
Instructions

Many municipalities and road authorities seek to implement automated evaluation of road damage.

However, knowing the degree of road damage can also be useful while planning your journey,

especially when you ride a motorbike or an older type of car and want to plan a journey using high-

quality roads. To do so, we need to overcome several struggles starting with data collection and

ending with the modelling of a quality classification.

1) Review and theoretically describe the state of the art approaches to road quality classification,

including publicly available datasets and preprocessing steps.

2) If necessary, collect and annotate data to solve road quality classification with a focus on driving

pleasure.

3) Use or implement at least two of the reviewed approaches and experimentally compare their

performance on a suitable dataset.

4) Propose a direction for further improvement in the domain of road quality classification.

Electronically approved by Ing. Karel Klouda, Ph.D. on 4 December 2020 in Prague.

Assignment of bachelor’s thesis

Title: Road Quality Classification

Student: Martin Lank

Supervisor: Ing. Magda Friedjungová, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2021/2022

Czech Technical UniveRsity in PRague

Faculty of InfoRmation Technology

DepaRtment of Applied Mathematics

Bachelor’s thesis

Road Quality Classification

Martin Lank

Supervisor: Ing. Magda Friedjungová, Ph.D.

May 13, 2021

Acknowledgements

Firstly, I would like to extend my deepest gratitude to my thesis supervisor,
Ing. Magda Friedjungová, Ph.D., for her profound guidance, source of construc-
tive advice and support in all phases of the work. It was a pleasure to work
under your leadership.

I also wish to thank my family for their great support and patience during my
studies. Special thanks go to my brother, Ing. Vojtěch Lank, who provided me
with stable computational resources, which significantly eased the training of
the models in this work.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to
ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license
agreement on the utilization of this thesis as a school work under the provisions
of Article 60(1) of the Act.

In Prague on May 13, 2021 …………………

Czech Technical University in Prague

Faculty of Information Technology

© 2021 Martin Lank. All rights reserved.

This thesis is a school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
LANK, Martin. Road Quality Classification. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2021. Available also
fromWWW: ⟨https://github.com/lenoch0d/road-quality-classification⟩.

https://github.com/lenoch0d/road-quality-classification

Abstract

Automated evaluation of road quality can be helpful to authorities and also road
users who seek high-quality roads to maximize their driving pleasure. This the-
sis proposes amodel which classifies road images into five qualitative categories
based on overall appearance. We present a new manually annotated dataset,
collected from Google Street View. The dataset classes were designed for mo-
torcyclists, but they are also applicable to other road users. We experimented
with Convolutions Neural Networks, involving custom architectures and pre-
trained networks, such as MobileNet or DenseNet. Also, many experiments
with preprocessingmethods such as shadow removal or Contrast Limited Adap-
tive Histogram Equalization (CLAHE). Our proposed classification model uses
CLAHE and achieves 71% accuracy on a test set. A visual check showed the
model is applicable for its designed purpose despite the modest accuracy since
the image data are often controversial and hard to label even for humans.

Keywords road quality classification, road surface analysis, street view
images, road quality image dataset, image classification, convolutional neural
networks

Abstrakt

Automatické vyhodnocování kvality vozovky může být užitečné jak správním
orgánům, tak i těm účastníkům silničního provozu, kteří vyhledávají vozovky
s kvalitním povrchem pro co největší potěšení z jízdy. Tato práce se zabývá
návrhem modelu, který klasifikuje obrázky silnic do pěti kvalitativních kate-
gorií na základě jejich celkového vzhledu. V práci prezentujeme nový ručně
anotovaný dataset, obsahující fotografie ze služby Google Street View. Anotace
datasetu byla navržena pro motorkáře, ale může být použita i pro jiné účastní-
ky silničního provozu. Experimentovali jsme jak s předučenými konvolučními
neuronovými sítěmi, jako jsou MobileNet či DenseNet, tak s vlastními architek-
turami konvolučních neuronových sítí. Dále jsme vyzkoušeli různé techniky
předzpracování dat, např. odstraňování stínů či kontrastně-limitní adaptabilní
histogramovou ekvalizací (CLAHE). Námi navrhovaný klasifikační model vy-
užívá CLAHE a na testovací sadě dosahuje 71% přesnosti. Vizuální kontrola
ukázala, že navrhovaný model je i s touto přesností využitelný za účelem, pro
který byl navržen.

Klíčová slova klasifikace kvality vozovky, analýza povrchu vozovky, street
view snímky, dataset snímků kvality vozovky, konvoluční neuronové sítě

Contents

Introduction 1
Objectives . 2
Structure of the Thesis . 3

1 RoadQuality 5
1.1 Problem Definition . 5
1.2 Related Work . 6

1.2.1 Classification . 7
1.2.2 Damage Detection . 9

1.3 Available Datasets . 11
1.4 Suitable Dataset . 14
1.5 Theoretical Background . 15

1.5.1 Convolutional Layer . 15
1.5.2 Pooling Layer . 17
1.5.3 Fully Connected Layer 18
1.5.4 Optional Layers . 18
1.5.5 Transfer Learning . 18

2 Data Preparation 21
2.1 Data Collection . 21

2.1.1 Related Google APIs Overview 22
2.1.2 Road Image Collection Framework 22

2.2 Data Labelling . 25

xiii

2.2.1 Classification Classes . 25
2.2.2 Labelling Framework . 25
2.2.3 Labelling Challenges . 31

2.3 Data Balancing . 32
2.3.1 Image Transformations 32
2.3.2 SMOTE . 33

2.4 Other Preprocessing Techniques 34
2.4.1 Shadow Removal . 34
2.4.2 CLAHE . 35

3 Experiments 39
3.1 Implementation . 39
3.2 Design of Experiments . 40

3.2.1 Evaluation Metrics . 40
3.2.2 Methodology . 41
3.2.3 Model Tuning . 42

3.3 Implemented Approaches . 42
3.3.1 Custom Architectures 42
3.3.2 Transfer Learning . 45

4 Results 47
4.1 Custom Architectures . 47
4.2 Transfer Learning . 49

Conclusion 55
Contributions . 55
Future Work . 56
Ethical Issues . 57

Bibliography 59

A List of Acronyms 67

B Routes visualisation 69

C Enclosed Material 73

xiv

List of Tables

1.1 Publicly available road image datasets 12

2.1 Route definition example . 23
2.2 Dataset label distribution . 31

3.1 Architecture of the E16 model . 43
3.2 Architecture of the E46 model . 44
3.3 Architecture of the E67 model . 45

4.1 Results of the custom architectures 49
4.2 Results of the transfer learning models trained on the dataset v1 . . 50
4.3 Results of the transfer learning models trained on the dataset v2

and its variations . 50
4.4 Results of the best fine-tuned transfer learning models trained on

the dataset v2 and its preprocessed variations 52
4.5 Results of the best fine-tuned transfer learning models on test dataset 52

xv

List of Figures

1.1 Ensemble classification model proposed by Rateke et al. 8
1.2 Visualisation of a 2D convolution 16
1.3 Max Pooling example . 17

2.1 A screenshot of the labelling web app 27
2.2 A screenshot of the labelling results web app 28
2.3 A screenshot of the labelling corrector web app 28
2.4 An example of the labelled dataset 30
2.5 An example of SMOTE generated samples 34
2.6 An example of shadow-free images 35
2.7 An example of CLAHE generated samples 37

4.1 An example of batch normalisation negative effects 48

B.1 Overall routes visualisation . 69
B.2 Close-up routes visualization . 70
B.3 Prediction visualisation on a map 71

xvii

Introduction

Roads are widely used every day all around the world. They serve us as a mean
to move between locations. That may have many purposes, e.g. going to work
or on holidays, visiting family, or transporting cargo and supplies. Every time
we travel, we tend to optimise the route to get the best directions based on our
parameters. The most common parameter is likely to be the time, which we try
to minimise. If that were not the case, speeding would not be the top moving
violation [1]. Other typical criteria are fluency, absolute distance, or low traffic.
Considering these parameters, we try to choose the most suitable route. Either
by our knowledge or by using modern navigation software.

However, this navigation software is not suitable for everyone. Certain groups
of people have very specific criteria, as they want to use the medium for fun
and pleasure, not for transportation purposes. A journey with a vintage car
or motorbike is an excellent example of that. Nevertheless, planning such
a journey is not an easy task. The typical main optimisation parameter is road
quality, for which the least damage is required. Although we can find such
roads quite easily on highways and main roads, it goes against the second main
parameter – playfulness. That includes low traffic and winding roads, which is
quite the opposite of how the highway and main roads look. documentation
for sources usage

Satisfying both criteria is very difficult. It is a known fact that the lower traffic
a road has, the less care it has. In other words, when damage on the road needs
to be repaired, or the road needs to be entirely reconstructed, it takes much

1

IntRoduction

more time on the waitlist before doing so compared to more frequently used
roads. It certainly makes sense – the government also optimises its resources
to be used most effectively. Moreover, reconstruction of a road for several tens
of cars a day rarely outweighs reconstruction of a highway for thousands of
vehicles a day. Inevitably, more cars cause quicker degradation of road quality,
contributing to the fact that playful high-quality roads with low traffic are
harder to find.

Usually, it is a matter of trial and error when such a road is found. Besides, this
approach is very time-consuming andwith uncertain outcomes. In recent years,
services like Google Street Viewa can be used to visually check the road and
get an idea of what it looks. Even though this approach is considerably more
effective than the previous one, it can easily take an hour to plan a hundred
kilometres long journey. Using modern machine learning approaches to
automate this visual check could streamline the process even more.

Machine learning is an application of artificial intelligence, where algorithms
automatically learn from the data. These algorithms try to find general patterns
in our data, so when we feed the algorithm with new data, it can quickly infer
its properties. Machine learning principles have been evolving since 1959 [2],
but due to the absence of enough powerful hardware, some areas were out of
attention for a long time. Nowadays, with modern hardware, we can take full
advantage of these algorithms and apply them in real-world applications, such
as object detection or image classification.

Objectives
This thesis aims to review and describe the state-of-the-art methods in the
question of road quality classification. Based on the findings and with regards
to the described task, new data may be necessary to collect and annotate.
Another objective is to develop a machine learning model that would use street
view images as input and infer one of the predefined qualitative categories as
an output.

ahttps://www.google.com/intl/en/streetview

2

https://www.google.com/intl/en/streetview

Structure of the Thesis

Structure of the Thesis
The thesis is organised as follows. In Chapter 1, the task is described more
in-depth, along with potential solutions and related works. Chapter 2 covers
data preparation, including data collection and annotation. Chapter 3 describes
the methodology of how experiments were run, evaluated and introduces
implemented approaches. Chapter 4 presents and discusses the results of those
implemented approaches. The final Chapter 4.2 reviews our contributions and
proposes directions for future work.

Further reading assumes a decent knowledge of machine learning concepts.
The fundamentals and underlying principles can be learnt from some other
literature, such as [3].

3

ChapteR 1
Road Quality

This chapter defines the problem, which this thesis focuses on more thoroughly.
Next, it introduces the conducted survey findings to determine the state-of-
the-art methods regarding automated road quality evaluation. It also describes
publicly available datasets relevant to this task.

1.1 Problem Definition
As mentioned in the introduction, there is a vast range of uses for roads. Apart
from being used out of necessity, they may be used for pleasure, such as driving
a sports car, a vintage car or a motorcycle. We also stated a problem with
searching high-quality roads satisfying given criteria. However, every use
case might have different criteria to fulfil. Since the author is a passionate
motorcycle rider and has many years of riding experience on roads, such a use
case is mainly considered in this work.

One of the prerequisites for a comfortable and joyfulmotorcycle ride is a smooth
road surface. Any damage such as crack, potholes, or incoherent surface caused
by layered repairs can decrease both the levels of fun experienced and the safety
of the ride. Automated evaluation of road quality can be done by classifying
acceleration data [4, 5, 6], or images [7, 8]. However, from this task’s point
of view, using acceleration data lacks scalability. There is currently no pub-
lic provider of such data on a similar scale like Google Street View or Baidu

5

1. Road Qality

Mapsa for images. Besides, the effect of road defects on acceleration data heav-
ily depends on speed and vehicle suspension. Also, the vehicle needs to go
through the defects, which is something car owners typically want to avoid
to not damage their car. Pictures taken while driving are significantly less af-
fected by these problems, if at all. However, most image-based state-of-the-art
methods for road quality evaluation focus on damage segmentation [9, 10, 11,
12, 13]. Therefore, this work focuses on classifying road pictures into several
categories based on overall surface quality.

The typical image classification approach is to use Convolutional Neural
Network (CNN) [14], a deep artificial neural network designed for image
analysis. The neural net can be trained using supervised learning to determine
the predefined categories. However, supervised learning, especially when
workingwith images, usually requires large datasets with thousands of samples.
If the dataset is relatively small and does not cover enough diversity in
a given domain, it is common to perform data augmentation. That is usually
done by applying geometrical transformations or colour adjustments. Data
augmentation can also be used when a dataset is class imbalanced, i.e., some
categories contain significantly more data than others [15]. Sometimes further
preprocessing steps are performed before feeding the data into the net, mainly
to increase the performance. Such steps can be downscaling, extracting
a specific Region of Interest (ROI) by cropping the image or converting colour
images into grayscale images.

1.2 Related Work
In this section, the findings of the performed survey are described. As
mentioned above, there are several types of works in the question of automated
road quality evaluation. Some make use of accelerometer data [5, 6, 4] and
others of images [8, 7]. Also, not all approaches solve a classification problem,
where a category is assigned to a road based on the overall surface quality, but
they focus on damage detection, where every corruption such as a pothole or
a crack is detected. For each work, a brief overview of the task, dataset and
approach is provided along with the achieved results.

ahttps://map.baidu.com

6

https://map.baidu.com

1.2. Related Work

1.2.1 Classification
The authors of [5] aimed to classify road surface by quality into two categories,
smooth and damaged, based on accelerometer data. Dataset was created by the
authors, who collected the data using a smartphone attached to a motorbike
with the use of Phypox applicationa. They proposed a model based on Support
vector machine (SVM) and achieved 93% accuracy.

A similar approach was used in [6], where authors aimed to classify roads
into three categories – smooth, rough and bumpy. They also collected data
with a smartphone mounted to a bicycle. Proposed models were based on the
K-Nearest-Neighbour (KNN) algorithm and the Naive Bayes Classifier. Both
performed very similarly, with an overall accuracy of around 77.5%. However,
accuracy was only pulled up by smooth class with an accuracy of 85.6%. Rough
and bumpy categories achieved an accuracy of 54% and 65%. Their second
approach was to detect and count bumps and classify the surface accordingly,
but the results were even worse.

Another work where accelerometer data is used was published by Tiwari et
al. [4]. Their objective was to classify roads by quality into good, medium and
bad. Data for this work were collected via a smartphone app placed in a car and
a dashboard cam looking towards the road. Its recordings were later used to
label data obtained from the app. While their SVM approach performed worse
than previously mentioned SVM models, their new deep learning approach
using CNN significantly outperformed all previous models with 97% accuracy
with good roads and 99% accuracy with both medium and bad roads.

In [8] the objective was to use images and CNN to classify road surface by type.
They defined six classes: asphalt, dirt, grass, wet asphalt, cobblestone, snow. To
cover all classes with enough variety, the authors combined several publicly
available datasets (KITTI [16], RobotCar [17], NREC [18], New College [19],
Stadtpilot (private), Giusti et al. [20]). Interesting is that Google search
of similar pictures was used to extend some categories with low samples
count. Authors claim they occurred serious overfitting issues on the dataset
without augmentation. Therefore random horizontal flip, rotation, scaling
and smoothing was applied. In regards to modelling, a transfer learning [21]

aA smartphone app for physical experiments allowing data collection from numerous
phone sensors. https://phyphox.org

7

https://phyphox.org

1. Road Qality

approach with pre-trained CNNs (ResNet50 [22] and InceptionV3 [23]) was
used. The best model was based on ResNet50 and outperformed the other
by 2%, with an average accuracy of 92%. The accuracies for each class were:
99% (asphalt), 82% (dirt), 100% (grass), 81% (wet), 91% (cobblestone), 100%
(snow).

In [7] published by Rateke et al. the road type and quality classification were
done using images taken by a low-cost camera (about 100 USD). In addition
to two existing datasets (KITTI [16] and CaRINA [24]) used in this work,
a new “Road Traversing Knowledge” dataset was created by taking frames
from a captured video. The final dataset consists of 6,297 annotated images.
Categories were assigned as follows: asphalt, paved and unpaved. Asphalt and
paved are further subcategorised by their surface quality into good, regular and
bad, whereas unpaved only into regular and bad.

Figure 1.1: The picture depicts the structure of an ensemble classification model
used in work by Rateke et al. to first classify roads by surface type and then into
a qualitative category. Source: [7]

The authors present an ensemble model consisting of two layers and four
models in total, as shown in Figure 1.1. Each model is a CNN. The top layered
model was trained to determine the road type. The second-layered models are
trained to determine the surface quality for each road type individually. Before
training, images were preprocessed. The authors defined a ROI to extract the
most relevant information from the image – the road, which mostly appears

8

1.2. Related Work

only in the specific part of their images. Additionally, data augmentation was
performed to compensate for lighting changes by applying random brightness
adjustments. Using this approach, the authors were able to achieve admirable
results. The top layered model learned on their dataset performed with an
accuracy of 95.73% on the test set (98.58% accuracy for the asphalt category,
86.24% accuracy for paved category and 93.67% for unpaved category). The
accuracy of the asphalt quality classification was 98.23%, 94.04% and 96.77% for
good, regular and bad.

In work published by Ma et al. [25], street view images were classified by road
surface quality into three categories: good, fair, poor. The authors created their
own large-scale dataset with about 700,000 samples by matching government
road inspection data and images from Google Street View. However, there was
a 1.2 years time difference between taking the road images the government in-
spection. Therefore the assigned categories might be inaccurate. Additionally,
the dataset was heavily class imbalanced. The authors utilised Fisher-Vector
CNN [26], a CNN that extracts features from a given image and encodes them
using Fisher Vector. Specifically, they used VGG-D [27] and 64x64 patches for
the feature extraction. The descriptors were then normalised and classified us-
ing a Random Forest classifier. This approach performed with an accuracy of
72.2% (poor), 50.7% (fair) and 51.7% (good). Data augmentation was not used,
and road segmentation was found unuseful as a preprocessing step.

1.2.2 Damage Detection
Thanks to Global Road Damage Detection Challengea, which took place in
2020, there are many recent solutions available regarding image-based damage
detection. The objective was to find and classify individual defects on road
images collected in India, Japan and Czech. The dataset was introduced in [28].
It consists of 26,620 images and 31,343 labels in four categories: longitudinal
crack, transverse crack, alligator crack, pothole. For the purposes of the challenge,
only 21,041 labelled images were released. The rest was used for two testing
sets, test1 and test2. Along with the dataset, the researchers proposed a baseline
model based on transfer learning usingMobileNet [29]. However, the F1-Scores
were considerably low. The top challenge contributors were able to outperform
the baseline model significantly.

ahttps://rdd2020.sekilab.global, https://github.com/sekilab/RoadDamageDetector

9

https://rdd2020.sekilab.global
https://github.com/sekilab/RoadDamageDetector

1. Road Qality

The best model was proposed by the IMSC team (Hedge et al. [11]). Their
proposed solution used Ensemble Learning with Ultralytics-YOLO and Test
Time Augmentation (TTA) [30]. TTA is a technique in which input images are
transformed, and their predictions are then aggregated, which may increase
performance [31]. However, IMSC was the only team using TTA in the final
solution. Other teams did not consider it particularly useful. The top team
also used classic data augmentation performed before training. Specifically,
they used Python Augmentera to generate synthesised images by applying
sharpening, additive Gaussian noise and affine texture mapping. With this
approach, the top team achieved a mean F1-score of 67.48% on test1 and 66.62%
on test2.

The team placed second (Doshi et al. [9]) also proposed an ensemble model,
but with YOLO-V4b as the base model. As for data augmentation, the authors
used a random cropping algorithm with the output of three images next to the
original. Their approach achieved 62.75%, and 63.58% mean F1-scores on test1
and test2, respectively.

The team that secured third place (Pei et al. [10]) used Cascade Region Based
Convolutional Neural Network (R-CNN) with proposed Consistency Filtering
Mechanism. Also, several interesting augmentation techniques were used, such
asmixup, Contrast Limited AdaptiveHistogramEqualization (CLAHE) [32] and
road segmentation. Achieved scores were only slightly worse than in [9] by the
team placed second, 62.9% on test1 and 62.19% on test2.

All the other teams participating in this challenge achieved scores of less
than 60%. Many of them built models on Faster-R-CNN [33] or ResNet
networks and widespread was the use of data augmentation including random
geometric transformations (scale, rotation, flipping, translation, resizing) and
random colour adjustments (contrast, hue, saturation, brightness). However,
some teams did not use any augmentation and still outperformed many other
teams.

In work conducted by Chacra et al. [12], the researchers aimed to detect
defects in street view images using texture descriptors and contour maps [12].

ahttps://github.com/mdbloice/Augmentor
bhttps://github.com/Tianxiaomo/pytorch-YOLOv4

10

https://github.com/mdbloice/Augmentor
https://github.com/Tianxiaomo/pytorch-YOLOv4

1.3. Available Datasets

Firstly, the authors needed to create a new dataset as there were not any
publicly available. That was done by collecting images fromGoogle Street View
using their Application Programming Interface (API). Data were then manually
annotated. Unfortunately, the authors do not provide more information about
the dataset, such as the size or number of annotated defects. Nevertheless, their
approach was as follows. Firstly, they segmented the road from a given image.
Then the feature patcheswere extracted using Scale-invariant feature transform
(SIFT) [34] and the descriptors were encoded and classified using an SVM into
good or damaged class. Every patch is given either a positive or a negative
weight after classification. Further processing then generated a probability map
of damaged areas. Lastly, an ultrametric contour map [35] was used to precisely
locate the defects in the damaged area. According to the authors, theywere able
to achieve a mean F1-score of 92.84%.

Lei et al. [13] published a work where the objective was to detect pavement
distress in an image and track its deterioration over time. Baidu Street View
enables users to view images back in history at a given location (if history
exists). The authors utilised this service in order to create a dataset with about
20,000 images and labelled them into eight categories: deformation, pothole,
loose, net-crack, cracks, patched-pothole, patched-net, patch-crack. Before
training, data augmentationwas performedwith random rotation andGaussian
blur. To detect the defects in the images, the object detection model YOLO-
V3a based on CNN was applied. Next, to analyse the deterioration over time,
historical images were retrieved. Then, features were extracted from the images
using SIFT and matched with pictures at the same location. Lastly, a decision
tree was designed for evaluating the deterioration over time. To conclude, the
proposed model performed with accuracy between 87-89%.

1.3 Available Datasets
This section summarizes publicly available image datasets that could be
potentially useful for the task of this thesis. Table 1.1 shows datasets with a task
it was designed for and classification classes in the case of a classification task.
It can be seen that themajority of the datasets are not designed for classification
purposes.

ahttps://github.com/ultralytics/yolov3

11

https://github.com/ultralytics/yolov3

1. Road Qality

Table 1.1: This table summarizes the publicly available road image datasets. The
table shows a task for which the given dataset was designed. In the case of
a classification task, the annotated classes are present. Sample count is also present
for annotated datasets.

Dataset Task Classes Samples
RTK [7] type + quality

classification
good, regular, bad 6,297

Paris-Saclay[25] quality
classification

good, fair, poor ∼700,000

KITTI [16] autonomous
driving

CaRINA [24] surface detection easy, medium, difficult 900
RobotCar [17] autonomous

driving
GRDDC 2020 [28] damage

segmentation
26,620

DIPLODOC [36] road segmentation 865

KITTI dataset (collected in Karlsruhe, Germany) was created to develop
computer vision challenges, including visual odometry, three-dimensional
object detection and tracking. The dataset contains information about location,
accelerometer data, laser data and camera images. In terms of roads, the dataset
does not providemany variations in its quality nor annotated labels. It has some
lighting variations in the images (shadows, direct sun).

RobotCar dataset (Oxford, UK) was created in order to extend the KITTI dataset
with a more variety of lighting conditions (overcast, night, rain, snow) and road
types. Therefore it contains data of a similar kind.

GRDDC dataset (India, Japan, Czech) was created for the Global Road Damage
Detection Challenge. The images in the datasets were taken by a smartphone
attached to a front car window. The dataset contains annotations of individual
defects in four categories.

DIPLODOC dataset (Trento, Italy) was collected by a stereo cam in a car. The
images are labelled for the use of road segmentation. The annotated areas are
defined as “everywhere a car could drive without going up a step” [36]. That
means when e.g. a car is in the picture, it is not excluded, and the area is

12

1.3. Available Datasets

annotated over it. Those unwanted objects are annotated as well. Therefore,
the visible road can be computed, if necessary.

The first considered dataset intended for road quality classification is CaRINA
(São Carlos, Brazil). It contains data collected by an electronic radara along
with camera images. The data are labelled into three categories: easy, medium,
difficult, where the easy is the smoothest, and the difficult contains potholes
and other defects. Although it was collected with a focus on urban areas, the
variety of road surfaces is considerable. It contains not only asphalt surfaces but
also paved, unpaved and other surfaces. Apart from some shadows, the dataset
does not contain diverse lighting conditions, as it was collected on a sunny
day.

The next dataset was introduced by Ma et al. at the Paris-Saclay University in
France. It was created by matching data collected by government inspectors
and Google Street View images, resulting in a large scale dataset with about
700,000 images. The government data came from the New York City Depart-
ment of Transportation. Based on the government road rating, ranging from
1 to 10, the Google Street View images were obtained using Street View APIb

and automatically labelled into three categories: good, fair, poor. The images
have a wide view and contain many unrelated objects such as parked cars on
the sides, trees or pavements. Also, the dataset is very imbalanced – only 0.6%
of images are in the poor class and 28.2% in the fair class [25]. There was also
a 1.2 years gap between the collection of government data and Google Street
View images. Therefore, the images might be labelled falsely.

Lastly, the RTK dataset (Santa Catarina, Brazil) consists of 6,297 images
collected with a dashboard cam in a car. Images were manually annotated
with a surface category asphalt, paved, unpaved, and a qualitative category good,
regular, bad (unpaved has only regular, bad labels). The dataset contains a wide
range of road surfaces but lacks lighting variety (e.g. no tree shadows in bad
category). It is also less imbalanced than the Paris-Saclay dataset (with about
19% of bad and 50% of good), but the imbalance is still noticeable.

ahttps://roboticsknowledgebase.com/wiki/sensing/delphi-esr-radar
bhttps://developers.google.com/maps/documentation/streetview/overview

13

https://roboticsknowledgebase.com/wiki/sensing/delphi-esr-radar
https://developers.google.com/maps/documentation/streetview/overview

1. Road Qality

1.4 Suitable Dataset
In this section, the ideal dataset for the task of this thesis is defined, and the
suitability of publicly available datasets is discussed.

This thesis aims to create a classification model, which would automate visual
road inspection with the focus on riding for pleasure on a motorbike. The
manual visual check can nowadays be done using street view images which
are available online. Motorcyclists typically want the road to be as smooth
as possible. With increasing damage, the road changes from “smooth” over
“rideable” to “dangerous”. Some road types are inadmissible, such as dirt road
(assuming road tyres). It should be pointed out that even one pothole or crack
on an overall smooth road can make it dangerous. Therefore, the classification
should be based on overall road quality.

With respect to mentioned riders’ road perception and riding experience, the
author proposes the following categories:

1. Top-quality. Smooth surface without any damage. The rider can fully
enjoy the ride.

2. Overall smooth surface with tiny longitudinal cracks and/or repairs not
affecting the safety and riding pleasure.

3. Roads with patches, moderate linear cracks in any directions. Riders
must pay some attention to the road.

4. Bumpy roads with potholes or multiple (layered) repairs. Riders must
pay very close attention to the road, and the fun factor is gone.

5. Stone paved roads or unpaved roads. Extremely dangerous for motorcyc-
lists, especially in the rain. Only plausible in an emergency with extra
caution.

In addition, the dataset should cover various lighting conditions (shadow,
brightness, dark, light), various weather conditions (dry and wet surface) and
various road types (asphalt, concrete). Next, it should cover roads with and
without surface markings, and it should not contain unwanted objects, such as
buildings, cars, trees or traffic signs. Also, it should be invariant to seasonal
impurities, such as mud or grime.

14

1.5. Theoretical Background

It is evident that none of the available datasets can be directly used for this task
without changes. The annotated datasets discretise quality into three classes,
which is insufficient. Hence, the author suggests five categories. Also, the Pair-
Saclay dataset might have misleading labels and only focuses on urban roads,
which riders typically want to avoid due to higher traffic. Class imbalance is
also a problem for RTK and Pair-Saclay dataset. In [7] the authors showed
that combining RTK dataset with CaRINA and KITTI did not lead to increased
performance on RTK test set, but did lead to an increase in performance on the
CaRINA and KITTI test set. To sum up, all available datasets would have to be
re-annotated and combined or extended with more data. However, as shown
in [7] that might not necessarily increase the performance.

Considering the use case of a model this work aims to propose and the
shortcomings in the available datasets, we conclude that it is best to collect
and annotate a new dataset.

1.5 Theoretical Background
Convolutional Neural Networks are deep neural networks designed for pro-
cessing images. The idea behind CNN is that the neural network tries to learn
features of an input image represented as a matrix and gives those features
higher-order meaning in deeper layers. For example, if a CNN learned to re-
cognise a face, it could first learn to detect eyes, nose, and mouth. Then, if
lower layers identified all these features, deeper layers could learn to conclude
that there is a face in the picture. That is achieved by architecture with layers
of three types – convolutional, pooling and fully connected.

The following text describing CNN layers is inspired by the Deep Learning book
written by Goodfellow et al. [14].

1.5.1 Convolutional Layer
The first type layer is called convolutional. Its purpose is to extract features
from the input imagewith the use of a convolutional filter – amatrix containing
weights. Its dimensionality depends on the number of channels in an image.
The width and the height of the matrix are defined by hyper-parameters, and
the weights are trainable parameters. The process of feature extraction is
called convolution, and its result is called a convolved feature, which we get by

15

1. Road Qality

calculating a dot product of the filter and a subset of the input matrix. A sliding
window is used in convolutional layers to get a subset of the input matrix,
matching the filter dimensions. The stride of the slide is also defined via hyper-
parameter. Generally, it slides from the top left corner of the input matrix to
the right. Once it reaches the right edge, the window moves down by one row
and continues from the left until it reaches the bottom right corner. All the
convolved features form an output matrix, often called a feature map.

Let’s consider a grayscale image as an input. Mathematically, it is a matrix
I ∈ Ri,j . Filter is a matrix F ∈ Rk,l and a stride is a scalar s ∈ N. Let
O ∈ Rm,n be the output matrix (feature map) containig convolved features,
where m = i−k

s
+ 1 and n = j−l

s
+ 1. Its elements are defined as:

Op,q =
k∑

u=1

l∑
v=1

Fu,v Is(p−1)+u,s(q−1)+v (1.1)

Figure 1.2 visualises a 2D convolution step on a subset of input matrix I using
a sliding a window and a 3x3 filter F. The convolved feature calculated by a dot
product of the filter, and the subset is stored in the output matrix O.

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

F

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

O

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 1.2: Visualisation of a single 2D convolution step on a subset of input matrix
I using a sliding window and a 3x3 filter F. The convolved features calculated by
a dot product of the filter, and the subset is stored in the output matrix O. Image
source: https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

Padding can be applied to the input matrix if a given combination of a filter and
a stride would not allow the sliding window to slide. Usually, zeros are used to
extend the matrix.

16

https://github.com/PetarV-/TikZ/tree/master/2D%20Convolution

1.5. Theoretical Background

In the end, often, a non-linear function is applied to the features to increase the
non-linearity. Generally, rectified linear unit (ReLU)a or hyperbolic tangent is
used.

1.5.2 Pooling Layer
In practice, it is common to use multiple convolutional layers in a row to extract
more features. Consequently, it generates multiple feature maps. However,
the data representation becomes spatial and network computationally more
expensive. A pooling layer is used to reduce the spatial size and the number of
parameters in the network. Also, it summarises the features, making the model
more robust to variations.

7 9 3 5 9 4

0 7 0 0 9 0

5 0 9 3 7 5

9 2 9 6 4 3

2× 2 max pooling

9 5 9

9 9 7
2

2

Figure 1.3: An example of the feature map Max Pooling method using 2x2 window
and a stride of two. In each window, a maximum value is picked and saved in
the output matrix. We can see that the transformed feature map is four times
smaller. Image source: https://github.com/MartinThoma/LaTeX-examples/tree/
master/tikz/max-pooling

Pooling is performed on each input feature map independently. The idea of
pooling is that a sliding window W ∈ Rm,n with stride s ∈ N is used to
downsample the features by mapping values within the patch into a scalar. In
the case of a grayscale image, a transformation function f : R × R → R is
applied on every window. The two most common functions are called Max
Pooling and Average Pooling. Max Pooling selects the maximum value within
the window, whereas Average Pooling calculates the average. Sometimes
Global Pooling is used, which is a special case of pooling, where the sliding
window size is equal to the feature map size. Therefore, Global Pooling

ahttps://www.cs.toronto.edu/~hinton/absps/reluICML.pdf

17

https://github.com/MartinThoma/LaTeX-examples/tree/master/tikz/max-pooling
https://github.com/MartinThoma/LaTeX-examples/tree/master/tikz/max-pooling
https://www.cs.toronto.edu/~hinton/absps/reluICML.pdf

1. Road Qality

downsamples the feature map to a single value. Figure 1.3 shows an example
of Max Pooling using W ∈ R2,2 and a stride of two.

1.5.3 Fully Connected Layer
Fully connected (FC) layer is an equivalent of a hidden layer in basic neural
networks. In the case of image classification, there are generally two FC
layers placed at the very end of a CNN. They give the network an ability
to understand complex high-level features, their relationships and to perform
classification.

Firstly, the previous layers’ output is flattened to a one-dimensional vector.
Then, all units from the vector are connected to all units in a FC layer, where the
number of units is set via hyper-parameter. The second FC layer is connected
on top of the previous one, whose number of units is typically equal to
a classification class count. An activation function is utilised on all output
nodes to get predictions for each class. Commonly used activation functions
are softmax and ReLU.

1.5.4 Optional Layers
Several other layers may be utilised in the architecture to increase the overall
network’s performance. They might not always help, but it is generally good
to try. Two widely used are mentioned below.

The batch normalisation layer transforms the inputs in a way that the output
always has the given mean and standard deviation. The mean and standard
deviation values to which this layer normalises are specified by trainable
parameters. It aims to stabilise the learning and reduce the number of epochs
needed to converge [37].

The dropout layer randomly deactivates input units with a specified rate. It was
proven it helps to reduce overfitting issues [38].

1.5.5 Transfer Learning
Training a deep CNN from scratch is computationally very expensive and
requires a lot of data. Transfer learning [21] is an approach, which can save
time, resources and help to deal with small datasets. The general idea is to take
advantage of a model learnt on a diverse large-scale dataset and customise it
for a different task.

18

1.5. Theoretical Background

In the context of CNN, such pre-trained models are sufficient in extracting
meaningful features on new datasets. Therefore, we do not have to learn
the feature extractors (parameters in convolutional and pooling layers) from
scratch. Instead, we use the pre-trained feature extractors and only add and
learn FC layers on top to adapt the network to the given task.

One of the biggest publicly available large-scale and diverse dataset is ImageNeta.
It contains over 1.7millions labelled images in a thousand object classes. Thanks
to an associated classification challenge, there are many publicly available pre-
trainedmodels on this datasetb, such asMobileNet [29], ResNet [22] or VGG [27].

ahttp://www.image-net.org/index
bhttps://paperswithcode.com/sota/image-classification-on-imagenet

19

http://www.image-net.org/index
https://paperswithcode.com/sota/image-classification-on-imagenet

ChapteR 2
Data Preparation

In the previous chapter, we defined the ideal dataset for this work. Moreover,
we learned that no publicly available dataset matches our dataset requirements.
Therefore, it was concluded a new dataset would be created. This chapter
describes this process from data collection to labelling using a simple web
application. Additionally, it covers several data balancing and preprocessing
techniques utilised before training, such as shadow removal.

2.1 Data Collection
There are two possible ways to collect images for a new dataset. We can use
a dashboard cam to record a video and then extract frames from it, which
was done for most datasets in Section 1.3. Alternatively, we can utilise public
services like Google Street View to obtain the images.

The first approach is highly time and resources consuming compared to the
second one. We would have to drive thousands of kilometres to collect equally
diverse data. From an economic point of view, it is not wise to repeat someone
else’s work, i.e. collect street view images from locations someone else already
did and publicly published ita. With the motorcyclist path-finding use case in
mind, we decided to utilise mentioned public service as the image source.

There are several public services providing street view images. Along with the
previously mentioned Google Street View, it can be Baidu Maps or Mapy.czb.

aAssuming the published images are of sufficient quality.
bhttp://en.mapy.cz

21

http://en.mapy.cz

2. Data PRepaRation

We decided to use Google Street View for its large Europe and USA coverage
and APIsa possibilities.

2.1.1 Related Google APIs Overview
Google Maps platformb provides several APIs, which can be utilised by
developers based on their needs. The typical use is through a standard HTTPS
request with query parameters. It should be noted that most of the APIs require
an API key connected to an active billing account, so the user can be billed after
exceeding a free quotac.

One of the APIs is Street View Static API, which can be used to obtain a street
view picture. Location (latitude and longitude) of the image origin and the
output image size in pixels are specified via parameter. Optionally, a field of
view and pitch can be specified. Since the original pictures were taken with
a 360° camera, we can also specify a camera compass heading (e.g. 0 points to
North, 180 to South). Additionally, we can obtain image metadata, such as the
date the photo was taken, through a different request. If there is no imagery
available for given parameters, we get a response with a generic imaged .

Another API is the Directions APIe, allowing users to plan a route based on
start address, end address and optional waypoints. The API response contains
information about the optimal planned route based on the current traffic.
Apart from textual instructions or distance, it contains an encodedf so-called
overview polyline. This polyline is a set of coordinates forming a smoothed
path of the resulting directions.

The above mentioned APIs are utilised in a custom framework described in the
next section.

2.1.2 Road Image Collection Framework
To systematically collect diverse road images without duplicates, a Road Image
Collection Framework was developed. It takes advantage of described Street
View and Directions APIs and provides a convenient way to define routes along

ahttp://developers.google.com/maps/documentation/streetview/overview
bhttp://developers.google.com/maps
chttp://developers.google.com/maps/documentation/streetview/usage-and-billing
dhttp://developers.google.com/maps/documentation/streetview/overview#no-image
ehttp://developers.google.com/maps/documentation/directions/overview
f http://developers.google.com/maps/documentation/utilities/polylinealgorithm

22

http://developers.google.com/maps/documentation/streetview/overview
http://developers.google.com/maps
http://developers.google.com/maps/documentation/streetview/usage-and-billing
http://developers.google.com/maps/documentation/streetview/overview#no-image
http://developers.google.com/maps/documentation/directions/overview
http://developers.google.com/maps/documentation/utilities/polylinealgorithm

2.1. Data Collection

Table 2.1: An example of route definitions in a CSV file viewed as a table.

Start address End address Name Meters
between
points

383 01 Prachatice Kvilda prachatice-kvilda 100
507 82 Pecka Třebihošť pecka-trebihost 100
Leontýn, 270 23 Roztoky 330 05 Dobříč leontyn-dobric 100
208, Krásno 356 01 Březová krasno-brezova 100

which road images will be collected. Visualization of the predefined routes
helps to prevent duplicate images (described more in Subsection 2.1.2.2).

2.1.2.1 Routes Definition
The framework allows user to set routes via a CSV file. It contains four columns:
start address, end address, name and meters between points. The framework
utilises the Directions API to generate directions between the addressesa. The
more precise address, the better, as an uncertain address can lead to the
API’s misinterpretation. The name is primarily for debugging purposes in the
visualisation described below. The last column specifies a minimum distance
between images to be collectedb to avoid similar images. We can see an example
of the road definitions in Table 2.1.

Each route was manually composed in Google Maps, and their start and
end addresses copy-pasted to route definitions. Hence, we had an idea of
what directions the API returns. Initially, the routes were based on the
author’s knowledge, focusing on rural second and third-class roads (i.e. less
frequent curvy roads) and later picked specifically to cover enough diversity.
The minimum distance between points was mainly set to 100 metres and
exceptionally lower, e.g. on rare cobblestones routes.

aTheaddress can be in any format; it onlymust not contain the CSV delimiter – a semicolon.
bAs mentioned in the Directions API overview, it responds with a smoothed polyline. The

coordinates in the encoded polyline are not equally distributed (e.g. every ten meters). The
coordinates are only present when necessary to keep a good approximation of some curvature
on the road. Therefore, there might be only a few points on a kilometre-long straight segment
of a road (at the start and the end). In contrast, there might be points every ten meters on a
curvy segment to sufficiently approximate the curvatures. For this reason, the parameter only
specifies a minimum distance.

23

2. Data PRepaRation

2.1.2.2 Route Visualisation
An interactive map can be generated showing paths obtained via the Directions
API for the predefined routes. It is an essential tool in preventing overlapping
segments leading to duplicate images. Sometimes, the API generates a wrong
path due to a vaguely defined address. Thanks to the visualisation, we can
quickly identify the issues and adjust the route definitions to fix them.

Two example visualisations of routes defined for this work can be seen in
appendixes B.1 and B.2. The first shows all routes defined in this work, while the
second one shows a detailed view of three routes. Each route has amarker at the
start and at the end. Markers have a caption containing a letter (A represents
the start, B represents the end), route name and route distance.

2.1.2.3 Route processing
When the routeswere ready, we could further proceed in the data collection pro-
cess by utilizing Street View Static API. One of our ideal dataset requirements
was for pictures to contain minimum unwanted objects. That is something we
can affect by setting proper parameters in the API request, including the field
of view, pitch and heading.

The field of view and the pitch were empirically set after several trials to 40°
and −30°, respectively. With these values, the images depict the road right
ahead of a car and do not contain unwanted objects along the road – assuming
the heading parameter is set in the car’s moving direction. As the heading
is relative to the compass heading, it cannot be a static value. Luckily, since
we take coordinates from the route’s polyline, we can calculate the bearing
between the two following points using a Haversine formulaa and use it to
compute the compass headingb parameter in an API request.

Finally, the Street View API could be utilised to download the images and their
metadata. The framework saves the images in a JPG format with a resolution
of 640x480 under a unique identifier. The metadata of the images is stored in a
CSV file. To wrap up, we defined 85 routes on 1115 kilometres resulting in 7,292
road images.

ahttps://en.wikipedia.org/wiki/Haversine_formula
bIt works well for most cases, but it sometimes fails due to a variable distance between

points in polylines. Consequently, some images might not contain road at all or just partially.
This issue is addressed during image labelling by putting such images in a particular class.

24

https://en.wikipedia.org/wiki/Haversine_formula

2.2. Data Labelling

2.2 Data Labelling
This section depicts the annotation process of collected images. It introduces
the classification categories, tools used for labelling and presents statistics of
the newly created dataset.

2.2.1 Classification Classes
The classification classes were roughly proposed in Section 1.4. However, with
respect to the nature of collected data, it is necessary to extend the categories
and provide more thorough description. Therefore, we suggest the following
classes:

1. An excellent uniform surface without any repairs, cracks or potholes,
having solid curb. Typically a new asphalt surface. The only exceptions
are straight fixed longitudinal cracks in the middle of the road to (i.e.
close to/instead of the centre line marking, where motorcyclists do not
ride.

2. Still very good surface with minor repairs of linear cracks (“snakes”)
in all directions, tiny unfixed cracks, or slightly rougher surface but
smooth and homogeneous. Holes, bumps and potholes of any kind are
not allowed.

3. Roads have partially cracked surface, large patches, slight unevenness or
bumps. An inhomogeneous surface is allowed but without potholes.

4. Roads have an old rough surface, severe alligator cracks, bumps, potholes.
Typically also a diverse surface or multi-layer patch repairs.

5. Any unpaved road which is not suitable for a road motorcyclist due to
little grip, i.e. cobblestone, forest or dirt road. It could also be a wooden
bridge.

6. Generally pictures that do not contain roads, or only a small fraction of it
not allowing to determine the quality. E.g. images with cars, trees, fields,
buildings or generic “no imagery” images.

2.2.2 Labelling Framework
Since there were about six thousand images to annotate, we wanted to make
the processing time efficient and easy. Hence, a proper tool for labelling was

25

2. Data PRepaRation

required. Before conducting a survey, the following required properties were
stated:

• free of chargea,

• simple to set up,

• usable both on computers and mobile devices,

• ability to export labels,

• ability to review and correct labels,

• secure online availabilityb.

An ideal tool meeting our requirements would be a simple responsive web app
with a login wall, allowing us to upload the images and label them by clicking
a class button. The survey showed that there are quite a few available labelling
tools online [39]. However, none of them meets our requirements. Many are
paid (e.g. LabelBox, Hasty, Kili, Prodigy), and the free hosted services are only
session-based without the ability to login from other device and continue (e.g.
Make Sense, ImgLab). Also, several open-source projects can be run on-premise.
Sadly, they often focused on bounding-box annotation, being too complex to
use on mobile devices and to set up (e.g. Annotorious, LOST or CVAT). We
tried setting up, e.g. Label Studio, which is a universal labelling tool supporting
image classification. It looked very promising. Unfortunately, it is a very heavy-
weight tool (not as easy to set up). Images import was only possible via an
URL or special CSV/JSON format and without login (hence, if made public,
anyone could add or delete images and labels). The last group of tools were
locally running desktop applications, which do not meet the online availability
requirements. Towrap up, we did not find any suitable labelling tool. Therefore,
we designed our own.

Our framework consists of three micro-web apps. The first is used for
labelling, the second is used to review labelled images, and the third for
making corrections. All apps require a username and a password and are very
straightforward to use.

aA paid service with sufficient free quota is plausible.
bAn online availability was required for two reasons – being able to annotate on-the-go

and possibly allowing multiple annotators at a time.

26

2.2. Data Labelling

The main labelling app (Fig. 2.1) displays an image and seven buttons. The first
six buttons are defined by the classification classes. The seventh button is for
cases when an annotator is unsure about the class. Images marked as such can
be filtered via the radio button “Unknown”. When either button is clicked, the
label is immediately saved, and the next image is shown. However, when an
image has an assigned class, it is never shown again. The images marked as
“Unknown” can only be viewed by a user with the admin role, as well as the
results and corrector app.

Figure 2.1: This picture shows a screenshot of the labelling web app, allowing us
to annotate the images effectively.

The labelling results app (Fig. 2.2) shows a gridwith images labelledwith a given
class. A label id is present for every image, which can be used in the corrector
app.

The corrector app (Fig. 2.3) allows the admin user to correct the class of the
given label. It only contains a text input and the same seven buttons as in the
main labelling app.

27

2. Data PRepaRation

Figure 2.2: This picture shows a screenshot of the labelling results web app, enabling
us to view the annotated images.

Figure 2.3: This picture shows a screenshot of the results corrector web app, enabling
us to correct individual labels.

28

2.2. Data Labelling

The apps are built with Streamlit open-source app frameworka, which turns
Python script into a web app. Embedded SQLite database was used as data
storage. The database scheme allows multiple users to be added with different
roles. Every time the web page is loaded, the labelling framework tries to load
new image definitions into the database from a specified source folder. The
class definitions were hard-coded. To access the Streamlit app online, it needs
to be hosted. We utilised the free Deepnoteb Jupyter-like notebooks available
online. However, each app built with Streamlit runs on a local-host port. To
make the app publicly accessible, a secure tunnel was made to a public domain
using LocalTunnelc. Then, our apps were available on custom subdomains
of localtunnel.me, e.g. roadlabelling.localtunnel.me. Everything was for free.
When the labelling was done, the apps were shut down. Examples of labelled
images can be seen in Figure 2.4.

The next section describes the difficulties and challenges we encountered
during labelling and how we dealt with them.

ahttps://streamlit.io
bhttps://deepnote.com
chttps://localtunnel.github.io/www

29

https://streamlit.io
https://deepnote.com
https://localtunnel.github.io/www

2. Data PRepaRation

Figure 2.4: This picture shows the examples of the labelled dataset. Each row
depicts images given class, starting with first class at the top end sixth at the bottom.
30

2.2. Data Labelling

2.2.3 Labelling Challenges
Although the class descriptions are relatively detailed, there were quite a few
confusing images lying in between some categories. For example, first-class
roads with drainage grates, different roads connections, extremely narrow
roads or roads under reconstruction, where one lane is new and the other
excavated. The general policy in labelling was to assign a label according to
the most worsening part of the road in the picture. However, if we recall the
purpose and use case of themodel being developed in thiswork, such occasional
elements could cause assigning a lower qualitative class than expected. For
example, if a new road contains a drainage grate, it is unlikely the road contains
another a fewmeters ahead. In contrast, a roadwith patches and repairs is likely
to have more further on the way because the repairs are a sign of usage. Hence,
these occasional elements were ignored.

Similarly, images often contained a seasonal impurity such as mud, oil, gravel,
rests of snow or fresh-cut grass. Therefore, the following policy was applied in
such cases: if the seasonal element is likely to be flushed by rain or cleaned by
a street sweeper, ignore it and decide as if they were not present.

The rules described above had twomeanings: enforcing the learning algorithms
to focus more on the road surface and reducing subjective labelling. Despite
that, we admit that there was still some room for unclear decisions. Which
is also why we did not let the public help us with labelling, although it was
initially considered and the framework was capable of it.

When all images had an associated class, the labelled dataset was created by
exporting images into folders by classes. Table 2.2 depicts per-class statistics
of the exported datasets. We can see that there are three dataset versions. The

Table 2.2: There are three datasets in the table. The first was labelled initially.
Later during the work, it was extended into v2 with the focus on classes 4-6. These
two were used for training and validation. The test dataset was created to evaluate
the best models’ performance unbiasedly.

Dataset/Class 1 2 3 4 5 6 Total
v1 1712 1360 1021 790 45 148 5076
v2 1850 1518 1393 1067 88 178 6094
test 214 273 272 286 126 27 1198

31

2. Data PRepaRation

reason is that we initially collected and annotated the dataset v1. However,
classes 4-6 were very imbalanced. Therefore, an extension was made to
reduce the imbalance, forming the dataset v2. Nevertheless, a significant class
imbalance is still observable, and the issue is further addressed in the next
section. The third version is a test dataset, only used for unbiased evaluation of
the best models.

2.3 Data Balancing
Class imbalance in datasets is a common issue in the machine learning field.
It can lead to biased models and serious overfitting, degrading quality of the
models. It is always best to collect more data and make the dataset balanced.
However, sometimes it is not possible. There are several methods that can be
used for balancing classes – undersampling and oversampling. We focus only
on the oversampling technique to generate more data samples. Undersampling
is not suitable for our dataset, because it is still relatively small.

The oversampling is done on a train set only, not to devalue the purpose of
a validation set. We set validation split to 25% from original datasets v1, v2
or their derivates introduced later in this chapter. This section introduces the
oversampling techniques used in this work.

2.3.1 Image Transformations
Image Transformation is a common oversampling technique. The idea is to
generate new samples by applying some transformation to existing data. The
transformation can be geometrical, such as rotation, flip or zoom. Besides, it
can be a colour transformation, where we can adjust, e.g. brightness, contrast,
or saturation. The transformation usually has several random real parameters
specifying the factor of change.

In this work, we created two oversampled datasets with the following trans-
formations:

• random rotation in range 0°-10°,

• random brightness adjustment from range (0.5, 1.3)a,

• random shear in range 0°-10°,
aValues below one means dimming, values above means brightening.

32

2.3. Data Balancing

• random horizontal flip.

All the mentioned transformations were applied together. However, the
parameters were chosen randomly for every picture during the oversampling
process. The oversampling was based on the dataset v1 and followed two
strategies.

The first strategy aimed only to balance the less-frequent classes with the most-
frequent. Hence, there were no new samples in the first class, but about 1,300
new samples in the sixth class.

The second strategy involved oversampling in a way that all classes in the
oversampled dataset contained about 2,500 samples. Therefore, even the most
frequent classes contain augmented data. We call the oversampled datasets
v1_augmented_1 and v1_augmented_2. They contain 9,097 and 16,431 samples,
respectively.

2.3.2 SMOTE
SMOTE stands for Synthetic Minority Oversampling Technique, which utilizes
the KNN algorithm to generate new samples [40]. While it is relatively
successful on low-dimensional datasets, the results with high-dimensional
datasets are not guaranteed due to a low density of the data in the feature
space [41]. Our images have 640 × 480 × 3 ≈ 9 × 105 dimensions, which
is very high considering we only have about a thousand samples in classes 1-4
and about a hundred in classes 5-6. The dimensionality would be high even if
we downsampled the images to half (which would, however, be on the limit in
terms of the detail loss and ability to classify). Therefore, we did not expect any
stunning results and took it only as an experiment.

We utilised SMOTE using the imbalanced-learn Python package [42]. The
results were not satisfactory, as suggested by the theory. The images generated
using SMOTE have unrealistically adjusted colours and contain a lot of noise
and artefacts. Such examples can be seen in Figure 2.5. Based on the
results of preliminary experiments, we concluded that an oversampled dataset
using this technique is not beneficial. It would only confuse the learning
algorithm. Hence, this oversampled dataset using SMOTE was not used in
further experiments.

33

2. Data PRepaRation

Figure 2.5: This picture shows the examples of SMOTE generated samples. We
can see that the images contain unrealistic colours and artefacts, which would only
confuse the learning algorithms.

2.4 Other Preprocessing Techniques
In addition to the balancing techniques described in previous section, we experi-
mented several preprocessing techniques with the aim to increase performance
of the developed models.

2.4.1 Shadow Removal
Undoubtedly, shadows are a big issue in scene understanding. In our task, shad-
ows might be misinterpreted as a patch repair, pothole or surface homogeneity,
causing incorrect class predictions. Since roads often lead through woods and
trees cast shadows on the roads, they are also heavily present in our dataset.
Hence, we explored the state-of-the-art methods of shadow removal and their
possible usages.

Finally, we took advantage of a method proposed by Cun et al. [43], which
achieved impressive results on pavements, and their model is publicly avail-
ablea. The model is based on a novel CNN architecture called Dual Hierarchical
Aggregation Network and trained on data partially synthesised by their shadow
matting generative adversarial network.

ahttps://github.com/vinthony/ghost-free-shadow-removal

34

https://github.com/vinthony/ghost-free-shadow-removal

2.4. Other Preprocessing Techniques

After generating the shadow-free images, the results were promising. However,
we quickly realised certain drawbacks.

While the removal worked reasonably well on images in which the shadowwas
present, it added artificial defect-looking objects to images without shadows.
That is a huge issue, especially in the first two classes, as they would confuse
with the third and fourth class. In some cases, the shadow was detected
correctly but only partially removed, causing the removed part to lookmore like
a patch repair. Examples of shadow-free images can be seen in Figure 2.6.

Despite the questionable results, we decided to include the shadow-free dataset
in our experiments, described more in the next chapter. We refer to this dataset
as v2_shadow_free.

Figure 2.6: This picture shows the examples of shadow-free images using the model
proposed in [43]. The top images are the originals, and the shadow-free are at the
bottom. We can see that the shadow was removed quite successfully in the first
image. Contrastingly, the removal in the other two images generated new defect-
looking artefacts.

2.4.2 CLAHE
CLAHE is an improved adaptive histogram equalization with the ability to clip
the output limit range, proposed by Zuiderveld [32]. The method is generally
used to improve contrast in images and achieves good results.

In contrast to the previous methods, this technique does not cause such
dramatic changes to the images, resulting in unrealistic artefacts or patch

35

2. Data PRepaRation

repairs. Nevertheless, it is not problem-free either. If the clip limit is too high,
the contrast can pull up even the tiniest cracks (noise) from the roads, making
them all damaged from the classifier point of view. It is essential to choose
the proper clip limit, which would help identify defects and not highlight the
surface noise. However, choosing the right clip limit is a matter of trial and
error.

We utilised the OpenCV library [44], in which CLAHE is already implemented.
Based on several experiments, we generated datasets with the following clip
limits: 1, 1.5, 2 and 3. We refer to them as v2_clahe_1, v2_clahe_1_5, v2_clahe_2,
v2_clahe_3. Examples of different clip limits on our dataset can be seen in
Figure 2.7.

36

2.4. Other Preprocessing Techniques

Figure 2.7: This picture shows the examples of CLAHE generated samples. From
top left to right and bottom: original, clip limit of 1, 1.5, 2 and 3. We can see that
clip limit of 3 noticeably highlights tiny cracks. A higher clip limit might lead to
higher confusion, making the classes less separable.

37

ChapteR 3
Experiments

This chapter introduces the implemented technologies used for training and
performing experiments. The design of experiments and methodology is
also explained along with the evaluation metrics. Finally, our implemented
approaches are described.

3.1 Implementation
In this section, we mention the relevant frameworks and libraries used in this
work. All the implementations were done on a machine running Windows 10
20H2 equipped with Core i7 CPU, NVIDIA GeForce GTX 1070 GPU and 32 GB
RAM.

Developers and data scientists generally have more than one option in terms
of technologies they want to implement. Hence, everyone can pick the most
suitable tool for their task. We decided to utilise the following technologies
based on the related works and our survey.

We used Anaconda Data Science Platform [45] as a base for all other software
used for development. This platform allows us to set up a containerised
environment with native GPU support, which is crucial for CNN learning due
to high computational requirements. Besides, environments isolate libraries
and their versions, avoiding conflicts with other software installed on the
machine.

39

3. ExpeRiments

As for programming language, we picked Pythona, which is heavily used in the
machine learning field for its wide range of support of data science tools and
libraries. In addition, its syntax is concise and code well readable.

NumPyb is an open-source Python package for effective numerical calculations,
including matrix operations or multidimensional array transformations.

TensorFlow 2.3 [46] is a machine learning platform developed by Google. It
bundles plenty of tools and algorithms, enabling us to build neural networks
suitable for many tasks, such as image classification or audio recognition.
TensorFlow itself is a bit low-level. Hence, we utilised Keras library [47], which
provides a high-level Python API for TensorFlow, specially designed for easy
experimenting with deep neural networks, including CNNs.

Before we set up our experimentation flow described further in text, we used
Jupyterc notebooks for prototyping in the early stages. It is an interactive web
application with the ability to run Python code in cells, print graphs and images
or add textual notes for clarification.

Lastly, the Matplotlib library [48] was used to visualise model training runs,
which helped us evaluate models’ performance.

3.2 Design of Experiments
This section presents our experimentation flow, including our evaluation
metrics, and describes how we proceeded with hyper-parameter tuning.

3.2.1 Evaluation Metrics
For the purpose of this work, we used two metrics for evaluating models’
performance – accuracy and F1-score. Accuracy is a measure of the model’s
overall ability to classify images correctly, calculated as a ratio of correct
predictions and all predictions.

Accuracy =
Correct predictions

All predictions (3.1)

ahttps://www.python.org
bhttps://numpy.org
chttps://jupyter.org

40

https://www.python.org
https://numpy.org
https://jupyter.org

3.2. Design of Experiments

F1-score can be interpreted as a harmonic mean of precision and recall. For
multi-class classification, precision is the fraction of the sum of all true positives
(TP) across all classes and the sum of all TP and false positives (FP) across all
classes.

Precision =

∑all classes
c TPc∑all classes

c (TPc + FPc)
(3.2)

The recall is calculated as the ratio of the sum of all TP across all classes and
the sum of all TP and false negatives (FN) across all classes.

Recall =
∑all classes

c TPc∑all classes
c (TPc + FNc)

(3.3)

To understand how well the model classifies in each class, we calculated the
F1-scores per class. In that case, we do not sum across all labels in the precision
and recall formulas, but the c is fixed to the corresponding class.

Since our dataset is not perfectly balanced, the F1-score can bemoremeaningful
for model performance evaluation rather than accuracy.

3.2.2 Methodology
Our experimentation workflow consisted of three components. In the first, we
defined individual experiments. The second component was used to load the
given experiment definition, run the experiment and save its results. Finally,
the third component was used to evaluate the saved models.

Every experiment definition had an associated id and contained a definition
of the model’s architecture, including its hyper-parameters and desired optim-
isera to be used during training. Moreover, a dataset (v1, v2, v1_clahe,…), valid-
ation split, or colour space (RGB/greyscale) could be specified for each experi-
ment.

When we wanted to run a predefined experiment with a given id, we used
the second component. It took care of loading specified dataset, compiling
the model architecture and setting up callbacks. The callbacks were used for

ahttps://www.tensorflow.org/api_docs/python/tf/keras/optimisers

41

https://www.tensorflow.org/api_docs/python/tf/keras/optimisers

3. ExpeRiments

two things – to save intermediate network weights and for early stopping.
TensorFlow calculates themodel’s accuracy after every epoch using a validation
set. We took advantage of that and saved model weights of the best and latest
epoch in every experiment. The early stopping was primarily used for saving
time and resources when the model converged before reaching the specified
number of epochs.That is when the accuracy had not improved for a given
number of epochs, known as patience. We usually set patience from ten to
fifteen epochs, depending on the subjective convergence speed.

The third component was used to calculate the models’ accuracy and F1-
scores, given an experiment id and dataset. We used the validation set for
comparing model performance among each other. Later, we picked the best-
performing models on a validation set and evaluated them using the test dataset
to determine the unbiased performance.

3.2.3 Model Tuning
Building a machine learning model means experimenting with many different
architectures, hyper-parameters, and in our case, also with different datasets.
Therefore, it is essential to run and evaluate experiments systematically. To
achieve that, we were always running several experiments in a batch, each
adjusting only one parameter against a referential model. Each experiment
was evaluated based on the evaluation metrics. Adjustments leading to
improvement formed a new referential model for further experimenting. In
total, we ran 164 experiments. The best ones are described in the next
section.

3.3 Implemented Approaches
This section introduces the best approaches we found in the experiments. There
are two main types of implemented approaches – custom architectures trained
from the ground up and a transfer learning approach, where we took advantage
of pre-trained networks.

3.3.1 Custom Architectures
In the first phase of the work, we experimented with custom architectures,
alongwith optimisers, optional layers (described in Subsection 1.5.4), activation
functions and different real-time augmentation. We used the dataset v1 for

42

3.3. Implemented Approaches

Table 3.1: Architecture of the E16 model. Abbreviations: CONV=Convolutional,
N=neurons, K=kernel size, S=stride, R=rate. Dense layer is the Fully-Connected
layer.

Layer
1 CONV (N8, K3, S1), ReLU
2 CONV (N8, K3, S1), ReLU
3 MaxPooling (K2, S2)
4 CONV (N16, K3, S1), ReLU
5 CONV (N16, K3, S1), ReLU
6 MaxPooling (K2, S2)
7 CONV (N32, K3, S1), ReLU
8 MaxPooling (K2, S2)
9 Dropout(R0.2)
10 CONV (N64, K3, S1), ReLU
11 MaxPooling (K2, S2)
12 CONV (N128, K3, S1), ReLU
13 MaxPooling (K2, S2)
14 Dropout(R0.1)
15 CONV (N256, K3, S1), ReLU
16 MaxPooling (K2, S2)
17 Flatten
18 Dense (N128), ReLU
19 Dense (N6)

experimenting with custom architectures. The best architectures we managed
to build are described below.

Our first proposed architecture is composed of eight convolutional layers but
only six pooling layers. The architecture is depicted in Table 3.1.

There are two convolutional layers right after another at the top of the
architecture. Two dropout layers were applied to reduce overfitting. All
convolution filters were of size 3 × 3. After every convolution, the ReLU
activation functionwas applied. Before training, the input pictureswere resized
to resolution 480 × 360. Also, real-time augmentation was applied to reduce
overfitting, including random horizontal flip, random rotation and random
zoom. The random rotation ranged [−108°; 108°], and zoom ranged [0%; 30%].
Finally, inputs were scaled to the unit range. The model was trained using the

43

3. ExpeRiments

Table 3.2: Architecture of the E46 model. Abbreviations: CONV=Convolutional,
N=neurons, K=kernel size, S=stride, R=rate. Dense layer is the Fully-Connected
layer.

Layer
1 CONV (N8, K3, S1), LeakyReLU
2 MaxPooling (K2, S2)
3 Dropout(R0.2)
4 CONV (N16, K3, S1), LeakyReLU
5 MaxPooling (K2, S2)
6 CONV (N32, K3, S1), LeakyReLU
7 MaxPooling (K2, S2)
8 CONV (N64, K3, S1), LeakyReLU
9 MaxPooling (K2, S2)
10 CONV (N128, K3, S1), LeakyReLU
11 MaxPooling (K2, S2)
12 Dropout(R0.1)
13 Flatten
14 Dense (N128), ReLU
15 Dense (N6)

RMSprop optimiser [49] with a learning rate of 0.001. The training converged
after about 130 epochs. We refer to this model as E16 since it was the 16th
experiment.

The second model’s architecture can be seen in Table 3.2. It is composed of
five convolutional layers and the same number of pooling layers. There are
two dropout layers present. The activation function used in this architecture
was LeakyReLU [50], with hyper-parameter alpha set to 0.3. Real-time
augmentation was applied as well. In addition to E16, random contrast with
factor 0.3 was added alongwith both horizontal and vertical flip. Themodel was
trained using the Adam optimiser [51] with a learning rate of 0.001, converging
after about 150 epochs. We refer to this model as E46.

Thirdly, we implemented the architecture proposed by Rateke et al. [7], referred
to as E67. It consists only of three convolutional layers, each followed by
a pooling layer, being the simplest architecture among the proposed. We
can see the architecture in Table 3.3. However, we did not apply the same
augmentation as in [7], but similar to E46. Additionally, we resized the input

44

3.3. Implemented Approaches

Table 3.3: Architecture of the E67 model. Abbreviations: CONV=Convolutional,
N=neurons, K=kernel size, S=stride, R=rate. Dense layer is the Fully-Connected
layer.

Layer
1 CONV (N32, K3, S1), ReLU
2 MaxPooling (K2, S2)
3 CONV (N32, K3, S1), ReLU
4 MaxPooling (K2, S2)
5 CONV (N64, K3, S1), ReLU
6 MaxPooling (K2, S2)
7 Flatten
8 Dense (N128), ReLU
9 Dense (N6)

image down to resolution 240×320. Thismodel was also trainedwith the Adam
optimiser with a learning rate of 0.001. The training converged after about 250
epochs.

3.3.2 Transfer Learning
This subsection describes several pre-trained networks we experimented with.
These networks served as a base model, with loaded frozen weights trained
on the ImageNet dataset. The only trainable weights were connections to an
output layer that we added to fit our classification task. Later, based on the
preliminary results, we fine-tuned the best models to increase the performance
even more. That was done by training all weights, including those initially
frozen.

MobileNet [29] is a an efficient CNN designed with low resources demands
and balanced accuracy-latency trade-off. Thanks to architecture using depth-
wise separable convolutions [52], it is lightweight with only 4.2M neurons and
88 layersa. The authors demonstrated awide range of applications, including ob-
ject detection and classification. Each pre-trained network assumes specifically
preprocessed data. For MobileNet, input samples must be scaled to the range
[-1;1], sample-wise. Since the network was trained on images with resolution
256× 256, it is recommended to resize our inputs to that resolution. However,

aIncluding output classification layers for the ImageNet dataset

45

3. ExpeRiments

we consider such resolution too low for our application due to significant de-
tail loss on road surface needed for effective quality classification. Hence, we
decided to resize the input images to 360 × 360, preserving the square aspect
ratio of the data on which MobileNet was trained.

Another pre-trained network we experimented with is the successor of Mobi-
leNet – MobileNetV2 [53]. It has even less neurons (3.5M), while achieving
higher accuracy on the ImageNet dataset. The input preprocessing is the same
as for MobileNet.

DenseNet-121 [54] is a deep CNN with 121 layers and 8M neurons. The novelty
in this architecture was connecting each layer to every other subsequent layer.
That means every layer takes inputs from all preceding layers, which, according
to authors, should strengthen feature propagation and stimulate feature reuse.
Compared to MobileNet, it achieves 5% higher accuracy on the ImageNet
dataset. As for preprocessing, DenseNet assumest input scaled to the range
[0;1] and normalised with respect to the ImageNet dataset. Additionally, we
resized the images to the same resolution as with MobileNet.

The last model we utilised for transfer learning was the InceptionResNetV2 [55].
It is a hybrid of ResNet [22] and Inception [23] architectures. ResNet introduced
so-called residual connections, which are direct connections from each layer to
a subsequent layer 2-3 hops away. The idea behind Inception architectures is
the use of different kernel sizes in parallel to decrease sensitivity to the size of
an object in an image. Therefore, the hybrid network is both deep and wide.
With its 572 layers and 55M neurons, it is the most complex architecture we
experimented with. Regarding the inputs, it assumes preprocessed data in the
same way as MobileNet networks – scaled to [-1;1], and we also resized the
images as with other networks.

46

ChapteR 4
Results

This chapter presents our findings and experimental results of the implemen-
ted methods and trained models. We describe which preprocessing and data
augmentation techniques positively and negatively impacted models’ perform-
ance. Next, we discuss the results with a potential interpretation. The results
are grouped by implemented approaches – custom architectures and transfer
learning.

4.1 Custom Architectures
One of the main issues we encountered when experimenting with custom ar-
chitectures was overfitting. Therefore, we applied real-time data augmentation,
which significantly helped. We found the following random transformations to
be helpful: contrast, horizontal and vertical flip, rotation and zoom, as used
in models E46, E67. Oppositely, random shear or random crop to smaller size
had a negative impact on the results. Nevertheless, even with the mentioned
augmentation techniques, the overfitting was still noticeable. Next, we exper-
imented with balanced datasets v1_augmented_1, v1_augmented_2, created by
oversampling v1 dataset using random image transformations. To our surprise,
the accuracy was significantly worse (by about 10%) than in the case with the
real-time augmentation.

Further experimenting showed that the RMSprop optimiser tends to reduce
the overfitting compared to the Adam optimiser on the same architecture.
We observed a trade-off between overfitting and the best possible accuracy.

47

4. Results

On the one hand, the RMSprop optimiser reduced overfitting, but on the
other also decreased maximum training and validation accuracy. Adam
optimiser achieved higher validation accuracy but also larger overfitting. We
observed that this effect could be decreased, contradictory, by applying fewer
augmentation techniques, as in model E16.

We also experimented with colour space and optional layers. Converting
images to grayscale resulted in a slight decrease in accuracy. Dropout
layers positively impacted overfitting with factors around 0.2-0.3. Higher
values negatively impacted overall models’ performance. Surprisingly, batch
normalisation layers, aiming to stabilise the learning, caused the opposite.
Figure 4.1 depicts such behaviour.

Figure 4.1: An example of batch normalisation negative effects on the same
architecture. The plots show training and validation accuracy [×100%] over epochs
while training. We can see significant instability with batch normalisation layers
(plot on the left) compared to architecture without batch normalisation layers (on
the right).

We present results of the implemented approaches E16, E46 and E67 in Table 4.1.
It can be seen that we achieved about the same accuracy with three different
architectures. However, their F1-scores differ. The biggest differences are in
second and third class, which are also classes with the lowest overall scores.
We attribute it to the fact that both categories can contain similar features,

48

4.2. Transfer Learning

Table 4.1: The table shows the results of models with custom architectures. Results
contain validation accuracy (Acc) and per-class validation F1-score.

Model Acc F1-score
1 2 3 4 5 6

E16 59.42% 71.44% 40.61% 52.73% 61.98% 57.14% 86.36%
E46 58.23% 71.41% 36.92% 42.70% 66.37% 61.54% 81.25%
E67 59.18% 70.29% 47.37% 51.21% 62.11% 63.16% 81.82%

e.g. (fixed) cracks, but with different severity. Additionally, we know the
manual labelling of these classes was sometimes disputable. The sixth class has
the highest F1-score, which we explain by many identical placeholder images
for missing imagery on Google Street View. We later discovered that such
images accounted for about 17% of all images in the sixth category.

4.2 Transfer Learning
We utilised four different pre-trained networks and trained them with several
data augmentation techniques. Initial training was done on the dataset v1, to
be comparable with custom architectures. Surprisingly, our data augmentation
decreased the validation accuracy of transfer learning models by about 5%.
While it almost removed the overfitting, we did not consider this a good trade-
off and continued experimenting without any augmentation. It showed that
DenseNet performed very well in terms of not overfitting (only about 4%, while
others 10%+). We can see the results of models trained on the dataset v1 in
Table 4.2. Transfer learning approaches achieved higher accuracy by about 6%.
The first class achieved higher F1-score by about 4%, classes 2-4 by about 10%
and class 5 by about 20%.

For time reasons, we needed to pick one of these models for further experi-
menting with dataset v2. We picked MobileNet since its overall accuracy is the
best.

Experimenting with dataset v2 involved several variations, including CLAHE
and shadow removal preprocessing. All experiments were trained on the
previously mentioned MobileNet architecture. The results are depicted in
Table 4.3. The model’s accuracy on dataset v2 increased by about 2%. The
F1 score of the first and second class did not significantly change, which was

49

4. Results

Table 4.2: The table shows the results of models based on the transfer learning
approach trained on the dataset v1. Results contain validation accuracy (Acc) and
per-class validation F1-score.

Model Acc F1-score
1 2 3 4 5 6

Mobile
Net

66.75% 75.11% 52.20% 62.45% 72.63% 80.00% 83.15%

Mobile
NetV2

64.78% 74.91% 47.00% 60.26% 70.46% 82.35% 86.67%

Dense
Net-121

65.41% 74.42% 54.29% 57.76% 71.43% 87.50% 84.71%

Inception
Res-
NetV2

65.48% 75.80% 55.83% 51.10% 73.51% 88.89% 77.27%

Table 4.3: The table shows the results of models based on the transfer learning
approach trained on the dataset v2 and its preprocessed variations. Results contain
validation accuracy (Acc) and per-class validation F1-score.

Dataset Acc F1-score
1 2 3 4 5 6

v1 66.75% 75.11% 52.20% 62.45% 72.63% 80.00% 83.15%
v2 68.35% 75.66% 51.14% 67.86% 76.89% 65.31% 81.25%
v2
clahe_1

69.34% 75.76% 58.04% 67.06% 77.41% 63.83% 83.33%

v2
clahe_1_5

69.01% 75.85% 54.86% 68.27% 76.02% 65.22% 83.50%

v2
clahe_2

70.12% 76.69% 56.69% 69.46% 77.64% 63.83% 84.00%

v2
clahe_3

68.29% 74.11% 58.14% 63.61% 77.80% 66.67% 84.78%

v2
shadow
free

69.67% 76.97% 55.25% 67.64% 77.98% 72.73% 82.83%

50

4.2. Transfer Learning

expected, as the dataset v1 was extended with the focus on categories 3-5. The
F1-score of the third class improved by about 5%. The fourth class achieved
gain by about 4%. In contrast, the score of the fifth class dropped by 15%. We
explain that by a significant change made by the dataset extension, as the count
of samples was doubled, adding new variety to the data. However, the fifth class
still contains only 88 samples, which is very few for a model to learn the variety.
Hence, we do not consider a 65% score a bad result. Additionally, the model’s
overfitting decreased to about 5%.

In Chapter 2, we discussed our concerns about CLAHE that only some classes
might benefit from higher contrast. The results confirmed that. The clip limit
of 3, which is the highest we experimented with, decreased the F1-score of the
first class compared to the original data. However, a 1.5% drop is lower than
expected. Additionally, all CLAHE clip limits we experimented with increased
the score of the second class. The biggest gain was with a clip limit of 3 by 7%.
However, in contrast, the clip limit of 3 caused the biggest score drop in the third
class – about 4%. Therefore, we consider lower clip limits and lower variation
in performance change a better choice. Specifically, the clip limit of 1 seems
to perform the best. It has slight F1-score improvement in the first and fourth
class, about the same improvement (∼7%) in the second class as with the clip
limit of 3, and only a slight drop in the third and fifth class.

The results with shadow-free images were surprising. Although the shadow
removal introduced many defect-looking blobs, there was at least slight F1-
score improvement in all classes except the third, which had a slight 0.22% drop.
Also, while the CLAHE preprocessing does not seem to reduce overfitting, the
shadow removal reduced the overfitting to about 2%.

Models using v2, v2_clahe_1 and v2_shadow_free datasets were picked for fine-
tuning. Table 4.4 shows the results. We can see that fine-tuning increased the
accuracy by about 4% on all datasets. We observe that the model with shadow-
free dataset only outperformed v2 in the third and fifth class, while without
fine-tuning, it outperformed in all classes, except the third. Also, the F1-score
drop is more significant with the shadow-free dataset (∼5%). The model with
CLAHE dataset has the best accuracy. Although it does not outperform the
model with v2 in all classes, it does not contain any significant drops compared
to the model using the shadow-free dataset.

51

4. Results

Table 4.4: The table shows the results of fine-tuned models based on the transfer
learning approach trained on the dataset v2 and its preprocessed variations. Results
contain validation accuracy (Acc) and per-class validation F1-score.

Dataset Acc F1-score
1 2 3 4 5 6

v2 74.00% 78.64% 62.81% 75.80% 80.09% 65.22% 82.11%
v2
clahe_1

74.52% 79.83% 61.60% 75.14% 81.35% 72.34% 82.98%

v2
shadow
free

73.21% 78.99% 64.40% 70.90% 78.08% 77.55% 81.19%

Table 4.5: The table shows the results of fine-tuned models based on the transfer
learning approach trained on full dataset v2 (or its preprocessed variation). Results
contain test accuracy (Acc) and per-class test F1-score

Model Acc F1-score
1 2 3 4 5 6

v2 68.28% 75.18% 64.92% 66.55% 76.15% 40.74% 59.74%
v2
clahe_1

71.04% 76.34% 68.95% 69.85% 78.81% 47.95% 59.77%

v2
shadow
free

64.77% 62.20% 61.25% 63.75% 74.56% 46.43% 72.73%

.

Next, we trained the fine-tuned models on all the data from given datasets, i.e.
without a validation split. Models were then evaluated on the test dataset. The
results can be seen in Table 4.5. Overall, the results on the test datset seem to be
relatively consistent with the validation accuracies in Table 4.4, except the fifth
and sixth class, where is a noticeable F1-score drop by about 20%. We explain
that similarly as the drops occurring after extending the v1 dataset. There was
a lot of new data variety in the test dataset in these two categories. Additionally,
there aremore samples for the fifth class in the test dataset than in the v2 dataset,
which the model was trained on.

Table 4.5 also shows that the performance of the model using the full shadow-
free dataset dramatically dropped and is behind both the original v2 andCLAHE
model. The sixth class is the only exception, which achieved inexplicable 10%

52

4.2. Transfer Learning

improvement. The CLAHE model achieved the highest accuracy again, and it
does not contain any significant drops as the model trained on the shadow-free
dataset.

We conclude that the evaluation on the test set did not show significant
overfitting issues in classes 1-4. Nonetheless, there is an overfitting issue with
classes 5-6, which we believe is caused by the lack of training samples.

53

Conclusion

Finding high-quality roads for driving pleasure can be challenging and time-
consuming, even when we utilise modern street view services. This thesis
focused on an automatic road quality classification, which could streamline
such a process. In this chapter, we would like to review and summarise our
contributions and propose a direction for future improvement. Also, potential
ethical issues linked with the usage of this work are briefly discussed.

Contributions
In the introductory part of this work, we stated the motivation for automated
road quality evaluation and defined our goals. This section outlines their
fulfilment.

The first objective was to survey the related state-of-the-art works and available
datasets. The survey shown our use is particular, and none of the available
datasets fits our needs.

Hence, a new road quality image dataset focusing on driving pleasure was
collected from Google Street View and manually annotated into six classesa.
That is our first contribution. Our second contribution is a lightweight labelling
tool we developed while creating the new dataset.

Another objective was to implement at least two approaches. We realised sev-
eral different CNNs with custom architectures and adopted several pre-trained

aDataset available at: https://github.com/lenoch0d/road-quality-classification

55

https://github.com/lenoch0d/road-quality-classification

Conclusion

networks. Additionally, we experimented with numerous augmentation and
preprocessing techniques. The best models were evaluated on a test dataset to
get unbiased results. Our third contribution is a model achieving 71% accur-
acy and F1-scores (rounded) 76%, 69%, 70%, 79%, 48% and 60% for classes 1-6,
respectively. Before concluding on these scores, we would like to mention the
challenges of our data domain we faced.

Our classification classes do not describe a single feature in the images, but an
overall appearance, making it challenging to label images unbiasedly without
fluctuations (i.e. a similar image is labelled differently due to uncertainty).
Additionally, the images in our dataset contain various lighting conditions,
including shadows and sharp sunlight. These elements lead to confusion
between classes having smooth, coherent surface and classes with potholes and
patches. We experimented with two preprocessing techniques to mitigate the
problem – shadow removal and CLAHE. The results showed each technique
likely improves and decreases the performance of different categories.

Despite the F1-scores of the proposed model not being dramatically high and
classes 5-6 significantly underperforming others, we conclude our model is
satisfactory for use in practice. Particularly for the use case introduced in this
thesis. We claim that based on a visualisation of the model’s predictions created
beyond the scope of this work, which can be seen in Appendix B.3.

To sum up, we fulfilled all the established objectives, and our work may serve
as a basis for additional work.

Future Work
We see two ways in extending this work. One way involves improving the
current classifier. Extending the v2 dataset with new samples in all classes,
especially in classes 5-6, would undoubtedly increase the performance. Next,
we skipped further experimenting with the DenseNet-121 network due to
limited time and computational resources. However, DenseNet-121 had the
least overfitting issues. Hence it might be insightful to explore its capabilities
on our dataset. Also, removing the generic “no imagery” images from the sixth
class might lead to a more relevant evaluation of models’ qualities. Since the
files are always the same, they could be filtered automatically even without the
classifier.

56

Ethical Issues

The second direction in further development involves practical usage of the
proposed classifier. In Appendix B.3 we demonstrated a possible visualisation
enabling a user to identify high-quality and low-quality roads quickly. The
model could be wrapped into an application taking waypoints as an input
and producing such visualisation as an output. Further, this application could
automatically suggest directions between two places using only high-quality
roads.

Ethical Issues
Every machine learning model brings potential risks and ethical issues when
used in a real-world application. Therefore we should consider its negative
impacts.

The motivation for this work was to make it easier for people who drive
for pleasure to find high-quality roads. What if such functionality was
implemented into a navigation software, similarly to traffic jam signalling?
It would become effortless for everyone to drive on high-quality roads and
avoid the bad ones, like avoiding a traffic jam. Consequently, there would
likely be much higher traffic on these preferred roads. Inevitably, higher traffic
means more load, possibly exceeding the designed limits and leading to faster
surface degradation. When a given road would become low-quality, the traffic
would move to another road with higher qualities. Taking into account that
less-frequent roads take longer to be repaired for reasons mentioned in the
introduction, it could lead to systematic road damaging. This potential effect
would vastly differ from the intended positive motivation of this thesis.

Although the negative impacts may seem absurd, we should be aware of them
when designing an application based on our work.

57

Bibliography

1. ŠÁRKÖZI, Tibor. Dopravní přestupky MHMP 2020. Magistrát hl. m. Praha,
2021-02. Available also from: https://opendata.praha.eu/dataset/
dopravni-prestupky-mhmp-2020.

2. SAMUEL, Arthur L. Some studies in machine learning using the game of
Checkers. IBM Journal of Research and Development. 1959, vol. 3, no. 3,
pp. 71–105. Available from doi: 10.1147/rd.33.0210.

3. MURPHY, Kevin P. Machine Learning: A Probabilistic Perspective. MIT
Press, 2012. Adaptive Computation and Machine Learning series. isbn
9780262018029. Available also from: https://books.google.cz/books?
id=NZP6AQAAQBAJ.

4. TIWARI, Saurabh; BHANDARI, Ravi; RAMAN, Bhaskaran. RoadCare: A
Deep-Learning Based Approach to Quantifying Road Surface Quality.
In: Proceedings of the 3rd ACM SIGCAS Conference on Computing and
Sustainable Societies. Ecuador: Association for Computing Machinery,
2020, pp. 231–242. COMPASS ’20. isbn 9781450371292. Available from doi:
10.1145/3378393.3402284.

5. AFENIKA, Adhelinia; GUNAWAN, P. H.; TARWIDI, D. Classification
of Road Surface Quality Based on SVM Method. Journal of Physics:
Conference Series. 2020, vol. 1641, p. 012064. Available from doi: 10.1088/
1742-6596/1641/1/012064.

59

https://opendata.praha.eu/dataset/dopravni-prestupky-mhmp-2020
https://opendata.praha.eu/dataset/dopravni-prestupky-mhmp-2020
https://doi.org/10.1147/rd.33.0210
https://books.google.cz/books?id=NZP6AQAAQBAJ
https://books.google.cz/books?id=NZP6AQAAQBAJ
https://doi.org/10.1145/3378393.3402284
https://doi.org/10.1088/1742-6596/1641/1/012064
https://doi.org/10.1088/1742-6596/1641/1/012064

BibliogRaphy

6. HOFFMANN, M.; MOCK, M.; MAY, M. Road-quality classification and
bump detection with bicycle-mounted smartphones. CEUR Workshop
Proceedings. 2013, vol. 1088, pp. 39–43. issn 1613-0073.

7. RATEKE, Thiago; JUSTEN, Karla Aparecida; WANGENHEIM, Aldo von.
Road Surface Classification with Images Captured From Low-cost Cam-
eras — Road Traversing Knowledge (RTK) Dataset. Revista de Informática
Teórica e Aplicada (RITA). 2019. Available from doi: https://doi.org/10.
22456/2175-2745.91522.

8. NOLTE, M.; KISTER, N.; MAURER, M. Assessment of Deep Convolutional
Neural Networks for Road Surface Classification. In: 2018 21st Interna-
tional Conference on Intelligent Transportation Systems (ITSC). 2018, pp. 381–
386. Available from doi: 10.1109/ITSC.2018.8569396.

9. DOSHI, Keval; YILMAZ, Yasin. Road Damage Detection using Deep En-
semble Learning. 2020. Available from arXiv: 2011.00728 [cs.CV].

10. PEI, Zixiang; ZHANG, Xiubao; LIN, Rongheng; SHEN, Haifeng; TANG,
Jian; YANG, Yi. Submission of DD-VISION team in Global Road Damage
Detection 2020. In: 2020. Available also from: https://pan.baidu.com/
s/1VjLuNBVJGS34mMMpDkDRGQ. Password: xzc6.

11. HEDGE, Vinuta; TRIVEDI, Dweep; ALFARRARJEH, Abdullah; DEEPAK,
Aditi; KIM, Seon Ho; SHAHABI, Cyrus. Ensemble Learning for Road
Damage Detection and Classification, Article In Press. 2020. Available also
from: https://github.com/USC-InfoLab/rddc2020. Accessed: 2020-03-
17.

12. CHACRA, David; LEOPOLD, Henry; PINTO, Jeremy; LUNSCHER, Nor-
man; YOUNES, Georges; ZELEK, John. Road Defect Detection in Street
View Images using Texture Descriptors and Contour Maps. Journal of
Computational Vision and Imaging Systems. 2016, vol. 2, no. 1. Available
from doi: 10.15353/vsnl.v2i1.94.

13. LEI, X.; LIU, C.; LI, L.; WANG, G. Automated Pavement Distress Detection
and Deterioration Analysis Using Street View Map. IEEE Access. 2020,
vol. 8, pp. 76163–76172. Available from doi: 10 . 1109 / ACCESS . 2020 .
2989028.

60

https://doi.org/https://doi.org/10.22456/2175-2745.91522
https://doi.org/https://doi.org/10.22456/2175-2745.91522
https://doi.org/10.1109/ITSC.2018.8569396
https://arxiv.org/abs/2011.00728
https://pan.baidu.com/s/1VjLuNBVJGS34mMMpDkDRGQ
https://pan.baidu.com/s/1VjLuNBVJGS34mMMpDkDRGQ
https://github.com/USC-InfoLab/rddc2020
https://doi.org/10.15353/vsnl.v2i1.94
https://doi.org/10.1109/ACCESS.2020.2989028
https://doi.org/10.1109/ACCESS.2020.2989028

Bibliography

14. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learn-
ing. MIT Press, 2016. http://www.deeplearningbook.org.

15. MIKOŁAJCZYK, A.; GROCHOWSKI, M. Data augmentation for improv-
ing deep learning in image classification problem. In: 2018 International In-
terdisciplinary PhDWorkshop (IIPhDW). 2018, pp. 117–122. Available from
doi: 10.1109/IIPHDW.2018.8388338.

16. GEIGER, Andreas; LENZ, Philip; STILLER, Christoph; URTASUN, Raquel.
Visionmeets Robotics:TheKITTIDataset. International Journal of Robotics
Research (IJRR). 2013. Dataset available from: http://www.cvlibs.net/
datasets/kitti/raw_data.php.

17. MADDERN, Will; PASCOE, Geoff; LINEGAR, Chris; NEWMAN, Paul. 1
Year, 1000km: The Oxford RobotCar Dataset. The International Journal of
Robotics Research (IJRR). 2017, vol. 36, no. 1, pp. 3–15. Available from doi:
10.1177/0278364916679498. Dataset available from: https://robotcar-
dataset.robots.ox.ac.uk/datasets/.

18. PEZZEMENTI, Zachary; TABOR, Trenton; HU, Peiyun; CHANG, Jonathan
K.; RAMANAN, Deva; WELLINGTON, Carl; BABU, Benzun P. Wisely;
HERMAN, Herman. Comparing Apples and Oranges: Off-Road Pedestrian
Detection on the NREC Agricultural Person-Detection Dataset. 2017. Avail-
able from arXiv: 1707.07169 [cs.CV].

19. SMITH, Mike; BALDWIN, Ian; CHURCHILL, Winston; PAUL, Rohan;
NEWMAN, Paul. The New College Vision and Laser Data Set. I. J. Robotic
Res. 2009, vol. 28, pp. 595–599. Available from doi: 10.1177/02783649091
03911.

20. GIUSTI, Alessandro; GUZZI, Jérôme; CIREŞAN, Dan C.; HE, Fang-Lin;
RODRÍGUEZ, Juan P.; FONTANA, Flavio; FAESSLER, Matthias; FORSTER,
Christian; SCHMIDHUBER, Jürgen; CARO, Gianni Di; SCARAMUZZA,
Davide; GAMBARDELLA, Luca M. A Machine Learning Approach to
Visual Perception of Forest Trails for Mobile Robots. IEEE Robotics and
Automation Letters. 2016, vol. 1, no. 2, pp. 661–667. Available from doi:
10.1109/LRA.2015.2509024.

21. PAN, S. J.; YANG, Q. A Survey on Transfer Learning. IEEE Transactions
on Knowledge and Data Engineering. 2010, vol. 22, no. 10, pp. 1345–1359.
Available from doi: 10.1109/TKDE.2009.191.

61

http://www.deeplearningbook.org
https://doi.org/10.1109/IIPHDW.2018.8388338
http://www.cvlibs.net/datasets/kitti/raw_data.php
http://www.cvlibs.net/datasets/kitti/raw_data.php
https://doi.org/10.1177/0278364916679498
https://robotcar-dataset.robots.ox.ac.uk/datasets/
https://robotcar-dataset.robots.ox.ac.uk/datasets/
https://arxiv.org/abs/1707.07169
https://doi.org/10.1177/0278364909103911
https://doi.org/10.1177/0278364909103911
https://doi.org/10.1109/LRA.2015.2509024
https://doi.org/10.1109/TKDE.2009.191

BibliogRaphy

22. HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; SUN, Jian. Deep Residual
Learning for Image Recognition. 2015. Available from arXiv: 1512.03385
[cs.CV].

23. SZEGEDY, Christian; VANHOUCKE, Vincent; IOFFE, Sergey; SHLENS,
Jon; WOJNA, ZB. Rethinking the Inception Architecture for Computer
Vision. In: 2016. Available from doi: 10.1109/CVPR.2016.308.

24. SHINZATO, P. Y.; SANTOS, T. C. dos; ROSERO, L. A.; RIDEL, D. A.;
MASSERA, C. M.; ALENCAR, F.; BATISTA, M. P.; HATA, A. Y.; OSÓRIO,
F. S.; WOLF, D. F. CaRINA dataset: An emerging-country urban scenario
benchmark for road detection systems. In: 2016 IEEE 19th International
Conference on Intelligent Transportation Systems (ITSC). 2016. Available
from doi: 10.1109/ITSC.2016.7795529. Dataset available from: http:
//www.lrm.icmc.usp.br/web/index.php?n=DataSet.Home.

25. MA, Ke; HOAI, Minh; SAMARAS, Dimitris. Large-scale Continual Road
Inspection: Visual Infrastructure Assessment in the Wild. In: Proceedings
of British Machine Vision Conference. 2017. Dataset available from: https:
//www3.cs.stonybrook.edu/~cvl/pavement.html.

26. CIMPOI, Mircea; MAJI, Subhransu; KOKKINOS, Iasonas; VEDALDI, An-
drea.Deep filter banks for texture recognition, description, and segmentation.
2015. Available from arXiv: 1507.02620 [cs.CV].

27. SIMONYAN, Karen; ZISSERMAN, Andrew. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. 2015. Available from arXiv: 1409.
1556 [cs.CV].

28. ARYA, Deeksha; MAEDA, Hiroya; GHOSH, Sanjay Kumar; TOSHNIWAL,
Durga;MRAZ,Alexander; KASHIYAMA, Takehiro; SEKIMOTO, Yoshihide.
Transfer Learning-based RoadDamageDetection forMultiple Countries. 2020.
Available from arXiv: 2008.13101 [cs.CV]. Dataset available from: https:
//github.com/sekilab/RoadDamageDetector.

29. HOWARD, Andrew G.; ZHU, Menglong; CHEN, Bo; KALENICHENKO,
Dmitry;WANG,Weijun;WEYAND, Tobias; ANDREETTO,Marco; ADAM,
Hartwig. MobileNets: Efficient Convolutional Neural Networks forMobile
VisionApplications.CoRR. 2017, vol. abs/1704.04861. Available from arXiv:
1704.04861.

62

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/ITSC.2016.7795529
http://www.lrm.icmc.usp.br/web/index.php?n=DataSet.Home
http://www.lrm.icmc.usp.br/web/index.php?n=DataSet.Home
https://www3.cs.stonybrook.edu/~cvl/pavement.html
https://www3.cs.stonybrook.edu/~cvl/pavement.html
https://arxiv.org/abs/1507.02620
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2008.13101
https://github.com/sekilab/RoadDamageDetector
https://github.com/sekilab/RoadDamageDetector
https://arxiv.org/abs/1704.04861

Bibliography

30. ARYA, Deeksha; MAEDA, Hiroya; GHOSH, Sanjay Kumar; TOSHNIWAL,
Durga; OMATA, Hiroshi; KASHIYAMA, Takehiro; SEKIMOTO, Yoshihide.
Global Road Damage Detection: State-of-the-art Solutions. 2020. Available
from arXiv: 2011.08740 [cs.CV].

31. SHANMUGAM, Divya; BLALOCK, Davis; BALAKRISHNAN, Guha; GUT-
TAG, John.When andWhy Test-Time AugmentationWorks. 2020. Available
from arXiv: 2011.11156 [cs.CV].

32. ZUIDERVELD, K. Contrast Limited Adaptive Histogram Equalization.
Graphics Gems. 1994, vol. IV, pp. 474–485. Available also from: https :
//ci.nii.ac.jp/naid/10031105927/en/.

33. REN, Shaoqing; HE, Kaiming; GIRSHICK, Ross; SUN, Jian. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. 2016.
Available from arXiv: 1506.01497 [cs.CV].

34. LOWE, D. G. Object recognition from local scale-invariant features. In:
Proceedings of the Seventh IEEE International Conference on Computer
Vision. 1999, vol. 2, 1150–1157 vol.2. Available from doi: 10.1109/ICCV.
1999.790410.

35. DOLLÁR, P.; ZITNICK, C. L. Structured Forests for Fast Edge Detection.
In: 2013 IEEE International Conference on Computer Vision. 2013, pp. 1841–
1848. Available from doi: 10.1109/ICCV.2013.231.

36. ZANIN, Michele; MESSELODI, Stefano; MODENA, Carla. DIPLODOC
road stereo sequence. 2013. Available from doi: 10 . 13140 / RG . 2 . 1 .
3681.9929. Dataset available from: https://tev.fbk.eu/databases/
diplodoc-road-stereo-sequence.

37. IOFFE, Sergey; SZEGEDY, Christian. BatchNormalization: AcceleratingDeep
Network Training by Reducing Internal Covariate Shift. 2015. Available from
arXiv: 1502.03167 [cs.LG].

38. SRIVASTAVA,Nitish; HINTON,Geoffrey; KRIZHEVSKY, Alex; SUTSKEVER,
Ilya; SALAKHUTDINOV, Ruslan. Dropout: A SimpleWay to PreventNeural
Networks fromOverfitting. J.Mach. Learn. Res. 2014, vol. 15, no. 1, pp. 1929–
1958. issn 1532-4435.

63

https://arxiv.org/abs/2011.08740
https://arxiv.org/abs/2011.11156
https://ci.nii.ac.jp/naid/10031105927/en/
https://ci.nii.ac.jp/naid/10031105927/en/
https://arxiv.org/abs/1506.01497
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.2013.231
https://doi.org/10.13140/RG.2.1.3681.9929
https://doi.org/10.13140/RG.2.1.3681.9929
https://tev.fbk.eu/databases/diplodoc-road-stereo-sequence
https://tev.fbk.eu/databases/diplodoc-road-stereo-sequence
https://arxiv.org/abs/1502.03167

BibliogRaphy

39. Heartexlabs. awesome-data-labeling [online]. 2021. Available also from:
https://github.com/heartexlabs/awesome- data- labeling/tree/
70e400ccdad2bffea96d7c3b85e48180ab0e92ca.

40. CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER, W. P.
SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artifi-
cial Intelligence Research. 2002, vol. 16, pp. 321–357. issn 1076-9757. Avail-
able from doi: 10.1613/jair.953.

41. BLAGUS, Rok; LUSA, Lara. Evaluation of SMOTE for High-Dimensional
Class-Imbalanced Microarray Data. In: 2012, vol. 2. Available from doi:
10.1109/ICMLA.2012.183.

42. LEMAÎTRE, Guillaume; NOGUEIRA, Fernando; ARIDAS, Christos K. Im-
balanced learn: A Python Toolbox to Tackle the Curse of Imbalanced Data-
sets in Machine Learning. Journal of Machine Learning Research. 2017,
vol. 18, no. 17, pp. 1–5. Available also from: http://jmlr.org/papers/
v18/16-365.

43. CUN, Xiaodong; PUN, Chi-Man; SHI, Cheng. Towards Ghost-free Shadow
Removal via Dual Hierarchical Aggregation Network and Shadow Matting
GAN. 2019. Available from arXiv: 1911.08718 [cs.CV].

44. BRADSKI, Gary.The OpenCV Library. Dr. Dobb’s Journal of Software Tools.
2000, vol. 25, no. 11, pp. 120, 122–125. issn 1044-789X. Available also from:
http://www.ddj.com/ftp/2000/2000_11/opencv.txt.

45. Anaconda Software Distribution. Anaconda Inc., 2020. Vers. 2-2.4.0. Avail-
able also from: https://docs.anaconda.com/.

46. ABADI, Martıń; AGARWAL, Ashish; BARHAM, Paul; BREVDO, Eugene;
CHEN, Zhifeng; CITRO, Craig; CORRADO, Greg S.; DAVIS, Andy; DEAN,
Jeffrey; DEVIN,Matthieu; GHEMAWAT, Sanjay; GOODFELLOW, I.; HARP,
Andrew; IRVING, Geoffrey; ISARD, Michael; JIA, Yangqing; JOZEFOW-
ICZ, Rafal; KAISER, Lukasz; KUDLUR, Manjunath; LEVENBERG, Josh;
MANÉ, Dandelion; MONGA, Rajat; MOORE, Sherry; MURRAY, Derek;
OLAH, Chris; SCHUSTER, Mike; SHLENS, Jonathon; STEINER, Benoit;
SUTSKEVER, Ilya; TALWAR, Kunal; TUCKER, Paul; VANHOUCKE, Vin-
cent; VASUDEVAN, Vijay; VIÉGAS, Fernanda; VINYALS, Oriol; WARDEN,

64

https://github.com/heartexlabs/awesome-data-labeling/tree/70e400ccdad2bffea96d7c3b85e48180ab0e92ca
https://github.com/heartexlabs/awesome-data-labeling/tree/70e400ccdad2bffea96d7c3b85e48180ab0e92ca
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/ICMLA.2012.183
http://jmlr.org/papers/v18/16-365
http://jmlr.org/papers/v18/16-365
https://arxiv.org/abs/1911.08718
http://www.ddj.com/ftp/2000/2000_11/opencv.txt
https://docs.anaconda.com/

Bibliography

Pete; WATTENBERG, Martin; WICKE, Martin; YU, Yuan; ZHENG, Xiaoqi-
ang. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
2015. Available also from: https://www.tensorflow.org/.

47. CHOLLET, Francois et al. Keras. GitHub, 2015. Available also from: https:
//github.com/fchollet/keras.

48. HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing in
Science & Engineering. 2007, vol. 9, no. 3, pp. 90–95. Available from doi:
10.1109/MCSE.2007.55.

49. TIELEMAN, Tijmen; HINTON, G. Divide the gradient by a running
average of its recent magnitude. COURSERA Neural Netw. Mach. Learn.
2012, vol. 6, pp. 26–31. Available also from: https://www.cs.toronto.
edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

50. MAAS, Andrew L; HANNUN, Awni Y; NG, Andrew Y. Rectifier nonlinear-
ities improve neural network acoustic models. In: Proc. icml. 2013, vol. 30,
p. 3. No. 1. Available also from: https://ai.stanford.edu/~amaas/
papers/relu_hybrid_icml2013_final.pdf.

51. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic Optim-
ization. 2017. Available from arXiv: 1412.6980 [cs.LG].

52. CHOLLET, Francois. Xception: Deep Learning With Depthwise Separable
Convolutions. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2017.

53. SANDLER, Mark; HOWARD, Andrew; ZHU, Menglong; ZHMOGINOV,
Andrey; CHEN, Liang-Chieh. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. 2019. Available from arXiv: 1801.04381 [cs.CV].

54. HUANG, Gao; LIU, Zhuang; MAATEN, Laurens van der; WEINBERGER,
Kilian Q. Densely Connected Convolutional Networks. 2018. Available from
arXiv: 1608.06993 [cs.CV].

55. SZEGEDY, Christian; IOFFE, Sergey; VANHOUCKE, Vincent; ALEMI,
Alex. Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning. 2016. Available from arXiv: 1602.07261 [cs.CV].

65

https://www.tensorflow.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1109/MCSE.2007.55
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1602.07261

Appendix A
List of Acronyms

API Application Programming Interface
CLAHE Contrast Limited Adaptive Histogram Equaliza-

tion
CNN Convolutional Neural Network
FC Fully connected
KNN K-Nearest-Neighbour
R-CNN Region Based Convolutional Neural Network
ROI Region of Interest
SIFT Scale-invariant feature transform
SVM Support vector machine
TTA Test Time Augmentation

67

Appendix B
Routes visualisation

Figure B.1: Visualisation of all routes defined in this work with the total distance
of 941 km. Map base: Google Maps

69

B. Routes visualisation

Figure B.2: Close-up visualization of three routes. We can see that each route has
a marker at the start and at the end. Markers have a caption containing a letter
(A represents the start, B represents the end), route name and route distance. Map
base: Google Maps

70

Figure B.3: This picture visualises our proposed model’s predictions on a map
using coloured segments. The colors represents classes as follows: green=1, green-
yellow=2, orange=3, red=4, blue=6. Although the segments change their colours
frequently, the quality trend is visible. Map base: Google Maps

71

Appendix C
Enclosed Material

README.md.......................sources documentation in Markdown format
README.pdf............................sources documentation in PDF format
src.. directory with implementation files

environment.yml........the file with Anaconda environment definition
dataset.......................raw image data and data collection sources

route_definitions..............directory with route set definitions
routes...................................directory with raw image files

labeling......................labelling framework and exported datasets
modeling.. implemented models
text..........................directory of LATEX source codes of the thesis

text..directory with text of the thesis
assignment.pdf............................the assignment in PDF format
BP_Lank_Martin_2021.pdf.................this thesis text in PDF format

73

	Introduction
	Objectives
	Structure of the Thesis

	Road Quality
	Problem Definition
	Related Work
	Classification
	Damage Detection

	Available Datasets
	Suitable Dataset
	Theoretical Background
	Convolutional Layer
	Pooling Layer
	Fully Connected Layer
	Optional Layers
	Transfer Learning

	Data Preparation
	Data Collection
	Related Google APIs Overview
	Road Image Collection Framework

	Data Labelling
	Classification Classes
	Labelling Framework
	Labelling Challenges

	Data Balancing
	Image Transformations
	SMOTE

	Other Preprocessing Techniques
	Shadow Removal
	CLAHE

	Experiments
	Implementation
	Design of Experiments
	Evaluation Metrics
	Methodology
	Model Tuning

	Implemented Approaches
	Custom Architectures
	Transfer Learning

	Results
	Custom Architectures
	Transfer Learning

	Conclusion
	Contributions
	Future Work
	Ethical Issues

	Bibliography
	List of Acronyms
	Routes visualisation
	Enclosed Material

