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of the model are examined. Secondly, the colour dipole picture is utilised to
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Abstrakt:

Predmeétem této diplomové prace je studium hadronové struktury, zejména
pak jevu partonové saturace, ktery se projevuje pii nizkych hodnotéch
Bjorkenova = v hluboce nepruzném rozptylu elektronu na protonu. Jsou zde
popsany jak experimentalni techniky vyuzivané pii studiu hadronové struk-
tury, tak teoretické modely pouzivané k vysvétleni fyzikalni podstaty procesu
a to zejména v ramci tzv. protonovych strukturnich funkei.

Prvnim z modelu je tzv. partonovy model, ktery interpretuje strukturni
funkce pomoci partonovych distribu¢nich funkeci a evolucni BFKL rovnice.
Vzhledem k limitacim partonového modelu je nésledné pouzit model barevného
dipdlu, ktery reformuluje popis hluboce nepruzného rozptylu pomoci dipdlové
rozptylové amplitudy. Jeji zkouméni je predmétem Colour Glass Condensate
modelu, ktery v ramci jejiho popisu zavadi jev partonové saturace, konkrétné
ve formé nelinearniho ¢lenu tzv. Balitsky-Kovchegov evoluéni rovnice, ¢imz
zaroven prekondva zminéné limitace partonového modelu.

Zavérem jsou prezentovana numericka feSeni Balitsky-Kovchegov rovnice
a to postupné v jedné a dvou proménnych. Tato jsou pak vyuzita k vypoctu
teoretickych predpovédi pozorovatelnych veli¢in a jejich porovnani s experi-
mentdlné namérenymi daty na urychlova¢i HERA, DESY.
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Chapter 1

Introduction

Although ordinary (baryonic) matter forms merely 4.9% of the total content
of our universe !, it is the only component we are in direct contact with and
from which we consist. This is a strong enough motivation to focus on the
study of not only baryons, but hadrons in general.

Hadrons are the building blocks of ordinary matter. As described in Chap-
ter 2, they are composite objects consisting of elementary quarks which are held
together by gluons, the strong interaction mediators. Similar to the electric
charge defining the strength of electromagnetic interaction, the strong interac-
tion is defined by the so-called colour charge. The aforementioned quarks and
gluons are the only elementary carriers of this colour charge and therefore the
only strongly interacting particles.

To form stable objects, the quarks form colour neutral hadrons. Based
on the number of the constituent (valence) quarks, hadrons are categorised as
either:

1. mesons, consisting of a quark-antiquark pair,
2. baryons, consisting of three quarks or three antiquarks.

The only truly stable? hadron is the proton and will therefore be the main
subject of investigation within this thesis.

Historically, the proton was first discovered by Ernest Rutherford in 1919 [2]
when shooting alpha particles against nitrogen gas. In the 1960s, high energy
electron beams were fired at protons at SLAC?, suggesting that the proton is
not elementary, but point-like scattering centres are present within [3]. The

L According to the latest Planck results [1]. The rest of the universe is then formed by
dark energy (~ 68.5%) and dark matter (~ 26.5%).

2Proton is the only hadron that has not yet been seen to decay. Neutrons can be consid-
ered stable when part of a nucleus, however, free neutrons decay after ~ 15 minutes.

3The Stanford Linear Accelerator Center.



2 INTRODUCTION

quark model then identified the proton as a collective state of two up quarks
and a down quark.

One of the most significant features of quantum chromodynamics (QCD),
which describes strong interaction, are its mediators. Unlike the photons
in quantum electrodynamics (QED), gluons interact with themselves which
means that, e.g. a high-energy (hard) gluon can radiate a lower-energy (softer)
one.

Taking this into account, the historical description of hadrons as a collec-
tion of two or three valence quarks, suddenly became over-simplistic. Many
secondary (so-called sea) quarks and gluons emerge in a hadron as its energy
rises. Thus, a complex energy-dependent structure emerges (as artistically
depicted in Fig. 1.1), which needs to be understood.

Fig. 1.1: An artistic visualisation of the proton content as presented in CERN
Courier. The valence quarks are depicted as the large red (up quarks) and
blue (down quark) spheres [4].

Reaching even higher collision energies, the regime of deep-inelastic
electron—proton scattering (DIS) was reached. The cross section of such a
process encodes the information about the proton structure in the form of the
so-called structure functions F(z,Q?). They depend on two variables, com-
monly the Bjorken x and virtuality Q? are chosen, corresponding to various
evolutions as shown in Fig. 1.2.

Having fixed = and varying the virtuality, the energy (and therefore the
wavelength) of the virtual photon* varies. For large Q* values, the wavelength

4Virtual photon is the leading mediator of the deep-inelastic scattering.
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Fig. 1.2: A diagrammatic representation of the two possible evolution direc-
tions of the proton structure [5]. The horizontal direction is described by the
DGLAP evolution equations, the first step of the vertical direction corresponds
to the BFKL evolution and the second one is given by the JIMWLK equations
(or an approximation to them: the BK equation).

decreases and smaller objects can be probed as indicated by the horizontal
arrow in Fig. 1.2.

On the other hand, having the virtuality fixed and examining the region
of low x corresponds to studying the low energy components of the proton
structure as indicated by the vertical arrow. The lower the z, the more (low
energy) particles are found.

A very successful model in terms of giving a phenomenological explanation
of the structure functions is the parton model suggested by Richard Feynman
in 1969 [6, 7]. It interprets them in terms of parton® distribution functions
(PDFs) defining the probability density of finding a parton with a particular
fractional energy in the proton. The evolution of the PDFs (and therefore
the structure functions) with respect to the virtuality (the horizontal axis of
Fig. 1.2) is driven by the DGLAP evolution equations [8]. The vertical axis
corresponds to the evolution in the Bjorken z. The first step (in relatively
large values of x) is given by the BFKL equation while the region of low x
is described by the BK equation, which is the main point of interest in this
thesis.

5Within the model, parton is a general term for proton constituents: quarks and gluons.
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Although the BFKL evolution satisfyingly describes the currently available
experimental data, there are both theoretical and phenomenological limitations
for the kinematic regions not yet reached. The theoretical limit is given by the
Froissart bound [9] which puts a restriction on the growth of the cross section
with respect to the centre-of-mass energy. Phenomenologically, the problem
with the BFKL evolution can be tracked to its linearity which does not allow
for incorporating any recombination mechanism. In other words, according to
the BFKL equation a parton (namely gluon) can split into two partons with
lower energy, but two low-energy partons can not recombine into one. This
way, an infinite number of partons with infinitely small energy (low-z region)
would appear in a proton.

To deal with this problem, two steps are taken. Firstly, the electron—
proton collision is viewed in the so-called colour dipole picture as described
in Chapter 3. Here the virtual proton is understood to split into a quark-
antiquark pair (a colour dipole) and this dipole is the subject of interaction
with the proton. In this case, the cross section is described by the so-called
dipole scattering amplitude N. In the second step (described in Chapter 4), an
effective theory, the Colour Glass Condensate, is presented, giving an infinite
set of the JIMWLK equations to predict the evolution of the dipole scattering
amplitude with respect to the Bjorken .

Unfortunately, due to their complexity, there is no known analytical so-
lution to the JIMWLK equations. However, as a limit case, it is possible to
separate the so-called Balitsky-Kovchegov (BK) equation which is simpler to
solve numerically and presents an improvement of the BFKL evolution by in-
troducing a non-linear term. This term accounts for a parton (namely gluon)
recombination and therefore solves the aforementioned problem of the BFKL
equation.

Besides the rapidity® Y dependence, the dipole scattering amplitude
N(7, b, Y) depends on two 2-dimensional vectors 7 and b representing the
colour-dipole size and the collision impact parameter, respectively. The full
BK equation is therefore considered as 4-dimensional. The state-of-the-art BK
equation solutions have yet regarded only 2 dimensions (the dipole size |7] and
impact parameter size [b]) in the numerical calculation.

Besides an introduction to the general problematics described above, the
presented thesis aims to show both the 1-D and 2-D solutions of the BK equa-
tion in Chapter 5, together with the resulting theoretical predictions of the
observable quantities in Chapter 6, namely the F, structure function and the
so-called reduced cross section o,.

6The dipole scattering amplitude is formulated in terms of rapidity ¥ which is directly
connected to the Bjorken x. Therefore, the Y-evolution of N corresponds to the z-evolution
of the DIS cross section.



Chapter 2

Hadron structure investigation

The current way to study the hadron structure is by considering a
deep-inelastic scattering (DIS). Such experiments were conducted at, e.g.
HERA! [10]. Other important experimental processes are the ultra-peripheral
collisions at LHC? [11].

The specific hadron whose structure is the subject of investigation within
this work (and most of the current experiments) is a the proton. The reason
is quite straightforward; it is the only stable hadron we are able to effectively
physically manipulate; accelerate and lead to collisions at sufficiently high
energies.

Now, the ideal particle, in the sense of investigating the proton structure by
collision, is the electron or its antiparticle the positron3. There are other ways
in which a proton can take part in a collision; it can be shot at a fixed target,
collide with another proton, or even be a constituent of heavier-nuclei collisions.
However, none of these provide sufficiently clean information about the proton
itself. Electrons and positrons, on the other hand, are, as far as we know,
elementary (non-composite) particles, so focusing on the electron—proton col-
lisions where the electron is present in both the initial and final states, enables
one to maximise the information gained on proton structure.

e e e e e : e
p pp pp : p
(a) single v exchange (b) single Z exchange (c) single Higgs exchange

Fig. 2.1: Possible neutral channels mediating an electron—proton interaction.

LA particle accelerator at Deutsches Elektronen-Synchrotron (DESY) colliding hadrons
with leptons.

3Positrons can be equivalently used in the experiments investigating proton structure.
However, for the notation simplicity, only electrons will be mentioned in the rest of this
chapter.
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The aforementioned interaction can be either mediated by some neutral
channel, so that an electron is still present in the final state, or a charged
channel, where the electron turns into a positron. Taking into account the
leading order perturbation theory, there are 3 elementary objects to possibly
mediate such an interaction: the photon, the Z boson, and the Higgs boson.
Diagrams of such processes are shown in Fig. 2.1.

The main difference* between the cross sections of such processes lies in
the propagators of the particular mediators:

()

1 2

In this work, the kinematic range of interest® corresponds to —¢? rang-
ing from a few to hundreds of GeVZ Within this range, the single photon
exchange is clearly dominant by more than 4 orders of magnitude.® The
other cross-sections are suppressed by the fourth power of the boson masses;

My =~ 91.2 GeV and My ~ 125.1 GeV.

2.1 Deep-inelastic scattering

Having a fully fixed initial state (electron colliding with a proton) and a par-
tially fixed final state (containing an electron), there are several experimental
regimes to be distinguished with respect to the proton’s final state. They are
denoted as elastic, inelastic, and deep-inelastic scattering.

The elastic scattering describes a process where the electron simply scatters
off the proton which remains intact, as shown in Fig. 2.2. This way the final
state consists again of a proton and an electron.

The elastic scattering is the dominant process at lower exchanged energies
and its differential cross section is described by the (covariant [12]) Rosenbluth
formula [8, 13, 14]

do 4 m2y’ 1
—— =]y E 22 —l——212. 2.4
0= O y=—p RQ) ) + 3 A(@) (2.4)

4Neglecting the role of different vertex factors.

5The kinematic range is connected to the validity range of the Balitsky-Kovchegov equa-
tion whose description is subject to Chapter 4.

6The same argumentation would follow if a positron was taken into account as a part

of the final state. The propagator of the charged W boson mediating the interaction is
suppressed by the boson’s mass (M ~ 80.4 GeV) just like in the case of the Z exchange.
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/

p J p

Fig. 2.2: A schematic representation of an electron—proton elastic scattering.
The electron with momentum k£ scatters off the proton with momentum k5 by
exchanging a virtual photon with momentum ¢. The post-collision electron is
deflected from its initial direction by angle 6 and carries momentum k3. In case
of the ideally elastic scattering, the proton momentum remains unchanged.

Here a.,, is the electromagnetic coupling constant and m, corresponds to
the proton mass.

The variable y is a dimensionless Lorenz-invariant quantity referred to as
inelasticity. It is defined as

ngM
Y= (2.5)
kgklu
and in the rest frame of the proton
E1 my E3
0 0 Essin(0)
ky = , ko= , k3= , 2.6
1 0 2 0 3 0 (2.6)
E; 0 E3 cos(0)
it can be expressed as
k5 ks E;
=1-=2—t=1-— 2.7

which corresponds to one minus the fraction of the energy lost by the electron in
the scattering process. As mentioned earlier, the elastic scattering dominates
at low exchanged energies, therefore the lower the y, the more elastic the
scattering, hence the name inelasticity.

The definition of the remaining variable, virtuality,

Q2 = _q27 (28)
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is straightforward. The reason for its introduction is that for high energies”,
the electron mass can be neglected,

Q2 = —(kl — ]{33)2 = —2mz + 2E1E3 - 2]{51]{?3 COS(Q) =~ 2E1E3<]. — COS(Q)),
(2.9)

implying that, unlike ¢2, the virtuality Q? is always positive.

Finally, the f functions reflect the composite nature of the proton, namely,
its purely magnetic contribution in f;(Q?) and a mixture of magnetic and
electric contributions in f5(Q?).

Reaching sufficiently high collision energies, the proton can be disintegrated
by the collision. This results in a final state of an electron and secondary
particles emerging from the shattered proton, denoted as X in Fig. 2.3. This
is the aforementioned wnelastic scattering.

€ €

P X

Fig. 2.3: A schematic representation of an electron—proton inelastic scattering.
The electron with momentum k; scatters off the proton with momentum &,
by exchanging a virtual photon with momentum ¢. The post-collision electron
carries momentum k3 and the proton is shattered giving rise to secondary
particles denoted by X.

An extra degree of freedom in the form of an unspecified state of the sec-
ondary particles is reflected in the transition from a single® to a double differ-
ential cross section. Its full form reads [12, 13]

d’o _ 4ra? . may?\ Fy(z, Q%)
dSL’dQ2 Q4 QQ
Up to two main features, its form is very similar to the covariant Rosenbluth
formula (2.4).
Firstly, a new dimensionless Lorenz-invariant quantity z is presented. It is

the so-called Bjorken x defined as

+y' Rz, Q7). (2.10)

2
T = Cl%
2p5qy

(2.11)

"Mainly valid for inelastic scattering.
8Tn case of an elastic scattering.
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and gets a very particular interpretation within the parton model.

The second important feature is the transition from the functions f;(Q?),
f2(Q%) to Fi(x,Q?) and Fy(z,Q?). These are referred to as proton structure
functions and are the key object to measure and analyse in order to learn
about the hadronic structure. Similarly to the Bjorken z, the explanation
comes from the interpretation within the parton model.

The deep-inelastic scattering is defined as a limit case of the inelastic scat-
tering where @* >> m2y*. This reduces (2.10) to [12]

2 4 2 F 9
d;leP - ngm (1- y)% +y Fi(z, Q). (2.12)

Taking this limit makes it possible to simplify the measurement and anal-
ysis of the electron—proton collision data, allowing one to focus on the study
of the structure functions.

Being able to predict the structure functions corresponds to a level of un-
derstanding in the composition of hadrons. Therefore, it is also one of the main
goals of this work to present predictions of the proton structure functions and
compare them with experimental data.

2.2 The parton model

In order to describe the deep-inelastic electron—proton scattering and interpret
the structure functions, the parton model was proposed by Richard Feynman
in 1969 [6, 7]. It suggests that protons consist of generic® spin-half point-like
objects, which are supposed to be essentially free within the hadron.

Since, at the time, the idea of quarks and gluons was not yet generally
accepted [12], these elementary constituents were termed partons.

Instead of an interaction between the photon and the hadron as a whole,
the deep-inelastic scattering is then interpreted as an elastic scattering of the
electron off one of the partons as depicted in Fig. 2.4.

The formulation of the parton model works within the concept of the infi-
nite momentum frame. There are two main defining assumptions:

1. the proton mass is negligible with respect to the full proton energy'’
Ey
0
my, << Es = P2 = ko = 0 , (213)

Es

9Tn today’s terminology a parton is a general term for both quarks and gluons.
10K eeping the notation of Chapter 2.
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/

€ €

ky %

Fig. 2.4: A schematic representation of the parton-model interpretation of the
electron—proton inelastic scattering. The electron with momentum k; scatters
off a parton inside the proton with momentum k, by exchanging a virtual
photon with momentum ¢q. The post-collision electron carries momentum kg
and the struck parton has momentum #;,.

p

2. the transverse momentum of the struck parton (see Fig. 2.4) can be
neglected and its 4-momentum reads

Ep2
0

0
§p2

ky = Eky = : (2.14)

where £ represents the fraction of the proton energy carried by the parton.

As seen in Fig. 2.4, the 4-momentum of the struck parton after the collision is

kit = kb o+ gt (2.15)
Squaring the relation yields
2 2 2 —¢* Q°
my, =m,+28paq +q° = §= Sird = S0ad =z, (2.16)

where the last equality uses the definition of the Bjorken x in Eq. (2.11).
Hence, it is clear that the interpretation of the Bjorken x within the parton
model is that it represents the fractional momentum carried by the parton
engaging in the deep-inelastic scattering.

As the partons are supposed to interact with each other, they continu-
ously redistribute the full hadron momentum. Therefore, they need to be
approached statistically. For this purpose, the parton distribution functions
(PDFs) f;(x, Q%) are presented [12]. They represent the number density of
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a j-type parton!'! with a particular momentum given by the Bjorken z at a
scale %, so that

fi(z, Q%)dx (2.17)

corresponds to the number of j-type partons with fractional momentum be-
tween x and x + dx.

To keep the correspondence to the idea of the proton consisting of two
up quarks and one down quark, the so-called valence quark distributions are
separated out of the total PDFs, as seen in the measurements in [15].

LR R T T T TTrrITm T T T 11117] 1_

NNPDF3.0 (NNLO) ]
xf(x,u2=10 GeV?) 1

a)

/10

0.9

xf(x,u2=10" GeV?)]
0.8F b) =
0.7}
0.6f
0.5F
0.4F

0.3F

L1111 |\I\'\'\‘F\'::=:

10° 102 10" 1 10° 102 10" 1
X X

Fig. 2.5: The coloured bands represent z times the unpolarized parton distri-
butions f;(x, u?), where f; = u,, dy, u,d, s = 5,¢ = ¢,b 2 b, g [15]. The energy
scale is denoted by p2.

Initially, the parton model viewed DIS as an elastic electron—fermion scat-
tering. The cross section of such a process is given (neglecting the parton
mass) by [12]

2

l(l —y)+ %] e2, (2.18)

do  4mal,
Q> Q'

where ¢e; is the fermion electric charge.

HTdentifying partons with quarks and gluons, the index j denotes gluons or the quark
and antiquark flavours, j € {g,u,a,d,...}.
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Summing over all partons, we get a double differential DIS cross section in
the form

d%o B Ao

dzdQ?  Q*

-0+ e 2.19)

Comparing with Eq. (2.12), we see that

Fy(z,Q%) =22F(z,Q*) = o Ze?fj(x). (2.20)

In the sense of the PDFs, the second equation gives a direct phenomeno-
logical interpretation of the structure functions, while the first part predicts
the so-called Callan-Gross relation, which, to a certain extent, agrees with the
observed data. The relation is not exact, as the parton model approximates
partons as fermions'?, and a correction to the relation in the form of Fy(x, Q?)
is given in Eq. (3.11).

For the limit of low z and finite and fixed Q?, the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation has been derived [16, 17] to give a theoretical pre-
diction of the low-z gluon density function. The leading logarithmic approxi-
mation’® reads

Op(x.k3) _ 3o, /°° ak?? [w(m,k%—w(m,k%) plw, k)
T
0

B ZZ R N

0ln(1/x) 7r
The variable kp represents the transverse gluon momentum and ag is the strong
coupling.

The function (z, k%) is the so-called unintegrated gluon density, connected
to the gluon distribution function g(z, @*) by

(2.21)

Q? L2
rg(r, Q) = / ‘}g—g@w%). (2.22)

0

As described in Ref. [9], unitarity implies a constraint on scattering ampli-
tudes leading to the so-called Froissart bound. It limits the possible theoretical
growth of cross-sections as

o(s) < Aln®(s), (2.23)

where s is the centre-of-mass energy squared and A ~ 60 mb is a constant
determined from the pion mass [9].

2Electrically neutral gluons are not taken into account in Eq. (2.18).
13Tts region of validity is as(Q?) In % << as(@)Ini <1 [16].
0
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Unfortunately, the fast growth of the PDFs at low z (see Fig. 2.5) leads to
a violation of the Froissart bound.

It can be seen by focusing on the most violently divergent gluon distribu-
tion. The BFKL equation predicts a power-like growth of the unintegrated
gluon density at small x [17]

dasNo 1
n
w2 2

i)~ (1) , (224)

as the BFKL evolution does not contain any mechanism of saturation. The
number of colours is denoted by N and ay is the strong coupling.

The parton (namely gluon) saturation can be obtained within more com-
plex models such as the Colour Glass Condensate described in Chapter 3.
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Chapter 3

The colour dipole model of DIS

An alternative way to describe the deep-inelastic electron—proton scattering
and obtain a theoretical prediction of the structure functions is the colour
dipole model [9, 18-21].

To incorporate the essence of the strong interaction in the inelastic
electron—proton scattering, the underlying interaction of the virtual photon
with the proton is further investigated, while neglecting the role of the elec-
tromn.

Using the Fock expansion of the virtual photon wave function, the photon
is taken to fluctuate into the colour dipole, which is its simplest! strongly-
interacting Fock state. This colour dipole is then the subject of the interaction
with the proton, as shown in Fig. 3.1.

In the proton rest frame, the dipole lifetime is much longer? than the
timescale on which the interaction with the proton happens [20]. The ~v*-p
interaction can be, therefore, considered to happen in two steps:

1. the virtual photon fluctuates into the colour dipole,
2. the colour dipole interacts with the proton.

The cross section for the interaction between the proton and a longitudinally
(L) or a transversely (T) polarised photon is then given by [20, 22]

1
@) =3 [ @ [ @t b G
f

where the |Ur (7, 2)|* term corresponds to the y-to-gg fluctuation, and the
044(7, &) term describes the dipole-proton interaction.

'A gluon can not interact directly with a photon. Quarks can, but are charged, so at
least two are needed to form an electrically neutral and colour neutral object.

2This assumption is valid for low z, namely under the condition z << —2

, where the
mpTp

my is the proton mass and the 7, is the proton radius.

15
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e e/

Fig. 3.1: A schematic representation of an electron—proton elastic scattering in
the colour dipole model. The virtual photon mediating the interaction splits
into a quark-antiquark dipole of size r which then interacts with the proton at
an impact parameter b, .

The variable Q2 is the virtuality defined in (2.9). On the right-hand side,

the only Q2-dependent object is the photon wave function \Ilgf )L (7, Q% 2). How-
ever, certain dependence is also present in the o,4(7, Z) in form of the Z variable
defined as

Fy = (1+%) (3.2)
f.—iL’ Q2 . .

Here z is the Bjorken x from (2.11) and m; represents the mass of a quark
with flavour f. The necessity of the z definition is connected to approaching
the photoproduction limit [19].

The two-dimensional® vector 7 represents the transverse size of the colour
dipole as shown in Fig. 3.1. The variable z represents the fraction of the photon
light-cone momentum [23] carried by the emerging quark. The antiquark then
carries the fractional momentum (1 — z).

As shown later in this chapter, the photon—proton cross section can be used
to calculate the F, and Fj, structure functions and therefore the cross section
of the whole deep-inelastic electron—proton scattering.

The probability of the virtual photon splitting into the colour dipole, or
equivalently the squared virtual photon wave function, can be calculated within
the formalism of light-cone quantum field theory as shown in [24, 25]. The
square of the transversally and longitudinally polarised wave functions summed

3 A rotational symmetry of the interaction is assumed with respect to the dipole ===mo-
mentum as an axis.
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over spin and polarisation is given by [19]

3 em
|\Il§f)<7?7 Q27 Z)|2 - 20;'2 6?{[22 + (1 - 2)2]6?K12(€f71) + m?KO(GfT)}, (3?))
. 3,
VP QAP = S5 — PR (o)} &4)

Here, a,, is the fine electromagnetic coupling. The summation is carried
out over the quark flavours f where ey is the electric charge of the respective
quark. The functions Ky(e;r) and Ki(esr) are the modified Bessel functions
of the second kind. The variable €; is defined as

€r = 2(1 — 2)Q° + my, (3.5)

where my is the quark mass.
The cross section of the interaction between the proton and the colour
dipole is given by [9]

04(F) ) = 2 / d>bN (7,0, Y). (3.6)

The newly presented quantity N (7, g, Y) is the dipole amplitude. By the
optical theorem, it is connected to the invariant amplitude of the dipole—proton
scattering as its imaginary part [20], but most importantly it can be calculated
within the Colour Glass Condensate model from the Balitsky-Kovchegov equa-
tion.

The two-dimensional vector b represents the impact parameter of the
dipole-proton collision as depicted in Fig. 3.1. In the earlier models?, the b
dependence was integrated out as a mere fit parameter o

JQQ(F7 QNZ) ~ UON(F7 Y) (37)

However, within this work the b dependence is considered as a part of the BK
evolution equation.

On the right-hand side of Eq. (3.6), the Z-dependence is hidden in the
variable Y in the following way

Zo

Y= (2, 3.8
0 (4 (3.5)
where zo corresponds to the initial value of the N(7,b,Y) evolution [22)].

As mentioned earlier, one of the main observable prediction of the colour
dipole model is that of the structure functions. These can be directly compared

4Such as the GBW model [19].
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to an experimental output, such as in [26], or used to derive other quantities,
e.g. the DIS cross section or the reduced cross section.
The relations to obtain the structure functions are [22]

2

Fylz, Q?) 43& (gg;*p(:g,Q2)+o—g*p(x,Q2)), (3.9)
2

F(r. Q%) = e o} (0.Q%). (3.10)

The F7, is the so-called longitudinal structure function. To a certain extent,
it represents a correction to the Callan-Gross relation [12] and the assumption
of the parton model, that the partons are fermions. The three structure func-
tions are related by

Fy(z,Q?) — 2zFy(x, Q%) = Fr(z,Q%). (3.11)

Another observable, often presented by experimental facilities [27, 28], is
the reduced cross section [29]

2

Y 2
_—1+(1—y)2FL(Q ,T). (3.12)

The inelasticity y is connected to the virtuality @), Bjorken z, and the centre-
of-mass energy /s by [29]

O-T(ngm7y) = FQ(QQ’x)

Q* = zys. (3.13)

3.1 Unitarity constraints

The colour dipole model presents an alternative approach to the BFKL evo-
lution equation by providing a way to study the unitarity and approach the
saturation at low x [9].

An equivalent form of the BFKL equation for the dipole scattering ampli-
tude prediction can be obtained in the form [30, 31]

ON(7,b,Y)

oY Z/dzﬂKBFKL(ﬁ T1,72) X

—

{N(r},g—%,Y)—l—N(ﬂ,g—%,Y)—N(F,E,Y), (3.14)

where 7 denotes the size of a respective dipole, b is the collision form factor
corresponding to Fig. 3.1, and the kernel is

a;No r?
KBFKL(T, 7“1,7"2) = 55 92.9° (3-15)
212 rir:
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Within the dipole model, the particular terms in Eq. (3.14) have a direct
phenomenological interpretation as an annihilation of the size-7 parent dipole
(the negative one) and a simultaneous creation of daughter dipoles of sizes 77
and 75 (two positive ones).

Clearly, no mechanism of dipole recombination is present in the BFKL
evolution, which is also the main reason for the uncontrolled gluon distribution
low-x divergence, and subsequent unitarity violation.

Although the BFKL suffices to describe the currently available experimen-
tal data, saturation is a desirable mechanism to be included in the evolution.
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Chapter 4

Saturation implementation

A non-linear term needs to be included in the evolution equation in order to
introduce a recombination process and eventually a saturation of the gluon
distribution function. Such a term is presented by the Balitsky-Kovchegov
(BK) equation [32-36], which can be obtained from an effective theory of the
Colour Glass Condensate.

4.1 The Colour Glass Condensate model

To describe the high-energy limit of QCD, the idea of the Colour Glass Con-
densate (CGC) is utilised [9, 37-40]. The CGC itself is a highly coherent
ensemble of gluon states with extremely high energy density. In a high energy
hadronic scattering, the CGC describes the pre-collision hadronic state. After
the collision it evolves into the so-called Glasma, from which the quark gluon
plasma and eventually a gas of ordinary hadrons emerge.

The word colour in the model name reflects the fact that the gluons carry
the colour charge. The term glass refers to an analogy with an actual glass
in the sense of exhibiting a solid-like behaviour on short time scales and a
liquid-like behaviour on longer ones. Finally, the condensate corresponds to
the high density of massless gluons within the system [37].

The idea behind the CGC as an effective field theory is to describe the
high-energy QCD in the light cone formalism [41] as a many-body theory with
a large number of partons. These are weakly coupled, but due to their large
number, the description is non-perturbative.

There are assumed to be two kinds of partons based on their energy. The
low-z ”"wee” partons are subject to evolution while the ”valence” partons,
carrying a high fractional momentum are treated as static! sources of colour
charge. Due to their large momentum, they are assumed to be recoilless,
unaffected by absorbing or emitting soft quanta [37].

Y

!The wee-parton life time is much shorter than that of the valence ones.

21
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The z-evolution of the CGC system is described by an infinite set of coupled
Jalilian-Marian-lancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) equa-
tions [17, 38, 40, 42, 43]. Unfortunately, due to its extreme complexity, no
analytical solution is known.

However, there is a way to simplify the JIMWLK equations and obtain
a single, so-called Balitsky-Kovchegov equation describing the colour dipole
scattering amplitude.

In the limit of large N¢ (number of QCD colours) [33, 44], the following
approximation can be made: the gluon emission from the original dipole can
be treated as equivalent to an emission of a coloured qq pair as depicted in
Fig. 4.1 [30]. Furthermore, the large-N¢ limit allows one to replace a multiple
gluon emission by a cascade of daughter dipoles.

\_

Fig. 4.1: The equivalence of the gluon emission and daughter dipole emergence
in the large N¢ limit.

4.2 The Balitsky-Kovchegov equation

The resulting Balitsky-Kovchegov equation describing the dipole evolution
reads [32-36]

ON(7,b,Y)

S = [ @K ) [VELRY) + N EY) - NEEY)

— N(, b1, YN (5,55, V). (4.1)

As described earlier in this chapter, N(7, Z;, Y') represents the scattering ampli-
tude between a proton and a colour dipole of size 7 and impact parameter b.
The evolution equation describes the creation of two new dipoles N (77, b:, Y)
and N (73, b;, Y') while simultaneously annihilating the original one. The geo-
metric layout of the daughter dipole sizes and impact parameters is depicted
in Fig. 4.2.

Unlike the BFKL evolution Eq. (3.14), the BK equation contains a negative

—

non-linear term N (77, b:, Y)N(75,bs,Y). It corresponds to the recombination
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z

Fig. 4.2: The proton—dipole interaction geometry in the z, z7 plane (rotational
symmetry of the problem is assumed with respect to the z-axis). The large
blue sphere represents the proton, the small spheres depict the dipole and
an emergent gluon in correspondence to Fig. 4.1. The vector b denotes the
original dipole impact parameter and b; is then the impact parameter of the
j-th daughter dipole.

of two dipoles and at large gluon densities implements the aforementioned
saturation mechanism.

4.2.1 The kernel

The function K (7,71, 72) is the kernel of the integro-differential equation, which
in the case of the BK equation corresponds to the probability of gluon emission.

A simple version of a kernel has already been presented for the BFKL
evolution equation in Eq. (3.14).

The running coupling kernel

Going further into the perturbative expansion and taking into account the
running of the strong coupling, the so-called running coupling (rc) kernel is
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—1)+ (2.

(4.2)

obtained [26, 35]

Krc(ra 1, TQ) -

2r [} \au(rd)

e[ ()

Here N¢ is the number of colours and the r? dependence of the strong coupling
is

AT
Y
4C?

where C' is a parameter to be determined by a fit to data and A, is a scale
parameter dependent on the number of active flavours.

The possible flavour of the dipole, emergent from the virtual photon, de-
pends on the energy scale or equivalently the r-scale, because

a(r?) =

(4.3)

> _ 407

p= (4.4)

r2

Therefore, reaching lower 7% (or larger scales), heavier flavour pairs (c and b)

can be produced and the number of active flavours ny rises. These pairs then
interact with the proton, which needs to be reflected in the running of the
strong coupling. From Eq. (4.4), the values of r can be calculated, at which
the ny changes, based on the quark mass my by

[4C?
Tnf = m_? (45)

This way, the o, range is split into regimes where 3, 4, and all 5 quark flavours
are active? [22] as shown in Fig. 4.3.
The leading order coefficient of the QCD beta-series (g, reads

1
Bony = g(llNc — 2ny) (4.6)

and can be simply calculated. To obtain the values of A, a matching condi-
tion must be placed on the ay in the transition values, resulting in

1— BO,nf ng,nf
Bons—1 , Boms—
Qmy—1(Tny) = Qsnye1(rn,) = ANpyr=m, AT (4.7)

2There is no splitting for n ¢ < 3, because the masses of the three light quarks are taken
to be identical. Furthermore, for its enormous mass, the top quark is neglected within these
calculations.
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~ n=>5 n=4/n=3
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Fig. 4.3: The running of the strong coupling a; saturated at o, = 1. The
vertical lines denote the splitting of the range to sectors with the corresponding
number of active flavours.

Having this recursive relation, the last thing to add is a starting point. A good
choice is the experimentally measured value of a4(M2%) at the scale of the Z
boson mass. From Eq. (4.3), the starting point is then

402 s A, B N
As = \/ A e |2ty (43)

Ty 4

Following [22, 45], the growth of «y is restricted to some value «, . as shown
in Fig. 4.3 with ay,,,, = 1. For a fixed ny scheme, 5y ,, = 5 and A,,, = Agep.

The collinearly improved kernel

Using the running coupling kernel, the BK equation can be numerically solved.
However, in the case of the 2-dimensional BK equation®, the results exhibit
too fast a growth at large impact parameters, so-called Coulomb tails [45]. A
new so-called collinearly improved (ci) kernel was presented in Ref. [45-47]

A, 12 r2 =L T (2pV/as)
5 |min{r, r3} pVas

27 1273
3In the 2-D BK equation the dipole scattering amplitude is assumed to only depend
(besides the rapidity Y') on the norms of the vectors 7 and b.

Kci -

(4.9)
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Here J; is the Bessel function of the first kind, the parameter A; = %, and the

sign of the power is positive when r? < min{r? r2}. The variable p is defined

by
o= \/ In (g) In (::—%) ' (4.10)

The modified strong coupling &y is

as(min{r?, 72 r2})N¢
s = )

(e

(4.11)

4.2.2 Initial condition

Being an integro-differential equation, the BK equation needs an initial condi-
tion to solve the differential component. Therefore, the scattering amplitude
at rapidity Y = 0 needs to be specified.

Impact-parameter-independent initial conditions

For the b independent solution, two initial conditions are presented. The
first one is inspired by the phenomenological model of Golec-Biernat Wiisthoff
(GBW) [9, 19] and reads[22]

(r’Q%)"
Nepw (7Y =0) =1 — exp {—Tso} 7 (4.12)

where both the parameters v and Qg (the proton saturation scale) are to be
determined by experimental data.
Another initial condition figures in the McLerran-Venugopalan model [22,

48]

- (7“2 go)7 1
My (7Y =0)=1—exp |— In +ell, (4.13)
4 TAQCD

where Agop denotes the QCD scale parameter.
To see the overall effects of the initial condition on the evolution, a modi-
fication of the Heaviside function was also used in the form

0 r<3

. (4.14)
05 r>3

Ny(r,Y = 0) = %9(35 _3)— {
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Impact-parameter-dependent initial condition

To obtain an initial condition for the g—dependent BK equation, a combination
of the GBW model for the 7 dependence and a Gaussian distribution for the
impact parameter was used [45, 49|

- 17202 -
N(7bY =0) =1 — exp {—57“ fST(F, b)} , (4.15)
where
. d3(7, b) d3(7, D)
T(7 b) = _ AN 2\ 4.1

Both the saturation scale Q* and parameter B (which can be connected to
the target profile [45]) are to be adjusted by fitting. The b-dependence is
hidden in the impact parameters of the quark and the antiquark as described
in Appendix C.
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Chapter 5

Solutions of the BK equation

As discussed earlier in this work, the BK equation implements the desirable
mechanism of gluon saturation while being simpler to solve numerically than
the infinite set of JIMWLK equations. Such a solution is presented for the
1-dimensional and 2-dimensional versions of the BK equation.

All methods and algorithms necessary for the numerical solution of the BK
equation are implemented in C++.

5.1 Numerical methods

For the purpose of a clear numerical solution, the right-hand side of the BK
equation Eq. (4.1) can be rewritten as'

Oy N(7b,Y) =1, — N(Fb,Y)ly — I, (5.1)

where
Iy = /dﬁK(r, T1,Te) = /DK7 (5.2)
I = /DK [N(ﬁ,b},Y) + N(Fg,b;,Y)] , (5.3)

. / DEN(7,b;, YN (5, 55, Y). (5.4)

The integration measure DK was introduced for a clearer orientation in this
and the following equations.

Once the integrals I; are calculated, a simple differential equation is left to
be solved.

IThe operator 8y denotes the partial derivative with respect to Y.

29
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5.1.1 The differential equation solution

Containing no explicit rapidity dependence, the differential equation Eq. (5.1)
can be solved using the Runge-Kutta method. Its form and description can
be found in [50-52], however, it is fairly straightforward to derive at least the
first order.

A function f(§), analytical at a point a can be expanded into a Taylor
series as

of 2
f(&) = fla)+ (€ - a)ﬁ—g(a) +O0((§ —a)’). (5.5)

To highlight the infinitesimal shift, let us denote & — a = h, where h — 0.
Furthermore, let us change the function variable to x = £ — h to get the
explicit form of the first-order Runge-Kutta method

_ of
fla+h) = f@)+hgr=s

= f(z) + ho.f(z) + O(h?). (5.6)

(x) + O(h%)

—,

This already can be applied to evolve the scattering amplitude N(Y,7,b) nu-
merically; a step in rapidity Yy — Yy + h can be done, as the dy N is defined
by the r.h.s. of the BK equation Eq. (4.1)

= —,

N(Y +h,7b) = N(Y,7.b) + h (10 N7 b Y — 12)) oM. (57)

However, to improve the calculation precision, a higher (fourth) order Runge-
Kutta method is utilised [50]

. o1 1 1 1
N + h,7,b) = N(Y + h,7,b) + gkt ke + ks + gk O(r®), (5.8)

where
ky = h([l — N(7,b,Y) Iy — 12), (5.9)
ke = k1 + h(% (Io— L)+ %%IO>, (5.10)
ks = ki + h(% (Ip— 1) + kzgf()), (5.11)
ky =k + h(k:g (Ip— I,) + k§10>, (5.12)

as shown in more detail in Appendix A.
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As described in its definition Eq. (3.8), rapidity is connected to Bjorken x
on which the structure functions depend. Therefore, the rapidity range must
be chosen with respect to the desired Bjorken x range in which predictions of
observables are supposed to be given. Following [22], the value zo = 0.01 is
chosen for the (1-D) evolution starting point, fixing the maximal Bjorken x to
approximately 0.01 at Y = 0. To follow the interest in the low-z region (orders
of approximately 107¢ to 1072), where the BK equation is supposed to hold,
the evolution should go to approximately Y = 3 to fit the currently available
data. To give predictions for future experiment, the rapidity is chosen to range
up to Y = 10. The step length was chosen to be h = 0.01 [45].

5.1.2 Numerical integration
From the geometric layout depicted in Fig. 4.2, it is clear that the vector 7] can

be expressed in terms of its size r; and the angle ¢. Therefore, the integrals
Eq. (5.4) can be rewritten

27

Iy —/ dgp/drlrlK(r,rl,m) = 27T/d7”1T1K(7’, r1,T2), (5.13)
0
21

I :/ dgp/drlrlK(r,rl,rg) [N(ﬁ,bl,Y) —i—N(Fg,bg,Y)] , (5.14)
0

2
I :/ dgo/drlrlK(r,rl,TQ)N(T_i,bl,Y)N(r_g’,bg,Y), (5.15)
0

with 71(r1, ) and 75(r, 7, ).

To calculate a step in rapidity evolution, these integrals need to be evalu-
ated per each point of the N domain?. To do so, the extended Simpson’s rule
is utilised [50, 51]. It sums the values of a function f(z) in n + 1 points as

n_1 2z
Tn n— 2 2 1
/mo fo)ar =" anco Flxo) + Q;f(@j) +4;f(:1:2j1) + f(xn) | +O (ﬁ) )

(5.16)

with even number n of equidistant steps.

2E.g. for a 2-dimensional BK equation with 100 points in 7, 100 points in b and 20 points
in ¢, 100 - 100 - 20 - 3 integrals need to be evaluated in one rapidity step.
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A modification of the Simpson’s method was used to evaluate the integrals
of logarithmically sampled functions®

Tp — o

/wn f(z)dz = In(10) [mof(xo) + 2 Z T f(225)

n

n

2 1
+4) w1 f o) + xnf(mn):| +0 (ﬁ) )

Jj=1

(5.17)

as further described in Appendix B.

5.2 The 1-dimensional solution

As discussed in Chapter 3, as an approximative approach, the impact param-
eter dependence can be integrated out of the BK equation into a fit parameter
00, see Eq. (3.7). In this 1-dimensional case, the only variable (except the
rapidity Y in which the evolution takes place) is the dipole size r = |7]. Fur-
thermore, utilising that

ra=7"—71 — 7“2:\/7"2+7’%—27“r160sg0, (5.18)

the 1-dimensional BK equation reads

2
ayN(T', Y) = / ng / drlrlK(Tv 1, 90> |:N(7ﬁ17 Y) + N(T’Q(T, 1, 90)7 Y)
0

— N(r,Y) = N(r;,Y)N(ra(r,m1,9),Y)|.
(5.19)

As mentioned in the previous section, the rapidity grid is chosen from
Yy =0 to Y, = 10 with step hy = 0.01, so that

Y; = Yy +jhy, j €[0,100] NN (5.20)

The r-grid ranges from ro = 10~7 to 7, = 102. The r scale is logarithmic
with a constant number of steps per order of magnitude* n,;,, = 25 which
must be equidistant, so that an effective logarithmic Simpson’s method can be
used to calculate the ry integrals. Furthermore, the total number of steps n,
must be even, therefore, the j-th value of r in the grid is

7 =110 I mea 5 € 0,m,] NNy, (5.21)

3With equidistant steps in the logarithmic scale h = logy, x5 —loggx;_1.
4In this case equal to the inverse logarithmic step length Nrlog = L

Ny log
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and the total number of steps is

Ny = Ny log (logyo(ro) —logyo(rn,)) + a. (5.22)

In this case, n, = 226, as the parameter a € {0,1} ensures that n, is
even and the Simpson’s method can be used. The r; grid is chosen to be the
same, so that evaluating N(rq,Y) is effective when calculating the Iy, I, and
I integrals.

To calculate the integrals I; and Iy, the values of the dipole scattering
amplitude N(ry,Y) are needed. As seen from Eq. (5.18), the values of 5 do
not necessarily coincide with the r-grid and N (72, Y") needs to be interpolated.
A simple linear Lagrange interpolation [50] is used to approximate the values
of N(ry,Y) in o between 7, and 7,4z

27 N, YY) 2 (5.23)

Ta —Tp Ty — Tq

N(re,Y) = N(rg,Y)

where a and b are the grid indices, namely, a € [0, n, — 1]NNj so that N(r2,,Y)

indexes the largest value of N on the grid smaller than N(ry,Y) and b = a+ 1.
For values of 5 outside the grid, no particular extrapolation is utilised and

simply the boundary value at the last (or the first) point of the grid is used.
To integrate over ¢ from 0 to 27, an equidistant grid of 20 steps was chosen.

Initial condition comparison

The 1-dimensional BK equation was solved with the running coupling kernel
Eq. (4.2) in a scheme with fixed ny = 3. The required parameters were chosen
following [22, 26] and can be found in Tab. 5.1 and Tab. 5.2.

To see the effect of the initial condition on the evolution, three different
initial conditions were used; the GBW Eq. (4.12), MV Eq. (4.13), and the
modified Heaviside Eq. (4.14). Together with the kernel parameters, the
parameters required in the initial conditions are summarised in Tab. 5.1 and
Tab. 5.2.

The comparison of the resulting scattering amplitudes for different initial
conditions are depicted in Fig. 5.1 at several stages of the evolution (various
rapidity values).

The most significant feature of Fig. 5.1 is the relative unimportance of the
initial condition shape. It can be seen from the comparison of the model-
dependent initial conditions GBW (blue) and MV (red), both of which gain
the same shape during the evolution. To get a clearer example, they can
be compared to the unphysical modified Heaviside function (yellow), which
was chosen such that not even its range coincides with that of the GBW or
MV. Still, after ~ 200 steps (at rapidity Y ~ 2), the shape of the scattering
amplitude is the same as for the physically motivated initial conditions.
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Fig. 5.1: A comparison of the scattering amplitudes as functions of the dipole
size r at rapidities Y = 0,1, 20,100 as results of the BK equation with the
running coupling kernel and various initial conditions (GBW - blue, MV - red,

Heaviside - yellow).

An extensive comparison is shown in Fig. 5.2 and Fig. 5.3, where the full
2-dimensional dependence of N(r,Y') is shown. While in the first figure, the
BK equation forces the desired shape of the dipole scattering amplitude fairly
quickly (note the small initial decrease at 7 between 1 and 10 GeV ™" followed
by the monotonic behaviour), the latter figure captures a far more significant

initial evolution.

C

AQCD [GGV]

s max

QSO [GGVQ]

y

Muyd,s| MeV]

op| mb]

2.52

0.241

0.7

0.165

1.135

140

32.895

Tab. 5.1: Numerical values of parameters for the 1-dimensional BK equation

solution in the MV model [22].

C

AQC’D [GGV]

s max

QSQ [GGVQ]

~y

Muyd,s| MeV]

op| mb]

2.46

0.241

0.7

0.241

0.971

140

32.357

Tab. 5.2: Numerical values of parameters for the 1-dimensional BK equation
solution in the GBW model [22].
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N(r, Y) [-]

Fig. 5.2: The scattering amplitude as a function of rapidity Y and dipole size
r from the solution of the BK equation with the running coupling kernel and
the MV initial condition (highlighted in red).

N(r, Y) [

) 5 107 107
2 0 107 107 10

Fig. 5.3: The scattering amplitude as a function of rapidity ¥ and dipole size
r from the solution of the BK equation with the running coupling kernel and
the Heaviside initial condition (highlighted in red).
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The non-linear term effect

As described in Chapter 4, the BK equation implements the effect of parton
saturation with the non-linear term, which represents the gluon recombination.
To point out the main difference between the BK equation Eq. (5.24) and the
linear BFKL equation Eq. (5.25), their 1-dimensional form can be written

Oy N(r,Y) = /DK IN(r1,Y) 4+ N(ro,Y) = N(r,Y) + N(r,Y)N (9, Y)] ,
(5.24)

By N(r,Y) = /DK [N(ri,Y) 4+ N(rs,Y) = N(r,Y)]. (5.25)

An illustrative solution of both evolutions with the same kernels and initial
conditions was calculated for two values of the dipole size r. The resulting

evolution is depicted in Fig. 5.4.
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Fig. 5.4: The dipole scattering amplitude as a solution of the BK (blue) and
the BFKL (red) evolution equations with the MV initial condition and the
BFKL kernel for dipole sizes 7 = 107°GeV " (full line) and r = 2.51189GeV ~*

(dashed line).

In both cases, the MV initial condition Eq. (4.13) was chosen with param-
eters from Tab. 5.1 and the simple BFKL kernel Eq. (3.15) was used with a
fixed value of the strong coupling a; = 0.19, following [16].

The message of Fig. 5.4 is clear; the negative non-linear term of the BK
equation becomes dominant at high rapidities (or equivalently in the region
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of low Bjorken x, see Chapter 3) resulting in the saturation of the dipole
scattering amplitudes. The linear BFKL evolution has no such mechanism
and soars extremely quickly with increasing rapidity.

5.3 The 2-dimensional solution

Besides the dipole size, the state-of-the-art solution of the BK equation takes
into account another variable; the norm of the impact parameter vector b = |b|.
The 2-dimensional BK equation reads

OyN(0.Y) = [ DE[NG100Y) + Nlra 2, ¥) = N(r.b.Y)
—N(Tl,bl,Y)N(’f’Q,bQ,Y> . (526)

The maximum of the grid for the 7 domain is extended® from 10? to 10* for
the 2-dimensional solution. The grid of the second dimension b was defined to
be the same as of r.

Computationally, the main difference from the 1-dimensional case is the
need to interpolate a function of two variables, namely, N(rq,bs,Y). To do
so, the bilinear interpolation [50] is used. In the case of the (logarithmically)
equidistant grid, it utilises 4 grid points (r4, 7, bs, bp) Which form a rectangle
around the point of interest. The way in which the impact parameters b; and
by are calculated from the collision geometric layout is further described in
Appendix C. The notation follows the linear Lagrange interpolation Eq. (5.23),
so that b = a + 1 and both indices lie on the grid. The bilinear interpolation
formula reads

N(rz,ba,y) = (1 = t)(1 = u)N(ra, ba,y) + (1 — w)N (s, ba, y) (5.27)

+tuN (14, by, y) + (1 — )uN (14, by, y), (5.28)
where
T —Tq
t = 5.29
— (5.29)
b2 - ba
u= — (5.30)

Different generic multivariate interpolation methods have been tested using,
e.g. the calculation of Vandermonde determinants. However, the code com-
plexity increased rapidly, making the calculation extremely ineffective, whilst
not improving its precision.

5Tn order to prepare the solution for the calculation of nuclear scattering processes reach-
ing higher values of r and b.
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Two examples of the scattering amplitudes N(r,b,Y") as results of the
2-dimensional BK equation are shown in Fig. 5.5. The value of the angle
between the impact parameter and the original dipole (see Fig. 4.2) was fixed
to & = mw. The left histogram depicts the b-dependent initial condition Eq.
(4.15), whilst the right one captures the scattering amplitude evolved to ra-
pidity Y = 10 using the collinearly improved kernel Eq. (4.9) in a variable
ns scheme up to ny = 5. The running of the strong coupling a(r) is fixed to
Qo = 1 and the parameters A, are calculated recursively as described by
Eq. (4.7), starting at a,(M32) = 0.1189 for M = 91.18GeV [15]. The quark
masses and remaining necessary parameters are defined in Tab. 5.3, follow-
ing [45]. The parameters were fitted for a situation where the initial condition
does not depend on 6, which effectively corresponds to using 6 = 7 in Eq.
(4.15). The subsequent evolution was calculated for the value § = w. To have
access to the correct fit parameters, and therefore be able to produce the pre-
dictions of observable quantities in this section, the same set-up has been used
to calculate the mized 2-dimensional BK equation solution. Solutions using
the same value of 6 for both the initial condition and the evolution, namely
¢ = 7 and ¢ = 7, are presented at the end of the section and will be a subject
of studies following this thesis.

—10* T 10*
>

3 10° 10°

° 102

10

1

107

K 10°°

10°°

107

10°°

10°°

—7

10
10° 102 107 1 10 102 100 10! 10° 102 107 1 10 102 10°  10*
r[GeV'] r[GeV']

b [GeV
N(r, b, Y)

Fig. 5.5: An evolution of the b-dependent initial condition at § = 7 (left) to
the scattering amplitude at rapidity ¥ = 10 (right) with the mixed (using
0 = 7) 2-dimensional BK equation. The evolution is driven by the collinearly
kernel in a variable n; scheme with parameters defined in Tab. 5.3.

The choice of the collinearly improved kernel follows from a problem con-
nected to the running coupling kernel. When it is used to solve the the 2-
dimensional BK equation, the so-called Coulomb tails [45] emerge as shown in
Fig. 5.6. These contributions to the scattering amplitude at large values of the
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Qw0 [GeV?] | v | B[GeV™Y | myas [MeV] | m. [GeV] | my [GeV]
9 0.496 1.135 3.2258 100 1.3 4.2

Tab. 5.3: Numerical values of parameters for the 2-dimensional BK equation
solution [45].

impact parameter grow too fast and have to be curbed by introducing extra ad
hoc terms within the kernel itself. An alternative to this approach is given by
introducing the collinearly improved kernel, which controls the Coulomb tails
intrinsically as further described in [45]. This phenomenon is clearly visible in
the comparison between the BK equation solution with the running coupling
(red) and the collinearly improved (blue) kernel in Fig. 5.6.
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Fig. 5.6: A comparison of the mixed BK equation solutions with the running
coupling kernel (red) and the collinearly improved kernel (blue) showing the
curbing of the coulomb tails (large values of N at high b) by switching kernels.
Same parameters have been used for both kernels.

To use the dipole amplitude for further calculations, the integral over b is
performed to obtain the dipole cross section Eq. (3.6). In Fig. 5.7 a comparison
of the integrated dipole amplitude for the running coupling (red) and the
collinearly improved (blue) kernels is shown. Here, the Coulomb tails cause
a rapid increase, which eventually leads to a disagreement of the predictions
with the experimental data as shown in Chapter 6.
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Fig. 5.7: The integrated dipole scattering amplitude evolving with rapidity
Y for fixed values of the dipole size r. Solutions of mixed BK equation with
two different kernels are shown to emphasise the effect of the Coulomb tails
resulting from the running coupling kernel (red) compared to the solution with
the collinearly improved kernel (blue).

For a qualitative comparison with the 1-dimensional solution, the full evo-
lution of the integrated dipole amplitude from the 2-dimensional solution is
shown in Fig. 5.8 in correspondence with Fig. 5.2 and Fig. 5.3.

The first thing to notice is the divergence towards high rapidities Y and
dipole sizes r. However, this regime of large dipoles® is suppressed in further
calculation of observable quantities.

The second important feature is that the initial condition does not seem
to correspond well to the evolution equation. The original crest of the initial
condition wave (red) is slowly replaced by a higher wave with a maximum at
larger dipole sizes r. This behaviour suggests that a better initial condition
could be constructed by tracing back the evolution from a point where the
original physically motivated initial condition can be neglected to obtain a
new initial condition that corresponds to the evolution as well as possible.
Such attempts have been made in the 1-dimensional solution, however, the
poor correspondence with experimental data suggests no special support of
trying such a procedure in the 2-dimensional case.

6Compared to the proton charge radius r, ~ 0.17 GeV ™! [15].
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Fig. 5.8: A full evolution of the integrated dipole scattering amplitude from
the integrated b-dependent initial condition at @ = % (red) as a solution of the

2
mixed 2-D BK equation at 0 = .

A possible reason for the mismatch between the initial condition and the
evolution might be the different choice of the 6 value (§ = 7 for the initial
condition and # = 7 for the evolution) as described earlier in this section.
The 2-dimensional BK equation calculation was therefore conducted again for
0 = 7 everywhere and the resulting integrated dipole scattering amplitude is
shown in Fig. 5.9. Apparently, the evolution trend follows the original solution
(with various 6 values) and the aforementioned mismatch is not caused by the
different 6 in the initial condition.

To provide a glimpse of future calculations leading to the 3-dimensional
BK equation solutions, a 2-dimensional solution for ¢ = 7 is presented in
Fig. 5.10. Here the correspondence between the initial condition and the evo-
lution shape is apparent, opening the question whether a different choice of

the initial condition should be made for the future 3-D BK equation solutions.
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N(r, Y) [GeV?

Fig. 5.9: A full evolution of the integrated dipole scattering amplitude from
the integrated b-dependent initial condition at § = 7 (red) as a solution of the
mixed 2-D BK equation at 0 = .

N(r, Y) [GeV?

Fig. 5.10: A full evolution of the integrated dipole scattering amplitude from

m

the integrated b-dependent initial condition at § = 7 (red) as a solution of the
2-D BK equation at ¢ = 7.



Chapter 6

Prediction of observable
quantities

Besides solving the BK equation, one of the main goals of this thesis is to
also provide predictions of the real world behaviour by calculating observable
quantities. To be able to compare the predictions with experimental data, two
currently available observables were chosen; the structure functions, namely,
the function Fy(z,@?) and the reduced cross section o,(z,Q?%). Both were
a subject of measurement at the particle accelerator HERA, where protons
were collided with electrons or positrons. The data used in this work are a
combination of the results of the Hl and ZEUS collaborations ! published
in [27, 28].

At the time of the HERA operation, only a limited maximal collision en-
ergy was reachable? probing only a restricted region of low Bjorken . In the
presented analysis, the data from positron-proton collisions are used as they
reach the lowest values of z ~ 107°. The lowest usable® values of z in the
electron-proton data only reach z ~ 1073,

As new experimental facilities (especially electron-ion colliders) are to be
constructed, it should be possible to probe the region of even lower Bjorken x,
and further predictions of the theory described in this work can thus be put
to test.

Several plots have been generated to show a comparison between the afore-
mentioned data and the theoretically predicted observables, thus providing
a proof of concept for the effective theory of the Colour Glass Condensate
and its results in the form of the Balitsky-Kovchegov equation. Solutions of
both 1-dimensional and 2-dimensional BK equations (described in the previous

!Both H1 and ZEUS were experiments at HERA.
2The maximal centre-of-mass energy of the HERA collisions analysed within this work
is /s = 319 GeV.

3Usable meaning, that there are at least 4 low-x data points at a fixed virtuality.
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chapter) have been used to obtain the proton structure function Fy(z,@?) and
the reduced cross section o,(z, Q%) as described in detail in Chapter 3.

6.1 The structure function £,

Firstly, the two solutions of the 1-dimensional BK equation with the physically
motivated initial conditions (GBW and MV) presented in Chapter 5 were used
to calculate the Fy structure function. All necessary parameters are given in
Tab. 5.1 and Tab. 5.2. Only three active quarks with mass m, 4, = 100 MeV
are taken into account so that the experimental data at large values of z ~ 1072
can also be described?.

The results are shown in Fig. 6.1 for various values of virtuality Q? in
comparison with experimental data from the positron—proton collisions at
Vs =319 GeV [27].

I N 4 Q2= 1.2 GeV Q%=1.2 GeV
= Q%=2.0GeV? Q?=2.0 GeV?
= Q%= 8.5 GeV? Q%= 8.5 GeV?
Q2 = 22.0 GeV? Q2 = 22.0 GeV?
e s 4 Q2= 60.0 GeV?| | —+— Q% =60.0 GeV?

¢

Il I | ‘ Il Il 11 ‘ Il Il 11
107 107 1073 107
x [-]

Fig. 6.1: The prediction of the structure function F; based on the 1-dimensional
BK equation solution for various fixed virtuality values in comparison with
experimental data from e*p collisions at HERA [27].

4Taking even the lightest (of the heavy) charm quark with m. = 1.3 GeV decreases the
maximal z domain by almost an order of magnitude. It can be seen in Fig. 6.2 where
four active flavours are taken into account and the predictions can only be calculated up to
x ~ 1073 at virtuality Q2 = 1.2 GeV2.
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No major effect of choosing a particular one of the two discussed initial
conditions is visible. The only slight deviation between the predicted structure
functions can be seen at high z at the lowest virtuality Q? = 1.2 GeV?, where
the dotted line of the GBW model goes somewhat under the full MV line.

In general, the 1-dimensional solution exhibits superior data agreement as
compared to the 2-dimensional solution. The reason may be attributed to the
presence of an additional free fit parameter in the form of the oy from Eq.
(3.7). It comes from the fact that the impact-parameter dependence of the
dipole scattering amplitude is modelled by a theta function 0(50 — l;) in the
1-dimensional solution. The choice of the norm of the vector 50 is then left to
be adjusted by fitting the resulting observables to the experimental data.

The 2-dimensional BK equation solution results in the F5 prediction shown
in Fig. 6.2 in comparison with the same experimental data as in the 1-
dimensional case. As described in Chapter 5, the mixed solution was used,
meaning that the initial condition Eq. (4.15) was evaluated at ¢ = 7 but
during the evolution the value § = m was used.

10*
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Fig. 6.2: The prediction of the structure function F3 based on the 2-dimensional
BK equation solution for various fixed virtuality values. Two kernels were used
in the solution: the running coupling kernel (dotted line) and the collinearly
improved kernel (full line). Comparison with experimental data from e*p
collisions at HERA [27].

Therefore, the parameters calculated in [45] could have been used as shown
in Tab. 5.3. Four active flavours were used to calculate the structure functions,
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resulting in the restricted domain of the predictions® in Fig. 6.2. Furthermore,
unlike in the 1-dimensional case, the starting point of the evolution was set to
be xy = 0.008.

The predictions of Fy(x,Q?) were calculated using solutions of the
2-dimensional BK equation driven by both the running coupling kernel and
the collinearly improved kernel to show the ultimate reason for the necessity
of introducing the latter. Clearly, the running coupling kernel driven evolution
completely fails to describe the experimental data in the region of low x values,
see Fig. 6.2. The collinearly improved kernel, on the other hand, provides a
satisfying data agreement.

6.2 The reduced cross section o,

Having the structure functions calculated, the next step can be taken by pre-
senting the predictions of the reduced cross section Eq. (3.12). This analysis is
shown to provide a comparison with the latest® experimental data [28]. They
again come from the positron—proton collisions, this time at /s = 318 GeV.

—— Q?=12GeV?
Q? = 2.0 GeV?
Q° =85 GeV?
Q? =22.0 GeV?

L —+— Q*=60.0 GeV?

G, [']

10 107 107 102

Fig. 6.3: The prediction of the reduced cross section o, based on the 1-
dimensional BK equation solution for various virtuality values. Comparison
with experimental data from e™p collisions at /s = 318 GeV at HERA [28].

5Namely those at low virtuality Q2.
SFor the simple reason, that the latest HERA results do not directly show the F, mea-
surements anymore.
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For the 1-dimensional case, only the solution starting at the MV initial
condition was used to get the predictions presented in Fig. 6.3. As the inelas-
ticity y grows, the Fp, structure function starts to contribute to the reduced
cross section o, more significantly. At fixed virtuality Q?, the increase in the
inelasticity y corresponds to a decrease of the Bjorken z (see Eq. (3.13)), re-
sulting in a visible dip in the measured data. This behaviour is followed by
the shape of the calculated function satisfyingly.

Similarly to the previous case, the 1-dimensional BK equation solution pro-
vides a better data description as seen by comparison of Fig. 6.3 and Fig. 6.4.
The results of the mixed 2-dimensional solution, for which the necessary pa-
rameters were calculated in [45], is depicted by the full line in Fig. 6.4.

- 10

- r 0=m/2 mixed 8

© e e QF = 1.2 GeV? —— Q*=1.2GeV*
- Q* =35 GeV? Q° =3.5GeV?
- Q% =12.0 GeV? Q° = 12.0 GeV?
~ QF = 35.0 GeV? QF = 35.0 GeV?
L e e Q% =60.0 GeV? | | —+— Q° = 60.0 GeV*
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107 107 1072 1072
x[]

Fig. 6.4: The prediction of the reduced cross section o, based on the mixed
2-dimensional BK equation solution (full line) and solution with ¢ = 7 (dashed
line) for various virtuality values. Comparison with experimental data from
e™p collisions at /s = 318 GeV at HERA [28].

Again, for a glimpse of the future 3-dimensional BK equation solution, the

reduced cross section o, was also calculated for the § = 7. Tt is depicted by
the dashed line in Fig. 6.4 in comparison with the mixed solution. It cannot be
said to describe the data better, after all, the incorrect fit parameters are used
and it serves merely as an illustrative solution. Still, the deviations from the
experimental data are different than those of the mixed solution and once all
the possible 0 values are taken into account in the 3-dimensional BK equation,

the solution might result in an improved data agreement.
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Chapter 7

Conclusions

Within this work, the state-of-the-art framework for studying a hadron struc-
ture was presented. The main focus on the explanation of the parton satu-
ration phenomenon, its theoretical background and the numerical solution of
emergent evolution equations.

After the general introduction in Chapter 1, a brief introduction to the
experimental processes examined to study the hadron structure was given in
Chapter 2. The scattering of an electron (or a positron) with a proton was
described in greater detail with focus on the deep-inelastic regime. The connec-
tion between the theoretical formulas describing the collision experiments and
a phenomenological interpretation of the proton composition was presented
in the form of the proton structure functions within the parton model frame-
work. A brief description of the model was given, followed by a discussion of
its limitations, namely the low-x behaviour of the BFKL evolution equation.
Confronted with theoretical restrictions following from higher physical princi-
ples such as unitarity, the parton model was shown to be insufficient. Namely,
the absence and desirability of the so-called parton saturation mechanism was
explained.

Subsequently, an alternative approach to the description of the scattering
process was presented in the form of the colour dipole model in Chapter 3. In
this picture, the interaction-mediating photon is expanded in its Fock space
and the leading strongly interacting contribution (a dipole formed by a quark-
antiquark pair) is taken to interact with a proton. The probability of such a
process is encoded in the so-called dipole scattering amplitude.

To approach and overcome the parton model limitations, the more com-
plex effective theory of the Colour Glass Condensate model was presented in
Chapter 4. Its main ideas were described briefly, including the emergence of the
JIMWLK evolution equations, moving directly to their limit case and the main
topic of this work: the Balitsky-Kovchegov equation. This integro-differential
equation describes the dipole scattering amplitude of the colour dipole model
and its evolution with rapidity or equivalently, the Bjorken .
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The linear terms in the BK equation can be phenomenologically interpreted
as an annihilation of the original dipole!, while creating two new so-called
daughter dipoles. It was remarked that the linear part is equivalent to the
BFKL equation. Unlike the BFKL equation, the BK evolution contains an
extra non-linear term. This can be interpreted as a recombination of the
daughter dipoles at high densities, effectively incorporating the aforementioned
saturation mechanism. A qualitative comparison of the different effects of the
BFKL and the BK evolution equations was shown in Fig. 5.4.

The main goal of the thesis was to present a numerical solution of the BK
equation. A solution in all four dimensions of the dipole scattering amplitude
has not yet been achieved, however the one-dimensional and the state-of-the-
art two-dimensional solutions were presented in Chapter 5. The 2-dimensional
calculation was conducted for two exemplary values of the angle 6 as a preview
of the 3-dimensional solution. A full solution of the BK equation in its full
spatial dependence is the objective of work following this thesis.

Overall, the Balitsky-Kovchegov equation was described in great detail,
focusing on the role of its kernel and the initial condition needed for its solu-
tion. Their various combinations were used in the calculations to discuss their
advantages and limitations.

In Fig. 5.1, the stability of the numerical solution is shown since even a very
simple initial condition? leads to the same final shape of the dipole scattering
amplitude, as in case of the initial conditions from the GBW and MV models.
In the 1-dimensional solution driven by the running coupling, both physically
motivated initial conditions resulted in a very similar solution as shown in
Fig. 5.1. The prediction of the F; structure function in Fig. 6.1 also showed
no major difference and only the MV was chosen to be used for the remaining
prediction of the reduced DIS cross section in Fig. 6.3. All the predictions
were compared with the combined experimental results of the H1 and ZEUS
collaborations from the positron—proton collisions at HERA.

To solve the 2-dimensional BK equation, the MV initial condition was
extended by the impact-parameter dependence as described by Eq. (4.15).
The subsequent solution with the running coupling kernel exhibited a fast
increase of the dipole scattering amplitude with rapidity, caused by the so-
called Coulomb tails. Their presence in the BK equation solution was shown
in Fig. 5.6. In order to curb their effect, the collinearly improved kernel was
presented in Eq. (4.9). The resulting improvement of the solution is shown in
Fig. 5.6 and Fig. 5.7. Ultimately, the resulting prediction of the F; structure
function is shown in Fig. 6.2, comparing the effects of both kernels. The
significant disagreement between the experimental data and the prediction

Emergent form the photon which mediates the e* — p interaction.
2The Heaviside function modified such that not even its range corresponds to the
evolution-given function.
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obtained using the running coupling kernel is emphasized. Besides the mixed?
2-dimensional solution, the solution with § = 7 was also used to calculate the
reduced cross section as shown in Fig. 6.4, which served as another preview of
the potential of a 3-dimensional solution.

Considering the number of approximations made on the way to derive the
CGC effective theory and the BK equation together with the fact that the full-
dimensional solution is not yet available, all the presented predictions of the
observable quantities agree with the experimental data to a sufficient extent,
suggesting the potential quality of the model. The most important steps to
be further conducted are achieving the full-dimensional BK equation solution
and fitting the necessary parameters to provide predictions of the observables.

3See Chapter 5.
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Appendix A

The fourth-order Runge-Kutta
method and the BK equation

Given an ordinary first-order differential equation

dy(z)
dx

= f(l',y(l’)), (Al)

the classical (fourth-order) Runge-Kutta method [50] can be used to obtain a
numerical solution. The prescription reads

1 1 1 1
y(:z: + h) = y(:z:) + ékl + gkz + gkg + 6k4 + O(hz), (AQ)

where the coefficients k; are

kv =hf (Qf,y) ) (AS)
ke =hf (x + %h,y + %/{:1) , (A.4)
ks = hf (x + %h, Y+ %kg) , (A.5)
ky=hf(z+hy+ks). (A.6)

To tailor the prescription to the BK equation, we take f(z) = N( b, Y)
and the right-hand side f is identified with

f@wﬁaygz/im{Nw;aJv+N@5@17—Nwmmj

N(’I?l, gl, Y)N(FQa 527 Y)

— I, = NFbY)ly— I, (A7)
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as described at the beginning of Chapter 5.
Now since the BK equation right-hand side does not explicitly depend on
Y, the z-terms in Eq. (A.6) disappear and we get

ki =hf(N) = h(]l — N(7,b,Y )1y — [2> (A.8)

Y
ki ki I R k? k1 2
+E—? N(T’l,bl,Y)—l-N(T'g,bQ,Y) + :kl—h —([0—[1)—|——[0

k > k > k
ks =hf (N+§2) :h/DK|:N(F1,b1,Y)+?2+N(F2,62,Y)+72g

) — N(71, b1, Y)N (73, by, Y)

Y
L - L7 k3 k2 k3
+ = - —= N(Tl,bl,Y)+N(T2,b27Y) -+ :kl—h ?(10—11)4'2]0

(A.10)

3 . k . k
ky=hf (N+53> - h/DK[N(Fl,bl,Y) 5+ N b, Y) +725

- k - k - k
- N<F7 b7 Y) _7;_ (N(Flablay) + 5) <N(F27b27Y) + 33):|

— 0 [ DR N B Y) + N7 B Y) = NEEY) = NG YNGR B Y)
k k R R k2 k k2
+ 33 - 73(]\7(7“1, b, Y) + N(T27b27Y)) + f} = k1 — h(g(fo —I)+ Z?’]o)
(A.11)

as written in Eq. (5.12). The last step in each of the equations can be done
since the k; are already integrated over the measure DK and therefore do not
depend on r; anymore.



Appendix B

The logarithmic Simpson’s
integration method

One of the assumptions when using the Simpson’s integration method is that
the interval is split into an even number n of equidistant! intervals of length h.
However, the grid in the integration variable r; is logarithmic so a modification
must be made.

An integral of a function f with of logarithmically sampled variable x can
be rewritten by transition to a new variable

¢ =logpz =e"™0  —  dr=In(10)10%, (B.1)
SO
T, 10¢n
/ dz f(x) :/ d¢ In(10)10°£(€)
x0 100
n/2—1
! 105 — 10% , ,
= In(10) ————— | 10 f(10%) + 2 10%% f(10%
(10) 22 100 (10%) 4 > 107 (10%)
n/2 1
4 1082i-1 £(1082-1 108" £(108 il
#0000 10 1 )|+ 06
o n/2—1
= In(10) n3n 0 [$of($0)+2 Z xo; [ (225)
j=1
n/2 1 '
+ 421 Toj 1 f(T2-1) + xnf(xn):| + O(F)
=

(B.2)

!To be precise, the Simpson’s method is also formulated for unevenly sampled data,
however, in case of the logarithmic sampling a simpler method can be utilised, as shown
here.
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26 THE SIMPSON’S METHOD

In step 1, the standard Simpson’s formula could have been used as the integral
was expressed with respect to the equidistantly sampled variable &

h=6w1—& YneENy — 2, —a, = 10"z, — ,. (B.3)

This corresponds exactly to the sampling of r; described in Eq. (5.21), hence
the final form of Eq. (5.17).



Appendix C

The geometric layout and
impact parameters

To show specifically, how the values of the impact parameters b; and by are
obtained, an extended version of Fig. 4.2 is presented in Fig. C.1.

z

Fig. C.1: The proton-dipole interaction geometry in the z, 1 plane (rotational
symmetry of the problem is assumed with respect to the z-axis). The large
blue sphere represents the proton, the small spheres depict the dipole and an
emergent gluon in correspondence to Fig. 4.1. The vector b denotes the original
dipole impact parameter, b; is an impact parameter of the j-th daughter dipole.

o7



o8 THE IMPACT PARAMETERS

Firstly, the squared norms of the quark and antiquark positions vectors di2

are simply

N

2

& = 6-% - b2+% — rbeos(h), (C.1)
s r?
ds = |b+ 5| = v’ + T + rbcos(6). (C.2)

Secondly, let us express the square of ci;) =d, + 7
d2 = d? + 1?2 + 2rydy cos(m — 0 — @) = d? + 12 — 2r1dy cos(0 + ),  (C.3)

dy
Finally, the squared sizes of the daughter-dipole impact parameters b%,z are

calculated as

where the angle § = arcsin (i sin(@)) is obtained from the law of sines.

1/- -\ 1 1
b, = ‘5 (& +dia)| =7 (d+ s+ 2dsdr o cos(v2)) = 7 (245 +2d3, —1).
(C4)
where the last step uses that
o L2
7"%72 = ‘dg — dLQ = dg + diz — 2d3d172 COS('lgLQ). (05)
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