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Abstract

In the field of numerical structural analysis, shell formulations are generally proposed to model
the mechanical response of thin curved structures. Typical approaches consist in the numerical
approximation of the surface of the structure in order to develop the element stiffness matrix
that is used in the framework of the finite element method (FEM). In this context, the thickness
direction of the shell is included in the derivation of the element stiffness matrix which is then
associated to translational and rotational degrees of freedom.

In recent years, the scaled boundary method has been proposed to model thin structures such
as plates and shells. The main idea of this approach consists in a solid shell formulation with
scale separation. The in-plane direction is approximated in a classical sense by shape functions,
but for the thickness direction, the analytical solution is taken into account. By these means,
the nodal degrees of freedom are given by the displacements of the top and bottom surface of
the shell.

The objective of the present thesis is to develop and implement a scaled boundary shell
formulation into the framework of isogeometric analysis (IGA). This framework offers the ad-
vantage of an exact approximation of a shell structure, since it is based on the NURBS functions
that are used for the geometrical description. Furthermore, a higher continuity of the solution
field is given naturally by means of these functions.

The initial tasks of this project consist in the familiarization with the scaled boundary shell
formulation as well as with IGA. Afterwards the element formulation needs to be derived and
implemented into the IGA framework. To conclude the work, standard shell element benchmarks
such as the pinched cylinder are performed and documented.





Kurzfassung

Im Bereich der numerischen Strukturanalyse werden im Allgemeinen Schalenformulierungen
verwendet, um das mechanische Verhalten von dünnen gekrümmten Strukturen zu modellieren.
Typische Ansätze bestehen in der numerischen Approximation der Oberfläche der Struktur,
um die Elementsteifigkeitsmatrix zu entwickeln, die im Rahmen der Finite-Elemente-Methode
(FEM) verwendet wird. In diesem Zusammenhang wird die Dickenrichtung der Schale in die
Ableitung der Elementsteifigkeitsmatrix einbezogen, die mit translatorischen und rotatorischen
Freiheitsgraden verknüpft ist.

In den letzten Jahren wurde die Scaled Boundary Methode entwickelt, um dünne Strukturen
wie Platten und Schalen zu modellieren. Die Hauptidee dieses Ansatzes besteht in einer festen
Schalenformulierung mit Skalentrennung. Die Richtung in der Ebene wird im klassischen Sinne
durch Ansatzfunktionen approximiert, aber für die Richtung der Dicke wird die analytische
Lösung berücksichtigt. Auf diese Weise sind die Knotenfreiheitsgrade durch die Verschiebungen
der Ober- und Unterseite der Schale gegeben.

Das Ziel der vorliegenden Arbeit ist die Entwicklung und Implementierung einer Scaled
Boundary Schalenformulierung im Rahmen der isogeometrischen Analyse (IGA). Dieser Rahmen
bietet den Vorteil einer exakten Approximation einer Schalenstruktur, da er auf den NURBS-
Funktionen basiert, die für die geometrische Beschreibung verwendet werden. Weiterhin ist
durch diese Funktionen inhärent eine höhere Stetigkeit des Lösungsfeldes gegeben.

Die ersten Aufgaben dieses Projektes bestehen in der Einarbeitung in die Scaled Boundary
Schalenformulierung sowie in die IGA. Danach muss die Elementformulierung abgeleitet und
in das IGA-Framework implementiert werden. Zum Abschluss der Arbeiten sind Standard-
Schalenelement-Benchmarks wie z.B. der eingespannte Zylinder durchzuführen.
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1. Introduction

1.1. Motivation

Since time immemorial, shell structures have been designed and built for special architectural
buildings. Buildings such as the Olympic Center in Munich or the Pantheon in Rome have a very
special character. However, these buildings not only place special architectural demands on the
builders, but also present challenges for structural design. Over time, the calculation of shells
has changed a lot. While the first dome structures still depended heavily on the experience of
the master builders, today’s modern numerical methods can be used to precisely determine the
stress distributions and forces. With the increasing use of computers, more and more complex
shells can be calculated with more and more accurate methods.

Figure 1.1: Examples of shell structures in engineering problems for a car body [24] (left) and the
roof of Terminal 2 at the Kuwait International Airport [6] (right).

In particular, numerical methods, which require a high computational effort, have proven to be
very useful due to the development of powerful computers. Nowadays shell structures are not
only considered for civil engineering applications but have a wide range of usage. Thus, car
bodies, hulls of satellites and airplanes or packaging are analyzed as shells for example.

One method to analyze complicated geometries is called isogeometric analysis (IGA) and is
characterized by the fact that the geometric description of a shell is represented exactly at the
nodes. In this thesis, the isogeometric analysis is combined with the scaled boundary method, a
technique to discretize only the boundary of a body and extrapolate the solution to the interior
by a scaling parameter. Thereby, especially computational time can be saved, besides other
advantages such as increasing accuracy.

1.2. State of art

Since the advance of computational power, shells have been increasingly calculated using nu-
merical methods, and the FEM has proven to be very powerful. To represent the geometry
and the solution field Lagrangian polynomials are employed as basis functions. These functions
are normally built up on a mesh, which needs to be generated from a CAD model developed
from a design process. This generation of the mesh often causes that the geometry gets changed
especially for curved entities. Furthermore, the continuity is of low order at element boundaries
which influences the quality of the solution. To overcome this gap between the design process

1



1.3 Organization of this Work

and the analysis the (IGA) was developed. Basic concept is to use the same basis functions,
which are called NURBS, for the design as for the analysis, which is applicable for many kinds
of body types.

So far, IGA was applied to several shell formulations. The main theories are the Kirchhoff-
Love theory and the Reissner-Mindlin theory. The Kirchhoff-Love shell is rotation-free and only
valid for thin shells since the transverse shear deformations are neglected. The shell formulation
requires a continuity also on the derivative of the basis functions (C1-continuity), which is hardly
possible to reach for finite elements, but one of the features of NURBS. Therefore, Kiendl et al.
[11] developed a NURBS-based Kirchhoff-Love shell.

The Reissner-Mindlin shell plays the dominant role when it comes to finite element. In
contrast to the Kirchhoff-Love shell, the transverse shear deformations are considered and thus,
the shell is also applicable for thick shells. This formulation was also developed as a NURBS-
based shell. Unfortunately, the two shell formulations suffer from locking for thin structures for
both approaches, IGA and FEM, especially for low order basis functions.

Therefore, Li et al. [14] developed a shell based on the Scaled Boundary Finite Element
Method (SBFEM), which is a solid shell. This method provides an analytical solution in the
thickness direction of the shell, for which yields an additional analysis along the thickness. This
work is concerned with the development and implementation of an Isogeometric Scaled Boundary
shell formulation (SBIGA), which combines the isogeometric analysis with the scaled boundary
method for shells.

1.3. Organization of this Work

The thesis consists of six chapters and the appendices. The structure is as follows:
At first in Chapter 2 nowadays problems of the interaction of computer aided design (CAD)

and computational methods are described and the advantages of a NURBS-based description
of the geometry are pointed out. All the necessary mathematical background of B-splines and
NURBS is provided and explained. Finally, a framework for shells using isogeometric analysis
is presented, which uses NURBS as basis functions and reduces the gap between design and
calculation.

In Chapter 3 an element description using the scaled boundary method for shells with an
analytical approach in thickness direction is presented and the crucial points to couple this for-
mulation with the isogeomentric analysis are pointed out. In particular, the increased difficulty
of the formulation due to curved surfaces and the associated changes for the scaled boundary
transformation of shells are addressed.

Chapter 4 shows the numerical implementation of the isogeometric scaled boundary formu-
lation. At first, a general architecture of a numerical simulation is explained and separated in
its features. The key functions and processes are explained and the important parts of the code
are visualized.

The benchmarking is documented in Chapter 5. Four examples are presented as they are
the simply supported square plate, the pinched cylinder, the Scordelis-Lo roof and the pinched
hemisphere with hole. All the models are evaluated conducting an order elevation and a mesh
refinement and the accuracy of the solution is critically evaluated.

The summary of the results of this work is given in Chapter 6. Furthermore and outlook
for future investigations is presented. Further information is given in two appendices to present
additional technical details related to the main part of the thesis.

2



2. Isogeometric analysis

Different methods are provided to describe the interpolation of the geometry and the solu-
tion field of an object in the Euclidean space. In this thesis Non-Uniform Rational B-Splines
(NURBS) are used as shape functions, which is a quite powerful tool in the framework of isoge-
ometric analysis (IGA) for structural analysis. The method was first introduced by Hughes et
al. in 2005 in [9]. The main motivation to use NURBS as basis functions in numerical analysis
is that the geometry describing functions of the design process can be used directly in the simu-
lation. In the model generation and simulation analysis with the usual Finite Element Analysis
(FEA), especially the model generation takes a very high portion of the time, since an entirely
new model has to be created for the simulation, which in turn has to be generated with different
meshes.

Figure 2.1 shows all important steps for a simulation with numerical methods and the relative
portions of the total time of the process. The data was published in the paper [5] in 2005 and
were collected by Sandia National Laboratories. It can be seen that almost 70% of the time was
spent on building the model (highlighted in yellow). If, on the other hand, NURBS rather than
Lagrange polynomials are used for the basis functions, this ratio can be significantly reduced,
since the functions are already stored in the CAD model. Thus, the process of model generation
cannot be eliminated completely, but the necessary time is reduced considerably.

Figure 2.1: Exemplary estimation of relative time consumption of various steps in a simulation
process at Sandia National Laboratories [5].

But not only the model generation becomes less time consuming - also in other areas the IGA

3



2.1 Geometric description using B-splines and NURBS

offers advantages, because it combines features of the finite element analysis and meshless meth-
ods, namely:

1. It takes the geometry more into account by evaluation of the NURBS and control points
instead of Lagrange polynomials and nodes. No matter how rough the mesh is discretized,
the geometric description is always exact.

2. By saving the geometry within the NURBS basis functions, the mesh refinement is sim-
plified once the initial mesh is constructed.

3. The mesh refinement can be used to increase the continuity of the model which provides
better stability of the calculation for specific problems.

Therefore, in the following sections the fundamentals of describing geometries with B-splines
and NURBS are explained and their applications, properties, advantages and disadvantages are
shown. After describing the basis functions, curves and surfaces, the framework for numerical
analysis with NURBS (IGA) is introduced as a conclusion of this chapter.

2.1. Geometric description using B-splines and NURBS

Since NURBS consist of B-splines, it is important to explain their concept first. For this purpose,
a step-by-step explanation of the geometric description of entities is given. At first, the B-spline
basis functions are presented which can then be used to generate B-spline curves and surfaces.
After having a look on the specific properties regarding their continuity, NURBS are introduced
and so their derivatives. With this in hand, all the theory that is necessary to know for the
geometric description in IGA is provided.

2.1.1. Fundamentals of B-splines

At first, a knot vector is introduced, which is a vector in one dimension and contains a set
of non-decreasing coordinates in parametric space and is presented as Ξ = {ξ1, ξ2, ..., ξn+p+1},
where ξi ∈ R is the i-th knot, i is the knot index with i = 1, 2, ..., n+ p+ 1, n is the number of
basis functions that compose the B-spline and p is the polynomial order which is usually referred
to as degree in the computational geometry literature. These knots can be considered as the
division points that subdivide the interval {ξ1, , ..., ξn+p+1} into knot spans. Each B-spline basis
function is supposed to have its own domain on the interval. If the distance between the knots is
not changing in the parametric space, which means they are equally spaced, it is called uniform.
If they are unequally spaced, the knot vector is called non-uniform. This is of special interest
when it comes to NURBS, see Section 2.1.5. Furthermore, if a knot is located more than once
on the same coordinate in parametric space, it is called a repeated knot. These repeated knots
determine the continuity of the splines and are discussed in Section 2.1.3. The most commonly
used open knot vectors in structural analysis have its first and last knots p+ 1 times repeated.
Thus, in one dimension the B-spline curves are interpolatory at the ends of the parametric space
interval and at the corners of patches in multiple dimensions. However, it is important to notice
that B-splines not necessarily interpolate at interior knots, which is a big difference between
knots and so called nodes which are used in the finite element analysis.

The B-spline basis functions are usually determined recursively by the Cox-de Boor recursive
formula. It starts with piecewise constant basis functions (p = 0) and defined as
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2.1 Geometric description using B-splines and NURBS

Ni,0(ξ) =

1 if ξi ≤ ξ < ξi+1

0 otherwise
. (2.1)

For higher polynomial orders of p = 1, 2, 3, .. the basis functions are defined as

Ni,p(ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2.2)

With the knot vector and the recursive formula in hand, the B-spline basis functions can be
constructed. Therefore, the knot vector defines the polynomial order such as the start and end
points of the basis function.

Figure 2.2: B-spline basis functions of orders p = 0, p = 1 and p = 2, defined by open knot vector
Ξ = [0,1,2,3,4, ...] [9].

Consecutively, essential properties of B-spline basis functions can be stated, which are visible in
Figure 2.2:

1. All functions are non-negative, which means that Ni,p(ξ) ≥ 0,∀ξ.

2. The sum of all values of the basis functions at an arbitrary point ξ is equal to one. This
is called the partition of unity, where ∀ξ, it holds that ∑n

i=1Ni,p(ξ) = 1.

3. Each basis function Ni,p(ξ) has a compact support that is contained in the interval [ξi,
ξi+p+1].

4. For constant and linear piecewise polynomials (p = 0, 1) the basis functions are the same
as for the standard constant and linear basis functions of finite elements. However, for
higher polynomial orders the basis functions differ.

With the basis functions and the knot vector in hand, entire B-spline curves can be defined in
the following subsection.

2.1.2. B-Spline curves

B-spline curves are constructed by calculation a linear combination of B-spline functions and
coefficients in any dimension Rd. These coefficients are called control points and can be con-
sidered as similar to nodal coordinates used in finite element analysis. However, the control
points do not necessarily need to be interpolated and act more in a way of a scaffolding. A
piecewise-polynomial B-spline curve is defined in equation (2.3) for n basis functions Ni,p and
the referring control points Bi ∈ Rd, where i = 1, 2, ..., n:
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2.1 Geometric description using B-splines and NURBS

C(ξ) =
n∑
i=1

Ni,p(ξ)Bi. (2.3)

An example of a B-spline curve with its basis functions is given in Figure 2.3. This curve
will be used as an example for all the modifications which are presented in this chapter to
have a simple and common visualization. The curve consists of an open knot vector Ξ =
[0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5] and consecutively of quadratic basis functions (p = 2). Furthermore,
a repeated knot is shown at ξ = 4 in parametric space, therefore the interior control point is
interpolated. By piecewise linear interpolation of the control points the convex hull is drawn,
which is also called control polygon.

Figure 2.3: Exemplary B-spline curve with a non-uniform, open knot vector of
Ξ = [0,0,0,1,2,3,4,4,5,5,5] [8].

Again, some important properties of B-spline curves can be defined regarding continuity etc.

1. If the knot vector only consists of the numbers zero and one and n = p then the curve is
a Beziér curve.

2. The degree of the curve p, number of basis functions n and number of knots mk are related
by mk = n+ p+ 1.

3. The end points of a B-spline are always interpolated since the knot vector is open.

4. B-splines provide the local modification scheme, which means that the moving of a con-
trol point Bi only changes the curve on the interval [ui, ui+p+1). This fundamentally
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2.1 Geometric description using B-splines and NURBS

differs from Beziér curves and increases the stability of the calculations and decreases the
calculation costs.

Furthermore, special properties with respect to the continuity of B-splines are explained in the
following passages.

2.1.3. Continuity

Continuity means - in a mathematical sense - that a function varies with no abrupt breaks or
jumps within the domain it is defined. The continuity is denoted as Cd, where d is the number
of continuous derivatives that can be obtained. In terms of structural analysis the continuity
has a high impact on the quality of the solution field, since in plate bending patches for example,
C0-continuity, where only the basis functions but not their derivatives are continuous, means
that the displacements are continuous but the stresses are not. C1-continuity means that both
displacement field and stress field are continuous, in the case of continuous material.

Figure 2.4 shows the exemplary basis functions of Section 2.1.2 using quadratic basis func-
tions with an open knot vector. In between the knots and at all the knots except at ξ = 4 in
parametric space, the function is C1-continuous. At ξ = 0, ξ = 4 and ξ = 5 the function has
repeated knots and is therefore only C0-continuous on ξ = 4 and C−1-continuous on ξ = 0 and
ξ = 5. In this special case, where the multiplicity of the knot k is equal to the polynomial order
p, the basis function is interpolatory.

Figure 2.4: B-spline basis functions for knot vector Ξ = [0,0,0,1,2,3,4,4,5,5,5] [9].

So in general the continuity of basis functions can be summarized as that a every basis function
is Cp-continuous in between knots. However, since the multiplicity of the parametric points in
the knot vector influence the continuity, the basis function has over the whole domain p − ki
continuous derivatives, where ki is the multiplicity of a knot at the point ξi. If the multiplic-
ity exceeds the order p, the basis becomes discontinuous and the patch boundary is formed.
However, even though the multiplicity of knots has an influence on the continuity, it does not
influence the support, since the basis function Ni,p still begins at knot ξi and ends at ξi+p+1.

2.1.4. B-spline surfaces

Since this work is not aimed at analyzing curves, but three-dimensional surfaces, in the fol-
lowing B-splines are extended to surfaces. Since a surface is a two dimensional object, control
points form a control net Bi,j(x, y, z), where i = 1, 2, ..., n and j = 1, 2, ...,m. Additionally two
knot vectors are constructed for the two directions ξ and η in parametric space as they are
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2.1 Geometric description using B-splines and NURBS

Ξ ={ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1}. A tensor product of these curves in two
orthogonal directions ends up as B-spline surface defined as

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(ξ)Bi,j . (2.4)

It is important to notice that as for the B-spline curve, p is the polynomial order in ξ-direction
and n the number of basis functions that comprise the B-spline in the same direction. This
applies in the same way for q as polynomial order in η-direction and the number of basis
functions m. Also, Ni,p(ξ) and Mj,q(η) act as the basis functions. When it comes to structural
analysis, the elements commonly used in finite element analysis are now the knot spans.

Figure 2.5: Example of how knot spans act as elements [9].

Figure 2.5 shows how a bi-unit parent element is shaped in its physical space by the knot spans
[ξi, ξi+1]× [ηj , ηj+1]. In this way elements on the patch can be reparametrized to run the Gauss-
Legendre quadrature for the numerical integration. The precise procedure is explained in Section
2.3.

2.1.5. Rational B-splines

Using B-splines for the geometric description of an entity in Rd is advantageous for many ap-
plications, but when it comes to the exact description of, for example, circles and all conical
sections, B-splines of the same dimension can no longer represent them. Therefore, a projective
transformation of B-spline entities in Rd+1 is constructed. This means in the case of a circle in
R2, that the circle is described by a quadratic B-spline curve in R3 which yields a rational poly-
nomial of the form CR(ξ) = f(ξ)/g(ξ). Consequently, the functions of f(ξ) and g(ξ) themselves
consist of piecewise polynomials. Additionally, weighting factors w are introduced which project
the projective control points defined in R3 into control points in R3. In general, this means that
the new rational basis function is defined as

Rpi (ξ) = Ni,p(ξ)wi∑n
î=1Nî,p(ξ)wî

. (2.5)

It is important to notice, that î has not the same meaning as i, which is the knot index, but means
just the summation index. With the Non-Uniform Rational B-Spline basis function in hand, the
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2.1 Geometric description using B-splines and NURBS

rational curve can be defined similarly as the B-spline curve by taking a linear combination of
NURBS basis functions, which yields

C(ξ) =
n∑
i=1

Rpi (ξ)Bi. (2.6)

Rational surface basis functions are determined the same way by taking the tensor product of
two NURBS basis functions (2.7a) in orthogonal direction and the NURBS surface (2.7b),

Rp,qi,j (ξ, η) = Ni,p(ξ)Mj,q(η)wi,j∑n
î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η) (2.7a)

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Bi,j . (2.7b)

If the weights of the control points of NURBS are all equal, NURBS are equal to B-splines,
which makes B-splines a special case of NURBS. Therefore, all the properties of B-splines are
also properties that can be stated for NURBS. So as for the B-spline basis function, the NURBS
basis functions form a partition of unity, have the same support and continuity. Furthermore,
the basis functions both are non-negative on the whole domain.

2.1.6. Derivatives of B-splines and NURBS

To use NURBS in an analysis framework it is not just important to determine points on a surface
but also the changes at these points. There are many different ways to determine derivatives
of NURBS and B-splines reported in the literature as [20] or [21]. In this work two approaches
were used, the first approach employs analytical expressions and the second approach finds the
derivative via finite differences.

Analytical derivation

The analytical solution considers that B-splines are defined recursively in the Cox-de Boer re-
cursive formula and thus, the derivatives of B-spline functions can be determined as lower order
basis functions, defined as

d

dξ
Ni,p(ξ) = p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (2.8)

For a more generalized form, where the k-th derivative can be determined both sides are differ-
entiated as

dk

dkξ
Ni,p(ξ) = p

ξi+p − ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ)

)
. (2.9)

A similar way applies for the first derivative of NURBS basis functions as

R′pi (ξ) = WiN
′p
i (ξ)∑n

i=1wiN
p
i (ξ) −

wiN
p
i (ξ)∑n

i=1wiN
′p
i (ξ)

(∑n
i=1wiN

p
i (ξ))2 . (2.10)

However, this only applies for B-spline and NURBS curves. For surfaces the partial derivatives of
the NURBS basis functions Rp,qij (ξ, η) need to be determined by using the quotient rule. However,
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2.1 Geometric description using B-splines and NURBS

for the sake of compactness some auxiliary equations consisting of B-spline basis functions, their
derivatives and weights are defined in Table 2.1. Note that, for notational simplicity, the explicit
dependence of some quantities on ξ and eta is omitted.

Table 2.1: List of auxiliary equations to simplify the derivatives.

A = ∑n
i=1

∑m
j=1N

p
i (ξ)M q

j (η)wij G = Np
i (ξ)Mp

j (η)wi,j
B = ∑n

i=1
∑m
j=1N

′p
i (ξ)M q

j (η)wij H = N ′pi (ξ)Mp
j (η)wij

C = ∑n
i=1

∑m
j=1N

p
i (ξ)M ′qj (η)wi,j I = Np

i (ξ)M ′qj (η)wi,j
D = ∑n

i=1
∑m
j=1N

′p
i (ξ)M ′qj (η)wi,j K = N ′pi (ξ)M ′qj (η)wi,j

E = ∑n
i=1

∑m
j=1N

′′p
i (ξ)M q

j (η)wij H = N ′′pi (ξ)Mp
j (η)wij

F = ∑n
i=1

∑m
j=1N

p
i (ξ)M ′′qj (η)wi,j L = Np

i (ξ)M ′′qj (η)wi,j

Using these auxiliary equations, the first derivative with respect to ξ and η yields

∂Rp,qi,j (ξ, η)
∂ξ

= H

A
− GB

A2 (2.11a)

∂Rp,qi,j (ξ, η)
∂η

= I

A
− GC

A2 . (2.11b)

The second partial derivatives of the basis functions are derived in a similar ways as

∂2Rp,qi,j (ξ, η)
∂ξ2 = KA−HB

A2 − (HB +GE)A2 − 2GAB2

A4 (2.12a)

∂2Rp,qi,j (ξ, η)
∂η2 = LA− IC

A2 − (IC +GF )A2 − 2GAC2

A4 (2.12b)

∂2Rp,qi,j (ξ, η)
∂ξ∂η

= JA−HC
A2 − (IB +GD)A2 − 2GBAC

A4 . (2.12c)

Thus, for the geometric description of the surface, all properties can be derived which are
necessary in the further course. In order to be able to check these computations, however, a
further method is presented, which is based on a completely different approach.

Finite Difference Method

The second method to determine the derivative of a function works numerically and is called
the Finite Difference Method (FDM). The basic idea is to approximate the derivative of an
arbitrary, continuous function by a difference quotient. Thereby a secant of points of equidistant
orientation is formed around the point x̄ at which the derivative is determined. If the distance
between the points is minimized, the derivative at the investigated point can be determined
more and more precisely, but never exactly. Depending on how the points around the examined
point x̄ are distributed, it is called a forward, backward or central difference. Figure 2.6 shows
the three approaches for an example function. In this work only the central difference was used.
Thus, the important equations of this approach are derived. However, with these expressions
in hand, the other approaches can be easily determined. Since this method can be used for all
kinds of derivatives that are upcoming in this thesis, it is described in a more general way.
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2.1 Geometric description using B-splines and NURBS

Figure 2.6: Different approaches of the finite difference method.

Let us assume that we want to find the derivative of the function u(x) at point x̄, then we
determine the values of the function u(x) at the points x̄ − ∆x and x̄ + ∆x, where ∆x is the
differential increment and the points x̄ ± ∆x are grid points. By dividing the difference of
the two points by their distance, which is ∆x twice and decreasing the differential increment
towards zero yields the exact derivative at the point of x̄. For numerical approximations ∆x
cannot be chosen to be equal to zero, but to be sufficiently small to determine the derivative
precisely but not too small to evoke numerical instabilities. In this work ∆x was chosen to be
∆x ∈ [10−6, 10−4]. This yields the approximation of the first derivative as

∂u

∂x
(x̄) = lim

∆x→0

u(x̄+ ∆x)− u(x̄−∆x)
2∆x ≈ u(x̄+ ∆x)− u(x̄−∆x)

2∆x . (2.13)

With the first derivative in hand, the second derivative can be determined in the same way by
calculation the differential quotient of the derivatives u′(x̄−∆x) and u′(x̄+ ∆x) as

∂2u

∂x2 (x̄) = lim
∆x→0

u(x̄+ ∆x)− 2u(x̄) + u(x̄−∆x)
(∆x)2 ≈ u(x̄+ ∆x)− 2u(x̄) + u(x̄−∆x)

(∆x)2 . (2.14)

It is important to notice that for the derivation of the second derivative in (2.14) the backward
and forward derivatives are considered for the derivatives at the grid points. When it comes to
mixed derivatives where the derivatives are conducted in two orthogonal directions, it applies
that

∂2u

∂x∂y
= ∂

∂x

(
∂u

∂y

)
= ∂

∂y

(
∂u

∂x

)
(2.15)

and, therefore,

∂2u

∂x∂y
(x̄, ȳ) ≈ u(x̄+ ∆x, ȳ + ∆y)− u(x̄+ ∆x, ȳ −∆y)− u(x̄−∆x, ȳ + ∆y) + u(x̄−∆x, ȳ −∆y)

4∆x∆y .

(2.16)
Similar to the equations above, ∆y is the differential increment and the evaluated point is now
in the 2D-coordinate system at point (x̄, ȳ).

These equations can be used to determine the derivative, if the function is continuous on
the domain and level. Which means that if a function is only C1-continuous, it is not possible
to derive the second derivative of the function.
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2.2 Refinement techniques

2.2. Refinement techniques

One of the most important aspects of using B-splines and NURBS as basis functions for
structural analysis is the many ways to enrich the basis with leaving the geometry and the
parametrization unchanged. In the following, three different possibilities are shown with which
the initial B-spline or NURBS can be refined. Not only the element size can be influenced,
but also the order of the basis functions and consequently their continuity. The methods of h-,
p- and k-refinement are presented and shown on the basis of the exemplary B-spline from the
previous passages. Also the striking differences to the commonly used FEA are pointed out.

2.2.1. h-refinement: knot insertion

The first strategy is the h-refinement, where knots can be inserted without changing the geometry
or parametric space, therefore, it is also called knot insertion. So for the insertion of a single
knot into an initial knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1} and an initial amount n of control points
B = {B1, B2, ..., Bn} the new knot is defined at ξ̄ ∈ [ξk, ξk+1], where k is the last knot on the
initial knot vector smaller than ξ̄. Then, the new n + 1 control points B̄ = {B̄1, B̄2, ..., ¯Bn+1}
can be calculated by

B̄i = αiBi + (1− αi)Bi−1 (2.17)

where αi is defined as

αi =


1 1 ≤ i ≤ k − p,
ξ̄−ξi

ξi+p−xi1 k − p+ 1 ≤ i ≤ k,
0 k + 1 ≤ i ≤ n+ p+ 2.

(2.18)

This knot insertion can also be done for multiple knots simultaneously. More detailed application
of this strategy can be found in [20] and [2]. An exemplary knot insertion for multiple knots is
done to the example of Section 2.1.2 and shown in Figure 2.7.

The example shows that the curve is geometrically and parametrically identical. The knot
insertion neither elevated the order of the basis function, nor did it smooth the C0-continuity
at ξ = 4. However, the domain of each interval of the basis functions is shortened. This is
analogous to the classical h-refinement in finite element analysis. Furthermore, the new control
points are closer to the dedicated element. This is a reasonable phenomena, since for example
high-order Beziér curves have control points which are quite far away since every basis function
is defined over the whole domain.
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2.2 Refinement techniques

Figure 2.7: Example of h-refinement (knot insertion) [2].

2.2.2. p-refinement: order elevation

Another refinement technique is to elevate the order of the basis functions without increasing the
number of elements. As for all the refinement startegies, the model is not changed geometrically.
The important property of the basis functions is their continuity, where a B-spline or NURBS
basis function has (p − k)-continuous derivatives which need to be preserved. So if the order
of the basis functions is increased it is also important to preserve the discontinuities in the
derivatives existing in the original curve. Therefore, the multiplicity of each knot is increased
by one as well. To perform an order elevation three steps need to be done:

1. First, all existing knots are duplicated until their multiplicity k is equal to the polynomial
order of the basis functions. This results in the curve being divided into segments, which
are defined on the respective segment like Beziér curves.

2. Second, the order of the polynomials on each segment is elevated which results in higher
order Beziér curves.

3. Third, the knots that exceed the original continuity are removed and the segments are
combined into an order-elevated B-spline or NURBS.
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With regard to our example from Section 2.1.2, an order elevation is applied in Figure 2.8.
Thus, it can be seen that the order of the basis functions has increased and yet continuity has
been preserved at the specific points and over the entire interval. Especially at point ξ = 4 the
removal of the exceeding knots leads to the same C0-continuity as before the refinement. This
removal becomes especially clear when looking at the knot vector. Furthermore, the number of
control points is increased, but not the number of elements, since the elements now consist of a
higher order.

Figure 2.8: Example of p-refinement (order elevation) [2].

The order elevation has many parallels with the classical p-refinement in finite element analysis
as the polynomial order of the basis functions is increased. However, it is important that the
p-refinement starts with basis functions that are C0-continuous everywhere, while the order
elevation of B-splines and NURBS is compatible with any combination of continuities defined
on the non-refined initial mesh.
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2.3 NURBS in an analysis framework

2.2.3. k-refinement

The third refinement strategy mentioned in this work is called the k-refinement and has no
comparable counterpart in finite element analysis, which makes it specific for isogeometric anal-
ysis. This technique takes into account that the order elevation and the knot insertion do not
interact. The basic idea is to combine both in a way that first an order elevation is applied
and then the knot insertion follows. This has the benefit that not only the mesh is refined but
also the continuity is increased. This is different from the commonly used knot insertion before
the order elevation. However, this refinement technique is not used in this work. For further
literature and detailed information [2] is recommended.

2.3. NURBS in an analysis framework

Now that the geometric and mathematical background has been introduced, the analysis frame-
work based on NURBS can be described, which is known as isogeometric analysis (IGA) and
was developed by Hughes [9] and co-workers. As explained in the introduction of the chapter,
this has the advantage that the CAD model, created in the construction process which is usually
made of NURBS and B-splines, can be directly inserted into the analysis framework by using
the same basis function for design and analysis. The fundamental idea of IGA is to subtitute
the Lagrange polynomials used in finite element analysis by NURBS as basis functions for the
geometry and the solution field. Consequently the solution is calculated at the control points
and the meshing are applied in the parametric space.

2.3.1. Interaction between parameter space and physical space

Before presenting the overall framework, the observations described in this chapter are briefly
summarized and combined with the description of the geometry in an algorithm for structural
analyses.

Figure 2.9 shows the interaction of an isogeometric shell patch with its parental element of
the calculation framework. It starts with the index space, which is a mesh made up by the
indices ξ1, ξ2, ξ3, ... and η1, η2, η3, .... These indices can be defined by the knot vectors Ξ and
H. These knot vectors then transform the index space into a parameter space. Using these
two knot vectors and the weights of the control points also yields the corresponding NURBS
basis functions Rp,qij of the patch. Having determined the NURBS basis functions the surface in
physical space at an arbitrary point can be computed by the sum over all the control points times
the NURBS basis functions. In the figure, the control points act as a scaffolding for the surface,
however, the surface does not necessarily interpolate the control points. With the surface in
parameter space and physical space in hand, by applying a reparametrization the integration on
the parental element is performed. This is the very crucial step to determine the stiffness matrix
and the load vector and explained in detail in Section 2.3.2. Thus, the geometric description is
completed and the analysis specific principles can be explained.
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2.3 NURBS in an analysis framework

Figure 2.9: Sketch how the interaction of physical and parameter space is realized for NURBS [2].

2.3.2. Integration on the parental element

Since an analytical integration on the element is hardly possible for computational methods,
several approaches were derived to solve integrals numerically. In this work, the Gauss-Legendre
quadrature is used, which is a special case of the Gauss quadrature. It is a numerical integration
method for the numerical solution of an integral on the interval of [−1, 1]. For this purpose, the
integral of a function to be determined is converted into a sum of function values multiplied by
so-called quadrature weights as

∫ 1

−1
f(x) dx =

ngp∑
i=1

wi f(xi) , (2.19)

where ngp is the number of Gauss points to be evaluated, wi are the quadrature weights and xi
the location of the evaluated Gauss point. The number and location of Gauss points such as
the corresponding quadrature weights are predefined and can be found in plenty of books and
therefore not listed again. However, it is important to know that for polynomials the numerical
approach is exact for ngp = d(p+ q+ 1)/0.5e. This means B-splines are integrated exactly if this
rule is applied. For NURBS, by contrast, the integration is always approximate since NURBS
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are rational by definition and therefore not polynomials. However, this method is still sufficiently
accurate for rational functions as shown in [9]. To increase the accuracy of the calculations done
in this work, the number of Gauss points per direction is increased by three to

ngp = dp+ q + 1
2 + 3e. (2.20)

Since the Gauss-Legendre quadrature is defined only on the interval [-1, 1], but the knot vec-
tors of the NURBS usually start with ξ1 = 0, these must be rewritten in a process called
reparametrization. Thereby, the knot vectors of an element are adjusted in such a way that the
basis functions to be evaluated are expressed on the integration interval.

To visualize this, an example of basis functions of a NURBS curve is chosen with two elements
on the initial knot vector Ξ = [0, 0, 0, 0.5, 1, 1, 1], with the basis functions shown in Figure 2.10,
where element 1 is defined on the interval of [0, 0.5] and element 2 on [0.5, 1].

0 0.25 0.5 0.75 10

0.2

0.4

0.6

0.8

1

Figure 2.10: Basis functions of a NURBS curve with knot vector Ξ = [0,0,0,0.5,1,1,1].
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Figure 2.11: Reparametrized basis functions of element 1 (left) and element 2 (right) with knot
vectors Ξ1 =[-1,-1,-1,1,3,3,3] and Ξ2 =[-3,-3,-3,-1,1,1,1].

To have the elements on their domain of [-1,1] the knot vector needs to be adjusted for each
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2.3 NURBS in an analysis framework

element by
ξji = 2

lau
ξi − 2 · j + 1, (2.21)

where ξi is the i-th entry on the general knot vector Ξ, ξji the modified i-th entry on the knot
vector Ξj of the j-th element and lau is the element length in parametric space. This yields the
element knot vectors as Ξ1 =[-1, -1, -1, 1, 3, 3, 3] and Ξ2 =[-3,-3,-3,-1, 1, 1, 1]. The corresponding
elementwise basis functions are shown in Figure 2.11.

When comparing Figure 2.10 with Figure 2.11, it is obvious that the basis functions have
not changed and only the horizontal axis scaling has been adjusted. This ensures that the
reparametrization does not cause any change of the basis functions, which is desired and can
be applied similarly for surfaces, where the reparametrization is not only applied in ξ-direction
but also in η-direction. Thus, the integration can be performed by means of Gauss-Legendre
quadrature without changing the geometry.

2.3.3. The analysis framework

Finally, the analysis framework can be presented. The framework used in this work is a single
patch loop, which means that all the elements are on one patch and therefore a continuous
mesh and surface is required. An exemplary flowchart how such an architecture of an analysis
framework looks like is shown in Figure 2.12.

Start

Read model data
and user input

Mesh generation
and geometry

Initialization
of K and F

Reparametrization
of elements

Element routine

Apply Neu-
mann bound-
ary conditions

Assembling
of K and F

Apply Dirich-
let boundary
conditions

Solve Ku=F

Compute reaction
forces, stresses etc.

Write output file
for visualization

End

Loop over
all elements

Figure 2.12: Framework using NURBS as basis functions.

It starts reading the model data and all the necessary user data as material parameters, geometry
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2.3 NURBS in an analysis framework

and boundary conditions, which is in general, the definition of the boundary value problem.
Afterwards, the geometry and corresponding mesh is generated and refined. Furthermore, the
global stiffness matrix and the load vectors are initialized and set to zero. With all this basic
information in hand, the loop over all the elements on the patch can be started. At first, the
elements are adjusted for the Gauss-Legendre quadrature and therefore reparametrized. Then,
the element routine computes the element stiffness matrix. At this point, element routine can
be considered as some kind of black box, since this is the part, where the scaled boundary
method is conducted and explained as Chapter 3. So it only matters that we have a routine
that can obtain the necessary values, which is the element stiffness matrix. Subsequently, the
element load vector is determined by evaluating the Neumann boundary conditions. Both, the
element load vector and the element stiffness matrix are then assembled in the global stiffness
matrix. Having derived and assembled all the elements, the loop is terminated and the next
step is to adjust the model to the structural supports as the Dirichlet boundary conditions
are applied. Now the displacements u can be computed by solving Ku = F. Moreover, some
additional information can be gained by computing reaction forces, stresses and all necessary
values. Finally the information is written down in an output file which simplifies the visualization
and evaluation of the results.

Thus, in this chapter, an analysis framework has been established to compute static problems
by applying the isogeometric analysis. In the following chapter, the just introduced black box of
the element routine will be considered in more detail, and the scaled boundary method, which
is relevant for this work, will be derived and described.
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3. Scaled boundary method for shell structures

In recent years the scaled boundary method has emerged as a powerful and competitive numerical
approach for the discretization of entities in boundary representation. It is based on the idea to
only describe the boundary of an entity and then scaling the boundary with help of a scaling
parameter. The boundary of the domain can be represented in many different ways, and so does
the solution along the radial direction. Most commonly the boundary domain is discretized
by finite elements and the solution along the radial direction is determined using an analytical
approach and therefore named Scaled Boundary Finite Element Method (SBFEM). The SBFEM
was coined in 1997 by Song and Wolf [26]. Since then, the method has been applied to many
different problems such as elastostatics, crack propagation and electromagnetics or isogeometric
analysis [25]. Also, scaled boundary formulations were derived for plates [16], cylindrical shells
[13] and arbitrary curved shells [14], which are of particular relevance to this thesis.

As explained in the previous chapters, the discretization is conducted using isogeometric
analysis combined with an analytical solution in thickness direction, which is a so called "semi-
analytical" approach due to the combination of numerical and analytical solution approach and
the overall method is named Isogeometric Scaled Boundary Analysis (SBIGA). For this purpose,
the formulation from [14], which describes a SBFEM shell for static problems, was extended with
the IGA to an SBIGA shell. At the beginning of the chapter the novel scaling strategy will be
explained and the governing equations for the shell are presented. It follows the mapping of the
scaled boundary shell and the interpolation of the displacement and solution field. Afterwards
the isogeometric scaled boundary formulation based on the principle of virtual work is derived.
Finally the analytical solution in thickness direction yields the stiffness matrix to compute the
solution.

3.1. Scaling strategy for the shell

The fundamental concept of the scaled boundary shell is that it is discretized on the bottom
surface and the thickness of the shell is scaled in the direction of the normal vector n which is
always orthogonal to the shell surface and in the direction of the axis γ of the local coordinate
system. Therefore, the normal starts on the bottom surface of the shell which is denoted as
point A and follows along γ to point B, as shown in Figure 3.1.

Figure 3.1: The normal scaling strategy for the shell scaled from point A onto point B along γ [14].

As demonstrated, point A on the bottom surface is described by the position vector r in the
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3.2 Governing equations for the shell

global carthesian coordinate system of x, y and z and the corresponding orthonormal basis
vectors ei (i = 1, 2, 3) as

r = x e1 + y e2 + z e3 = [x y z]T . (3.1)

Consequently, the location of point B is the sum of the position vector of A and the normal
vector at the specific point times the thickness h. Therefore, any point on the line between A
and B is described by the position vector r̂ use of the position vector to A r as

r̂ = r + γn = [x̂ ŷ ẑ]T , γ ∈ [0, h]. (3.2)

Apparently, the scaling center is not fixed for all points in an element as in conventional scaled
boundary solids, but changes within the shell. Thus, any point on the shell can be mapped with
the normal scaling strategy, but every point on the bottom surface also acts as a scaling center.

3.2. Governing equations for the shell

Within the regime the shell is treated as a 3D problem with displacements u which are defined
as u = u(x, y, z) = [ux uy uz]T at an arbitrary point. Assuming linearized strains leads to
the strain defined from the strain-displacement relation for the strain tensor ε as

ε = [εxx εyy εzz εyz εzx εxy]T = Lu, (3.3)

where the differential operator L is defined as

L =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x

∂
∂y

∂
∂x 0



. (3.4)

Furthermore, the material is assumed to be linear elastic and isotropic for which the elasticity
matrix C is defined as

C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(3.5)
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3.3 Scaled boundary transformation of shell geometry

with the Lamé constants λ and µ expressed from Young’s modulus E and Poisson’s ratio ν as

λ = νE

(1 + ν)(1− 2ν) and µ = E

2(1 + ν) . (3.6)

Consequently, according to Hooke’s law the Cauchy stress tensor σ can be defined as

σ(x, y, z) = [σxx σyy σzz σyz σzx σxy]T = Cε. (3.7)

Thus, all governing equations of the shell needed for the further derivation are defined and the
transformation from the global to the local coordinate system follows.

3.3. Scaled boundary transformation of shell geometry

As in the finite element method, the physical coordinates defined in the global axes x, y and z
must be transformed into the local coordinate system defined in ξ and η. The goal is to rearrange
the differential operator L derived in equation (3.4) from the Cartesian coordinate system of x,
y and z to the local coordinate system of γ, ξ and η. This can be done by the Jacobian matrix,
its determinant and the inverse Jacobian matrix. The Jacobian matrix Ĵs is defined as

Ĵs(γ, ξ, η) =


x̂,γ ŷ,γ ẑ,γ

x̂,ξ ŷ,ξ ẑ,ξ

x̂,η ŷ,η ẑ,η

 = [r̂,γ r̂,ξ r̂,η]T. (3.8)

The entries of the Jacobian matrix consist of the partial derivatives with respect to the local
coordinate system. Using equation (3.2) this can be rewritten as

r̂,γ = n, r̂,ξ = r,ξ + γn,ξ, r̂,η = r,η + γn,η. (3.9)

Since the surface is described only as a 2-dimensional body the unit normal vector n needs to
be constructed. Therefore, the tangent vectors in the direction of the local axes of ξ and η from
(3.9) are used to calculate an orthonormal vector, where

n = r,ξ × r,η
‖r,ξ × r,η‖

. (3.10)

Furthermore, the derivative of the unit normal vector needs to be calculated, which also defines
the scaling and thickness direction. This can be either done by FDM or by the analytical
approach (see Section 2.1.6). Both methods are effective in their way and are used in this work.
For the analytical solution the partial derivative of the unit normal vector is determined with
respect to the local axis ξ and η, which leads to

n,ξ =
∂r,ξ
∂ξ × r,η + r,ξ ×

∂r,ξ
∂ξ

‖r,ξ × r,η‖
−

(r,ξ × r,η)[(r,ξ × r,η) · (∂r,ξ
∂ξ × r,η + r,η

∂ξ × r,ξ)]
‖r,ξ × r,η‖3

(3.11a)

n,η =
∂r,ξ
∂η × r,η + r,ξ ×

∂r,ξ
∂η

‖r,ξ × r,η‖
−

(r,ξ × r,η)[(r,ξ × r,η) · (∂r,ξ
∂η × r,η + r,η

∂η × r,ξ)]
‖r,ξ × r,η‖3

(3.11b)

For the sake of brevity, the detailed analytical derivation of the unit normal vector is given in
Appendix A. At this point, all the variables and derivatives are known or can be determined.
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3.3 Scaled boundary transformation of shell geometry

Substituting the Jacobi matrix of equation (3.8) with equation (3.9) yields

Ĵs(γ, ξ, η) =


nx ny nz

x,ξ + γnx,ξ y,ξ + γny,ξ z,ξ + γnz,ξ

x,η + γnx,η y,η + γny,η z,η + γnz,η

 . (3.12)

and the inverse of the Jacobian matrix as

Ĵ−1
s = 1

Ĵs

(
A + B̄γ + Cγ2

)
. (3.13)

Therefore, the denominator Ĵs can be expressed by the partial derivatives of r̂ as

Ĵs = r̂,γ · (r̂,ξ × r̂,η) = J0 + J1γ + J2γ
2. (3.14)

The parameters J0 and J1 are

J0 = nxA11 + nyA21 + nzA31 (3.15a)

J1 = nxB̄11 + nyB̄21 + nzB̄31, (3.15b)

where the components Aij and B̄ij are denoted in (3.18). As the last entries C and J2 of the
terms are of higher order, they will be neglected and only linear terms will be considered. Thus,
the denominator of the inverse of the Jacobian matrix of equation (3.14) can be approximated
as

Ĵs ≈ J0 + J1γ ≡ Js. (3.16)

Furthermore, the inverse of the Jacobian matrix is approximated as

Ĵ−1
s ≈

1
J0

(
A +

(
B̄− J1

J0
A
)
γ
)
≡ 1
J0

(A + Bγ), (3.17)

where the matrices A, B̄ and B are

A =


y,ξz,η − z,ξy,η y,ηnz − z,ηny nyz,ξ − nzy,ξ

z,ξx,η − x,ξz,η z,ηnx − x,ηnz nzx,ξ − nxz,ξ

x,ξy,η − y,ξx,η x,ηny − y,ηnx nxy,ξ − nyx,ξ

 (3.18a)

B̄ =


y,ξnz,η + ny,ξz,η − z,ξny,η − nz,ξy,η ny,ηnz − nz,ηny nynz,ξ − nzny,ξ

z,ξnx,η + nz,ξx,η − x,ξnz,η − nx,ξz,η nz,ηnx − nx,ηnz nznx,ξ − nxnx,ξ

x,ξny,η + nx,ξy,η − y,ξnx,η − ny,ξx,η nx,ηny − ny,ηnx nxny,ξ − nyny,ξ

 . (3.18b)

and
B = B̄− J1

J0
A. (3.18c)
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3.4 Interpolation for the scaled boundary shell

With the inverse of the Jacobian matrix in hand, the derivatives of x̂, ŷ and ẑ can be transformed
to γ, ξ and η as 

∂
∂z

∂
∂x

∂
∂y


= Ĵ−1

s


∂
∂γ

∂
∂ξ

∂
∂η


≈ 1
J0

(A + Bγ)


∂
∂γ

∂
∂ξ

∂
∂η


. (3.19)

This transformation substituted into the differential operator L of equation (3.4) yields

L =
(
b1

0
∂

∂γ
+ b2

0
∂

∂ξ
+ b3

0
∂

∂η

)
+ γ

(
b1

1
∂

∂γ
+ b2

1
∂

∂ξ
+ b3

1
∂

∂η

)
(3.20)

with

bi0 = 1
J0



A1i 0 0

0 A2i 0

0 0 A3i

0 A3i A2i

A3i 0 A1i

A2i A1i 0


(i = 1, 2, 3), bi1 = 1

J0



B1i 0 0

0 B2i 0

0 0 B3i

0 B3i B2i

B3i 0 B1i

B2i B1i 0


(i = 1, 2, 3). (3.21)

The entries of the matrices Aij and Bij are the entries of the matrices defined in equation (3.18).

3.4. Interpolation for the scaled boundary shell

For the interpolation of the geometry and the solution field of the shell the connection of iso-
geometric analysis and scaled boundary method is proceeded. An example of a geometry of a
shell as single element of 4× 4 = 16 nodes is shown in Figure 3.2.

Figure 3.2: Geometry of a third-order scaled boundary shell element [14].

The position vector r derived in (3.1) is reformulated in terms of isogeometric analysis. There-
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3.4 Interpolation for the scaled boundary shell

fore, the interpolated position vector is rewritten as

r(γ, ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j (3.22)

and any point in the shell can be described by the equation

r̂(γ, ξ, η) = γn +
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j , (3.23)

where the second term defines the reference plane at the bottom of the shell and first term scales
at any point of the shell in the thickness direction of γ. This yields that the basis functions for
the structural analysis are composed of the NURBS basis functions as

Ns(ξ, η) =


Rp,q1,1 0 0 ... Rp,qn,m 0 0

0 Rp,q1,1 0 ... 0 Rp,qn,m 0

0 0 Rp,q1,1 ... 0 0 Rp,qn,m

 . (3.24)

But not only the geometry is interpolated in the framework of isogeometric analysis but also the
solution field, wherefore solution fields of higher continuity can be obtained. Here, the solution
field is discretized for one element as

u(γ, ξ, η) =


ux(γ, ξ, η)

uy(γ, ξ, η)

uz(γ, ξ, η)


=


Ns(ξ, η) 0 0

0 Ns(ξ, η) 0

0 0 Ns(ξ, η)




ux(γ)

uy(γ)

uz(γ)


≡ N̄s(ξ, η)u(γ). (3.25)

The same applies for the virtual solution δu = N(ξ, η)δu(γ). Thus, the strains are calculated by
inserting equation (3.25) and equation (3.20) into the strain-displacement relation of equation
(3.3) to

ε =
(
B1

1γ + B1
0

)
u(γ),γ +

(
B2

1γ + B2
0

)
u(γ), (3.26)

where

B1
0 = b1

0N̄s, B2
0 = b2

0
(
N̄s
)
,ξ

+ b3
0
(
N̄s
)
,η

(3.27)

B1
1 = b1

1N̄s, B2
1 = b2

1
(
N̄s
)
,ξ

+ b3
1
(
N̄s
)
,η
. (3.28)

This yields the stress tensor as

σ = C
[(

B1
1γ + B1

0

)
u(γ),γ +

(
B2

1γ + B2
0

)
u(γ)

]
. (3.29)

The following coefficient matrices are defined for the later reference, that are needed in the
derivation of the scaled boundary equation for the shell using the principle of virtual work

E00
i =

∫
S

(
B1

0
)TCB1

0Jidξdη (i = 0, 1) (3.30a)

E01
i =

∫
S

(
B2

0
)TCB1

0Jidξdη (i = 0, 1) (3.30b)
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3.5 Isogeometric scaled boundary formulation

E02
i =

∫
S

(
B2

0
)TCB2

0Jidξdη (i = 0, 1) (3.30c)

E10
0 =

∫
S

[(
B1

1
)TCB1

0 +
(
B1

0
)TCB1

1

]
J0dξdη (3.30d)

E11
0 =

∫
S

[(
B2

1
)TCB1

0 +
(
B2

0
)TCB1

1

]
J0dξdη (3.30e)

E12
0 =

∫
S

[(
B2

1
)TCB2

0 +
(
B2

0
)TCB2

1

]
J0dξdη (3.30f)

and
E0

01 = E10
0 + E00

1 (3.31a)

E1
01 = E11

0 + E01
1 (3.31b)

E2
01 = E12

0 + E02
1 . (3.31c)

The coefficient matrices can be split into E00
0 , E01

0 and E01
0 which are dependent on J0, therefore,

they are always nonzero and derived in the same way as the coefficient matrices in [18]. The
coefficient matrices E0

01, E1
01 and E2

01 are dependent on J1 and represent the stiffness component
from curvatures. Therefore, they are zero for plates.

3.5. Isogeometric scaled boundary formulation

The isogeometric scaled boundary formulation is derived on the basis of the principles of virtual
work and virtual strains for elastostatics [3]. In this principle the shell body is subjected to a
virtual displacement field δu which leads to the corresponding virtual strains

δε = Lδu. (3.32)

Furthermore, it is based on the equation that the virtual strain energy δU is equal to the external
virtual work δW denoted as

δU − δW = 0. (3.33)

Both parts of the equation will now be modified and adjusted to the conditions of the shell prob-
lem. Starting with the external virtual work, which is influenced by the boundary concentrated
forces T and distributed tractions τ . Therefore, the external virtual work can be rewritten as

δW = δuTT +
∫
S
δuTτdS. (3.34)

It is important to notice, that the formulation does not consider tractions on the side edges.
However, the shell kinematics in the thickness direction enforces a linear distribution of the
tractions over the side edges and will be artificially considered in the derivation of the stiffness
matrix. The external virtual work can then be expressed in manners of the interpolated virtual
displacement field derived in Section 3.4 as

δW = δu(γ)T
(

N−T
s T +

∫
S

N−T
s τ (J0 + γJ1)dξdη

)
, (3.35)

where the infinitesimal surface element S used for the integral is approximated as

dS ≈ Jsdξdη = (J0 + γJ1)dξdη. (3.36)
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3.5 Isogeometric scaled boundary formulation

Under the assumption that loads only nodes at the top and bottom of the surface can be
subjected to external loads, equation (3.35) can be modified to

δW = δu(γb)Tfb + δu(γt)Tft, (3.37)

where the nodal forces are denoted as fb and ft on top and bottom that are equivalent to the
tractions and concentrated forces on surfaces of the shell. These nodal forces consist of the
concentrated loads and the distributed loads as

fb = N−T
s Tb +

∫
S

N−T
s τ bJ0dξdη (3.38a)

ft = N−T
s Tt +

∫
S

N−T
s τ t(J0 + hJ1)dξdη. (3.38b)

Having derived the final state of the virtual external work, the counterpart of the equation
is determined. The virtual strain energy is given as the integral over all the virtual strains
multiplied by the stresses in the shell body by

δU =
∫
V
δεTσdV. (3.39)

Let the internal nodal forces at an arbitrary surface with constant γ be defined as

q(γ) =
∫
S

[(
B1

1
)T
γ +

(
B1

0
)T]

σ(J0 + γJ1)dξdη. (3.40)

Substituting q in the virtual strain energy from equation (3.39) yields

δU =
∫ γt

γb

δu(γ)T
,γq(γ)dγ +

∫ γt

γb

δu(γ)T
(∫

S

[(
B2

1
)T
γ +

(
B2

0
)T]

σ(J0 + γJ1)dξdη
)
dγ. (3.41)

Here the infinitesimal volume dV for any γ is approximated that

dV = r,γ · (r̂,ξ × r̂,η)dγdξdη = Ĵsdγdξdη ≈ Jsdγdξdη = (J0 + J1γ)dγdξdη (3.42)

In a similar procedure as for the external virtual work, the integration by terms is applied and
yields the virtual strain energy as

δU =
[
δu(γ)Tq(γ)

]∣∣∣γt
γb

+
∫ γt

γb

δu(γ)T
[
−q(γ),γ + E1

01γu(γ),γ + E01
0 u(γ),γ + E2

01γu(γ),γ + E02
0 u(γ)

]
dγ. (3.43)

By evaluating the first term, the final state of the virtual strain energy yields

δU = δu(γt)Tq(γt)− δu(γb)Tq(γb)

+
∫ γt

γb

δu(γ)T
[
−q(γ),γ + E1

01γu(γ),γ + E01
0 u(γ),γ + E2

01γu(γ),γ + E02
0 u(γ)

]
dγ. (3.44)
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3.6 Analytical solution in thickness direction

Having derived the external virtual work in equation (3.37) and the virtual strain energy in
equation (3.44) both, the principle of virtual work from equation (3.33) can be reformulated as

δu(γt)T [q(γt)− ft]− δu(γb)T [q(γb)− fb]

+
∫ γt

γb

δu(γ)T
[
−q(γ),γ + E1

01γu(γ),γ + E01
0 u(γ),γ + E2

01γu(γ) + E02
0 u(γ)

]
dγ = 0. (3.45)

This equation has to hold for any δu(γ). It follows, that three conditions need to be satisfied:

q(γb) + fb = 0 (3.46a)

q(γt)− ft = 0 (3.46b)

− q(γ),γ + E1
01γu(γ),γ + E01

0 u(γ),γ + E2
01γu(γ) + E02

0 u(γ) = 0. (3.46c)

Furthermore, the internal nodal forces q of equation (3.40) can be rearranged by substituting
the stress vector σ by equation (3.29) and using the interpolation of the strains. This yields

q(γ) = E0
01γu(γ),γ + E00

0 u(γ),γ +
(
E1

01
)T
γu(γ) +

(
E01

0
)Tu(γ) (3.47)

and the derivative

q(γ),γ = E0
01γu(γ),γγ + E00

0 u(γ),γγ +
(
E1

01
)T
γu(γ),γ +

[
E0

01 +
(
E01

0
)T]u(γ),γ +

(
E1

01
)Tu(γ).

(3.48)
Consequently, inserting (3.48) into the third condition of the virtual strains (3.46c), the isogeo-
metric scaled boundary equation for the shell is derived as

E0
01γu(γ),γγ + E00

0 u(γ),γγ +
[(

E1
01
)T −E1

01

]
γu(γ),γ

+
[(

E01
0
)T −E01

0 + E0
01

]
u(γ),γ + E2

01γu(γ)
[
−E02

0 +
(
E1

01
)T]u(γ) = 0. (3.49)

3.6. Analytical solution in thickness direction

After the derivation of the isogeometric scaled boundary equation, a consideration in thickness
direction needs to be done to come up with the derivation of the stiffness matrix. Several methods
can be used to derive the fineal stiffness matrix for example the semi-analytical method, the
isogeometric collocation method or the weak form of equilibrium equations, which was studied
for plates in [29]. Since this work follows the description of [14], the derivation follows along the
analytical solution of [18] with some modifications to consider the curvature parts of the shell.
At first, a variable X is introduced as

X(γ) =


u(γ)

q(γ)

 . (3.50)

Using this variable the equations (3.46c) and a slightly modified equation (3.40) can be expressed
as

X(γ),γ = −(Z0 + Z1γ)X(γ). (3.51)
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3.6 Analytical solution in thickness direction

The coefficients matrices Z0 and Z1 are

Z0 =

 (
E00

0
)−1 (E01

0
)T −

(
E00

0
)−1

−E02
0 + E01

0
(
E00
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)−1

 (3.52a)
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0 )−1E0
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01)T−
[

E01
0 (E00

0 )−1E0
01−E1

01

]
(E00

0 )−1(E01
0 )T

[
E01
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(E00
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.
(3.52b)

This yields the general solution of the differential equation as

X(γ) = exp
[
−(Z0γ + Z1γ

2/2)
]

c, (3.53)

where c is the integration constant in the dimension of a vector. Applying the boundary condi-
tions of equation (3.46a) and (3.46b) yields the general solution as

ut

ft

 = exp(−Zh)


ub

fb

 (3.54)

and the Z-matrix as
Z = Z0 + h

2 Z1. (3.55)

Using the Padé expansion and transforming the equation from translational degrees of freedom
at the top and bottom surface only to translational and rotational degrees of freedom at the
bottom surface, the matrix exponential (3.54) can be expressed as

h

I + h
2 E0

01
(
E00

0
)−1

h2E00
0 V12

h
2 E1

01
(
E00

0
)−1 I + h2 (E01

0 V12 −V22
)


×

 E00
0 + h2E00

0 V11 E00
0 Z11

E01
0 + h2 (E01

0 V11 −V21
)

E01
0 Z11 − Z21



θ

u

 =


m

f

 (3.56)

where V can be obtained by Z as

V = 1
12Z2 =

V11 V21

V21 V22

 . (3.57)

Consequently, substituting V in equation (3.56) by equation (3.55) and (3.57) yields

K


θ

u

 =


m

f

 (3.58)

30



3.6 Analytical solution in thickness direction

where the stiffness matrix K is

K = h

I + h
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(3.59)

Equation (3.58) can be rearranged from translational and rotational nodes at the bottom surface
of the shell to only translational nodes at top and bottom as

T−TKT−1


ub

ut

 = Ks


ub

ut

 =


fb

ft

 (3.60)

where the transformation matrices T and T−T are

T =

−h
2 I I
h
2 I I

 and T−T =

− 1
hI 1

2I
1
hI 1

2I

 . (3.61)

Further, the formulation for translational degrees of freedom is applied to the top and bottom
side of the shell. Thus, in this chapter an isogeometric scaled boundary method for shells could
be derived, which combines the properties of the scaled boundary method with the properties
of the isogeometric analysis. In the following, the equations derived here theoretically are first
transferred into a numerical implementation in order to then perform the obligatory benchmark-
ing (see Chapter 5).
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4. Numerical implementation

In this chapter the numerical implementation of the 3D isogeometric scaled boundary method
for shells is summarized and the most important parts of the algorithm is explained. Same
as conventional simulation software, it consists of three parts: preprocessing, processing and
postprocessing. The parts are explained below with their functions and calculations and their
order is shown in the flow chart below.

Preprocessing -
creating the model

Processing -
computing the model

Postprocessing -
visualize the solution

Figure 4.1: The fundamental parts of a simulation for numerical analysis.

Recapitulating the isogeometric framework from Section 2.3.3, the processes can be categorized
into the specific areas as shown in Figure 4.2, where the green squares define the preprocessing,
the blue squares are the processing and the orange squares are the postprocessing operations.

Start

Read model data
and user input

Mesh generation
and geometry

Initialization
of K and F

Reparametrization
of elements

Element routine

Apply Neu-
mann bound-
ary conditions

Assembling
of K and F

Apply Dirich-
let boundary
conditions

Solve Ku=F

Compute reaction
forces, stresses etc.

Write output file
for visualization

End

Loop over
all elements

Figure 4.2: Framework using NURBS as basis functions.

As shown, the preprocessing is the part where the model is created, modified and changed
by using the input data and processing the mesh data. Afterwards, in the processing the
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4.1 Preprocessing

model properties are collected and the virtual model is calculated. Therefore, the corresponding
stiffness matrix is determined using the element routine and the boundary conditions are applied.
At last, in the preprocessing the solution is evaluated and edited for a proper visualization of
the results.

In this work all calculations were done using the numeric computing environment MATLAB
2017b of the company MathWorks. It provides an ease of use especially for users who do not
have a background in computer science and it offers a variety of predefined functions, which can
be used for a simplified coding [19].

4.1. Preprocessing

In the preprocessing all the required information for the computation of the problem are set by
the user and auxiliary functions to define the model. The information includes the geometry,
initial mesh, mesh refinement, material parameters, boundary conditions and level of resolution
of displacements for the postprocessing. After initialization a function is called which is anno-
tated as Algorithm 1. Here the CAD-specific properties are created like the open knot vectors,
coordinates of the control points and weights.

Algorithm 1 Preprocessing/Mesh generation
Input:

Length L
Width B or radius r
Thickness t
CAD-model CAD
refinement flag netzv and number of elements per parametric direction anzpu, anzpv

Output:
Coordinates of control points KP
Weights of control points W
Weighted coordinates of control points KPW
Open knot vectors per parametric direction U and V
Order of basis functions per parametric direction p and q
Total number of nodes nnode
Number of degrees of freedom ndof
Number of elements nel

1 Choose coordinates of control points with weight for initial mesh according to the desired CAD
model determined by the input CAD

2 Create the open knot vectors U and V for the initial mesh in tangential directions
3 Evaluate the refinement flag netzv
4 if netzv =1 then
5 Generate the new knot vectors U and V
6 Determine the new number of nodes per direction n and m
7 Proceed a refinement of the control points KP and weights W
8 Compute the new weighted control points KPW
9 end

10 else
11 no meshrefinement will be conducted
12 end
13 Determine the total number of nodes in 3D nnode, the number of degrees of freedom in 3D ndof

and the number of elements nel
14 Return: KP, W, KPW, U, V, p, q, nnode, ndof and nel
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4.2 Processing

So far, models with their initial meshes of a plate, a quarter ring, an eighth of a cylinder,
a Scordelis-Lo roof and a hemisphere with and without a hole stored (for control points see
Appendix B). The initial mesh can be choosen of different orders so that afterwards an h-
refinement can be conducted to refine the mesh. The mesh refinement can be activated by
setting the refinement flag netzv to one. This is an h-refinement which is explained in Section
2.2.1. After the set up of the geometry, the corresponding values are defined, which are the
necessary values for the further computation as the total number of nodes nnode, of degrees
of freedom ndof and of elements nel. It is noteworthy that the thickness of the shell is not
considered in this algorithm since only the bottom surface of the shell is prescribed.

4.2. Processing

In the processing the problem created by the user and set up in the preprocessing is computed
by evaluating the geometry and the boundary conditions. At first, the global stiffness matrix
K and the global load vector F are initialized. Then a a loop over all the elements defined
on the knot vectors is performed. Thereby, the reparametrization of the evaluated element is
proceeded and afterwards the element routine is conducted to compute the element stiffness
matrix Ke, followed by the application of the loads to determine the element load vector Fe and
the assembling in the global stiffness matrix and the global load vector.

Algorithm 2 Element routine
Input:

Material parameters E and µ
Control points KP and weights W
Knot vectors U and V
Numbers of element in index space eli, elj
Thickness t

Output:
Element stiffness matrix Ks,e

Internal load vector Fe

1 Read out material parameters E and µ to build elasticity matrix D
2 Initialization of the coefficient matrices E00

i to E12
0

3 Initialization of Fe and Ke

4 Determination of number of Gauss points, corresponding location and weights in local direction
of ξ and η

5 begin Loop over all Gauss points
6 Computation of N, dN, ddN
7 Computation of r,ξ, r,η and n
8 Computation of nξ and nη
9 Computation of Jacobian matrices A and B

10 Computation of determinants of Jacobian matrices J0 and J1
11 Computation of bi0 and bi1 with i = 1, 2, 3
12 begin Loop over all element nodes
13 Construction of B1

0, B2
0, B1

1 and B2
1

14 Calculation of coefficient matrices E00
i to E12

0
15 end
16 end
17 Sum up E0

01 = E10
0 + E00

1 , E1
01 = E11

0 + E01
1 and E2

01 = E12
0 + E02

1
18 Call algorithm for analytical solution in thickness direction (Algorithm 3)
19 Return: Ks,e and Fe
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4.2 Processing

Having ended the loop over all the elements supports are defined by the application of the
Dirichlet boundary conditions and the solution of the problem, which is the last step of the
processing.

The numerical implementation is mostly focused on the element routine which is described
in Algorithm 2. This process computes the coefficient matrices E for an element, which are then
taken to calculate the element stiffness matrix. It starts by the construction of the elasticity
matrix and the initialization of all the necessary matrices. Then, the number of Gauss points
and the location with weights is determined to start the Gauss point loop for the numerical
computation of the integrals for the computation of the coefficient matrices. In this loop the basis
functions and its derivatives are determined and also the derivatives of the position vector and
the normal vector. Having these in hand, the Jacobian matrices A and B with the determinants
can be computed and consequently the auxiliary matrices bi, too. A new interior loop over the
element nodes follows, where the B-matrices and the coefficient matrices are determined for each
node and are assembled. This is done for all the Gauss points and every node per Gauss point.
When the loops ended the coefficient matrices are summed up so that six coefficient matrices
E00

0 , E01
0 , E02

0 , E0
01, E1

01 and E2
01 remain. With these, Algorithm 3 can be called to determine

the element stiffness matrix and the internal load vector.

Algorithm 3 Analytical solution in thickness direction
Input:

Coefficient matrices E00
0 , E01

0 , E02
0 , E0

01, E1
01 and E2

01
Thickness t
Number of nodes enode
Number of degrees of freedom per side enodep

Output:
Element stiffness matrix Ks,e

Internal load vector Fe

1 Set up of inverse of transformation matrix T−1

2 Set up of inverse-transposed of transformation matrix T−T
3 Calculate element stiffness matrix Ke

4 Transform the element stiffness matrix into translational degrees of freedom only by Ks,e =
T−TKeT−1

5 Rearrange the stiffness matrix to the common denotation as u = [u1,b u1,t u2,b u2,t ...]T
6 Return: Ks,e and Fe

Algorithm 3 conducts the analytical solution in thickness direction, where at first the inverse
of the transformation matrix TT and the inverse-transposed of the transformation matrix T−T

are constructed. Then the element stiffness matrix Ke is determined, which is up to this point
considering translational and rotational degrees of freedom on the bottom surface. By multipli-
cation of the transformation matrix, the degrees of freedom can be transformed to translational
degrees of freedom only with nodes on bottom and top surface. The new element stiffness matrix
is denoted as Ks,e. It is important to rearrange the rows and columns of the stiffness matrix
according to the standard arrangement so that the degrees of freedom are not separated in
bottom nodes first and and afterwards top nodes. The algorithm returns the element stiffness
matrix and the internal load vector, which is zero if body forces are neglected.
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4.3 Postprocessing

4.3. Postprocessing

Once the displacements of the nodes have been calculated, preprocessing can begin. In this
process, the calculated data is extended by information that is helpful for comparability or
clarity, such as support forces, stresses or similar. Afterwards the data is visualized in a further
process. For this purpose, an output file is generated in which the information of the calculation
is sorted and formatted. In this work ParaView is used to visualize the deformation of the
structures. It is an open-source application for interactive, scientific visualization. Algorithm 4
shows how the output file is created in the code.

Algorithm 4 Visualization of the solution in Paraview
Input:

Knot vectors U and V
Weighted control points KPW
Number of elements per parametric direction anzpu and anzpv
Number of resolution points resu, resv and resw
Solution d

Output:
vtk-file for ParaView

1 Determine the number of export points
2 Determine the number of export cells
3 Calculate the step sizes stepu, stepv and stepw
4 Compute the coordinates Coor for each resolution point
5 Compute the connectivity matrix of the elements Conn
6 Compute the solution field in matrix format without weights solmat
7 Compute the solution field in matrix format with weights solmatw
8 Conduct the interpolation of the solution solexp
9 Create filename and open vtk-file

10 Write coordinates Coor, connectivity Conn and solution solexp in vtk-file
11 Close vtk-file

Algorithm 4 shows how the data for output file of ParaView is generated and saved. At first, the
number of export points np and the number of export cells nc is determined, which defines later
the set of coordinates and solution points. Then the step sizes in each parametric direction are
calculated by dividing the difference of the end point and the starting point of the knot vector
by the number of resolution points, where resu and resv are the number of resolution points
in ξ and η and resw is the number of resolution points in thickness direction along γ. This
provides the possibility to determine the coordinates Coor on the shell at all resolution points.
In addition, the connectivity matrix Conn can be set up, which determines the meshing of the
coordinates among each other. Next, the solution field without weights solmat and the solution
field with weights solmatw are structured in a matrix format to have a similar structure as the
weighted control points. To derive the displacements at each resolution point the interpolation
of the solution field can be conducted which is a linear combination of the value of the basis
functions at the resolution point and the corresponding deformation. Having derived all the
necessary data, the vtk-file can be opened with a predefined filename most likely containing the
order and the number of elements. Then, the specific data for ParaView is written in the file,
which has a strict format to be readable. At first the coordinates Coor are saved followed by
the connectivity Conn. Then, the number of nodes according to the number of cells nc and the
cell type are written in the file and the displacement at the resolution points are saved. Finally
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4.3 Postprocessing

the vtk-file can be saved and closed. Thus the postprocessing is finished and the vtk-file can be
evaluated in ParaView.

As a result, the numerical implementation of the isogeometric scaled boundary shell formu-
lation was presented in this chapter, which calculates the static load-bearing behavior of thin
shells. For this purpose, the IGA was combined with the element formulation of the scaled
boundary method. In the following chapter, the performance of this formulation is examined
and evaluated with respect to the accuracy and the calculation costs.
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5. Benchmarking

In this chapter the presented shell formulation is tested on its reliability. Therefore, a series of
benchmark tests is performed and the solution of the calculation at specific points is compared to
reference solutions of several previous results from the literature as for example [1], [7], [4], [15]
or [14]. A reasonable shell element must have the power to handle inextensional bending modes
of deformation, rigid body motion without straining and complex membrane states of stress
[1]. Furthermore, the obstacle course is reasonably short, not to evaluate the same behavior for
several problems. In this work four test problems are presented and evaluated, that are shown
in Figure 5.1.

(a) Simply supported square plate (b) Pinched cylinder

(c) Scordelis-Lo roof (d) Pinched hemisphere with hole

Figure 5.1: The evaluated benchmark problems for the SBIGA shell [14].

First problem is the simply supported square plate, which follows the previous work of [29]
and [18], respectively, where an SBIGA plate with different formulation in thickness direction
was derived and was the preliminary work for the SBIGA shell. It is especially important to
evaluate the plates tendency to transverse shear locking. The second problem of the pinched
cylinder is a more advanced model to check for the behavior of the shell element when it comes
to inextensional bending modes and complex membrane states. Furthermore, the geometry
can be easily investigated due to the constant curvature. The Scordelis-Lo roof is the third
problem. In this test, almost exclusively membrane modes are evoked and decoupled from other
states, contrary to the second problem. In the fourth model, the hemisphere with hole, the
inextensional bending modes are evaluated, which form the main deformation in the test. And
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5.1 Simply supported square plate

although the inextensional bending modes are not as severe as in the pinched cylinder, the test
is helpful in also testing the rigid body rotation as the load is applied in the normal direction
to the shell. With these four problems in hand, the SBIGA shell is evaluated for its ability to
reliable determine displacements of shells.

For all of the problems a convergence study is applied, and compared to the reference solution
of the problem. For the sake of comparability, the accuracy of the results is determined by
dividing the computed displacement ucomp by the reference displacement uref as

accuracy = ucomp
uref

, (5.1)

where a perfect accuracy is achieved for a value of 1. Furthermore, the relative error is determined
as

relative error = |ucomp − uref |
|uref |

. (5.2)

Consequently, for a perfectly computed solution the relative error is 0.

5.1. Simply supported square plate

The first benchmark is a simply supported plate as described in [4] and depicted in Figure
5.2. The length of both sides is L = 10.0 m and varies in its thickness h. It consists of linear
elastic material with Young’s modulus E = 1000.0 Pa and Poisson’s ratio ν = 0.3. The model
is evaluated by the increase of the polynomial order for all thicknesses and afterwards a mesh
refinement for a patch using bi-quadratic elements (p = q = 2) is applied on a plate of thickness
h = 0.01 m.

Figure 5.2: Sketch of the problem setup for the simply supported square plate [14].

The plate is subjected to a pressure load fz = 1.0 · h3 which varies in relation to the thickness.
This assumption is quite useful for the comparison of the results of various values of the thickness
t considering the analytical Kirchhoff series solution based on the first two terms for the center
deflection is uz = 0.442892 m according to [27]. Equation (5.3) shows the solution of the first two
terms of the analytical Kirchhoff series for the displacement in the middle of a simply supported
square plate wmax where the second term already has such a low impact, that the other parts
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5.1 Simply supported square plate

of the series are neglected. Hence, with the flexural rigidity of the plate as D with D = Eh3

12(1−ν2)
the displacement yields

wmax = 5
384

fzL
4

D
− 4fzL4

π5D
(0.68562− 0.00025 + ....) = 0.00406fzL

4

D
. (5.3)

The plate is simulated with several thicknesses h = [0.5, 0.2, 0.1, 0.001] m. Since the boundary
conditions both Neumann b.c. and Dirichlet b.c. are applied symmetrically the model can be
divided into a quarter of this plate with a side length of L/2 = 5 m. Therefore, the Dirichlet
boundary conditions need to be readjusted to fulfill the symmetry conditions. The new supports
are imposed as: uz = 0 along edge AB and edge AD, uz = ux = θy = 0 along edge BC and
uz = uy = θx = 0 along edge CD.

First, one element with various thicknesses is evaluated. For each thickness the order of the
basis functions in both directions are increased from p = q = 2 (quadratic basis functions) to
p = q = 8. The results of the order elevation are shown in Table 5.1.

Table 5.1: Deflection at the middle point of the simply supported plate in [m].

p = q h = 0.5 h = 0.2 h = 0.1 h = 0.01 h = 0.001

2 0.4062 0.3910 0.3886 0.3878 0.3990

3 0.4596 0.4516 0.4505 0.4502 0.4444

4 0.4583 0.4459 0.4440 0.4434 0.4419

5 0.4619 0.4469 0.4445 0.4436 0.4464

6 0.4638 0.4478 0.4447 0.4436 0.4648

7 0.4658 0.4486 0.4450 0.4436 0.4398

8 0.4667 0.4494 0.4453 0.4436 0.4443

reference 0.4429 0.4429 0.4429 0.4429 0.4429

It shows, that the SBIGA shell can determine the deflection of the plate for all thicknesses in an
adequate precision, even though for thicker plates of h = 0.5 m and h = 0.2 m the results are a
little bit less accurate than for thin plates. On the overall, for basis functions of order p = q = 3
(cubic) or higher, the results are within a relative error of 4% for every thickness evaluated.

Additionally, the plate of thickness h = 0.01 m is evaluated on results for a mesh refinement
by using bi-quadratic elements. The plate is evaluated with a refinement of [5, 10, 15, 20, 25,
30, 35, 40] elements per side and shown in Figure 5.3. It is important to notice that the degrees
of freedom increase quadratically by increasing the number of elements per side. Therefore, the
diagram is displayed in the logarithmic scale along the x-axis. However, the number of degrees
of freedom is not calculated for patches in IGA as in FEM, because the elements overlap. The
degrees of freedom DOF can be calculated as DOF = (nel,ξ + p) · (nel,η + q) · 6, where nel,ξ is
the number of elements in ξ-direction and nel,η the number of elements in η-direction.
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5.1 Simply supported square plate
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Figure 5.3: Convergence of the vertical displacement in the middle of the simply supported square
plate for h = 0.01 m (left) and the deformed structure for 40 elements per side where the defor-
mation is scaled by 4 (right).

The convergence diagram shows that even for rough meshes the SBIGA shell can properly
determine the displacement at the middle of the plate with an accuracy of approximately 90%.
For finer meshes the computed displacements converge towards the reference solution and for a
mesh with 15 elements per side, the computed solution has already an accuracy of at least 98
%. Also the model of the deformed structure reveals that the maximal displacement is at the
edge, where the symmetry axis intersect, which is the middle of the simply supported plate.

Figure 5.4: Results of the computed displacements for the simply supported square plate using 40
elements per side and a thickness of h = 0.01 m separated in magnitude (upper left), displacement
in x (upper right), displacement in y (lower left) and displacement in z (lower right).
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5.2 Pinched cylinder

The displacement plots are separated according to the global axis and shown in Figure 5.4. The
plots visualize that there are no displacements, where the boundary conditions are applied as
they are zero in z-direction along the left and lower side, in x-direction on the right side due to
symmetry conditions and in y direction on the upper side due to the same reason.

It is shown that SBIGA can calculate the simply supported plate very precisely and has
already sufficient accuracy for bi-cubic basis functions with one element. But not only for higher
order basis functions, but also for quadratic elements with a refined mesh, the displacements
can be determined accurately.

5.2. Pinched cylinder

The second benchmark is a cylinder that is pinched at the top and bottom by two opposite and
equal single loads at its mid span. The cylinder is supported by a rigid diaphragm at the ends.
The dimensions of the cylinder are length L = 600 m, radius R = 300 m and h = 3 m with the
elastic material properties of Young’s modulus E = 3 · 106 Pa and ν = 0.3. The corresponding
load is F = 1 N. The reference solution is the vertical displacement at point A (the point of
the upper single load) and is determined as uref = −1.8248 · 10−5 m [1]. This model is the
first model considering curvature in the shell and the most sophisticated since it does not only
evoke inextensional bending modes but also membrane stresses. It is of special interest since
the curvature κ can be evaluated as it is constant with κ = −1/R in the x-z-plane.

Figure 5.5: Sketch of the problem setup for the pinched cylinder [14].

Since the problem setup is double symmetric, the model is simplified as an eighth of the cylinder
where the length is decreased to the half and only the upper cylinder in between the points A,
B, C and D is discretized. The boundaries then need to be adjusted as uy,b = uy,t = 0 along the
edge of AB, uz,b = uz,t = 0 along the edge of BC, uz,b = uz,t = 0, ux,b = ux,t = uy,b = uy,t = 0
along the edge of CD and ux,b = ux,t = 0 along the edge of AD. Consequently, the single load
at point A is adjusted to F= 1/4 N and for a better numerical stability, the load is applied to
the top and bottom node in A by the value of F/2 each. The initial mesh of the cylinder is of
quadratic basis functions with p = q = 2. The control points and weights are denoted in the
Appendix B. The model is evaluated by conducting a mesh refinement and afterwards an order
elevation.
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5.2 Pinched cylinder

At first as explained above, the curvature of the model can be evaluated since for a circle
the curvature κ at any point is κ = −1/R and yields the possibility to check the geometric
description of the cylinder. Hence, it was analyzed for its curvature in the x-z-plane along ξ.
The curvature of the cylinder can be determined by

κ(ξ) = x,ξ z,ξξ − x,ξξ z,ξ
((x,ξ)2 + (z,ξ)2)3/2 . (5.4)

The curvature was checked for each Gauss point on every element for the cylinder and the
calculation showed that by the analytical solution of the derivatives as well as by the method
of finite differences the curvature was always calculated to κ = −1/R. The same applied for
the derivative of the normal vector which was compared for both methods and yielded the same
results. For this reason, in the further course, the analytical approach was always used for the
computation of the derivatives, both for the derivatives of the basis functions and the normal
vector.
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Figure 5.6: Convergence study by mesh refinement of the vertical displacement at point A (point
of load application) of the pinched cylinder for 1 to 10 elements and orders of p = q = 4, p = q = 6
and p = q = 8 (left) and for 5 to 40 elements and orders of p = q = 2, p = q = 3 and p = q = 4
(right).

Figure 5.6 shows the diagram of the convergence study of the SBIGA for the pinched cylinder.
The mesh refinement is conducted in two different ways. For higher orders the mesh refinement
is conducted from 1 to 10 elements each direction of orders p = q = 4 (ngp = 8), p = q = 6
(ngp = 10) and p = q = 8 (ngp = 12). It can be seen that for higher orders the solution can
be predicted quite accurately even for a few elements where for example for bi-octic elements
already the initial mesh reaches an accuracy of 94%. It is noticeable, however, that the solution
for more bi-octic elements no longer shows a straight line, but increases and decreases abruptly
and ends up on a opposite deflection for 10 elements per side. Also for the bi-sextic elements
the solution deviates strongly for 7 elements per side. Moreover, the curve seems to converge in
between 4 and 8 elements per side towards a slightly higher value than the reference solution,
but rises again with more elements. For bi-quartic elements no abrupt changes appear and the
convergence takes longer to reach the reference solution. For 8 elements per side the computed
solutions has a relative error of 0.6% and for 10 elements per side it is 2.7%.

On the right side of the figure the convergence study for [5, 10, 15, 20, 25, 30, 35, 40] elements
per side and orders of p = q = 2 (ngp = 6), p = q = 3 (ngp = 7) and p = q = 4 (ngp = 8) is
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5.2 Pinched cylinder

shown. It is clear that no curve converges. In addition, it is recognizable that similar to the
results of higher order for fine meshes, the results sometimes deviate strongly even stronger than
for higher orders.

Table 5.2: Properties and solution of the order elevation for the pinched cylinder.

p = q DOFs number of
Gauss points

calculation time solution
[10−5m]

2 180 6 11 s -0.0151

3 252 7 27 s -0.0512

4 336 8 78 s -1.0944

5 432 9 183 s -1.5868

6 540 10 397 s -1.7633

7 660 11 803 s -1.8275

8 792 12 1634 s -1.8542

The order elevation is conducted by using 4×3 elements to discretize the cylinder and increasing
the order of the elements from p = q = 2 to p = q = 8 continuously. Table 5.2 shows the
important properties of the calculation. The number of Gauss points is always three points
more than necessary per direction on an element for the exact solution in common FEA and
sufficiently accurate for the solution of the problem. The calculation time increases non-linearly
and a calculation takes 27 minutes at the highest order. The solutions for p = q = 7 and
p = q = 8 are precise with a relative error of 0.15 % and 1.61 %, respectively. Unfavorably, the
relative error is higher for p = q = 8.
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Figure 5.7: Convergence study by order elevation of the vertical displacement at point A (point of
load application) of the pinched cylinder (left) and the deformed structure for 4 × 3 elements per
side and basis functions of order p = q = 8, where the deformation is scaled by 2 · 106 (right).

The convergence study in Figure 5.7 shows that the SBIGA converges towards the reference
solution and slightly overestimates the displacement at the load application. However, a good
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5.2 Pinched cylinder

convergence can be observed. When it comes the displacements of the cylinder, the deformed
structure shown in the figure on the right has the typical buckling around the point of the load
application which decreases towards the rigid diaphragm that can be observed also in other
results [7].

Figure 5.8: Results of the computed displacements for the pinched cylinder for 4 × 3 elements
per side of order p = q = 8 separated in magnitude (upper left), displacement in x (upper right),
displacement in y (lower left) and displacement in z (lower right).

Figure 5.8 shows the displacement plots for the calculation of the patch with 4× 3 elements per
side of an order p = q = 8. The plot of magnitude shows that the largest displacements occur
at the point of load application. In addition, a bulge can be seen slightly away from the load
application. From the plots of displacement in the x-direction and z-direction, it can be seen
that the displacement at the load application is purely vertical displacement (which is consistent
with the boundary conditions), while the buckling is dominated by horizontal displacement in
the x-direction. The displacements in y-direction are negligible.

Finally, the convergence studies of the pinched cylinder show that the SBIGA cannot cal-
culate the displacements of the model with sufficient accuracy for any mesh and order. The
observations on the cylinder suggest that an order increase is much more likely to improve the
solution than a mesh refinement. Since the load application is likely to evoke singularities an
overshooting of the deflection does not necessarily mean that the formulation is erroneous, how-
ever, the relative error is quite high to only suggest this to be due to singularities. Furthermore
it could be shown via the curvature that the geometric model of the cylinder including first and
second derivatives can be determined correctly and the isogeometric framework is providing an
accurate geometric description.

46



5.3 Scordelis-Lo roof

5.3. Scordelis-Lo roof

Next, the Scordelis-Lo roof [22] is investigated. The shell is a cylinder cutout of 80°. It is
vertically loaded by a dead load and the curved edges are supported by rigid diaphragms same
as the pinched cylinder in Section 5.2. A sketch of the problem setup is shown in Figure 5.9.
The corresponding parameters of the model are length L = 50 m, radius R = 25 m, thickness
h = 0.25 m angle of cylinder cutout ψ = 40◦, Young’s modulus E = 4.32·108 Pa, Poisson’s ration
ν = 0 and surface load fz = 90 Pa. The investigated displacement is the vertical displacement
at the middle of the free edge at point A with a reference solution of uref = 0.03024 m [15]. The
problem mainly evokes membrane stresses, which are to be investigated.

Figure 5.9: Sketch of the problem setup for the Sordelis-Lo roof [14].

Since the shell is symmetric, only a half of the shell is modeled. Therefore, it is cut at L/2 from
point A to point B. The boundary conditions then are uy,b = uz,b = 0 at the rigid diaphragm
and uz,b = uz,t = 0 at the edge of AB. The straight edges are free. The initial mesh of the
roof is modeled using quadratic basis functions, p = q = 2. The control points are reported in
Appendix B. Two convergence studies are conducted by a mesh refinement first and afterwards
an order elevation.
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5.3 Scordelis-Lo roof
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Figure 5.10: Convergence study by mesh refinement of the vertical displacement in the middle of
the straight edge at point A of the Scordelis-Lo roof for 1 to 10 elements and orders of p = q = 4,
p = q = 6 and p = q = 8 (left) and for 5 to 40 elements and orders of p = q = 2, p = q = 3 and
p = q = 4 (right).

The convergence study by mesh refinement for the Scordelis-Lo roof is shown in 5.10. On the
left the mesh refinement is conducted for 1 to 10 elements with orders of p = q = 4, p = q = 6
and p = q = 8. All curves show a similar convergence behavior with a slight overshooting of
the computed solution. As also with the pinched cylinder, abrupt changes are recognizable with
the convergence for p = q = 6 and p = q = 8, whereby particularly with p = q = 6 the change
is very strong. For finer meshes of more than 7 elements the solution of the bi-octic elements
increases strongly.

On the right the convergence study for a mesh refinement with [5, 10, 15, 20, 25, 30, 35, 40]
elements per side and orders of p = q = 2, p = q = 3 and p = q = 4 is presented. It can be
observed, that no curve converges towards any limit. Furthermore, the curves of order p = q = 3
and p = q = 4 heavily change for fine meshes and there is no common prediction of the solution
visible.

Table 5.3: Properties and solution of the order elevation for the Scordelis-Lo roof.

p = q DOFs number of
Gauss points

calculation time solution [m]

2 96 6 8 s -0.0220

3 150 7 14 s -0.2012

4 216 8 31 s -0.2559

5 294 9 67 s -0.2879

6 384 10 143 s -0.2950

7 486 11 282 s -0.2991

8 600 12 548 s -0.3009

Next, an order elevation is conducted using 2×2 elements for the discretization and increasing the
order from p = q = 2 to p = q = 8. Table 5.3 lists the properties related to the calculations. The
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5.3 Scordelis-Lo roof

number of Gauss points per direction are increased from 6 to 12 points which also increases the
calculation time. While a bi-quadratic element with 6 Gauss points takes 8 seconds to calculate,
an element of order p = q = 8 with 12 Gauss points takes 9 minutes. The computed solutions
are tending towards the reference solution where the displacement of an order of p = q = 8
yields ucomp = −0.03009m which is a relative error of 0.46% and therefore very accurate.
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Figure 5.11: Convergence study by order elevation of the vertical displacement in the middle of
the straight edge at point A (left) and the deformed structure for 2 × 2 elements of order p = q = 8
where the deformation is scaled by 20 (right).

Figure 5.12: Results of the computed displacements from top view for the Scordelis-Lo roof using
2 × 2 elements of order p = q = 8 separated in magnitude (upper left), displacement in x (upper
right), displacement in y (lower left) and displacement in z (lower right).
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Figure 5.11 shows the convergence study for the order elevation of the model with 2×2 elements
where the order is increased from p = q = 2 to p = q = 8 continuously. On the right, the
deformed model at 2 × 2 elements and order p = q = 8 is shown with a scale of 20. It shows
the half of the Scordelis-Lo roof (symmetry), where the surface load causes the free, straight
sides to yield slightly inward and thus move downward. It also shows the membrane dominated
behavior.

The plots of the displacements in Figure 5.12 show separated displacement components. It
is visible that the above described boundary conditions are fulfilled, where the displacement in
x is zero on the upper curved edge and the displacement in y and z is set to zero for the lower
curved edge.

Similarly to the problem of the pinched cylinder, the results show that for a small number
of elements with a sufficient high order of basis functions the solution can be computed to high
accuracy. However, for very fine meshes, the stiffness of the roof is underestimated and the
deformations are overestimated. It is especially noticeable that the solution does not converge.
In contrary, for sufficiently rough meshes the solution converges in the vicinity of the reference
solution. It is much more advantageous to increase the order instead of refining the mesh.

5.4. Pinched hemisphere with hole

The last problem is the pinched hemisphere with hole described in [1]. The hemisphere has a
cutout of a hole on top in an angle of ψ = 18◦. The other parameters are radius R = 10 m,
Young’s modulus E = 6.825 · 107 Pa and ν = 0.3. The model is evaluated for the thickness
and corresponding force amplitudes of h = 0.04 m with F = 1.0 N and h = 0.004 m with
F = 1.0 · 10−3 N. For both versions the radial displacement at point A is evaluated with a
reference solution of uref = 0.0930 m [23]. It is a bending dominated problem including rigid
body rotation due to the load application.

Figure 5.13: Sketch of the problem setup for the pinched hemisphere with hole [14].

Due to symmetry, only one quarter of the hemisphere is modeled and the boundary conditions
are adjusted. The new Dirichlet boundary conditions as shown in Figure 5.13 are uy,b = uy,t = 0
along the edge of AC and ux,b = ux,t = 0 along the edge of BD. The edges AB and CD are
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5.4 Pinched hemisphere with hole

free. To prevent movements in z-directions, additionally point C is supported in z-direction.
The initial mesh uses quadratic basis functions, p = q = 2 and the control points are denoted in
the Appendix B. The model is evaluated by conducting a mesh refinement for both thicknesses
with corresponding load amplitudes. Additionally an order elevation is proceeded for a constant
mesh.
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Figure 5.14: Convergence study by mesh refinement of the radial displacement at point A for
h = 0.04 m (left) and h = 0.004 m (right) for elements of bi-quadratic, bi-cubic and bi-quartic
order, where the legend applies to both diagrams.

The convergence study of the mesh refinement for [5, 10, 15, 20, 25, 30, 35, 40] elements per
side is conducted with the orders of p = q = 2, p = q = 3 and p = q = 4. On the left side
the convergence of the thick shell (h = 0.04 m) shows a very accurate and smooth convergence
behavior for all orders. Especially for the bi-quartic order the solution is precise for all considered
spatial discretizations with a relative error of 2%. Even for fine meshes the results are accurate
and do not change. So is the accuracy of the computed displacement for the bi-quadratic
elements with 40 elements per side 99.6%.
When it comes to the convergence study of the shell of h = 0.004 m the solution does not
converge as rapidly as the thick shell and does not converge for bi-quadratic elements even for 40
elements per side. However, for higher orders the solution converges and slightly underestimates
the displacements.

Table 5.4: Properties and solution of the order elevation for the pinched hemisphere with hole.

p = q DOFs number of
Gauss points

calculation
time

h = 0.04 [m] h = 0.004
[m]

2 150 6 10 s 0.0004 0.0000

3 216 7 26 s 0.0104 0.0001

4 294 8 59 s 0.0764 0.0045

5 384 9 156 s 0.0907 0.0501

6 486 10 319 s 0.0922 0.0868

7 600 11 681 s 0.0929 0.0901

8 216 12 1222 s 0.0932 0.0905
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5.4 Pinched hemisphere with hole

The order elevation for the pinched hemisphere with hole is conducted with a mesh of 3 × 3
elements and the order is elevated from p = q = 2 to p = q = 8. The important properties
of the order elevation are listed in Table 5.4 with degrees of freedom, number of Gauss points,
calculation time and the computed results of both models of h = 0.04 m and h = 0.004 m. The
calculation time was similar for both calculations. Therefore, the calculation time of the thin
shell was chosen. The results show that for the order of p = q = 8 both models can be calculated
accurately with a relative error of 0.22% for the thick shell and a slight underestimation of the
displacement for the thin shell of 2.69%.
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Figure 5.15: Convergence study by order elevation of the radial displacement at point A for h = 0.04
m and h = 0.004 m (left) and the deformed structure of thickness h = 0.04 m for 3 × 3 elements of
order p = q = 8 where the deformation is scaled by 20 (right).

Having a look on the convergence study for the order elevation in Figure 5.15 shows that the thick
shell converges very smooth towards the reference solution and already for an order p = q = 5
the solution has an accuracy of over 97%. The thin shell also converges towards the reference
solution even though it slightly underestimates the displacements. Furthermore, the solution
does not converge as rapidly as the thick shell. These results also match the SBFEM results of
[14].The deformed structure shows both rigid body rotation for the whole structure and bending
modes especially at the bottom corners of the hemisphere.

The displacement plots of Figure 5.16 display for the magnitude of the displacement, that
the SBIGA shell can handle the loads applied in normal direction which is visible at the bottom
corners. Furthermore, the plots of the displacement in x-direction and y-direction show that
the loads are applied anti-symmetrically since the resulting displacements are working in op-
posite directions. Finally the plot of the displacement in z-direction has a perfectly symmetric
deformation which legitimizes the application of a single support in z-direction.
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5.4 Pinched hemisphere with hole

Figure 5.16: Results of the computed displacements for the pinched hemisphere with hole of thick-
ness h = 0.04 m using 3 × 3 elements and order of p = q = 8 separated in magnitude (upper left),
displacement in x (upper right), displacement in y (lower left) and displacement in z (lower right).

Finally, for the problem of the pinched hemisphere with hole, it can be observed that, unlike the
other problems with curved shells, for the pinched hemisphere also a mesh refinement leads to
an accurate calculation of the solution. Since the results do not converge fast for bi-quadratic
elements (especially for the thin shell) it is recommended to use higher order basis functions.
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6. Summary & Outlook

6.1. Summary

This thesis has aimed at deriving and implementing an isogeometric scaled boundary formu-
lation. For this purpose, the SBFEM shell formulation was combined with the IGA. First the
mathematical background of the IGA was explained and its advantages compared to the conven-
tional FEM were described. Afterwards the element description with the SBM was executed and
integrated into the IGA so that an SBIGA formulation was derived. The formulation was then
implemented numerically in MATLAB and the key processes and algorithms were visualized.

Afterwards, the formulation was evaluated by benchmark tests and checked for its reliability.
For this purpose, four problems were chosen with the simply supprted square plate, the pinched
cylinder, the Scordelis-Lo roof and the pinched hemisphere with hole. For the simply supported
square plate the computed solution was very accurately determining the displacements in the
middle of the plate and also an order elevation yielded accurate solutions. This shows that the
solution for flat structures is reliable. For the pinched cylinder the calculations for the mesh
refinement do not converge towards any limit. Possibly the singularity of the load might evoke
higher displacements at the point of the load application. However, this needs to be evaluated
further to identify the problem. When performing an order elevation for coarse meshes the
computed solution is quite accurate and converges towards the reference solution. In addition,
it could be shown that the isogeometric framework works and is suitable to be coupled with the
SBM using the example of the pinched cylinder. A similar behavior of the convergence study is
observed for the Scordelis-Lo roof which is subjected to a surface load distributed over the whole
shell structure. For the mesh refinement the computed solution does not converge towards any
limit in particular for low order elements and fine meshes. For higher orders and mesh refinement
of more coarse meshes the computed solution converges at first to then increase substantially,
which seems to be accompanied by numerical instabilities. For an order elevation, again, the
calculation yield proper results and converges very smoothly. For the pinched hemisphere with
hole, the results for the order elevation and the mesh refinement both converge perfectly. It shows
that for slender shells it takes more degrees of freedom to properly determine the displacements,
however for higher orders or finer meshes the results are calculated correctly. Only the mesh
refinement for bi-quadratic elements does not converge. However, for an even finer mesh the
solution is expected to get closer to the reference solution.

Concerning the problems of the mesh refinement, several checks were made. The IGA frame-
work was checked, where the calculation of the curvature showed that the basis functions and
their derivatives were correctly determined. In addition, the analytical and numerical calculation
reached almost the same values (taking into account that the numerical solution can be deter-
mined only approximately). In addition, the derivative of the normal vector was determined
numerically and analytically, which also gave consistent results. By consultation with Jianghuai
Li (Ph.D.), the author of [14], also no problems in the description of the element routine for the
SBM could be identified.

Finally, in this work an isogeometric scaled boundary formulation could be derived, which
was also tested in benchmarks for its reliability. Its efficiency and capabilities could be shown,
although problems are still visible. Thus, the problems of convergence studies for very fine
meshes have to be verified and evaluated. It is remarkable that these deviations did not occur
for the plate, which is not curved, and for the hemisphere, which is curved in all planes, and
caused convergence problems only for the examples with a single curvature. Nevertheless, in
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this work a good basis for further investigations and implementations was prepared, which has
a wide potential.

6.2. Outlook

As explained above, the isogeometric scaled boundary formulation and the algorithm provided
with this work yields a wide range of further investigations which will be sketched out herein.

At first, for a further use of this formulation it is necessary to check on the problems that
occur for the mesh refinement. Several things were already checked and seem to work properly.
However, some further checks can be done as for example the analytical solution in thickness
direction. These reviews should focus particularly on the examples of the pinched cylinder and
the Scordelis-Lo roof, as these examples have given rise to problems.

Similar to the thesis of [29], different approaches for the solution in thickness direction can be
derived. So the analytical solution can be substituted by a semi-analytical method, a collocation
method or the weak formulation in thickness direction. This would also help to check the solution
reported in this thesis.

For a more accurate and faster performance of the simulation, it is possible to change the
numerical integration over the element. So far the Gauss-Legendre quadrature rule was used
and the number of points was increased by three. Since NURBS are rational the the Gauss-
Legendre quadrature is not exact but is sufficiently precise for an increased number of points.
However, for a more efficient quadrature the calculation costs might be significantly decreased.
A method presented in [10] is the so called half-point rule which is explicitly derived for NURBS
in isogeometric analysis.

Furthermore, the material model, which was assumed to be linear elastic can be extended
to an electroactive polymer (EAP). These are polymers that perform a change of size or shape
when subjected to an electric field and are used for the design of artificial muscles in robotics
or for gripping devices [17]. These electroactive grippers are closed in the undeformed state and
open up under voltage. Figure 6.1 shows a gripper for all states of a working cycle.

Figure 6.1: Working principle of an electroactive gripper [28].
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APPENDIX A: Derivative of the unit normal vector

A. Appendix A

The derivative of the unit normal vector is about to be derived, since its derivative needs to be
determined for the Jacobian matrix of curved elements. In the following, the equation used in
the paper is derived in detail and the important steps are explained for the partial derivative
with respect to ξ. The unit normal vector is derived by the cross product of the tangent vectors
on the local axes ξ and η [12]. Therefore, to determine its derivative, it is useful to start with

∂n
∂ξ

= ∂

∂ξ

r,ξ × r,η
‖r,ξ × r,η‖

. (A.1)

Applying the quotient rule on the equation leads to

∂n
∂ξ

=
∂
∂ξr,ξ × r,η · ‖r,ξ × r,η‖ − r,ξ × r,η · ∂∂ξ‖r,ξ × r,η‖

‖r,ξ × r,η‖2

=
∂
∂ξ (r,ξ × r,η)
‖r,ξ × r,η‖

−
(r,ξ × r,η) · ∂∂ξ‖r,ξ × r,η‖

‖r,ξ × r,η‖2
.

(A.2)

At this point, there are basically two terms that can be considered separately for the derivation.
So for the first term the product rule will be applied and for second term the norm needs to be
derived. In general, the partial derivative of a norm of a function is defined as

∂‖f(x)‖
∂x

= f(x)
‖f(x)‖ ·

∂f(x)
∂x

(A.3)

So then, applying the product rule on the first term of equation (A.2) and the derivative of the
norm from equation (A.3) into the second term, the equation yields

n,ξ =
∂r,ξ
∂ξ × r,η + r,ξ ×

∂r,ξ
∂ξ

‖r,ξ × r,η‖
−

(r,ξ × r,η)[(r,ξ × r,η) · (∂r,ξ
∂ξ × r,η + r,η

∂ξ × r,ξ)]
‖r,ξ × r,η‖3

. (A.4)

Consequently, the same procedure can be done for the derivative of n with respect to η as

n,η =
∂r,ξ
∂η × r,η + r,ξ ×

∂r,ξ
∂η

‖r,ξ × r,η‖
−

(r,ξ × r,η)[(r,ξ × r,η) · (∂r,ξ
∂η × r,η + r,η

∂η × r,ξ)]
‖r,ξ × r,η‖3

. (A.5)

With these equations in hand the derivative of the unit normal vector can be determined, since
the second derivatives of the tangent vectors with respect to the local axes can be calculated as
described in Section 2.1.6 and thus, all variables are known.
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APPENDIX B: Control points of relevant geometries

B. Appendix B

This appendix lists the necessary control points to represent the geometries from the bench-
marking using the IGA. The control points are chosen so that all lengths and radii are equal to
one. Thus, the models can be freely dimensioned by the input and can be described flexibly.

The cylinder (see Section 5.2) consists basically of the combination of a quarter circle and a
straight line. Consequently, most of the control points are interpolatory except for (1,2), (2,2)
and (3,2). The initial mesh is of bi-quadratic order and has 3 × 3 control points, which are
denoted in Table B.1.

Table B.1: Control points and weights for the initial mesh of the cylinder.

(i, j) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

x 0 1 1 0 1 1 0 1 1

y 0 0 0 0.5 0.5 0.5 1 1 1

z 1 1 0 1 1 0 1 1 0

w 1 1/
√

2 1 1 1/
√

2 1 1 1/
√

2 1

The initial mesh of the Scordelis-Lo roof (see Section 5.3) is listed in Table B.2. It consists of
bi-quadratic order and 3 × 3 control points. Similarly as for the cylinder, the initial mesh is a
combination of an 80° cutout of a circle and a straight line.

Table B.2: Control points and weights for the initial mesh of the Scordelis-Lo roof.

(i, j) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

x 0 0 0 0.5 0.5 0.5 1 1 1

y -0.643 0 0.643 -0.643 0 0.643 -0.643 0 0.643

z 0.766 1.305 0.766 0.766 1.305 0.766 1.305 1 0.766

w 1 0.766 1 1 0.766 1 1 0.766 1

Table B.3 lists the control points of the hemisphere with hole (see Section 5.4). It is a quarter
of a hemisphere with a hole on to of 18°. The initial mesh consists of 3 × 3 control points and
bi-quadratic order.

Table B.3: Control points and weights for the initial mesh of the hemisphere with hole.

(i, j) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

x 1 1 0.309 1 1 0.309 0 0 0

y 0 0 0 1 1 0.309 1 1 0.309

z 0 0.727 0.951 0 0.727 0.951 0 0.727 0.951

w 1 0.809 1 1/
√

2 0.572 1/
√

2 1 0.809 1
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