal and efficient as possible. Under such circumstances, it is
therefore useful to create automatic diagnostics as a new analytic layer
above the SCADA (Supervisory Control And Data Acquisition) server.

Although the analytic tool may be based on simple principles, the va-
riety of available data elements, individual AHUs and various hardware
or software devices makes automatic analysis a complicated task. It is
therefore very desirable to test any detection tool on real data during its
development to verify its detection and diagnostic abilities.

1.4. Severity of detected faults

When a fault is detected, it is necessary to be able to evaluate the
severity and impact thereof. Such consequences can be divided into
three basic categories — energy waste (electric, heating, cooling), reduc-
tion of device lifespan and impact on comfort in the operated area. This
is a very complicated task because every operation has different prior-
ities. One installation may place emphasis on the comfort and quality
of the internal environment, whereas another may focus on energy con-
sumption. The critical factor that determines the overall impact of the
occurred fault is the size of the AHU. However, the size may not always
be known in the SCADA. There are often devices in operation without
proper documentation, on which the labels are illegible, etc. The sever-
ity of a fault with respect to all aspects of an operation can be evaluated
by defining a severity index, which incorporates one or more indicators
(e.g. for wasted energy, user comfort and device lifespan), so that the
user can select the most suitable.
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1.5. Business aspects

As analytic functions inside buildings are not very widespread yet,
commercial models remain underdeveloped. Automated Fault Detection
and Diagnostics (AFDD) may be delivered through various implemen-
tation models and may be used by the building operator or the energy
manager, or it can be delivered on the basis of analysis-as-a-service con-
tracts that do not require direct “internal” technologies to be used [17].
The commercial relations between the owner, lessee, building adminis-
trator and servicing companies concerning building operations are very
specific and not standardized. It is therefore necessary to analyse the
market delivery and find a place for detection tools with the highest
value added. A good example of this is the Smart Energy Analytics Cam-
paign [24] which focused on improving the use of practical diagnostics
and the publication of many useful documents on the commercial as-
pects of this usage.

1.6. Related works

Several studies on AFDD of AHU have been undertaken in the past
few years. Some authors focus on simulations involving specific AHU
parts. For example, Pourarian et al. [35] used HVACSIM + to simulate
fan faults. The developed model showed satisfactory simulation results
in comparison with experimental data. In a later work, Pourarian et
al. [36] studied more than 20 fault scenarios for fan coil units (FCU).
These scenarios combined various fault types and severities. Wen and Li
[44], as well as Bushby et al. [5] and Montazeri and Kargar [29], used
the same environment (HVACSIM +) to model certain parts of AHUs.
Their work allows a better understanding of the individual parts, but it
is hardly usable for detecting faults on the entire AHU.

In many cases, the diagnostics focus on a specific or specific type
of AHU, using expert rules. The path of expert rules is simple but ro-
bust over tagged data sets. This technique, using common sense rather
than complicated mathematics, was introduced in House et al. [20].
It is denoted as AHU performance assessment rules (APAR) and con-
sists of 28 if-then rules that are evaluated according to the operational
regime of an AHU. The APAR method received a lot of attention and
was subsequently further elaborated by others (e.g. [39]). For exam-
ple, Wang et al. [43] describe the online model-based AFDD method
and the rule-based AFDD method in their study. They developed three
rule-based fault classifiers that use 14 expert rules, including six expert
rules from Schein et al. [39]. Trojanova et al. [42] presented a similar
APAR-based tool and has achieved satisfactory results, but on only one
specific AHU and concluded that the HVAC is too complex to create a
general model-based solution. A fault detection technique for an AHU
that combines expert rules and performance indexes is described in Qin
and Wang [38].

Sterling et al. [41] analysed qualitative and quantitative models for
AFDD and compared them with APAR. Their model-based diagnostics
appear to be more efficient than APAR. However, this requires a great
deal of expert work with each AHU and requires a lot of diagnostic sen-
sors, so it would only be useful for really big devices. However, the ad-
vantage of this method is that it detects faults that APAR does not, as
well as identifies the causes thereof more precisely. Bruton et al. [4]
mentions the APAR extended ruleset — a set of 52 described faults [32].
InFO, which is based on Brutoris previous work [3], is able to detect
each of these faults, but only in one type of HVAC unit (with circula-
tion damper) without heat recovery. InFO is able to specify the severity
of a fault in terms of financial costs calculated on the basis of wasted
energy, but does not take into account the possible decrease in comfort
or the shortened device lifespan. Desmukh et al. [10] also focused on
one type of AHU and detected the two most common types of fault in
which the impact on energy consumption may be critical. They consid-

ered faults involving circulation dampers to be the most critical. In their
work, the authors state that their algorithms may also work in other
buildings, although the data connection taxonomy is not included.

Some authors tried to develop ready-to-use tools for commission-
ing AHUs on cloud architecture, able to work with more types of AHU
and with the ambition of mass expansion. Choiniere and Corsi [7]
and Choiniere [6] present the DABO tool, which contains both SCADA
server elements and diagnostic rules, as well as tools for data analysis. It
focuses primarily on entire building, but also on HVAC units. It contains
about 800 detection rules. Their work has been later validated in terms
of fault detection with an 84% success rate, but only on artificially em-
ulated data [16].

The lack of building datasets, with fault classification for validation
of AFDD tools, is a persistent problem [26]. In most known studies
[49,47,48,34,51], the authors use the ASHRAE Project 1312-RP [45]
to develop and test their diagnostics. The 1312-RP project includes ex-
perimental data conducted at the Iowa Energy Center Energy Resource
Station (ERS) test facility and a model using HVACSIM +. The project
provides a collection of the fault-free and fault data that was experi-
mentally simulated on two VAV (Variable Air Volume) AHU. These two
systems had the same configuration of components (fans, coils, valves,
dampers, and sensors) and were tested simultaneously — one with man-
ually simulated faults and a second in the fault-free state. Although the
project provides a large collection of experimental data as a dataset for
comparison, the 1312-RP is only applicable for VAV AHU without heat
recovery exchangers (HRE). This system rarely occurs in the European
HVAC field since, according to European regulation, the AHUs must con-
tain HRE. This makes the entire dataset of this project difficult to trans-
fer. Lin et al. [27] proposed methodology for testing AFDD tools, us-
ing the data-set by Granderson and Lin [18], which is shorter than the
ASHRAE RP-1312 dataset and contains the same type of AHU without
HRE.

Most relevant works published in the last few years are more focused
on data mining and machine learning techniques. Zhang et al. [53] at-
tempted to improve diagnostics using physical models, such as Energy
Plus, in order to evaluate the impact of faults and thus their severity.
Some authors are trying to use the latest possibilities of artificial intel-
ligence to improve rule-based diagnostics. Dey and Dong [12], Zhao et
al. [55], Shi et al. [40] and Hassanpour et al. [19] use rules to detect
symptoms and perform diagnosis of these symptoms using data-driven
methods such as Bayesian networks.

Hassanpour et al. [19] states that the purely data-driven method is
not able to clearly distinguish faulty data from the normal. Yan et al.
[50] used the SVM method, which in successive iterations includes data
classified with a high degree of certainty in the training set, so that the
training set grows in each iteration. In other works Douzas and Bacao
[14], Yan et al. [47] and Yan et al. [46] tried to use a generative ad-
versarial network to insert noise and aberrations into the classified data
of the training set to enlarge and balance it.

Piscitelli et al. [34] tried to go the other way and with the help
of complex methods of artificial intelligence such as decision trees and
temporal association rule mining, tried to work out simple rules.

A drawback of machine learning methods is its need for large sets of
classified data. The amount of data required increases with the number
of faults to be detected. Efforts are being made to make use even of a
smaller data set. However, the question is still whether artificial intel-
ligence derived from a small dataset can ever detect faults that require
deeper expertise. Zhou et al. [56] states that binary classification of
faulty behaviour by data-driven methods works much better than multi-
ple fault classification, but HVAC systems often contain multiple faults,
and the type of fault must be clarified.
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1.7. Novelty of proposed solution

The novelty of our solution lies in the portability and universality of
the AFDD system, which we set as a main goal at an early stage of de-
velopment. We decided to combine rule-based fault detection, semantic
data description and cloud architecture, using them to create a univer-
sally applicable AFDD system.

Rule-based diagnostic systems are a universal and proven method
of automatic fault detection and, unlike machine learning methods, can
easily run on a fractional or varied set of data from measuring sensors,
which we’ve found crucial for the portability of the entire system. The
process also involves the use of semantic data for better transferability.
The data is automatically converted to relevant units and if missing, key
data points are automatically calculated by means of virtual sensors. The
cloud architecture of the SCADA server allows us to directly connect our
tool with operational data from hundreds of buildings.

2. Methods

The diagnostic system is built as a new analytical layer over a con-
ventional SCADA system. This allows easy deployment on a large num-
ber of diagnosed devices. Fig. 1 is a schematic representation of the
principle of the whole expert system. The first phase of the process in-
volves the air handling units, the number of which is not limited. Each
unit is equipped with sensors for control and visualization and is con-
nected to the BMS which controls the unit. If some important sensors
are missing in the unit, it can be equipped with IoT (Internet of Things)
sensors, if necessary.

The APAR method by Schein et al. [39] was chosen for the construc-
tion of the detection system. The advantage of the APAR method is the
low input data requirements, with a very good coverage of the range of
possible malfunctions and failures. The cited article lists 28 different de-
tection rules that are derived from only 11 data points. The idea of this
detection method was also adopted in the construction of the presented
tool, although the rules cannot be used strictly as is.

2.1. Portability

A key issue of the AFDD tool is its portability from one AHU to an-
other. To deploy diagnostics on a larger number of devices, it is neces-
sary to connect data points to the corresponding inputs of the diagnostic
system. This is done by using the semantic description of data: Meta-
data (tags) assigned to the data points by human experts. To assign data
point meaning to the diagnostic system, there are three tags that must
be assigned to each point that enters the diagnostics. The data point is
characterised by:

e the quantity it represents, such as “temperature”, “logic”, etc.,
e the location to which it relates, such as “supply air outlet”, “heater
valve”, etc.,

2 .

e its role in regulation, such as “sensor”, “required value”, etc.

The combination of these pieces of information clearly determines
the function of the data point in terms of diagnostics, while the tags
are machine-readable. Unlike datapoint names, the tags are not
world-unique, but follow the standard derived from the Haystack Project
and BrickSchema [2] in order to maintain the maximum level of com-
patibility. It is not possible to comply with both standards, with neither
proving sufficient for the semantic description of data in air condition-
ing. Current efforts by the American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE) are focused on approximat-
ing both standards under the Unified Data Semantic Modelling Solution
[1]. Within this context, it will be necessary to adapt the solution in

line with developments in the world of semantic description of data.
However, unambiguous translation from the suggested three dimen-
sional tagging system and Haystack and BrickSchema ontology can be
defined.

2.2. Mutual representation of signals and virtual sensors

Since the SCADA system contains only a list of data points without
mutual links, it is necessary to add information about the unit type (ba-
sic unit, single unit with plate heat exchanger, etc.)1 to each air han-
dling unit involved in the AFDD system. Even within one type of unit,
however, the air handling unit can be equipped with different types of
data points. For example, fan power can be represented by a continuous
signal of 0-100%, frequency of the inverter, air speed, etc. Therefore,
the AFDD tool works with phenomena that can be expressed by multi-
ple data points. According to an embodied substitution table, each phe-
nomenon searches for appropriate data points from the most desired to
the least. This means that for example, if we need to know the temper-
ature in the outdoor air channel, we will rely on a signal, which repre-
sents the temperature measurement by the sensor in the channel. How-
ever, if such a sensor is not available, the temperature upstream of the
inlet air filter may be utilized. If this information is not available, an
outside air temperature sensor can still be used. If even this value is
not available, it is possible to use information about the outside tem-
perature from nearby surroundings (another building in the dispatching
system or data from professional meteorological stations). Similarly, for
each piece of information, we can find the entire list of possible repre-
sentatives, sorted from the most suitable to the least suitable. In excep-
tional cases, when an important phenomenon is not measured or deriv-
able from others, a real sensor can be added to the AHU.

There are also phenomena that cannot be simply replaced by another
data point. A typical one is air temperature beyond the HRE. This value
is very important, but rarely does a physical sensor exist for it. It is there-
fore usually calculated on the basis of the temperature conditions before
the exchanger and the efficiency of the exchanger. This computationally
acquired information is referred to as a virtual sensor, which can replace
the missing physical sensor.

2.3. Fault detection rules

Most of the rules depend on the operating mode of the AHU. The
heater, for example, has to be tested differently when an AHU heats or
cools. The operating mode is therefore the most important virtual sen-
sor, and on which the fault detection process strongly relies. Once the
operating mode is known for a given timestamp, the appropriate set of
rules can be activated. The rules themselves are not complicated and of-
ten rely on simple, straightforward calculations that cover a particular
physical or regulatory phenomenon.

For example, checking the inlet damper position would throw up a
fault if a fan was running while the position of the relevant damper is
“closed”. The logic of this rule is the same when the operating mode
is “heating” or “cooling”. However, when the regime is “off”, the same
damper should be tested in the “open” position while the fan is “off”.
Separate rules have therefore been created for each operating mode,
whereby the rules that are focused on the same or closely related phe-
nomenon have been associated into groups called “Tests”. The relation-

1 There are many air handling units and different terms are used for them in available
sources. For clarification purposes, in this paper, a single-fan unit for fresh air is referred
to as a “basic unit”, and a single-duct unit for balanced ventilation with heat recovery of
any type (plate, wheel or glycol loop) is called a “single unit”.
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ships between the tests, rules and operating modes are presented in
Table 1. The fault detection process is shown in Fig. 2.

2.4. Severity of the detected faults

When testing a large number of air handling units, a large number of
faults are typically detected. It would be a waste of the operatofs time if
they had to deal with all of these individually. The severity of a failure
is therefore calculated for each fault detected. Severity is represented
by a calculation that covers wasted electrical energy, heat, coolness, the
threat to comfort in the ventilated area and the risk to the equipment op-
erated. Five severity-indexes are therefore presented. The total of these
signals the severity of the fault, thereby allowing the operator to priori-
tize the most important.

To calculate the amount of wasted energy it is necessary to know
additional parameters of the AHU. The wasted energy can be satisfacto-
rily estimated only if the nominal wattages of fans, pumps, heaters, and
coolers are known. Unfortunately, SCADA usually does not contain in-
formation about the size of the AHU and obtaining this information can
be complicated.

2.5. Long-term statistics & estimates

Machine evaluation of signals is dependent on threshold values. The
presented system does not use impractical fixed constants, but deter-
mines threshold values directly from the aggregated history of the sig-
nal. Every signal is processed and statistical data — median, minimum,
maximum, quantiles — are calculated. These values are used for thresh-
olds calculation. For example, when calculating the volumetric air flow
rate from the flow velocity, it is assumed that the nominal volumetric
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Table 1
Relationships between the tests, rules (@) and operating modes.

Tests and rules

Operating mode (regime)

Test name

Off

Ventilate
Ventilate-byp
Ventilate-hre

|[Heating

Cooling-byp
Cooling-hre

Cooling
|[Humidifying

|Unknown

Working time

Obedience to BMS

®|®|® |all regimes

Regimes cycling

Dampers

Heater/Cooler operation

Regime suitability

Conservation of energy

Water dt on coil

Air/water dt on coil

Oscillation of signals

Undersizing

Fans

Missing data, out of range o0

Comfort

Unknown oper. mode

Low air-flow

Oversizing

HRE operation

air flow rate occurs at the 95% quantile of flow velocity. Using the max-
imum value is problematic, since it usually represents an outlier.

In addition to analysing the history of individual signals, long-term
data on equipment for which there is no common data point, such as
exchanger efficiency, is also evaluated. These characteristics, estimated
from a long data section are then used, for example, in virtual sensors,
where they help determine, for example, the air temperature beyond the
exchanger. Changing the efficiency of the exchanger compared to the
long-term average (e. g. clogging of the exchanger) is itself a diagnostic
rule.

3. Validation

The control algorithms were validated on real devices incorporated
in a pilot plant. In total, 25 operating faults on 6 AHU were intentionally
caused in the Czech Technical University (CTU) building in Bustéhrad
(Fig. 3) to be subsequently detected by an expert system. Some faults
were invoked in all 6 units, some only in a few. In total, 105 incidents
occurred, of which 94 faults were adequately detected. During the vali-
dation process, a set of operating data with corresponding faults sched-
ule was created; this dataset is publicly available in the annex to this
article.

3.1. Tested VAC units

A typical scheme (see Fig. 4) was used for the validation of the
6 single units in the CTU building in Bustéhrad. The tested units con-
tained a plate exchanger for heat recovery, with bypass, heater and

cooler, and on one unit an air humidifier. A more detailed specification
of the units is given in Table 2.

3.2. Induced faults

On the whole, the operating faults were induced by writing the re-
quired value directly into the BMS control module for the building via
the access interface Mervis IDE. This method allowed us, for example, to
close a valve even if the information on the valve position required by
the regulator still went to the SCADA system. As a result, the fault (stuck
valve) would appear same as a real fault. However, in some cases, it was
more useful to induce the faults using the SCADA server or to induce
them mechanically, directly at the relevant AHU. All 25 faults are listed
in Table 3.

3.3. Evaluation

For evaluation purposes, an analysis was made of how the diagnostic
tool reacted to each fault and whether the fault was detected. The fol-
lowing options were possible:

1) Anticipated reaction: The tests for the detection of the specific fault
give positive results for the critical period. If the reaction is antici-
pated, the fault is always detected. Out of 105 cases, an anticipated
reaction occurred in 79.
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2) Other reaction: Some tests give positive results when reacting to the
fault, but the set of positive tests does not clearly match with the set
of anticipated tests. If the intersection of these sets is empty or almost
empty, the resulting evaluation is that the fault was not detected. If
the reaction of the diagnostic tool slightly differs from the anticipated
reaction (e.g. one positive test is missing or false positive), the result-
ing evaluation is that the fault was detected, even though the reac-
tion of the diagnostic tool did not fully meet the anticipated reaction.
Out of 105 cases, an other reaction occurred in 21.

No reaction: If there is no positive test when reacting to the caused
fault, the resulting evaluation is always that the fault was not de-
tected. Out of 105 cases, the diagnostic tool did not detect 5 faults.

3

=

In total, 105 faults were induced, of which 94 faults (90%) were de-
tected. The remaining 11 faults were not detected. The reasons for this
may have been the occurrence of another real operating fault that bi-
ased the results, or that the temperature differences during fault induc-

Fig. 3. CTU-UCEEB building.
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Fig. 4. Typical scheme for AHU testing.
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Table 2
Specification of AHUs tested.

Table 3
List of induced faults.

output Added IoT

Label Operated area [m 3/h] Components sensors

AHU1 Conference rooms, 7850 HRE, 1x chamber
classroom heater, cooler SUP*
1x chamber
ETA*
1x IAQO03
room 101
1x IAQO3
room 201
AHU2 Offices, passageways, 4560 HRE, 1x chamber
kitchen, WC, cleaning heater, cooler SUP*
room, changing room 1x chamber
ETA*
2x IAQO03
Openspace
AHUS8 ESEM microscope, 3680 HRE, 1x
laboratory heater, cooler, intercooler
steam and heater
humidifier 1x chamber
ETA*
Laboratories, 4420 HRE, 1x chamber
technical base heater, cooler SUP*
1x chamber
ETA*
1x IAQO03
lab. 137
Laboratories, solar 4050 HRE, 1x chamber
simulator heater, cooler Sup*
1x chamber
ETA*
Firefighting room 2270 HRE, 1x chamber
heater, cooler SUP*
1x chamber
ETA*

AHU18

AHU23

AHU24

* SUP — supplied air, ETA — exhaust air, IAQ - Indoor Air Quality.

tion were so small that the fault condition was within the range of toler-
ance of the sensors. In other words, not all the not-detections errors were
caused by the diagnostic tool, some of them were due to unfavourable
external conditions; in reality these conditions would disappear over
time, so the fault could be detected.

Most of the results were anticipated reactions (79 out of a total 105
cases), whereby the detection was unambiguous. In five cases, the diag-
nostic tool did not detect the fault reliably. In the remaining 21 cases,
the results were ambiguous. During the evaluation, some faults that or-
dinarily occur were also revealed, some of which arose during the con-
struction of the building.

4. Testing in real buildings
4.1. Methods of testing

After successful validation, the diagnostic tool was applied to 124 air
handling units (21 basic units and 103 single units) from several com-
panies which were willing to make their data set available for testing
of the expert system. The results of analysis were subsequently sent to
them to enable them to revise their devices according to the faults de-
tected, although their reactions to the detected faults were left to their
discretion. The entire diagnostic process is presented in Fig. 5.

As the figure shows, the diagnostics starts with acquiring data sets
and ideally ends with a well operating air handling unit with no faults
detected. In most cases, the process was more complicated because not
all participating companies were able or willing to optimise their HVAC
with respect to the evaluation.

Method of causing

Fault failure Detected

No. Description YES NO

1 Dampers are closed during heating Mervis IDE 6x -
regime

2 Dampers are closed during cooling Mervis IDE 4x -
regime

3 Dampers are closed during ventilate Mervis IDE 3x -
regime

4 Heating valve is closed during heating Mervis IDE 3x 1x
regime

5 Cooling valve is closed during cooling Mervis IDE 2x 2x
regime

6 Heating pump is OFF during heating Mervis IDE 2x 2x
regime

7 Heating pump is ON during ventilate Mervis IDE 2x 3x
regime

8 Cooling pump is ON during heating Mervis SCADA 4x -
regime

9 Heating valve is ON during ventilate Mervis IDE 4x -
regime

10 Heating valve is stuck on 50% during Mervis IDE 4x -
heating regime

11 Heating valve is open to the Mervis IDE 3x -
maximum level during heating regime

12 Fans are OFF during heating regime Mervis IDE 4x -

13 Both tubes of differential pressure mechanically 6x -
sensor disconnected

14 Tube of differential pressure sensor mechanically 5x -
disconnected (negative pressure)

15 Quick regimes cycling Mervis SCADA 6x -

16 Heating pump is ON and valve is Mervis IDE 4x -
opened during ventilate regime

17 Heating pump is OFF during Mervis IDE 1x -
humidifying regime

18 Heating valve is OFF during Mervis IDE 1x -
humidifying regime

19 Zone inlet temperature sensor reports Mervis IDE 6x -
-20°C

20 Zone inlet temperature sensor reports Mervis IDE 5x -
150 °C

21 Zone outlet temperature sensor Mervis IDE 5x -
reports —20° C

22 Zone outlet temperature sensor Mervis IDE 6x -
reports 150 °C

23 Heat exchanger is closed Mervis IDE 3x 1x

24 Cooling valve is stuck on 50% during Mervis IDE 2x 1x
cooling regime

25 Cooling valve is open to the maximum  Mervis IDE 3x 1x

level during cooling regime

4.2. Categories of detected faults

To evaluate the results, the detected faults were divided into the fol-
lowing categories according to the verification level:

@ Category I — faults with the highest verification level. These faults
were detected by the automatic diagnostic system, confirmed by an
expert and subsequently confirmed and eliminated by the participat-
ing company; in the next round of continuous commissioning they
did not appear in detection anymore. From our point of view these
faults are the most valuable ones because they present the ideal pro-
cedure during operation.
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Fig. 5. Continuous commissioning.

@ Category II — diagnosed faults confirmed by the client. However,
these faults were intentionally induced by the client, so no remedial
action was taken (e.g. flooding fault below).

@ Category III - faults that were confirmed by the client, but which
the participating company refused to deal with, and for which no
remedial action was taken. Very often these faults occurred in the
measurement and regulation system and could easily be verified in
SCADA without inspecting the device physically. However, the reso-
lution requires the adjustment of the current controlling algorithms,
which may incur higher costs than the client is willing to accept.

@ Category IV - faults that passed only the first two points of the de-
fined course without any feedback from the participating company
confirming the fault on the device. The fault was detected and subse-
quently verified by an expert, so it is very probably valid. For exam-
ple, sensors may have been defective, setpoints not observed, etc.

Other faults with a lower verification level include faults detected by
an automatic diagnostic, but not confirmed by experts for any reason.

5. Results
5.1. Detected faults by category

In total, 73 faults were detected in 58 AHUs during testing in real
buildings. Of these, 60 were confirmed, of which 18 by the participating
companies (categories I, II, III) and 42 through the analysis of the mea-
sured data (category IV). 10 faults were not resolved because the build-
ings, including the AHU, were going to be renovated. For the remaining
3 faults there were no responses from the participating companies.

Of the detected faults, 12 can be considered as confirmed and reme-
died; their occurrence and subsequent repair were confirmed by the par-
ticipating company (category I). There were 4 faults detected of cate-
gory II (faults with intentional switch into manual control), as well as 2
faults of category III, which were confirmed by the participating com-
panies, but not resolved. For the other 42 detected faults, there was no
feedback from the participating companies (category IV), only 2 were

resolved as verified by continuous commissioning. The detected faults
according to the categories are summarized in Table 4.

5.2. Causes and examples of detected faults

The most frequently detected fault related to when the AHU was in
operation out of working hours, or on the contrary, when the AHU was
switched off during working hours. This fault can be detected very easily
and has a significant impact on energy waste and comfort inside build-
ings. Other quite frequently detected faults related to control logic of
coolers and heaters or their operation during periods when they were
supposed to be switched off, for example their concurrence or improp-
erly defined controlling algorithms. A typical situation was when the
AHU was in heating mode in the morning, which then had to switch
to cooling or concurrent mode. In such situations it is desirable to set
the dead band properly, so there is a suitable interval between switch-
ing from one mode to the other (e.g. 1 h). As predicted, faults were de-
tected also at heat recovery control. In some cases, the heat recovery
was launched under climatic conditions where the outdoor air was pri-
marily cooled as it flowed through the HRE and then heated up to the
required temperature. In other cases, the heat recovery capacity was not
fully used and subsequently the air was heated up in the heater. Both
variants lead to a waste of energy on heating. In the following sections,
examples of some faults, including their subsequent solution, are illus-
trated.

Table 4
Detected faults by category.

Detected

73

Confirmed by participating company Data-confirmed Unconfirmed

18

I II 111 v

12 4 2 42 13
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5.2.1. Recurring problems

AHU type: Single unit

Heat recovery exchanger: Plate without bypass

Heating: Yes

Cooling: Yes

Humidification: No

The diagnostic system detected that the fan would not respond to the
running command. The problem was reported to the administrator. The
fault was caused by a faulty differential pressure sensor. The problem
was not resolved until nine months after the fault report. After its repair,
the sensor reacted correctly. The repair enabled the activation of more
detection rules, whereby continuous commissioning revealed another
problem, namely simultaneous cooling and heating. According to the op-
erator, the AHU was connected to the central source of cold and heat
that is controlled manually by a technician. If the heating boiler is in
operation, the cooling is shut down and vice versa. However, this repre-
sents a manual substitution of an automatic operation mode that should
be used only as a temporary solution for the issue. This problem was re-
ported 24 days after having resolved the previous situation. 4 days later
the software of the BMS system was updated, resulting in the second
fault also being resolved. However, at a later date the fault occurred
again, which remains unresolved. Some personnel changes took place at
the operator, which also affected the ability to take remedial action.

5.2.2. Excess humidification

AHU type: Single unit

Heat recovery exchanger: Wheel

Heating: Yes

Cooling: Yes

Humidification: Yes

Another example of a detected fault was the simultaneous humidifi-
cation and cooling in two AHUs. In both cases, the humidification con-
trol should have followed the desired relative humidity (43% during
working hours and 35% out of working hours). However, humidification
was functioning even during cooling and even though the exterior hu-
midity was higher than desired (dehumidification by cooler). The prob-
lem was reported to the administrator, who arranged for the humidifiers
to be shut down manually. In the future, there are planned adjustments
to the control system to ensure, among other things, that concurrent hu-
midification and cooling will be blocked. There was a great deal of in-
formation available on this system, so in this case it was possible to cal-
culate the financial savings after the fault repair, which were estimated
at USD 16,000/year.

5.2.3. Heated up plant (Heating up)

AHU type: Single unit

Heat recovery exchanger: Wheel

Heating: Yes

Cooling: Yes

Humidification: No

The automatic detection system recognized running outside of the
buildings working hours (the inlet and outlet fans were constantly run-
ning) and identified the fact that the temperature of the intake air was
very high. It appeared that this was caused by the need to heat up two
floors in the building to dry out rooms after flooding. Heating up the
rooms took place one morning, but from that day on, the VAC ran non-
stop in manual mode for 49 days. After being switched back to standard
mode, continuous commissioning revealed that the fans did not operate
in accordance with their commands. As a consequence, the differential
pressure sensors were changed and everything returned to normal.

6. Discussion
6.1. Comparison with existing methods

The FDD tool presented in this paper is rule-based. The goal of
Zazvorka [52] was to use the same validation data set from UCEEB
buildings using an alternative approach, namely artificial intelligence.
Various types of decision trees were used in order to train a set of FDD
rules. Oblique decision trees provided the best results compared to basic
decision trees and random forest algorithms.

However, the results were not satisfactory due to the small amount
of faulty training data. The decision trees overfit the data, resulting in
rules that were irrelevant to the particular faults and worked only on
the training and validation data sets. Similar findings related to over-fit-
ting also discussed Zhao et al. [54]. However, the authors do not draw
any general conclusions about rule-based and data-driven FDD methods
based on these results.

The goal of this study is not the maximum success of fault detection
for a particular AHU, but a satisfactory detection rate for the maximum
amount of AHU. Authors agree with Lin et al. [27], saying that it is dif-
ficult to draw comparisons or understand the overall state of technol-
ogy, as each study uses different datasets, test conditions, and metrics.
We can add that the tool presented by us shows a success rate of 90%,
which we consider sufficient due to the breadth of coverage. Pena et al.
[30] presented FDD tool for entire building, which goes into larger en-
tities in less detail and shows a specificity of 90% as well as a sensitivity
of 95%. Another similar tool DABO [6], proved a success rate of about
84% [16].

6.2. Practical issues and complications

In the set of tested units there were basic units for only fresh air sup-
ply, single units with plate HRE, with and without bypass, units with a
heat wheel, and units with heat recovery through glycol circuits, all of
them with or without heater, cooler or humidifier. The detection system
is not yet able to detect faults in units with a mixing air damper.

In addition to fault detection, estimating the wasted energy was also
given consideration. This turned out to be much more complex than the
fault detection itself. The calculation is complicated by the fact that the
size of the relevant AHU is usually unknown. During the work, these
basic parameters proved to be difficult to determine. Usually the own-
ers operate AHUs without detailed knowledge thereof because the docu-
mentation either does not exist, is not available, or nobody is willing to
find it. Even if detailed AHU parameters were available, the calculation
of wasted energy can only be an approximation. For example, the per-
formance of a heater running unnecessarily could be calculated from air
temperature differences and air flow or from water temperature differ-
ences and water flow. However, all three crucial parameters are usually
not available. Generally, only one of the three parameters is available
and the two remaining parameters have to be estimated with the help
of virtual sensors, so they are inaccurate. The final calculation of wasted
energy can therefore only really be used for comparative purposes with
regards to establishing fault severity in relation to other faults. However,
the absolute value needed, for example for invoicing purposes, is lack-
ing. As a result, and for development purposes, this will not be quanti-
fied in kilowatt-hours of wasted energy in the future, but as a dimen-
sionless severity index.

6.3. Practical applicability
This article deals with AHU fault detection method design. How-

ever, in practice, effective cooperation with local technicians and man-
agers is crucial for fixing detected faults. We were surprised by the high
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level of resistance from many technicians, resulting in unfixed faults.
In general, technicians were sceptical that someone without detailed
knowledge of the current HVAC could give advice on how to operate it.
In almost all cases, the local staff were in a hurry and did not have time
to deal with analytical findings. We had the best experience with those
companies that own (or operate) several buildings. In these companies,
there is usually a manager responsible for HVAC operations who is will-
ing to fully exploit the added value of automated fault detection.

Another major practical problem was that none of the participating
companies were in a position to a priori estimate the potential savings
that could be generated through the application of fault detection meth-
ods (in contrast to conventional energy savings methods like insulation).
The reliable automated estimation of energy and cost savings is a far
more complicated task than fault detection. Expert knowledge is needed
for fault diagnostics and the estimation of monetary consequences.

6.4. Market readiness

HVAC fault detection methods have been widely investigated since
the 1980s. Despite this, fault detection still does not form part of com-
mon HVAC operations today. This is mainly due to the low level of
portability of fault detection methods and therefore the high cost of fault
detection applications. As mentioned previously, we are seeking to ad-
dress this issue through the design of a versatile AHU fault detection
system that can be applied to a wide range of AHUs. More importantly,
the increasing importance of semantic data in building management sys-
tems will play an important role in making fault detection methods more
widespread. Major companies such as Siemens and Johnson Controls are
acknowledging this [8]. The expectation is that semantic data will be-
come a common part of BMS within a few years. As a result, the applica-
tion of fault detection methods should then become surprisingly simple,
cheap and a common part of BMS.

7. Conclusions

The system of automatic fault detection in AHUs, as presented in this
paper, proved to be functional and useful. The system shows a high suc-
cess rate with a relatively wide range of detected faults. It covers several
types of AHU. The main advantage of the presented tool is the fact that
it covers the full range of issues: the authors not only present algorithms
for fault detection, but also address data sources, semantic description
of data, portability, and the application of the tool to a wide range of
AHUs. Portability of the tool is the key to expanding fault detection in
the market and its adoption as a common component of BMS or SCADA.
As part of the development, many dozens of AHUs were automatically
commissioned, while data point tagging and connection to the detec-
tion system was handled by one person in a few working days, despite
the fact that this involved AHUs of various types in dozens of buildings
across the country.

The effectiveness of the detection algorithms was demonstrated in
a controlled environment on the basis of artificially induced faults. Au-
thors note, that the data set created for the validation of algorithms is a
part of this paper. This verification produced a 90% fault detection rate.
In addition, some natural faults were detected that occurred when the
AHU was taken into operation or which occurred during operation and
were not detected (e.g. burnt bypass damper drive in AHU used for ven-
tilation of a fire laboratory).

Fault detection has proven to be useful and provides high added
value not only in a controlled environment, but also in practice. Dozens
of faults were confirmed and the savings achieved by their elimination
ranged from zero to about USD 16,000/year. The costs of continuous
commissioning of one AHU are not precisely quantified and may vary
from case to case, but are in the order of hundreds of USD/year. In

some cases, banal faults in information sensors were found — seemingly
without any impact on the economics of operation. However, their re-
moval made it possible to detect hitherto hidden fundamental faults,
such as simultaneous heating and cooling.
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