
Instructions

The aim of this work is to analyze, design and verify the implementation of a prototype method of

metadata extraction from the Kafka tool, especially for the purpose of monitoring data flows within the

Manta tool.

Follow these steps:

1. Formalize metadata extraction requirements from Kafka for monitoring purposes.

2. Describe the Kafka tool and analyze the possibilities of obtaining metadata.

3. Based on the analysis, design a system for extracting metadata from the Kafka tool.

4. Implement the module prototype in the Manta tool for metadata extraction from the Kafka tool and

evaluate the effectiveness of the proposed procedure on suitable data.

Electronically approved by Ing. Michal Valenta, Ph.D. on 21 October 2020 in Prague.

Assignment of bachelor’s thesis

Title: Metadata extraction from tool Kafka

Student: Michaela Weberová

Supervisor: Ing. Michal Valenta, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

Bachelor’s thesis

METADATA EXTRACTION
FROM TOOL KAFKA

Michaela Weberová

Faculty of Information Technology CTU in Prague
Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.
May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Michaela Weberová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Michaela Weberová. Metadata extraction from tool Kafka. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2021.

Contents

Acknowledgment vii

Declaration viii

Abstract ix

List of abbreviations x

1 Introduction 1
1.1 Thesis goals . 1

2 Classification and terminology 3
2.1 Data lineage . 3
2.2 Manta . 3

2.2.1 Data flow graph . 3
2.2.2 Metadata . 4
2.2.3 Extraction and analysis . 4
2.2.4 Data Dictionary . 4

2.3 Data serialization and deserialization . 4
2.4 Data serialization formats . 5

2.4.1 Protocol Buffers and Avro . 5
2.4.2 JSON schema . 5

2.5 Pipeline . 6
2.6 Messaging system . 6

3 Apache Kafka introduction 7
3.1 Apache Kafka classification . 7

3.1.1 Event streaming platform . 7
3.1.2 Distributed system . 8

3.2 Kafka terminology . 8
3.3 Kafka publish and subscribe process explanation 9
3.4 Kafka distributions . 9

4 Kafka scanner requirements 11
4.1 Functional requirements . 11
4.2 Non-functional requirements . 12
4.3 Used technologies . 12

iii

iv Contents

5 Kafka metadata capabilities analysis 15
5.1 Schema Registry extraction . 15

5.1.1 Schema Registry purpose . 15
5.1.2 Main Schema Registry concepts . 16
5.1.3 Extraction process from Schema Registry 18
5.1.4 Advantages and disadvantages of Schema Registry 18

5.2 Manual input extraction . 19
5.2.1 Advantages and disadvantages of manual input 19

5.3 KsqlDB extraction . 20
5.3.1 KsqlDB collections . 20
5.3.2 KsqlDB extraction process . 22
5.3.3 ksqlDB advantages and disadvantages . 25

6 Kafka scanner design 27
6.1 Manta Kafka node design . 28
6.2 Manual input format design . 28
6.3 Kafka scanner design . 28

6.3.1 Kafka dictionary extractor design . 29
6.3.2 Kafka dictionary design . 30

7 Kafka scanner prototype implementation 35
7.1 Connector module . 35

7.1.1 Connector Kafka Dictionary Extractor module 35
7.2 Connector Kafka Dictionary module . 38

7.2.1 Implementation of Kafka entity types . 38
7.2.2 Hierarchy definition . 38

7.3 Dataflow Generator . 39

8 Kafka scanner testing 41
8.1 Unit Tests . 41
8.2 The metadata extractor outputs . 42

9 Conclusion 45

A Kafka Questionnaire 47

Contents of enclosed media 55

List of Figures

2.1 Dataflow Graph in Manta. [1] . 4

3.1 Apache Kafka cluster. Created using draw.io. 8

5.1 Kafka with Schema Registry. [2] . 16

6.1 Kafka Manta node design. Created using draw.io. 27

6.2 Kafka Scanner module diagram. Created using draw.io. 29

6.3 Kafka Dictionary Extractor Design. Created using draw.io. 29

6.4 Data dictionary add topic sequence diagram. Created using IntelliJ idea sequence
diagram plugin. 30

6.5 Kafka Dictionary Objects Structure. Created using draw.io. 32

6.6 Kafka Dictionary class diagram. Created using IntelliJ idea. 33

8.1 The structure of the result H2 database. 43

8.2 Extracted metadata saved in the H2 database. 43

List of Tables

5.1 Metadata sources . 15

5.2 Schema Registry overview . 16

5.3 Schema Registry naming strategies . 17

6.1 Kafka Dictionary Search Use cases . 31

v

vi List of code listings

List of code listings

2.1 Protobuf schema definition example. [3] . 5
2.2 Avro schema definiton example. [4] . 5

5.1 Confluent Schema Registry - GET subjects request. [2] 18
5.2 Confluent Schema Registry - GET subjects example response. [2] 18
5.3 Confluent Schema Registry - GET subject versions request. [2] 18
5.4 Confluent Schema Registry - GET subject versions example response. [2] 19
5.5 Schema Registry - GET schema request. [2] . 19
5.6 Schema Registry - GET schema example response. [2] 20
5.7 KsqlDB CREATE Stream syntax. [5] . 21
5.8 KsqlDB CREATE Table syntax. [5] . 21
5.9 KsqlDB CREATE Stream with Schema Registry. [5] 21
5.10 KsqlDB CREATE Stream without Schema Registry. [5] 21
5.11 KsqlDB CREATE Table with Schema Registry. [5] 21
5.12 KsqlDB CREATE Table without Schema Registry. [5] 22
5.13 KsqlDB - Stream creation. [5] . 23
5.14 KsqlDB REST API - LIST STREAMS response. [5] 23
5.15 KsqlDB REST API - DESCRIBE abbreviated response. [5] 24

6.1 Manual input format design with sample data. 34

7.1 RestCommunicator:makeGetRequest method. 36
7.2 SchemaRegistryExtractor interface. 36
7.3 JSON schema example. [6] . 37
7.4 KafkaWriter:addTopic method. 38
7.5 KafkaDataDictionary:createTopLevelEntity method. 39
7.6 KafkaDialect rule definitions. 39
7.7 Usage of Manta’s dataflow dictionary generator processors. 40

8.1 ConfluentPlatformResponseProcessorTest unit test. 42

I would like to take this opportunity to express gratitude to my su-
pervisor Ing. Michal Valenta Ph.D. for valuable advices and Ing.
Petr Košvanec for his guidance in Manta and also within this work.
Last but not least, I would like to thank my family and friends for
their support, especially during the writing of this work.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46(6) of the
Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including any
and all computer programs incorporated therein or attached thereto and all corresponding doc-
umentation (hereinafter collectively referred to as the “Work”), to any and all persons that wish
to utilize the Work. Such persons are entitled to use the Work in any way (including for-profit
purposes) that does not detract from its value. This authorization is not limited in terms of
time, location and quantity. However, all persons that makes use of the above license shall be
obliged to grant a license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modifying the Work, by
combining the Work with another work, by including the Work in a collection of works or by
adapting the Work (including translation), and at the same time make available the source code
of such work at least in a way and scope that are comparable to the way and scope in which the
source code of the Work is made available.

In Prague on 13. May 2021 .

viii

Abstract

The aim of this thesis is to implement a module integrated into Manta software for metadata
extraction from the tool Apache Kafka. The work begins with a general analysis of Kafka and
its essential elements. Then it continues with the analysis of different approaches for metadata
extraction. The second half of the work is focused on the design and implementation of the
functional prototype using the methods examined in the analysis. The last chapter is dedicated
to testing and evaluation of the used solution.

Keywords data lineage, Apache Kafka, event streaming, Manta, Schema Registry, Confluent,
metadata

Abstrakt

Ćılem této práce je implementovat modul slouž́ıćı pro extrakci metadat z nástroje Apache Kafka,
který bude integrovaný do softwaru Manta. Práce zač́ıná obecnou analýzou Kafky a jej́ımi
základńımi objekty. Poté pokračuje analýzou r̊uzných př́ıstup̊u pro extrakci metadat. Druhá
polovina práce se pak už věnuje designu a implementaci funkčńıho prototypu na základě zk-
oumaných metod. V posledńı kapitole je otestováno a vyhodnoceno použité řešeńı.

Kĺıčová slova datová linie, streamováńı událost́ı, Apache Kafka, Manta, Schema Registry,
Confluent, metadata

ix

List of abbreviations

API Application Programming Interface
CSV Comma Separated Values

JDBC Java Database Connectivity
JSON JavaScript Object Notation
REST Representational State Transfer

Protobuf Protocol Buffers
TCP Transmission Control Protocol
SVN Apache Subversion

UI User Interface
XML Extensible Markup Language

x

Chapter 1

Introduction

Apache Kafka is software with a variety of use cases, from being a messaging system for
delivering the data over tracking the applications activity and data processing. These use cases
have something in common: Kafka typically has lots of integrations to other systems and is often
used as a backbone in complex software infrastructures. As the infrastructures evolve over time,
the number of system integration and the amount of transferred data grows in parallel.

When the developers want to make a significat or even slight change in their system or extend
it, they have to face questions like “What will be the impact of this change?” or “Can I guarantee
that these data will be available only to authorized people?”. And usually, the answers to these
questions are not trivial.

Manta is a company that offers a solution for simplifying these decisions by providing software
that connects to the various systems in the software infrastructure, extracts the metadata, and
visualizes them as a graph. The resulting graph captures the data flows between the systems.
Manta currently supports connections to various technologies from different reporting and ETL
tools to databases and programming languages. The aim of this work is to add support for
Kafka.

1.1 Thesis goals

The goals of the work correspond to individual chapters. The first chapter Classification
and terminology aims to give a general introduction to essential terms related to metadata
extraction. It also introduces the Manta software with which the resulting module will be in-
tegrated. The following chapter Apache Kafka introduction introduces Kafka and explains
the main Kafka principles on which is based the further analysis. The Kafka scanner re-
quirements formalizes the functional and non-functional requirements for metadata extraction
module.

The Kafka metadata capabilities analysis is focused on finding different approaches
for the extraction. Based on the result of the analysis chapter, the Kafka scanner design
deals with differents aspects of the module’s design. The last two chapters, Kafka scanner
implementation and Kafka scanner testing and effectiveness evaluation are dedicated
to the implementation of a functional prototype, testing, and evaluation of the used solution.

1

Chapter 2

Classification and terminology

This chapter defines essential terms used later on within the work. It starts with an explana-
tion of data lineage. After that is introduces the Manta software and standardized terms used in
Manta. At the end is a high-level overview of data serialization and data serialization formats.

2.1 Data lineage

“Data lineage states where data is coming from, where it is going, and what transformations
are applied to it as it flows through multiple processes.” [7]

As was mentioned in the introduction 1, the data lineage can help different organizations to
make changes within their systems. With the knowledge of data lineage, it is easier to predict the
consequences of a particular change. Another use case can be that today’s organizations need
to comply with different data privacy regulations, so they must know where their data moves
within the system. [7]

2.2 Manta

Manta is a data lineage platform. It works on the principle of individual connections to various
technologies and metadata extraction from them. Manta then uses this extracted metadata
and creates a dataflow graph based on the connections between particular technologies. Manta
currently supports connections to different technologies started from databases, reporting and
ETL tools, programming languages, and more. [1]

2.2.1 Data flow graph
“A data-flow is a path for data to move from one part of the information system to another.”

[8] The data lineage can then be represented as a sequence of data flows - as a data flow graph.
The data flow graph is oriented; the nodes represent individual systems and the edges the flows
of data between them. In the picture 2.1 is shown an example of a data flow graph created by
Manta.

3

4 Chapter 2. Classification and terminology

Figure 2.1 Dataflow Graph in Manta. [1]

2.2.2 Metadata
Metadata are the data that provide other information about the data. In the context of

databases, MANTA extracts and analyzes technical metadata about the database structures,
such as schemas, schemas, views, tables, columns, data types, etc. Important is that the metadata
does not include the data itself. Again, on the database example, from Manta perspective, it is
essential to obtain only the name of the columns, but not their content. [1]

2.2.3 Extraction and analysis
Manta distinguishes two main parts of the process of creation a data lineage of a particular

technology – extraction and analysis. During the extraction phase, the metadata are extracted
from the host system. After that, it comes the analysis phase during which are the extracted
metadata merged into the final lineage. The software that connects to the source systems, obtains
metadata and analyze them is called scanner. [1]

2.2.4 Data Dictionary
The data dictionary is a universal implementation of metadata storage that stores in-

formation about existing objects in the source system. Database scanners mainly use the data
dictionary to store the information about the database objects and their hierarchy. The metadata
in the dictionary are persisted on the disk in H2 database.

2.3 Data serialization and deserialization

In the following chapters it is often talked about data serialization, deserialization, and data
serialization formats. “Serialization is the process of translating data structures, or objects state
into binary or textual form to transport the data over the network or to store on some persistent
storage. Once the data is transported over the network or retrieved from the persistent storage,
it needs to be deserialized again.” [9]

2.4. Data serialization formats 5

2.4 Data serialization formats

Data serialization formats represent different ways of converting complex data objects to
forms that are storable and transferable over the network. During this work are often discussed
three of the data serialization formats – JSON, Apache Avro, and Protocol Buffers. These three
data formats have in common that they partially or fully rely on schemas.

The schema defines the structure of the data, data types, and optionally meaning, which
can be provided through the documentation comments. [2]

2.4.1 Protocol Buffers and Avro
Protocol Buffers and Avro are data serialization systems which allows serialization of messages

into the the binary representation. The advantage of serialization into the binary data format
is that the result message is compact. Both of them fully rely on schemas, in the listing 2.1 is
example of Profobuf schema definition and in the listing is definition of schema for Avro 2.2.

Code listing 2.1 Protobuf schema definition example. [3]

message Person {
required string name = 1;
required int32 id = 2;
optional uint32 age = 3;

}

Code listing 2.2 Avro schema definiton example. [4]

{
"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [

{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}

]
}

2.4.2 JSON schema
JSON schema is different from the previous two data formats because it does not fully relies

on schemas. It is possible to use JSON without the need to define schema. JSON schema is only
used for validation of schema and describtion of data format. The example of JSON schema is
shown in the following chapters 7.3.

6 Chapter 2. Classification and terminology

2.5 Pipeline

“A data pipeline is a set of tools and activities for moving data from one system with its
method of data storage and processing to another system in which it can be stored and managed
differently. Moreover, pipelines allow for automatically getting information from many disparate
sources, then transforming and consolidating it in one high-performing data storage.” [10]

2.6 Messaging system

“A messaging system is responsible for transferring data from one application to another so
the applications can focus on data without getting bogged down on data transmission and sharing.
Distributed messaging is based on the concept of reliable message queuing. Messages are queued
asynchronously between client applications and messaging system.” [11] The important part of
the definition is that messaging systems are typically based on queue principle, meaning that the
messages are deleted from the log with the first consumption.

Chapter 3

Apache Kafka introduction

The second chapter aims to give a general introduction to Apache Kafka. It begins with
Kafka’s classification and its main capabilities. Then it continues with the main Kafka concepts,
terminology, and a brief introduction into Kafka’s internal functioning. The end of the chapter is
dedicated to different distributions and what they offer on top of Kafka’s standard functionalities.

3.1 Apache Kafka classification

Apache Kafka is a distributed event streaming platform created by LinkedIn and even-
tually open-sourced. The need to develop a system such as Kafka was caused by the transition
from the monolithic application infrastructure to the one based on microservices. LinkedIn en-
gineers developed few pipelines whose main functionality was streaming and querying the data
from individual microservices. Still, these pipelines needed to be maintained and scaled individ-
ually, which lead to the decision that LinkedIn would develop a single platform that would scale
and maintain the pipelines for them. [12]

3.1.1 Event streaming platform
As indicated in the introduction of this chapter, Kafka is used for streaming events. What

is meant by an event is a change of the state over time e. g. in the context of web activity
tracking, the event can be a reaction to someone’s post or that someone viewed specific content
on the web. Kafka allows source systems to publish into streams of events, also heavily called
logs, and sink systems to subscribe to them. Each event has a key, value, timestamp, and
optionally metadata headers. [13]

The events are stored in these streams durably and reliably for a configured amount of time.
Reliably means that Kafka is capable of recovering from the accident of one or more servers in
the cluster; it depends on the number of servers and the log configurations. Durability refers to
the fact that the data are stored in the stream even after the first consummation, which is the
key difference from messaging, explained in the chapter 2.6. The last important functionality of
event streaming is the ability to process the streams of events. Kafka offers APIs providing the
possibility to do filtering or aggregation operations on events streams. [13]

7

8 Chapter 3. Apache Kafka introduction

3.1.2 Distributed system
Kafka is distributed system. That means it is composed of multiple components (servers),

each of them on different machines, that communicate between each other to achieve the illusion
of them being a single system. [14] Being a distributed system gives Kafka multiple advantages,
including the already mentioned ability to recover from accidents some of the server or parallel
reading from the event streams.

3.2 Kafka terminology

In the previous section 3.1.2 is Kafka classified as a distributed system. Kafka works as a
cluster composed of multiple servers that store the events. In Kafka terminology, these servers
are called brokers. The picture 3.1 shows one Kafka cluster with two brokers. [13]

At the time of writing this work, Kafka uses an external service called Zookeeper, which stores
metadata information crucial for cluster operation, like the data needed for broker coordination.
Zookeeper does not store any metadata information about data and their structure, so it is not
helpful for dataflow analysis. For this reason, it is not going to be discussed further in the
following chapters about Kafka metadata capabilities. In future Kafka versions, it is planned to
remove Zookeeper, and brokers will direct all necessary information. [15]

Cluster

Broker 1 Broker 2

partition 1 partition 2

partition 2
replica

partition 1
replica

Consumer Deserializer Producer Serializer

Figure 3.1 Apache Kafka cluster. Created using draw.io.

On the brokers are stored logs with events discussed in 3.1. The logs are called topics. Each
topic has its own name unique within the cluster. This name usually reflects the type of data
stored in it, for example, page views, users, orders, etc. Besides the name, it is necessary to
configure more parameters while creating the topic. Between the most important properties
belongs the broker(s) address, the number of partitions, and the replication factor.

The address of the broker(s) is used for discovering all of the brokers in a particular
cluster. It is not guaranteed that the topic will exist on a given broker, but only in the same
cluster. One topic usually exists on multiple brokers, it depends on the replication factor and
the number of partitions properties.

The number of partitions corresponds to the number of brokers across them is the topic
split. In the picture 3.1 is a cluster with a topic with a number of partitions equals two, the first
of the partitions is located on broker 1 and second on broker 2. The replication factor then
defines the number of copies for each partition. In the example, the replication is set to one, so
partition number 1 is replicated on broker 2 and conversely. [13]

3.3. Kafka publish and subscribe process explanation 9

3.3 Kafka publish and subscribe process explanation

The chapter 3.1 mentions that Kafka works on publish and subscribe principle. The client
applications or source systems that publish data into topics are called producers and the ap-
plications or sink systems that subscribe to the topics consumers. [13]

Apache Kafka offers five core APIs [13]:

Producer API,

Consumer API,

Kafka Connect API,

Admin API,

Kafka Streams API.

The first three APIs are the ones considered interesting in terms of building consumer and
producer applications. Producer API is intended for the applications that publish to the topics,
and Consumer API for the ones that subscribe to the topics. Kafka Connect API is used
for building connectors to source and sink systems. There is a lot of already built connectors,
often as part of Kafka distribution to which is further elaborated upon in section 3.4. Between
supported technologies belongs e. g. MangoDB, Cassandra, Salesforce or JDBC.

The producers and consumers communicate with Kafka via TCP protocol. Before the con-
sumer sends a message, he has to configure some basic properties, among other things also
broker(s) address, topic name, and the key and value serializer. The broker(s) needs to be spec-
ified for the same reason as during the topic creation 3.2 – it is used to discover all brokers in
the cluster.

Kafka uses the event key for computation of hash which is then used to decide to which
partition the event is sent. This way, an even distribution between the partitions and brokers is
achieved, and the user has a guarantee that two messages with the same key have the same hash
value and will be placed in the same partition. [13]

Before the message is sent, it needs to be serialized using the chosen serializer. The serial-
ization is closely explained in chapter 2.3. Kafka offers some serializers for primitive data types.
Still, when necessary to serialize some more complex messages, for example, in JSON data for-
mat, it is recommended to use the external library or write a custom serializer. The second
option is preferred because there are many already existing solutions. On the opposite site, the
consumer has to do the opposite process to serialization – deserialization.

3.4 Kafka distributions

There are several Kafka distributions. The overview of some of the Kafka distributions can
be found in the table 5.2. These distributions were developed to solve some of the issues that
come with using Kafka in production or add additional functionality on top of vanilla Kafka. It
is possible to use Kafka itself or choose some of the distributions that should simplify Kafka’s
usage and offer some solution to typical problems. [2] [16]

Between the most common features provided by distributions belongs:

UI, because Kafka itself doesn’t have any user interface;

monitoring tools for tracking Kafka cluster health metrics;

10 Chapter 3. Apache Kafka introduction

connectors to different technologies for consuming and producing messages;

Schema Registry for data’s schema management;

databases intended for event streaming;

non-Java clients;

and Kafka adapted for containers, cloud environments, etc.

From the metadata extraction perspective are interesting event streaming databases and
especially Schema Registries, more about these functionalities and description of the way how it
is possible to extract the metadata can be found in the chapter 5.

Chapter 4

Kafka scanner requirements

This chapter formalizes the requirements for the metadata extraction module for Kafka. They
are split into two categories – functional and non-functional requirements. The second half of
the chapter is dedicated to used technologies for implementation.

4.1 Functional requirements

The functional requirements define system behavior, in other words, how the system reacts
to given inputs. The module’s requirements were created in iterations. The items F1 - F4 in the
list below were obtained before the initial analysis, F5 - F9 are based on decisions made after,
and they mainly expand the F1 requirement. Not all of them will be part of a prototype, the
requirements are excepted by plans to the future.

F1: Module extracts the metadata from Kafka. The approaches to the extraction are chosen
based on the analysis and the client’s Kafka environment survey.

F2: Extracted metadata are saved in the dictionary persisted in the H2 database.

F3: Module uses the predefined processors for the generation of dataflow graph from the
dictionary, or if the existing processors are not sufficient for Kafka purposes, it implements
additional ones.

F4: Dictionary structure is designed considering the common use cases for searching.

F5: Module provides a possibility of manual extraction, which consists of reading the infor-
mation about Kafka objects and their relationships from a defined file format. The part of
the assignment is also to define the format structure for manual extraction.

F6: Extractor supports the extraction from Confluent Platform Schema Registry (from now
on only Schema Registry) implementation.

F7: In the first version, the Schema Registry extractor supports the TopicNameStrategy and
the design is made with a view to possible extension by other strategies from which is possible
to derive the topic name – TopicRecordNameStrategy and SimpleTopicIdStrategy.

F8: The prototype can process the JSON schema definition, and it is extensible by other
data formats like Protobuf or Avro.

F9: Schema Registry extractor supports HTTP basic authentication.

11

12 Chapter 4. Kafka scanner requirements

4.2 Non-functional requirements

N1: Module extracts the metadata about one topic with the average count of schemas three
in 3 seconds with the minimal system requirements

CPU: 4 cores at 2.5 GHz,
RAM: 12 GB,
OS: Windows 7 / Server 2008 or newer, Linux or Solaris, Mac (without installer),
HDD: 1 GB for MANTA installation + 50 GB of space for metadata; SSD, minimum of
1500 IOPS.

N2: Module is documented and readable. It follows the Java naming conventions and use the
JavaDocs for code documentation. All public and protected members has to be documented.

N3: Module is tested for reduction of potential errors. The code is covered with unit tests
and the total code coverage is at least 70 %. During the implementation it is used SonarQube
for code quality and code security improvement.

N4: The module design is extensible and allows easily add new functionality. It is possible to
add new method of extraction. In Schema Registry extractor is possible to easily add support
for other Schema Registry implementations, data formats, naming strategies, authentication
and authorization mechanisms.

N5: The module is implemented with technologies used in Manta - Java 8, Maven, SVN for
version control – and it uses only the 3rd party libraries with compliant licenses approved by
Manta.

N6: The module uses Manta naming conventions, follows the typical scanner module struc-
ture, and leverages the elements from the Manta ecosystem when possible.

N7: Module uses the Manta logging framework to provide information about the extraction
and errors that occurred during the extraction.

4.3 Used technologies

The chapter describes the technologies used for implementation of module for Kafka metadata
extraction based on the Manta assignment.

Java - “The Java programming language is a general-purpose, concurrent, strongly typed,
class-based object-oriented language. It is normally compiled to the bytecode instruction set
and binary format defined in the Java Virtual Machine Specification.” [17] Thanks to its
capabilities, Java can be used in various industries for building desktop, mobile, or even
web-based applications.

Spring - Spring is the most popular Java framework. It shields users from the need to focus
on low-level programming aspects by providing solutions for common programming problems.
Spring’s set of extensions and third-party libraries are developed with a focus on performance
and security. [18]

Maven - “Apache Maven is a software project management and comprehension tool. Based
on the concept of a project object model (POM), Maven can manage a project’s build, reporting
and documentation from a central piece of information.” [19]

4.3. Used technologies 13

SVN - Apache Subversion, also known as SVN, is a centralized version control system. It
allows to make typical version control activities like check out the repository, update it, or
commit the local changes.. [20]

SonarQube - “SonarQube is an automatic code review tool to detect bugs, vulnerabilities, and
code smells in your code. It can integrate with your existing workflow to enable continuous
code inspection across your project branches and pull requests.” [21]

Chapter 5

Kafka metadata capabilities
analysis

The chapter describes the analysis of Kafka metadata capabilities. During the research, sev-
eral approaches to the extraction were examined. The chapter describes three of the strategies for
metadata extraction. It starts with the extraction from Schema Registry and continues with the
extraction using the manual input; these two methods will be implemented in the module in the
future. As only the extraction from Schema Registry is a part of the prototype implementation.
The last method is an extraction from ksqlDB, which is not going to be implemented because it
contains extraction from sources that Manta clients do not use.

Table 5.1 Metadata sources overview. The table shows whether the method will be implemented in
the prototype (within this work), in the final version or not.

Method Prototype Final version
Schema Registry 3 3

Manual Input 7 3

KsqlDB 7 7

5.1 Schema Registry extraction

Schema Registry is a service that works on top of Kafka. There are several implementa-
tions of this service, and some of them are listed in the table 5.2. This chapter mainly focuses
on Confluent Platform because based on the decisions made in Manta, described together with
requirements 4.1, the first version of the prototype will support extraction from this implemen-
tation. However, the other implementations are almost identical, whether in terms of design or
metadata extraction.

5.1.1 Schema Registry purpose
Kafka users use Schema Registry as their schema definition storage. There were several

reasons for the creation of such a registry. As explained in 3.3, before sending the message to
Kafka, consumers have to serialize the event. Kafka does not have any metadata information

15

16 Chapter 5. Kafka metadata capabilities analysis

Table 5.2 Schema Registry implementation overview

Distribution Schema Registry REST API
Confluent Platform [2] Confluent Schema Registry 3

Confluent Cloud [2] Confluent Schema Registry 3

Cloudera Stream Messaging [22] Hortonworks Registry 3

Aiven for Apache Kafka [23] Karapace 3

IBM Event Streams [16]
from version 10.1.0 Apicurio

before Event Streams Schema Registry
3

Strimzi [24] 7 7

Figure 5.1 Kafka with Schema Registry. [2]

about the records because it sees only the serialized message. This approach can cause issues on
the consumer side because at the moment, when the structure of the transmitted data changes,
problems may arise with following deserialization and interpretation of the data serializer. [2]

Schema Registry is primarily dedicated to data formats of events that define the data structure
using schemas like Avro, Protobuf, and JSON. Because this schema can be stored in the registry,
the message can be sent without the information about the field’s names and other metadata.
Consumers get the schema from the registry and use it to deserialize the message. This principle
leads to a reduction of the required memory space for the message. [2]

5.1.2 Main Schema Registry concepts
In the picture 5.1 is shown how the message sending works with Schema Registry. Producers

and consumers use the Avro format for their messages, but it would work similarly with any
other format supported by Schema Registry. The section also neglects validity checks of the
schema done before producing the record because it is not essential from the metadata extraction
perspective.

5.1. Schema Registry extraction 17

One of the changes compared to workflow in 3.3 is that the producer will now use a different
serializer provided by Confluent – KafkaAvroSerializer. During the serialization, the producer
checks if a given schema is available in the registry; if it is not, he will register it. A globally
unique ID is assigned to every schema. This ID is returned from the Schema Registry, and the
producer includes it in the message which it wants to publish to Kafka. The schema is not sent
with the record because the consumer gets it from the registry against the ID and uses it for
deserialization. [25]

5.1.2.1 Subjects and naming strategies

Except for storing the schema, the registry allows users to evolve the schema over time and
set validation checks, e. g. If the consumers can deserialize all messages created with the old
schema version with a new version of the schema. [26]

Table 5.3 Schema Registry naming strategies

Naming strategy Description
TopicNameStrategy
TopicIdStrategy

<topic name>-value
<topic name>-key

RecordNameStrategy
RecordIdStrategy

<schema name>

TopicRecordNameStrategy
TopicRecordIdStrategy

<topic name>-<schema name>

SimpleTopicIdStrategy <topic name>

HortonworksTopicNameStrategy
<topic name>
<topicname>:k

All schema versions are stored in subjects in the registry. The subject is automatically
created when the first version of the schema is uploaded to Schema Registry. [2] The subject
name depends on configured naming strategy. Table 5.3 gives an overview of some naming
strategies. Some of them have multiple names listed because the name can differ across different
implementations, but the subject name creation is the same.

Confluent Platform uses by default TopicNameStrategy and also supports RecordNameS-
trategy and TopicRecordNameStrategy. The TopicNameStrategy uses the name of the topic
to which the data are sent and adds a suffix “-value” or “-key” depending on whether it is the
schema intended for message value or key.

The RecordNameStrategy does not contain information about a related topic. It is only
composed of the name of the schema, e. g., in the context of Avro, each schema has a “name”
field [4]. The first two strategies have in common that they support only one schema of the data
per topic. This limitation solves TopicRecordNameStrategy which has two parts – topic name
and schema name – separated by a dash. [2]

SimpleTopicIdStrategy is used e. g. by Apicurio Schema Registry implementation [27],
and it contains only the topic name, so it does not consider the schema for a key.

The HortonworksTopicNameStrategy is used by default by Hortonworks Registry. The name
of the subjects is created using the topic name, and in the case of the key schema, adds the suffix
“:k”. [28]

18 Chapter 5. Kafka metadata capabilities analysis

5.1.3 Extraction process from Schema Registry
The main goal of the Schema Registry extractor is to extract schema definitions from the

Schema Registry. These schemas must be possible to connect later on with the associated topics.
As indicated in 5.2, all examined registries provide REST API for interaction with the registry.
The examples below are obtained from the Confluent Platform API reference.

For extracting the schema definitions, it is necessary to get the list of subjects first, which is
done using the request in the listing 5.1 and the corresponding response in the listing 5.2. In the
content of example response is a JSON array with all existing subjects, in this case subject1,
and subject2.

Code listing 5.1 Confluent Schema Registry - GET subjects request. [2]

GET /subjects

Code listing 5.2 Confluent Schema Registry - GET subjects example response. [2]

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

["subject1", "subject2"]

All of the schema versions in a particular subject are possible to get with the request from
the listing 5.3, corresponding response is in the listing 5.4.

Code listing 5.3 Confluent Schema Registry - GET subject versions request. [2]

GET /subjects/{subject}/versions

With the knowledge of subject and version it is possible to use request in the listing 5.5 to get
the final schema, which can be seen in the listing 5.6. The final response contains several fields
– subject, version, schema, and id. The first three listed fields are clear from the context, but
it is worth mentioning the id. This identifier is globally unique in given Schema Registry which
is later on used for saving the schema after the extraction.

As shown in the last listing 5.6, the response does not contain any information about the
related topic because the registry does not store that kind of information. That means, the topic
name has to be found out other way. For the strategies - TopicNameStrategy, TopicRecord-
NameStrategy, SimpleTopicIdStrategy, and HortonworksTopicNameStrategy - it is possible
to use their name to obtain information about the topic. For the rest of the strategies, there is
no other way than manual configuration from the client, which assigns the subject to the topic.

5.1.4 Advantages and disadvantages of Schema Registry
The biggest advantage of extraction from Schema Registry is that the extraction process is

done automatically with the minimal needed configuration from the client. As is shown in the

5.2. Manual input extraction 19

Code listing 5.4 Confluent Schema Registry - GET subject versions example response. [2]

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

[1, 2, 3, 4]

Code listing 5.5 Schema Registry - GET schema request. [2]

GET /subjects/{subject}/versions/{version}

questionnaire made with Manta’s clients in the appendix A, there are also clients who use the
Schema Registry. The disadvantage could be the limited options for finding the associated topic
to the schema and that the fully automatic process can be done only if the client used the specific
naming conventions for his subjects.

5.2 Manual input extraction

Manual input extraction method does not connect to Kafka, or to any other service to re-
trieve information about the Kafka cluster. The principle of this extraction method is to define
common data format for clients to give them option to deliver the required data. They pro-
vide the metadata in this predefined format and the extractor will parse this file(s) and save the
information from it.

Because the manual input can go to the large scale with the cluster with dozens of brokers,
and hundreds or thousands of topics, it is crucial to design the input format as friendly as
possible. The manual input is designed in the next chapter 6.1 and it should at least contain
information about:

broker URIs in the cluster,

list of topics,

schemas for individual topics and its columns,

and optionally information about the Schema Registry environment.

5.2.1 Advantages and disadvantages of manual input
The manual extraction method has three main advantages:

The method gives the user full control over the extraction and the extracted object.

The module can be used by clients that do not use the Schema Registry.

The manual input can be used together with the Schema Registry extraction. It is convenient
because the Confluent Schema Registry supports only a limited amount of data format types
for messages and it does not support the heavily used data formats like CSV and XML. This
way the client can add the information about the objects not covered within the Schema
Registry extraction.

20 Chapter 5. Kafka metadata capabilities analysis

Code listing 5.6 Schema Registry - GET schema example response. [2]

HTTP/1.1 200 OK
Content-Type: application/vnd.schemaregistry.v1+json

{
"subject": "subject1",
"id": 1,
"version": 1,
"schema": "{\"type\": \"string\"}"

}

On the other hand, the method has one main disadvantage and that is the need to fill in
the predefined file. With a larger cluster size this can be challenging and the files have to be
modified with each change in the cluster.

5.3 KsqlDB extraction

“ksqlDB is a new kind of database purpose-built for stream processing apps, allowing users to
build stream processing applications against data in Apache Kafka. . . ” [29] It is available with
Confluent Platform on-premises deployments, a fully managed service in Confluent Cloud, and
in Standalone mode, which only requires running the Kafka environment. [5]

KsqlDB started as KSQL, and the main functionality at the beginning was to give the Kafka
users SQL engine for Kafka to provide another alternative instead of building streaming appli-
cations [30]. Later, the creators renamed it to ksqlDB because it offered more than just SQL
engine, but it also could store tables of data with fault tolerance, and it had REST API for
interaction with the cluster. [31]

5.3.1 KsqlDB collections
KsqlDB allows creation of collections from individual events in Kafka topics, which provides

user with the ability to store the related events together. The collections are, similarly to
partitions in Kafka, replicated across multiple servers for achieving the fault tolerance.

“Collections are represented as a series of rows and columns that have a defined schema.
Only data that conforms to the schema can be added to the collection.” [5] The fact that all of
the collections have corresponding schema is important because it is why the ksqlDB can be
used for the extraction, as is described in the following section 5.3.2.

There are two types of collections – streams and tables. One of the key differences between
these two is that streams are immutable collections and tables are mutable. Mutable objects
can change after they are created, but the immutable cannot. It is only allowed to append new
records to streams, which makes them useful for saving historical facts. Tables store only the
last value for the specific key. In the context of streams is a new value, even for the key already
existing in the collection, appended at the end, and the previous value does not change. [5]

To register stream, resp. table over Kafka topics user has to use CREATE STREAM, resp. CREATE
TABLE statement. Their syntax can be found in the listings 5.7 and 5.8 and it is very similar.

The usage of these CREATE statements is easier to illustrate on an example. The most signif-
icant difference in usage depends on the user using Schema Registry with Kafka or not from the

5.3. KsqlDB extraction 21

Code listing 5.7 KsqlDB CREATE Stream syntax. [5]

CREATE [OR REPLACE] STREAM stream_name
({ column_name data_type [KEY] } [, ...])
WITH (property_name = expression [, ...]);

Code listing 5.8 KsqlDB CREATE Table syntax. [5]

CREATE [OR REPLACE] TABLE table_name
({ column_name data_type [PRIMARY KEY] } [, ...])
WITH (property_name = expression [, ...]);

Code listing 5.9 KsqlDB CREATE Stream with Schema Registry. [5]

CREATE STREAM pageviews WITH (
KAFKA_TOPIC = 'keyless-pageviews-topic',
VALUE_FORMAT = 'JSON'

);%

Code listing 5.10 KsqlDB CREATE Stream without Schema Registry. [5]

CREATE STREAM pageviews (
page_id BIGINT,
viewtime BIGINT,
user_id VARCHAR

) WITH (
KAFKA_TOPIC = 'keyless-pageviews-topic',
VALUE_FORMAT = 'JSON'

);

Code listing 5.11 KsqlDB CREATE Table with Schema Registry. [5]

CREATE TABLE users (
id BIGINT PRIMARY KEY

) WITH (
KAFKA_TOPIC = 'my-users-topic',
VALUE_FORMAT = 'JSON'

);

22 Chapter 5. Kafka metadata capabilities analysis

Code listing 5.12 KsqlDB CREATE Table without Schema Registry. [5]

CREATE TABLE users (
id BIGINT PRIMARY KEY,
usertimestamp BIGINT,
gender VARCHAR,
region_id VARCHAR

) WITH (
KAFKA_TOPIC = 'my-users-topic',
VALUE_FORMAT = 'JSON'

);

metadata extraction perspective. As was mentioned before, the tables and streams have to have
a defined schema. This schema is specified during the creation of the collection. With Schema
Registry, it is unnecessary to specify the schema manually, but it is downloaded automatically
from Schema Registry. The syntax with the usage of Schema Registry is shown at the stream
collection in the code listing 5.9 and at the table in 5.11.

In both cases it is enough to specify only the topic name and value format. That also
means that these collections are not important for metadata extraction because their definitions
can already be extracted from Schema Registry, as was described in the chapter about Schema
Registry extraction 5.1.

Interesting are the ones that have to have a manually defined schema. Creation of stream
is in the picture 5.10 and creation of table in 5.12. Other than the value format and the Kafka
topics, the statement also contains list of columns names and their formats.

5.3.2 KsqlDB extraction process
KsqlDB extraction is quite similar to extraction from Schema Registry because ksqlDB also

provides REST API for user requests. Unless otherwise configured, the default HTTP API
endpoint is http://localhost:8088/. Two main endpoints are intended for data inspection –
ksql and /query. Both of the resources expect ksqlDB SQL statement as a parameter . The
difference between these two endpoints is that /query is used for SELECT statements, and /ksql
for every other statement.

For the extraction are useful these statements:

LIST STREAMS,

LIST TABLES,

DESCRIBE (stream_name|table_name).

LIST STREAMS and LIST TABLES are used for getting a list of defined streams, respectively
tables. DESCRIBE returns list of the columns in a stream or table. Because all of the statements
are not SELECT statements, for the extraction is used /ksql endpoint.

In this chapter the extraction process is demonstrated on an example with streams, but it
would be similar with tables. First of all, in the listing 5.13 is created a stream with the name
pageviews_original corresponding to the Kafka topic pageviews. The data structure is defined
manually and it says that the data in the topic uses JSON data format with columns viewtime,
userid, and pageid.

5.3. KsqlDB extraction 23

Code listing 5.13 KsqlDB - Stream creation. [5]

CREATE STREAM pageviews_original
(viewtime bigint, userid varchar, pageid varchar)
WITH (kafka_topic='pageviews', value_format='JSON');

Code listing 5.14 KsqlDB REST API - LIST STREAMS response. [5]

[
{

"@type": "streams",
"statementText": "LIST STREAMS;",
"streams": [

{
"type": "STREAM",
"name": "KSQL_PROCESSING_LOG",
"topic": "default_ksql_processing_log",
"format": "JSON"

},
{

"type": "STREAM",
"name": "PAGEVIEWS_ORIGINAL",
"topic": "pageviews",
"format": "JSON"

}
],
"warnings": []

}
]

For obtaining the list of defined streams are used the LIST STREAMS statements and example
response is shown in the listing 5.14. In the model situation, the response contains only two
streams called KSQL_PROCESSING_LOG and PAGEVIEWS_ORIGINAL. First of them is the default
stream used for storing metadata information, the second one is the one created in the previous
statement.

After finding out which streams or tables exist in given ksqlDB cluster, follows DESCRIBE
for individual collections. In this case DESCRIBE pageviews_original. The example response
which is shortened for the purposes of this work is in the listing 5.15. The output includes all
necessary information for metadata extraction, columns and corresponding topic, exactly like it
was defined in the listing 5.13.

Compared to extraction from Schema Registry, this approach has two advantages. The first
one is that the topic does not have to be derived from subject but it is included in the REST API
response. The second one is that, unlike Schema Registry, the ksqlDB does not have limited data
formats to operated one, because it provides an option to configure the data formats manually,
so it can be used for the topics that use for example CSV data format.

24 Chapter 5. Kafka metadata capabilities analysis

Code listing 5.15 KsqlDB REST API - DESCRIBE abbreviated response. [5]

[
{

"@type": "sourceDescription",
"statementText": "DESCRIBE PAGEVIEWS_ORIGINAL;",
"sourceDescription": {

"name": "PAGEVIEWS_ORIGINAL",
"fields": [

{
"name": "ROWTIME",
"schema": {

"type": "BIGINT",
}

},
{

"name": "ROWKEY",
"schema": {

"type": "STRING",
}

},
{

"name": "VIEWTIME",
"schema": {

"type": "BIGINT",
}

},
{

"name": "USERID",
"schema": {

"type": "STRING",
}

},
{

"name": "PAGEID",
"schema": {

"type": "STRING",
}

}
],
"type": "STREAM",
"keyFormat": "KAFKA",
"valueFormat": "JSON",
"topic": "pageviews"

},
}

]

5.3. KsqlDB extraction 25

5.3.3 ksqlDB advantages and disadvantages
The main advantage of ksqlDB is that it provides the extraction method for both schemas

in Schema Registry and schemas that cannot be used with Schema Registry. However, as the
survey has shown A non of the clients use the ksqlDB. Based on the decisions made in Manta,
this method will not be used for now.

Chapter 6

Kafka scanner design

The chapter describes Kafka scanner design. It begins with the design of the Kafka node in
Manta dataflow visualization. Then, it continues with the creation of the input format necessary
for manual extraction, discussed as one of the metadata extraction capabilities in 5.2. The second
half of the chapter is already focused on the design of the Kafka metadata extraction module.

CLUSTER

TOPIC 1

SCHEMA 1

COLUMN 1

COLUMN n

.

.

.

SCHEMA 2

COLUMN 1

COLUMN n

.

.

.

TOPIC 2

SCHEMA 3

COLUMN 1

COLUMN n

.

.

.

Figure 6.1 Kafka Manta node design. Created using draw.io.

27

28 Chapter 6. Kafka scanner design

6.1 Manta Kafka node design

At the beginning of this work is a sample picture of a dataflow graph in Manta 2.1. The
graph is composed of multiple nodes where each of them represents an individual system in the
way of data flows. The section describes the creation of such node for Kafka, which will capture
the main Kafka elements and their hierarchy.

The final design is shown in the figure 6.1. As a root node is elected a cluster that contains
the individual topics. Each topic can have multiple schemas in it and underneath the schema
are its columns.

Cluster is on top of hierarchy because in Manta typically the root node represents one config-
ured connection. During the design, it also was discussed an option where under the cluster are
the brokers, but it was not chosen because the topic is often duplicated across multiple brokers
which could lead to multiple problems like duplicated data in visualization or inability to decide
through which broker should the data lineage go. Although it is recommended to use only one
schema for data in each topic, the questionnaire A showed that most of the clients interesting
in Kafka scanner use more than one. That is the reason why the visualization allows multiple
schemas per topic.

6.2 Manual input format design

The manual input was introduced as one of the metadata capabilities in the chapter 5.2.
To provide the manual extraction possibility is necessary to define a common format that the
clients can use to fill in the information about the Kafka cluster. The format should contain the
information from the final Kafka node in visualization and the other fields that appeared in the
context of data dictionary and Schema Registry – subject, version, and schema id.

In the listing 6.1 is the manual format design with sample data in it. The final design uses
JSON data format because it is necessary to use some complex data format for capturing the
Kafka environment. JSON can hold all needed metadata, it is easily readable and unlike formats
like XML light-weight. In addition, the Java and its libraries has a good support for JSON.

The format allows for each listed topic to define external and inline schemas. External schemas
are saved outside in separate files with schema and internal directly in the manual import file by
listing the present columns. This solution allows the client to capture both schemas – the ones
for each he has a schema definition and the ones he does not. For each schema regardless its
type is possible to optionally configure id, subject, and version.

6.3 Kafka scanner design

This chapter is already focused on the design of the module for metadata extraction. The
design is intented for extraction method from Schema Registry because the manual extraction
method is not part of the prototype. However, the design takes into account the extension of
the manual extraction. The module contains three sub-modules, their dependencies are shown
in the figure 6.2. Namily

manta-connector-kafka-dictionary-extractor is responsible for metadata extraction and
saving the extracted metadata into the dictionary,

manta-connector-kafka-dictionary defines the Kafka entity types within the dictionary
and their hierarchy,

manta-connector-kafka-model stores needed information about Kafka objects.

6.3. Kafka scanner design 29

manta-connector-kafka-dictionary-extractor

manta-connector-kafka-dictionary

manta-connector-kafka-model

Figure 6.2 Kafka Scanner module diagram. Created using draw.io.

6.3.1 Kafka dictionary extractor design
The extractor (manta-connector-kafka-dictionary-extractor) is responsible for connec-

tion to the source system (Schema Registry), metadata extraction, their evaluation, and saving
them for later use. In the figure 6.3 is module’s class diagram. The extraction process is started
from KafkaExtractorImpl class which is the implementation of KafkaExtractor interface that
can be used by other modules to run the extraction.

RestCommunicator

+ makeGetRequest(String): HttpResponse

KafkaExtractorImpl

+ extractSchemasFromSchemaRegistry(): void
+ saveSchemaIntoDictionary(Schema): void

SchemaParser

+ parse(String, Schema): boolean

«interface»
SchemaRegistryExtractor

+ getAllSubjects(): List<String>
+ getAllSubjectVersions(String): List<Integer>
+ getSchema(String, Integer): Schema

ConfluentPlatformExtractor

«interface»
HttpResponseProcessor

+ processSchemaResponse(HttpResponse): Schema
+ processSubjectsResponse(HttpResponse): List<String>
+ processVersionsResponse(HttpResponse): List<Integer>

ConfluentPlatformResponseProcessor

«interface»
KafkaWriter

+ addSchema(Integer, String, List<String>): IResDataType
+ addSubject(String): IResDataType
+ addTopic(String): IResDataType
+ addVersion(Integer, IResDataType, IResDataType): IResObject
+ setGlobalName(String, List<String>): void

KafkaWriterImpl
JSONSchemaParser

+ parse(JSONObject, Schema): boolean

«interface»
KafkaExtractor

+ extract(): void

Figure 6.3 Kafka Dictionary Extractor Design. Created using draw.io.

For extraction from Schema Registry is prepared an interface SchemaRegistryExtractor
that defines uniform method of extraction for Schema Registry. The interface can be used
to implementing the logic for different Schema Registry implementations. Since the first ver-
sion should supports the extraction from Confluent Platform, the interface is implemented by

30 Chapter 6. Kafka scanner design

ConfluentPlatformExtractor. ConfluentPlatformExtractor uses two main classes for the
extraction – RestCommunicator and HttpResponseProcessor. First of them handles the con-
nection to the given host system and communication over REST API. It is design to work
independently of the Confluent Platform extractor so that it can be used by other services that
will also use REST API. HttpResponseProcessor process the schema response and parse its
content using the SchemaParser class.

After KafkaExtractor runs the Schema Registry extraction using SchemaRegistryExtractor,
it saves the metadata into the dictionary. KafkaWriterImpl is a class responsible for communi-
cation with the data dictionary. The orchestration of the process is shown in the figure 6.4 and
it is closely explained in the next section about Kafka dictionary design.

Figure 6.4 Data dictionary add topic sequence diagram. Created using IntelliJ idea sequence diagram
plugin.

6.3.2 Kafka dictionary design
In the chapter 2.2.4, which introduced the basic terms and concepts used in Manta, data

dictionary was mentioned as a universal implementation for storing metadata. The dictionary
provides resources for the creation of objects like columns, tables, database schemas, etc. The
data dictionary also allows the definition of different objects on top of existing ones. The custom
types are defined in KafkaDataDictionary which extends the AbstractDataDictionary.

The data dictionary forms a directed rooted tree structure where each entity can have one
parent, any number of children, attributes, and properties. Each entity has to have at least one
property, because it is used for distinguishing the different objects within the dictionary; for
example, when the dictionary creates an entity representing the column, it adds to the entity
properties COLUMN property. The attributes are used to provide additional information about the
object.

Except for the definition of custom data types, the manta-connector-kafka-dictionary

6.3. Kafka scanner design 31

module has to define the relationships between the Kafka objects. The hierarchy is defined in
KafkaDialect class. This class determines what objects can be in parent-child relationships and
what should happen if there is a break of these rules.

6.3.2.1 Kafka dictionary entities structure

Later on, another module in Manta will use the dictionary for searching the schemas in the
given Kafka cluster based on the queries of other Manta scanners. Because of that fact, the data
dictionary has to be designed considering the most frequent queries to optimize the exploration
of the dictionary tree.

Table 6.1 Kafka Dictionary Search Use Cases. Displays possible number of found results based
on given parameters for search and provided that the given parameters are correct and exists in the
dictionary. Blank fields mean that it not depends if given parameters is present or not.

broker URI topic schema ID subject version number of schemas
1 7 7 0
2 3 3 7 7 7 1..*
3 3 3 3 1
4 3 3 7 3 7 1
5 3 3 7 3 3 1

Table 6.1 shows the possible parameter combinations and the number of possible schema
results. It is supposed that the query will at least contain the broker URI and the name of the
topic. The most common use case will be that the query includes exactly these two parameters.
This query can have multiple results because If the given topic has multiple schemas in it, it is
impossible to identify which of them to choose.

In the dictionary should also be possible to search based on the identifiers from the Schema
Registry - schema ID, subject, and version. Worth noting is the fourth line where it returns
exactly one result even if it is on the input only the subject, which can not be used to identify
the schema on its own but needs the schema version. It is because, in that case, the default
behavior will be returning the last version.

Considering this use cases, it follows that the dictionary must contain for each Kafka cluster

broker URIs,

topics,

schema with the columns for each topic,

and subjects, versions, schema IDs when it is enabled the extraction from Schema Registry.

As mention before, the dictionary represents on a persistence level the objects as enti-
ties. On top of the entities creates another level of abstraction for simplifying the creation
of more complex types and object structures. From Kafka perspective are interesting two ob-
ject types – IResDataType and IResDataObject. The only differents between these two is that
IResDataObject can have a data type. This mechanism is created for prevention of duplicated
data accross the dictionary, i. e. when there are multiple topics with the same schema it is
possible to represent them as a IResDataObject with the data type schema.

In the picture 6.5 is the final Kafka dictionary structure. As a root is chosen the cluster and
in the dictionary is represented as a global namespace. Under neath are as children schema ID,

32 Chapter 6. Kafka scanner design

Cluster

Schema

Column

Topic

Schema
Version

Subject

data type

Schema
Version

Data type

Global
namespace

Data object

Figure 6.5 Kafka Dictionary Objects Structure. Created using draw.io.

topic, and subject. Under the schema ID are its columns. The topic has a childern version which
is only used as a reference to corresponding schema using the data type relationship. Similarly
is it in the case of version under the subject, but the version is not used only as a reference but
also as physical extracted version from Schema Registry used for filtering.

This design provides a possibility for search in all of the use cases in the table 6.1 and it is
also usable in the cases where the clients does not use the Schema Registry, but only the manual
input, just by leaving out the subject nodes.

6.3.2.2 Kafka dictionary module design

manta-connector-kafka-dictionary contains two main classes – KafkaDataDictionary
and KafkaDialect. KafkaDataDictionary extends the AbstractDataDictionary and ads on
top of it one method for creating the root elements (subject, topic, schema) which wasn’t cov-
ered by predefined methods. By Manta convention, the KafkaDataDictionary implements
ResolverEntitiesFactory placed in manta-connector-kafka-model.

The writer from previous section 6.3.1 uses the KafkaDataDictionary for creation of ob-
jects within the dictionary. In the figure 7.4 were is shown how the process of adding the
topic works. It is invoked by calling addTopic method on KafkaWriter, the implementation
of the method is in KafkaWriterImpl. From the method is called the data dictionary method
createTopLevelEntity.

Except of mentioned classes above, the data dictionary contains two factories that for creating
the dictionary, they are in the picture 6.6. The MemoryDictionaryFactory creates in-memory
dictionary and JdbcDictionaryFactory creates the dictionary saved in H2 database.

6.3. Kafka scanner design 33

Figure 6.6 Kafka Dictionary class diagram. Created using IntelliJ idea.

34 Chapter 6. Kafka scanner design

Code listing 6.1 Manual input format design with sample data.

{
"cluster":"example_cluster",
"topics":[

{
"topicName":"topic1",
"schemas":[

{
"id":1,
"subject":"subject1",
"version":1,
"schema":"schema1.json"

},
{

"id":2,
"subject":"subject1",
"version":2,
"schema":"schema2.asvc"

}
],
"inlineSchemas":[

{
"id":4,
"subject":"subject3",
"version":1,
"fields":[

"column1",
"column2"

]
}

]
},
{

"topicName":"topic2",
"schemas":[

{
"id":1,
"subject":"subject1",
"version":1,
"schema":"schema1.json"

}
]

}
]

}

Chapter 7

Kafka scanner prototype
implementation

The implementation of a prototype can be divided into two main parts:

Connector – connects to the source system, extracts metadata and saves them in the data
dictionary,

Dataflow Generator – analyze the extracted objects and generates a Manta graph.

7.1 Connector module

Connector module has two main parts – dictionary extractor and dictionary module. Dic-
tionary extractor connects to the source system, extracts the metadata, and interacts with the
dictionary to save the objects. The dictionary module defines the entities used within the dic-
tionary and their relationships.

7.1.1 Connector Kafka Dictionary Extractor module
The prototype implementation of Kafka Dictionary Extractor performs four main activities:

connects to the Schema Registry,

extracts the metadata from Schema Registry using sequence of REST API calls,

parses the obtained metadata (schemas),

and saves the metadata into the dictionary.

The main class of dictionary extractor module is KafkaExtractorImpl which is responsible
for running all of the processes listed above.

7.1.1.1 Connection to Schema Registry

RestCommunicator class handles the connection to the Schema Registry and communication
over REST API using the Apache HttpComponents library. In the listing 7.1 is shown a method

35

36 Chapter 7. Kafka scanner prototype implementation

which is responsible for making requests. If executing of request failes, the method throws
SchemaRegistryException, in the opposite case returns HttpResponse.

Code listing 7.1 RestCommunicator:makeGetRequest method.

public HttpResponse makeGetRequest(String request)
throws SchemaRegistryExtractionException {
HttpGet httpRequest = new HttpGet(request);
LOGGER.info("Sending get request " + request + "to " + httpHost + ".");
HttpResponse httpResponse;
try {

httpResponse = httpClient.execute(httpHost, httpRequest);
} catch (IOException e) {

LOGGER.log(Categories.httpErrors().httpRequestFailed().catching(e));
throw new SchemaRegistryExtractionException

("Enable to execute HTTP request.", e);
}
return httpResponse;

}

7.1.1.2 Extraction of metadata from Schema Registry

For the extraction from Schema Registry is used SchemaRegistryExtractor interface shown
in the listing 7.2. It follows the extraction process described in the chapter about metadata
capabilities 5.1. This interface is implemented by ConfluentPlatformExtractor which handles
the logic of extraction from Confluent Platform Schema Registry implementation.

Code listing 7.2 SchemaRegistryExtractor interface.

public interface SchemaRegistryExtractor {

List<String> getAllSubjects() throws SchemaRegistryExtractionException;

List<Integer> getAllSubjectVersions(String subject)
throws SchemaRegistryExtractionException;

SchemaRegistrySchema getSchema(String subject, int version)
throws SchemaRegistryExtractionException;

String getConnectionInfo();
}

The SchemaRegistryException is thrown If the extraction failes which can be cause because
of some of the following reasons:

the REST API request failes,

the request ends up with the exist code other than 200,

7.1. Connector module 37

the HttpResponse does not contain expected fields,

or schema parsing failes because of invalid schema structure or unsupported schema feature.

7.1.1.3 Parsing the metadata received from Schema Registry

After the schemas are extracted from Schema Registry, it is necessary to parse them to receive
name of the fields and flatten these fields. That means that instead of the structure with nested
objects, the schema is represented only as a set of fields with only one-level depth where the name
of each is composed of the namespace derived from name of the parents and the name of the
field from the deepest level. Schema in the flattened form simplifies the further implementation
and in the case of a more leveled schema, it is clearer in visualization. For JSON schema
from listing 7.3 the final fields would be productId, productName, price, dimensions.length,
dimensions.width, and dimensions.height. The prototype implementation currently supports
parsing of JSON schemas.

Code listing 7.3 JSON schema example. [6]

{
"$schema":"https://json-schema.org/draft/2020-12/schema",
"$id":"https://example.com/product.schema.json",
"title":"Product",
"description":"A product from Acme's catalog",
"type":"object",
"properties":{

"productId":{
"type":"integer"

},
"productName":{

"type":"string"
},
"price":{

"type":"number"
},
"dimensions":{

"type":"object",
"properties":{

"length":{
"type":"number"

},
"width":{

"type":"number"
},
"height":{

"type":"number"
}

}
}

}
}

38 Chapter 7. Kafka scanner prototype implementation

The parsed schemas are individually stored in the scructure SchemaRegistrySchema which
contains the globally unique id within the Schema Registry, set of columns and schema name.

7.1.1.4 Saving the metadata into the dictionary

After the schemas are extracted from Schema Registry, they need to be saved in the dictionary.
KafkaWriterImpl class is responsible for interaction with the dictionary. It implements the
KafkaWriter interface which defines method for adding the topics, subject, schemas, and other
object to the dictionary. In the listing 7.4 is shown method for adding the topic.

Code listing 7.4 KafkaWriter:addTopic method.

public IResDataType addTopic(String topicName) {
IResEntity existingTopic = dictionary.getGlobalNamespace()

.getChildByName(named(topicName),
EnumSet.of(EntityProps.KAFKA_TOPIC), true);

if (existingTopic != null) {
return (IResDataType) existingTopic;

}

return dictionary.createTopLevelEntity(named(topicName),
EnumSet.of(EntityProps.KAFKA_TOPIC), DEF_SRC_TYPE);

}

In the case of topic, the KafkaWriterImpl first checks If topic of given name exist within the
dictionary. If the answer is positive, it is returned the existing topic, in the opossite case it is
created and returned new one.

7.2 Connector Kafka Dictionary module

Kafka Dictionary module has two main responsibilities:

define the Kafka objects which do not meet any existing ones in Manta,

and define the hierarchy between the objects.

7.2.1 Implementation of Kafka entity types
KafkaDictionary defines one method for creation of Kafka top level entity. The method

is in the listing 7.5 and it is used for creating the subject, topic, and schema which are the
entities under the global namespace as was described in the design chapter 6.3.2. Except the
name of the entity, the method also expects as a parameter the entity properties that are used for
distinguishing the created data type. In case of subject, the method is called with KAFKA_SUBJECT
property, in case of topic with the KAFKA_TOPIC etc. The created data type is added as a child
of the global namespace.

7.2.2 Hierarchy definition

7.3. Dataflow Generator 39

Code listing 7.5 KafkaDataDictionary:createTopLevelEntity method.

public IResDataType createTopLevelEntity(EntityName entityName,
Set<EntityProps> properties, DefinitionSourceType source) {
LOGGER.trace("createKafkaDataType({}, {}, {})", entityName, properties, source);
AbstractDataType<KafkaResolverEntitiesFactory> dataType =

new AbstractDataType<>(this, entityName, properties, source);
registerObject(dataType);
getGlobalNamespace().addChild(dataType);
addUnresolvedEntity(dataType);
fireEntityCreated(dataType);
return dataType;

}

Code listing 7.6 KafkaDialect rule definitions.

dbStructure
.parent(EntityProps.GLOBAL_NAMESPACE)
.allows(EntityProps.KAFKA_SCHEMA,

EntityProps.KAFKA_SUBJECT,
EntityProps.KAFKA_TOPIC,
EntityProps.PROP_BUILTIN,
EntityProps.PRIMITIVE_TYPE
)

.policy(ChildPolicy.ALLOW_DIFFERENT_DUPLICATES);

KafkaDialect is used to define the hierarchy structure between the different dictionary enti-
ties. For creation of hierarchy rules it used the class from Manta ecosystem – DbStructureImpl.
Each rule says what can be the child for specific parent and the policy for adding the duplicates.
The listing 7.6 contains rule definition for global namespace. It says that as a child of a entity
with the property GLOBAL_NAMESPACE can be added the entities listed in allows method and
that there are allow duplicates in the case of that their types are different. In other words under
the global namespace is possible to add subject and topic with the same name, but not two topics
with the same name.

7.3 Dataflow Generator

The output of the dictionary extractor is the H2 database saved on disk. In Manta are
implemented processor that process the dictionary and create a dataflow graph. The processors
are used through Spring beans configurations, the sample usage is shown in the listing 7.7. It
defines a processor for Kafka topic, concretely simpleProcessor that creates a node from the
name of the dictionary entity and delegates the processing of child to child processors.

40 Chapter 7. Kafka scanner prototype implementation

Code listing 7.7 Usage of Manta’s dataflow dictionary generator processors.

<bean id="topicProcessor" parent="simpleProcessor">
<property name="supportedObjectType" value="DATABASE"/>
<property name="targetNodeType"
value="#{ T(eu.profinit.manta.dataflow.model.NodeType)
.KAFKA_TOPIC.getId()}"/>
<property name="childProcessors">

<list>
<ref bean="schemaVersionProcessor"/>

</list>
</property>

</bean>

Chapter 8

Kafka scanner testing

This chapter is dedicated to testing of the functional protype. It is divided into two sections.
The first section describes the unit testing and the second one presents the final outputs of the
protype.

8.1 Unit Tests

Based on the assignment described in the chapter 4, the code is covered with unit tests. “A
unit test is a way of testing a unit - the smallest piece of code that can be logically isolated in a
system. In most programming languages, that is a function, a subroutine, a method or property.
Within the implemented prototype are heavily used two Java frameworks for testing”. [32]

JUnit is framework for writing unit tests. It provides support for implementation and
execution of tests and also different methods for checking the expected a actual values of
the tested objects. [33]

Mockito is framework used for object mocking. [34] “Mocking is creating an object that
mimics the behavior of another object. It’s a strategy for isolating an object to test it and verify
its behavior. The advantages of mocking is that it allows to test only the class which should be
covered with unit tests and remove any dependencies on other objects by determination what
the results of external methods calls will be.” [35]

In the listing 8.1 is shown sample unit tests where are used both of the frameworks. The
test is marked with an annotation @Test. From the jUnit documentation: “Test annotation tells
JUnit that the public void method to which it is attached can be run as a test case. To run the
method, JUnit first constructs a fresh instance of the class then invokes the annotated method.
Any exceptions thrown by the test will be reported by JUnit as a failure. If no exceptions are
thrown, the test is assumed to have succeeded. [33]

The method tests processing of Confluent Platform Schema Registry responses with the list
of the subjects. It mocks the HttpResponse to return successful status code and the JSON array
with the subjects that corresponds to the Schema Registry response. Similarly are in the code
tested situation where it is returned unexpected status code or invalid response content.

41

42 Chapter 8. Kafka scanner testing

Code listing 8.1 ConfluentPlatformResponseProcessorTest unit test.

public HttpResponse mockHttpResponse(int statusCode, String content)
throws IOException {
HttpResponse response = mock(HttpResponse.class);
HttpEntity httpEntity = mock(HttpEntity.class);
StatusLine statusLine = mock(StatusLine.class);
InputStream inputStream = new ByteArrayInputStream(content.getBytes());

when(response.getEntity()).thenReturn(httpEntity);
when(response.getStatusLine()).thenReturn(statusLine);
when(statusLine.getStatusCode()).thenReturn(statusCode);
when(httpEntity.getContent()).thenReturn(inputStream);
return response;

}

@Test
public void processSubjectResponseTestWithStatusCode200() throws IOException, SchemaRegistryExtractionException {

HttpResponse response = mockHttpResponse(HttpStatus.SC_OK,
"[subject1, subject2, subject3]");

List<String> result = processor.processSubjectsResponse(response);
List<String> expected = Arrays.asList("subject1", "subject2", "subject3");

Assert.assertEquals(3, result.size());
Assert.assertEquals(expected, result);

}

8.2 The metadata extractor outputs

Based on the requirements 4, the module should extract the metadata from Schema Registry
and save them on the disk in the dictionary persisted in the H2 database. The listing 8.1 shows
the structure of the database and listing 8.2 with the table with the entities. For each entity is
saved its name, type, properties, data type (if any), and parent.

The final solution of the extractor is effective from the perspective that can the extraction
process fully automatize. In the future is planned to extend the prototype to support the designed
manual input format. Then, the extractor will be able to meet the requirements of all clients
whether they use a schema management service or not.

8.2. The metadata extractor outputs 43

Figure 8.1 The structure of the result H2 database.

Figure 8.2 Extracted metadata saved in the H2 database.

Chapter 9

Conclusion

The aim of this work was to find different approaches for metadata extraction from Kafka
and based on them design and implement the module that extracts the metadata. During the
work, three different approaches were found and two of them were usable for Manta purposes.

One of the extraction methods was the extraction from Schema Registry, specifically was
chosen the Confluent Platform implementation. The current prototype implementation supports
only the extraction for JSON schemas and topic name subject name strategy. There are plans
to extend the prototype to support other naming strategies, data formats and possibly different
Schema Registry implementations in the future. The implemented prototype is documented,
tested and integrated with Manta software based on the collected requirements.

The second method was to use the manual input extraction. In the design chapter the manual
input file structure was created and in the future it is planned to extend the prototype to provide
this option as well.

45

Appendix A

Kafka Questionnaire

This attachment contains the most important questions answered by Manta clients about
Kafka and Kafka environment.

47

48 Appendix A. Kafka Questionnaire

49

50 Appendix A. Kafka Questionnaire

Bibliography

[1] Unified Lineage Platform. https://getmanta.com/. [online] [accessed on 25-04-2021].

[2] Confluent documentation. https://docs.confluent.io/. [online] [accessed on 01-03-2021].

[3] Frantǐsek Bořánek. Apache Avro nebo Protocol Buffers. https://blog.seznam.cz/2018/
10/apache-avro-nebo-protocol-buffers/, Nov 2018. [online] [accessed on 10-05-2021].

[4] Apache Avro 1.10.2 Specification. https://avro.apache.org/docs/current. [online] [ac-
cessed on 01-03-2021].

[5] ksqlDB Documentation. https://docs.ksqldb.io/en/0.15.0-ksqldb/. [online] [accessed
on 25-04-2021].

[6] JSON Schema Specification. https://json-schema.org/specification.html. [online]
[accessed on 01-05-2021].

[7] Mark Allen and Dalton Cervo. Multi-domain master data management: Advanced MDM
and data governance in practice. Morgan Kaufmann, 2015.

[8] what is data flow diagram? https://www.visual-paradigm.com/guide/
data-flow-diagram/what-is-data-flow-diagram/. [online] [accessed on 11-05-2021].

[9] AVRO - Serialization. https://www.tutorialspoint.com/avro/avro_serialization.
htm. [online] [accessed on 10-05-2021].

[10] Editor. What is Data Pipeline: Components, Types, and Use Cases. https://www.
altexsoft.com/blog/data-pipeline-components-and-types/, Mar 2020. [online] [ac-
cessed on 11-05-2021].

[11] Pethuru Raj and Ganesh Chandra Deka. A Deep Dive into NoSQL Databases: The Use
Cases and Applications. Academic Press, 2018.

[12] Daniel Gutierrez. A Brief history of Kafka, LinkedIn’s Mes-
saging Platform. https://insidebigdata.com/2016/04/28/
a-brief-history-of-kafka-linkedins-messaging-platform/, April 2016. [online]
[accessed on 04-03-2021].

[13] Apache Kafka Documentation. https://kafka.apache.org/. [online] [accessed on 02-02-
2021].

[14] Robert Gibb. What is a distributed system? https://blog.stackpath.com/
distributed-system/, Jul 2019. [online] [accessed on 02-02-2021].

51

https://getmanta.com/
https://docs.confluent.io/
https://blog.seznam.cz/2018/10/apache-avro-nebo-protocol-buffers/
https://blog.seznam.cz/2018/10/apache-avro-nebo-protocol-buffers/
https://avro.apache.org/docs/current
https://docs.ksqldb.io/en/0.15.0-ksqldb/
https://json-schema.org/specification.html
https://www.visual-paradigm.com/guide/data-flow-diagram/what-is-data-flow-diagram/
https://www.visual-paradigm.com/guide/data-flow-diagram/what-is-data-flow-diagram/
https://www.tutorialspoint.com/avro/avro_serialization.htm
https://www.tutorialspoint.com/avro/avro_serialization.htm
https://www.altexsoft.com/blog/data-pipeline-components-and-types/
https://www.altexsoft.com/blog/data-pipeline-components-and-types/
https://insidebigdata.com/2016/04/28/a-brief-history-of-kafka-linkedins-messaging-platform/
https://insidebigdata.com/2016/04/28/a-brief-history-of-kafka-linkedins-messaging-platform/
https://kafka.apache.org/
https://blog.stackpath.com/distributed-system/
https://blog.stackpath.com/distributed-system/

52 Bibliography

[15] Colin McCabe. Kafka Needs No Keeper - Removing Zookeeper dependency. https://www.
confluent.io/blog/removing-zookeeper-dependency-in-kafka/. [online] [accessed on
22-01-2021].

[16] Event streams - overview. https://www.ibm.com/cloud/event-streams. [online] [accessed
on 11-05-2021].

[17] Java™ programming language. https://docs.oracle.com/javase/8/docs/technotes/
guides/language/index.html. [online] [accessed on 10-05-2021].

[18] Spring makes Java simple. https://spring.io/. [online] [accessed on 10-05-2021].

[19] Brett Porter, Jason van Zyl, and Olivier Lamy. Welcome to Apache Maven. https://
maven.apache.org/. [online] [accessed on 10-05-2021].

[20] Apache Subversion. https://subversion.apache.org/. [online] [accessed on 10-05-2021].

[21] SonarQube Documentation. https://docs.sonarqube.org/latest/. [online] [accessed on
10-05-2021].

[22] Cloudera. Cloudera Streams Messaging. https://www.cloudera.com/content/www/
en-us/products/cdf/streams-messaging.html. [online] [accessed on 11-05-2021].

[23] Managed Apache Kafka as a Service: Aiven. https://aiven.io/kafka. [online] [accessed
on 10-05-2021].

[24] Kafka on kubernetes in a few minutes. https://strimzi.io/. [online] [accessed on 11-05-
2021].

[25] Stéphane Maarek. Introduction to Schemas in Apache Kafka with
the Confluent Schema Registry. medium.com/@stephane.maarek/
introduction-to-schemas-in-apache-kafka-with-the-confluent-schema-registry,
Oct 2019. [online] [accessed on 25-04-2021].

[26] Thiago Cordon. Schema evolution with Schema Registry. https://towardsdatascience.
com/schema-evolution-with-schema-registry-8d601ee84f4b, Mar 2021. [online] [ac-
cessed on 22-03-2021].

[27] Apicurio Registry documentation. https://www.apicur.io/registry/docs/
apicurio-registry/1.3.3.Final/index.html. [online] [accessed on 01-04-2021].

[28] Registry Project. https://registry-project.readthedocs.io, journal=Registry. [on-
line] [accessed on 03-04-2021].

[29] Dani Traphagen. Kafka Streams vs. ksqlDB for Stream Processing. https://www.
confluent.io/blog/kafka-streams-vs-ksqldb-compared/, Nov 2019. [online] [accessed
on 15-02-2021].

[30] Neha Narkhede. Introducing KSQL: Streaming SQL for Apache Kafka. https://www.
confluent.io/blog/ksql-streaming-sql-for-apache-kafka/, Aug 2017. [online] [ac-
cessed on 02-03-2021].

[31] Jay Kreps. Introducing ksqlDB. https://www.confluent.io/blog/
intro-to-ksqldb-sql-database-streaming/, Nov 2019. [online] [accessed on 02-
03-2021].

[32] What is unit testing? https://smartbear.com/learn/automated-testing/
what-is-unit-testing/. [online] [accessed on 10-05-2021].

https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/
https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/
https://www.ibm.com/cloud/event-streams
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://spring.io/
https://maven.apache.org/
https://maven.apache.org/
https://subversion.apache.org/
https://docs.sonarqube.org/latest/
https://www.cloudera.com/content/www/en-us/products/cdf/streams-messaging.html
https://www.cloudera.com/content/www/en-us/products/cdf/streams-messaging.html
https://aiven.io/kafka
https://strimzi.io/
medium.com/@stephane.maarek/ introduction-to-schemas-in-apache-kafka-with-the-confluent-schema-registry
medium.com/@stephane.maarek/ introduction-to-schemas-in-apache-kafka-with-the-confluent-schema-registry
https://towardsdatascience.com/schema-evolution-with-schema-registry-8d601ee84f4b
https://towardsdatascience.com/schema-evolution-with-schema-registry-8d601ee84f4b
https://www.apicur.io/registry/docs/apicurio-registry/1.3.3.Final/index.html
https://www.apicur.io/registry/docs/apicurio-registry/1.3.3.Final/index.html
https://registry-project.readthedocs.io
https://www.confluent.io/blog/kafka-streams-vs-ksqldb-compared/
https://www.confluent.io/blog/kafka-streams-vs-ksqldb-compared/
https://www.confluent.io/blog/ksql-streaming-sql-for-apache-kafka/
https://www.confluent.io/blog/ksql-streaming-sql-for-apache-kafka/
https://www.confluent.io/blog/intro-to-ksqldb-sql-database-streaming/
https://www.confluent.io/blog/intro-to-ksqldb-sql-database-streaming/
https://smartbear.com/learn/automated-testing/what-is-unit-testing/
https://smartbear.com/learn/automated-testing/what-is-unit-testing/

Bibliography 53

[33] Sam Brannen Stefan Bechtold. JUnit. https://junit.org/junit5/docs/current/
user-guide/. [online] [accessed on 10-05-2021].

[34] Mockito Framework. https://site.mockito.org/. [online] [accessed on 10-05-2021].

[35] Erik Dietrich. What Is Mocking? - Typemock Blog. https://www.typemock.com/
what-is-mocking/, Aug 2018. [online] [accessed on 10-05-2021].

https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://site.mockito.org/
https://www.typemock.com/what-is-mocking/
https://www.typemock.com/what-is-mocking/

Contents of enclosed media

readme.txt...the file with contents description
src

implementation the directory with source codes
thesis..source codes in the format LATEX

text...thesis text
BT-Weberova-Michaela-2021...............................thesis text in PDF format

55

	Acknowledgment
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Thesis goals

	Classification and terminology
	Data lineage
	Manta
	Data flow graph
	Metadata
	Extraction and analysis
	Data Dictionary

	Data serialization and deserialization
	Data serialization formats
	Protocol Buffers and Avro
	JSON schema

	Pipeline
	Messaging system

	Apache Kafka introduction
	Apache Kafka classification
	Event streaming platform
	Distributed system

	Kafka terminology
	Kafka publish and subscribe process explanation
	Kafka distributions

	Kafka scanner requirements
	Functional requirements
	Non-functional requirements
	Used technologies

	Kafka metadata capabilities analysis
	Schema Registry extraction
	Schema Registry purpose
	Main Schema Registry concepts
	Extraction process from Schema Registry
	Advantages and disadvantages of Schema Registry

	Manual input extraction
	Advantages and disadvantages of manual input

	KsqlDB extraction
	KsqlDB collections
	KsqlDB extraction process
	ksqlDB advantages and disadvantages

	Kafka scanner design
	Manta Kafka node design
	Manual input format design
	Kafka scanner design
	Kafka dictionary extractor design
	Kafka dictionary design

	Kafka scanner prototype implementation
	Connector module
	Connector Kafka Dictionary Extractor module

	Connector Kafka Dictionary module
	Implementation of Kafka entity types
	Hierarchy definition

	Dataflow Generator

	Kafka scanner testing
	Unit Tests
	The metadata extractor outputs

	Conclusion
	Kafka Questionnaire
	Contents of enclosed media

