
Pokyny pro vypracování

Některé webové aplikace zažívají mimo pravidelných změn řízených denní seasonalitou také náhlé 

špičky v návštěvnosti. Moderní aplikace běží na škálovatelné cloudové platformě, ale běžné reaktivní 

formy škálování reagují na přetížení se zpožděním a prediktivní škálování umí předpovídat hlavně 

denní křivky a nikoli špičky.

Proveďte analýzu dat o provozu ze serveru Novinky.cz, která zahrnují anonymizovaná ID jednotlivých 

zdrojů. Opravte případné anomálie v datech. Proveďte jejich rozklad na jednotlivé časové řady 

návštěvnosti daných zdrojů a zdroje roztřiďte na takové, které existují dlouhodobě a takové, které 

představují články s časově omezenou zajímavostí pro čtenáře. U dat představujících články popište 

způsob náběhu časových řad od začátku do prvního maxima. Navrhněte metodu, jak u nově vzniklého 

zdroje odhadnout s předstihem v řádu minut jeho maximum, pokud to z dat bude možné. Zjistěte, zda 

by tato metoda byla přínosná pro prediktivní škálování serverů dané zpravodajské aplikace.
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Abstrakt

Tato práce prozkoumává prediktivní metody pro náhlé špičky pozorované na
webových serverech zpravodajských aplikací pro účely autoškálování. Logy
webových serveru zpravodajské aplikace jsou analyzovány a jednotlivé řady
tvořeny zdroji v logu jsou kategorizovány dle chování. Poznatky získané z ana-
lýzy jsou využity jako podklad pro predikce časové řady webových požadavků
se zaměřením na náhlé špičky za účely autoškálování v cloudovém prostředí.
Prozkoumané modely a jejich chování jsou analyzovány a porovnány. Na zá-
věr je provedena simulace cloudového prostředí pro porovnání autoškálovacích
metod. Jsou porovnány metody založené na výsledných modelech a metody s
reaktivními přístupy autoškálování. Výsledky jsou vyhodnoceny a je vyznačen
potenciální směr pro další práci.

Klíčová slova analýza webových požadavků, autoškálování, hierarchické
shlukování, hierarchické časové řady, online zprávy, predikce webových po-
žadavků, predikce časových řad, časové řady
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Abstract

This thesis explores the methods for forecasting around sudden peaks in web
traffic for news applications and the usability of those for environment auto-
scaling. Real-world web traffic log data from online news application is anal-
ysed, and series formed by resource requests are categorised by behaviour. The
insight gained from the analysis is used as a basis for web request time series
forecasting approaches focused on sudden peaks for automatic scaling in cloud
environments. The explored forecasting models are analysed by behaviour and
compared. Finally, a cloud environment simulation is performed to compare
the autoscaling method based on the resulting models. Comparisons are made
to reactive autoscaling approaches and between each predictive model. The
results are evaluated, discussed, and potential future work is outlined.

Keywords autoscaling, hierarchical clustering, hierarchical time series, on-
line news, time series, time series forecasting, web request analysis, web re-
quest forecasting
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Chapter 1
Introduction

A common approach for application deployment is to do so in scalable cloud
environments. Public or private cloud environments offer benefits over more
traditional static infrastructure allowing for greater efficiency as the work-
load of applications is frequently not static. Scaling up or down allows the
application to handle peaks as well as save resources when underused.

Modern online news platforms are no exception. In this thesis, real-world
data is used and analysed. The flaws in the data caused by data collection
issues are corrected, and the loss of information from the anonymised data is
partially reversed as data is separated and labelled by behaviour. A method
for predicting sudden surges in demand is proposed. Those sudden surges or
peaks can be thought of as deviations from the expected demand based on
long-term historical observation or forecasts.

The specific nature of online news applications and how users interact
with them is kept in mind through the thesis, and the suggested methods and
models are based on it, seeking to leverage the specific behaviour found in
online news applications. The total traffic is decomposed by behaviour into
individual time series, and an understanding of their behaviour is developed.
Multiple approaches with time series models such as Hierarchical Time-series
(HTS), ARIMAX, TBATS and Auto-Regressive models are used and com-
bined with pure regression models. The dynamic nature of news platforms
where certain items’ impact varies through time, gaining importance or de-
scending into irrelevance playing a significant role in the HTS models. The
focus of this thesis is the short-term prediction that could be used in real-time.
The method is then evaluated, compared, and selected methods are used in
environment scaling simulations. The potential use to drive automatic scaling
is then discussed based on the outcome of the simulation.
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1. Introduction

Briefly, the goals of the thesis are:

• Analyse the request data - Gain an understanding of the data and
its nature, find patterns in the data and identify flaws that would hinder
further efforts.

• Correct the flaws in the data - Correct the issues caused by outages
that would prevent using the data for forecasting and improve its quality.

• Label the data according to behaviour - Identify the individual
groups of data by series behaviour and domain context.

• Analyse the individual labelled groups - Gain an understanding of
the patterns in the individual groups and describe their behaviour and
potential consequences for forecasting.

• Propose models for short-term forecasting - Leverage the informa-
tion gained from the labelling and analysis about the individual group
patterns to propose a method for short-term forecasting.

• Evaluate the proposed models - Analyse the method performance
for short-term forecasting and compare it with benchmark and state-of-
the-art models for time series forecasting.

• Discuss the usefulness of the method for news application scal-
ing - Discuss the potential usefulness of the forecasts for short-term
environment scaling.
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Chapter 2
Theoretical part

2.1 Web-based news platforms

Web-based news platforms allow users to access published articles about cur-
rent events. In the case of Novinky.cz, an application from where the data
used in this thesis was supplied, the news covers multiple topics, categories
where articles similar in nature are grouped. Examples of such groups may be
domestic news, world news, sports, weather, financial news and many others.
These sections of the application tend to be stable through time, the cate-
gories being relatively generic and serving as an aggregation of articles. In
contrast, articles published within these sections are more dynamic. Articles
tend to be relevant only for a limited amount of time, the placement of an ar-
ticle is also dynamic, a featured article or an article on the homepage is likely
to receive more attention which will decrease once it is eventually replaced as
new articles are published [1].

Online news platforms are bound to experience sudden surges in demand.
This effect is frequently observed with outside events such as political turmoil,
celebrity deaths, terror attacks, natural disasters, and others that can draw
readers to seek information. An example of this is given by [1] where a peak is
observed and attributed to Hurricane Sandy. Such sudden surges may bring
issues to the application as the environment gets overwhelmed and cannot
provide service smoothly.

Online news platforms are nothing new and have been used since the early
days of the internet. Although relatively old, the platforms have not stag-
nated, and as approaches to hosting and operation for web-based applica-
tions evolved, news platforms have been a part of this move. For example,
Novinky.cz is hosted in a modern private cloud [2].

3



2. Theoretical part

2.2 Host environment scaling

With the usage of scalable clouds, naturally, the desire to efficiently use its
resources arises. From the client perspective, this is mainly motivated by costs
and availability. Applications hosted on scalable clouds can react to demand
and scale up or down the resources available; this can save operational costs
and prevent the application from running out of resources [3]. In the long-
term, this can mean planning ahead for reasonable utilisation through time
in a matter of days and weeks, while in the short-term, this can be thought
of as reacting to immediate or near-future need in a matter of hours. Failing
to scale up may lead to an unsatisfactory experience for users, who frustrated
with the given service, will choose competing platforms. Failing to scale down
may result in unnecessary costs or cloud environment utilisation as resources
could be allocated to others, or disabled [4]. With a focus on preventing, or
at least reducing the negative effects of changes in demand, it becomes crucial
to scale fast [4]; two scaling approaches are possible reactive and predictive.

2.2.1 Reactive scaling

In reactive scaling approaches, as the name suggests, decisions to scale are
based on reactions to the current situation. When overwhelmed, the applica-
tion and its resources will opt to scale up to relieve its current used resources,
while underused applications may decide to scale down to free these resources
to others and save costs [4]. Scaling is often done by in-advance prepared
resource utilisation thresholds, which drive the reactive scaling when reached.
Reactive scaling combined with non-instantaneous provisioning of computa-
tional resources may lead to a decrease in service quality until the new re-
sources are available [4]. Furthermore, reactive scaling can be inefficient for
web applications due to high fluctuations [3].

2.2.2 Predictive scaling

With predictive scaling approaches (sometimes referred to as proactive [3]),
the focus is on predicting the future demand and needs of the environment and
attempts scaling at appropriate times to meet this future demand in advance
[4].

Predictive scaling attempts to forecast future load to drive in-advance
provisioning of resources. Singh, Gupta and Jyoti [3] provide an overview on
cloud workload forecasting as well as develop a short-term web-application
forecasting approach using ARIMA and SVR models.

A combination of reactive and predictive scaling is desirable as predictive
scaling may fail to forecast upcoming spikes. No reaction to these unforeseen
events would have an undesirable effect on the quality of service [4].
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2.3. Web application sections as time series

An example of this approach is presented by Pereira, Araujo and Maciel [5]
which introduce a hybrid autoscaler based on utilisation thresholds and model
forecasting for future utilisation. The described autoscaler has two stages.
First, it verifies if the monitored utilisation does not diverge from selected
bounds. If that is the case, the autoscaler acts reactively. If the utilisation
is within bounds, the second stage is considered. In the second stage, the
multiple models are trained and tested on a collected sample of observations,
the best performing model is then selected, and a decision is made to either
scale up, down or maintain the number of instances. The proposed method
outperformed the reactive alternatives by being more efficient in terms of
utilisation [5].

2.3 Web application sections as time series
The load which a web application or, more specifically, the instance running
the application is experiencing can be directly observed from hardware utilisa-
tion such as RAM or CPU usage through time. Those are metrics that reflect
current and past situations and can be used in autoscalers. Additional metrics
that can be used are disk usage, network usage, latency, and load balancer
queue lengths [4]. Historical observations of those metrics contain information
about the application behaviour and can be used to forecast future utilisation.
An alternative approach is to observe the end-point nodes of the service and
measure those.

An example of this could be the incoming HTTP requests. Such an ap-
proach could benefit from additional information or usage context of the appli-
cation and potentially offer greater forecasting ability. With an understanding
of the domain, a more educated approach can be made regarding forecasting
and solving the problem.

In the context of web applications, each section, page, or article to be read
must be requested by the client. This event is logged into HTTP request logs
in the instances of the web servers. The structure of the log used by many
web servers is the Common Log Format (CLF), although this can be modified
as is the case for the Apache HTTP Server [6]. An example of a log entry in
the CLF format is in the 2.1 listing.

Listing 2.1: Example CLF log file entry [6].
1 2 7 . 0 . 0 . 1 − f rank [10/Oct /2000 : 13 : 55 : 36 −0700] ”GET /

apache_pb . g i f HTTP/1 .0” 200 2326

In the provided example, the entry contains client IP, user-identifier, time,
HTTP method, the requested resource, protocol, status code and object size.

Observing the requests over time, specific resources will be requested re-
peatedly. These repeated requests can represent the readers accessing a pub-
lished article. A time series for each resource can be constructed by aggregat-
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2. Theoretical part

ing the requests by resource and summing them over a selected time interval.
This time series will then reflect the popularity of the resource and impact
over time. By summing the large number of observed per-resource series, the
total number of requests through time can be observed.

2.4 Time series characteristics
The time series’s nature can be described using settled terms, which give hints
on the series’s behaviour. Time series can be decomposed into components,
each carrying information about a specific pattern from the original series.
Decomposition can be additive or multiplicative, and this describes whenever
the original data is decomposed as a sum or multiplication of components.
The following list describes individual time series components:

• Seasonal component - Time series has seasonality when a reoccurring
pattern with stable frequency in time can be observed [7]. Seasonal series
in this thesis tend to show strong daily patterns.

• Trend-cycle component - Increasing or decreasing trend is observed
when the time series shows long-term change, growth or decrease in
observed values. The cycle pattern describes fluctuations in time without
a stable frequency [7].

• Remainder component - The reminder is what remains from the
original time series after the other components are removed [7].

Time series stationarity is another essential characteristic. A time series is
stationary when it fluctuates around constant mean and with constant vari-
ance [7]. Some models may force constraints and require the fitted series to be
stationary. Series with seasonality or trend is not stationary [7]. Time series
can be turned stationary by differentiation, where differences between obser-
vations are computed and used as a new differentiated series [7]. Seasonal or
multi-order differentiation may be necessary [7]. Time series characteristics
are in greater detail described by Hyndman in Forecasting: Principles and
Practice [7].

2.5 Hierarchical Clustering
With a large number of non-aligned time series of varying length, clustering
based on the series themselves becomes difficult. For such situations, cluster-
ing based on features extracted from the time series can be used [8]. Usage of
these features reduces dimensionality and allows for less constraining choice
of algorithms [8].
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The usage of hierarchical clustering for time series as well as comparison
with other algorithms has been explored by Wang, Smith and Hyndman [8]
which look at clustering of time series using their structural features.

Hierarchical clustering is an algorithm for clustering where each individual
item is assigned its own cluster at the bottom-level and where higher-levels
are formed by merging a pair of lower-level clusters forming larger clusters
up to the desired amount of final clusters, or without limit, a cluster with
all considered data at the top level [9, pp. 520–528]. Hierarchical clustering
divides into two types, bottom-up (agglomerative) and top-down (divisive).
For agglomerative approaches, clusters at lower levels are recursively merged to
a single top-level cluster. In the case of divisive approaches, the process starts
from a single cluster at the top-level from where at each level a cluster is split
into two new clusters [9, pp. 520–528]. In this thesis, only the agglomerative
type is used and discussed. For agglomerative clustering, the clusters to be
merged G and H are selected by the smallest in-group dissimilarity d(G, H),
which is computed from a set of pairwise observations di,i′ with i ∈ G and i′ ∈
H [9, pp. 520–528]. The considered implementation of bottom-up hierarchical
clustering in scikit-learn [10] has multiple linkage methods determining the
linkage criteria for merging of clusters [11]:

• Ward linkage - Minimises the squared sum of differences within all
clusters [11].

• Single linkage - Least dissimilar pair (2.1) [9, pp. 520–528].

dSL(G, H) = min
i∈G,i′∈H

di,i′ (2.1)

• Average linkage - Average dissimilarity between clusters (2.2, NG and
NH is the number of items in each cluster) [9, pp. 520–528].

dGA(G, H) = 1
NG, NH

∑
i∈G

∑
i′∈H

di,i′ (2.2)

• Complete linkage - Most dissimilar pair (2.3) [9, pp. 520–528].

dCL(G, H) = max
i∈G,i′∈H

di,i′ (2.3)

The choice of a linkage method and the number of clusters to find can
lead to many combinations to consider. Besides, the input data can be trans-
formed to improve the performance of the algorithm, such transformations
may involve scaling the data to a particular range or have the mean removed,
and data re-scaled to unit variance [8]. Therefore, features subset, number of
clusters, linkage methods and applied data transformations need to be con-
sidered.
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2.6 Forecasting article popularity

A related topic to this thesis would be predicting the popularity of news ar-
ticles as the traffic observed in the logs is driven by readership. Therefore,
methods developed for predicting article popularity may help short-term pre-
diction of web traffic extensively formed by articles.

Canneyt, Leroux Dhoedt and Demeester [12] have proposed methods for
forecasting article popularity on additional features such as category, author,
target audience, differentiating the source of incoming views from social media
and direct views and others. Their method is not meant to be used for real-
time forecasting but rather for getting articles’ final popularity. Additional
features are unfortunately not available in the data provided for this thesis.

Keneshloo, Wang, Han and Ramakrishnan [13] propose a method based
on metadata, contextual, content-based, temporal and social features. Among
the observed features were the page views and normalised page views time
series, which were the most crucial feature in their (temporal) category, even
though the category was not the best performing for total visit prediction.

Time series analysis can be used for articles, and the features acquired
from the observed article series are helpful, although they are commonly com-
bined with additional features for total views prediction as seen in [13]. Due
to the similarity of the topic of total article view forecasts and article requests
through time, the findings in those papers support the intention of forecasting
articles based on the time series of request. Article forecasting, however, still
poses a challenging problem, especially so as a cold-start problem. Neverthe-
less, even brief observations on readership shortly after the publishing of the
article can lead to significant improvements [12]. These improvements suggest
that the very beginning of the article series is of significant importance.

Such approaches to forecasting the total popularity using a large set of
user behaviour features, as mentioned above, is a common topic receiving
much attention [1]. This topic of final popularity forecasts is not directly
usable in the context of short-term time series forecasts but provides insight
into important articles’ patterns and stages.

Castillo, El-Haddad, Pfeffer and Stempeck [1] observe articles initially re-
ceiving attention and shares on social media, something that rapidly deterio-
rates within a few hours after publishing. With this drop-off, the article visits
are primarily explained by internal traffic (visits from within site), and the
majority of the articles experience an initial peak followed by a decrease in
visits in their first twelve hours. Articles with developing stories can serve as
a minority counterexample where the visits are more steady through time.
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2.7 Akaike and Bayesian information criterions
The Akaike (AIC) and Bayesian (BIC) information criteria are predictive ac-
curacy measures. Models scoring the lowest values of AIC or BIC are generally
preferred over other models [7]. The AIC is defined by the following equation
2.4,

AIC = T log
(

SSE

T

)
+ 2(k + 2) (2.4)

where SSE is the sum of squared errors 2.5, T is the number of observa-
tions and k is the number of coefficients for predictors [7].

SSE =
T∑

t=1
et

2 (2.5)

The Bayesian information criterion is given as 2.6 [7].

BIC = T log
(

SSE

T

)
+ (k + 2) log T (2.6)

Minimising the AIC or BIC information criterion is a good approach for
selecting models for forecasting a particular series [7]. Models with minimal
AIC values are often best for forecasting [7]. Minimising BIC should lead to
a similar selection of the best model. The selected model is either the same
as chosen by AIC or one with fewer terms [7].

2.8 Forecasting methods for Time Series
In this section, different forecasting methods and models used at different
stages of this thesis are explored. Their primary functionality and usage is
explained.

To evaluate and compare the resulting models, the Naive, Average and
Seasonal naive models can be used as a benchmark. Their simplicity is not
a limiting factor, and they can provide good forecasts for a large number of
series, just as they can provide hints on the behaviour of more complicated
fitted models [7].

Common notation for time series forecasting includes the indicator of time
denoted as t. Forecast values are written as ŷt and real-observed values as yt.
The usual meaning by forecast ŷt is the mean of the possible values of yt given
known information I [7].

In the case of multiple h-steps ahead forecasts the notation is ŷT +h. If the
information on which the forecast has been made needs to be specified yt|I
would be used, where I is the known information, for multiple steps ahead
this is yt+h|I [7].
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2.8.1 Naive method
Forecasting using the naive method is trivial. The last observed value forms
the new forecast and is repeated for the required number of steps ahead [7].
Equation 2.7 shows the naive method for n-steps ahead.

ŷt+n = . . . = ŷt+2 = ŷt+1 = yt (2.7)

2.8.2 Average method
Forecasts with the average method are made with the repetition of the average
value calculated over a selected number of historical values [7]. The forecasts
for n-steps ahead with an average of T historical values is given by the 2.8
equation.

ŷt+n = . . . = ŷt+2 = ŷt+1 =
∑T

i=0 yt−i

T
(2.8)

2.8.3 Seasonal naive method
The naive seasonal method repeats observed historical values similarly to the
naive method, but with a seasonal lag introduced so that the repeated data
matches the current stage of seasonality [7]. This lag depends on the season-
ality length. With daily seasonality, the forecast for midnight is the historical
value from midnight of the previous day. The forecast at time T + h is given
by the equation 2.9 where m stands for the seasonal period and k = ⌊h−1

m ⌋+1.

ŷT +h = yT +h−km (2.9)

2.8.4 ARIMA and ARIMAX models
The AutoRegressive Integrated Moving Average model is a time series fore-
casting model with multiple components. The autoregressive part of the model
uses a linear combination of previous observations with the given order of p
or shortly AR(p) [7]. The equation 2.10 gives an AR model with the order
of p, with εt being white noise, c the mean of the changes of consecutive
observations and ϕ being the model parameters [7].

yt = c + ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + εt (2.10)

The moving average uses weighted observed forecast errors with an order
of q, the model can be referred to as MA(q) [7]. Formally, the model is given
by the 2.11 equation where θ refers to the model parameters [7].

yt = c + εt + θ1εt−1 + θ2εt−2 + . . . + θqεt−q (2.11)
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The integration, a reverse of differencing, which is a process where the
difference between successive observations are calculated as noted in the 2.12
equation [7].

y′
t = yt − yt−1 (2.12)

The number of applied first differences gives the order of d. Together, these
components form an ARIMA model with an order of (p, d, q) with p order
autoregressive part, d degree of first differencing, and q order of the moving
average [7]. Altogether, the model can be written as in the 2.13 equation.

y′
t = c + ϕ1y′

t−1 + . . . + ϕpy′
t−p + θ1εt−1 + . . . + θqεt−q (2.13)

The ARIMA model requires stationarity of the series [7]. To handle some
non-stationary series, the ARIMA model can be extended with exogenous
variables to form an ARIMAX model [14]. The exogenous variable can be
used with Fourier terms to model the seasonal component of the series as
given by 2.14 for k = 1, 2, 3, . . . n where m is the seasonal period [14].

sin
(2πkt

m

)
, cos

(2πkt

m

)
(2.14)

The ARIMAX model is then formally given as 2.15 where αk and βk are
the exogenous variable coeffiecents [14].

y′
t = c +

K∑
k=1

(
αk sin

(2πkt

m

)
+ βk cos

(2πkt

m

))
+

p∑
i=1

(ϕiy
′
t−i) +

q∑
j=1

(θjεt−j)

(2.15)
The orders of the ARIMAX models used in this thesis were selected by

minimising AIC using the auto_arima process from the Pmdarima library
[15]. The algorithm in auto_arima automatically performs stationarity and
seasonality tests to determine the differencing order. A stepwise search is
performed to find the orders of p and q, first a preset of models is fit. Out
of this preset, the one with the smallest AIC is selected. From this model,
additional models are explored where either one or both p and q orders vary
by one. When a model with lower AIC is found, it becomes the new selected
model. The process is repeated until no better models can be found or the
process terminates due to the upper bound threshold for execution [15]. As
for selecting the K for the number of Fourier terms, the above process was
repeated for values of k = 1, 2, . . . , 11, and the resulting model with minimal
AIC was selected.

In the context of seasonal series forecasting, the SARIMA (Seasonal version
of ARIMA) models can be used. They, however, do not appear in this thesis
due to the large observed seasonal periods with small sample rates data as
SARIMA models tend to struggle with such periods [14].
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2.8.5 TBATS model
The TBATS model stands for Trigonometric terms, Box-Cox transformations
(2.16), ARMA errors, trend and seasonal components. TBATS is a fully
automatic model capable of handling long non-integer seasonality [16]. With
TBATS models, the seasonality of the series can change through time. This
differs from harmonic models where seasonality is static [16].

y
(ω)
t =

{yω
t −1
ω , ω ̸= 0

log yt, ω = 0
(2.16)

The TBATS model can be described as in 2.17, where M are the seasonal
periods,

yω
t = lt−1 + ϕbt−1 +

M∑
i=1

s
(i)
t−mi

+ dt (2.17)

lt 2.18 and bt 2.19 are the local and global trend respectively,

lt = lt−1 + ϕbt−1 + αdt (2.18)

bt = (1 − ϕ)b + ϕbt−1 + βdt (2.19)

dt is the Auto-Regressive Moving Average ARMA(p, q) process 2.20,

dt =
p∑

i=1
ϕidt−i +

q∑
j=1

θjεt−j + εt (2.20)

s
(i)
t 2.21 are the Fourier-like seasonal terms, with γ

(i)
1 , γ

(i)
2 being smoothing

parameters and ki being mi
2 for even values of mi and mi−1

2 for odd values of
mi [17].

s
(i)
t =

ki∑
j=1

s
(i)
j,t (2.21)

s
(i)
j,t = s

(i)
j,t−1 cos

(2πj

mi

)
+ s

∗(i)
j,t−1 sin

(2πj

mi

)
+ γ

(i)
1 dt (2.22)

s
∗(i)
j,t = −s

(i)
j,t−1 sin

(2πj

mi

)
+ s

∗(i)
j,t−1 cos

(2πj

mi

)
+ γ

(i)
2 dt (2.23)

2.9 Regression models
Regression models are a group of models utilised in predicting quantitative
outputs [9]. This section covers various regression models appearing in this
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thesis, relatively simple models such as Linear Regression, which makes an ap-
pearance in both analysis and forecasting, more complicated ensemble model
of Random Forest and boosting models AdaBoost and Gradient Boosting, all
appearing in forecasting, are described.

2.9.1 Random Forest Regression
Random Forest (RF) is an ensemble model consisting of decision trees built
from training samples drawn with replacement [18]. First, each decision tree is
constructed by best-split of all or a subset of features on each level [18]. Then,
the output of the individual trees is combined to form the final output. In the
case of regression problems, the resulting dependent variable is the mean of
the trees in the ensemble [9, pp. 587–603].

What is a decision tree has not yet been explained. A decision tree is
a model with a tree structure where the input sample travels from the root
up until one of the leaf nodes [19, pp. 250–256]. Each encountered node has
learned information about the best possible split given its set of features and
processes the incoming samples accordingly.

The main parameters of RF models are the number of estimators (trees
in the forest) and features to be considered for the best-split during tree con-
struction [18].

Random Forests are a popular model able to achieve remarkable results
[9, pp. 587–603]. An example related to web application load forecasting
in this thesis is the usage of RF regression models in the context of short-
term electricity load forecasting as done by Dudek [20] where RF outperform
ARIMA and ANN models.

2.9.2 AdaBoost and Gradient Boosting Regression
The Gradient Boosting model, together with AdaBoost, fall into a category of
boosting models. The concept of boosting is based on the idea of combining
several weaker models, sometimes referred to as weak learners, together in
order to create a better final model [19, pp. 130–142]. The weaker model may
perform just slightly better than a random guess, and the aggregation of such
weak models can result in amplification, and a more complex and competent
predictor [19, pp. 130–142]. Such an approach may reassemble the previously
mentioned Random Forest model. The critical difference is in how the models
are combined.

For the AdaBoost algorithm, a sequence of weak models is given the train-
ing set with changing weights. The weights change as the samples pass through
the sequential models. A poorly evaluated sample by a model in one stage is
assigned a more significant weight, forcing succeeding models to prioritise it
[19, pp. 130–142]. The resulting prediction of AdaBoost is a linear combina-
tion of simpler hypotheses [19, pp. 130–142].
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In Gradient Boosting, the failures of previous models are not identified
by weights but rather by the gradient of the loss function from the previous
step [9, pp. 337–384]. The initial step is initialisation to the optimal constant
model. This is the creation of an initial single terminal node that minimises
the loss function on the data. The next step is iterative. A negative gradient
of the loss function is computed for each observation based on the previous
prediction. Then, a regression tree is fit on the residuals (referred to as pseudo
residuals) [9, pp. 337–384]. Next, the values of the terminal nodes of the fitted
tree are determined. This value is given as a value that minimises the loss
function on observations falling into the terminal node with respect to the
previous prediction. In the final stage of the iterative step, the predictions
for each sample are updated. This is given by adding the sum of all nodes’
output values to where the sample belongs, multiplied by the learning rate
to the previous prediction. Once the iteration is finished, the resulting model
is a combination of the initial and sequential tree models multiplied by the
learning rate [9, pp. 337–384].

2.9.3 Linear Regression

Linear Regression is a linear model with a form as defined by 2.24, where
XT = (X1, X2, . . . , Xp) is the input vector and β0, β1, . . . , βj are the model
coefficients [9, pp. 43–56].

f(X) = β0 +
p∑

j=1
Xjβj (2.24)

The model coefficients are estimated from the training data. While mul-
tiple methods exist, the least-squares method is the most popular method for
coefficient estimation [9, pp. 43–56]. In the case of least squares the coeffi-
cients β = (β0, β1, . . . , βj) are estimated by minimising the residual sum of
squares (2.25) [9, pp. 43–56].

RSS(β) =
N∑

i=1
(yi − f(xi))2 (2.25)

2.9.4 K-Nearest Neighbours Regression

The K-Nearest Neighbours (KNN) model finds k-closest observations, neigh-
bours to the provided sample and bases the prediction on them [21]. Com-
monly used for classification, it can also be used for regression problems. In
the case of regression, the prediction is based on a weighted average of the se-
lected k-neighbours [21]. The neighbour weights can be left uniform or scaled
by distance from the observation [21].
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2.10 Model error metrics

To compare models and evaluate their performance, metrics that indicate the
goodness of forecasts are needed. Such metrics can be the Mean Square Error
2.26 or Root Mean Square Error 2.27 [7]. Both RMSE and MSE are scale
dependant metrics that can not be compared on series with different scales
[7].

MSE = 1
T

T∑
t=1

(yt − ŷt)2 (2.26)

RMSE =

√√√√ 1
T

T∑
t=1

(yt − ŷt)2 (2.27)

2.11 Time series Residuals

Residuals are the remainder from the observed series after a model is fitted.
This can mean the difference between real observations and forecasts et =
yt − ŷt [7]. Observing the residuals after a model is fit can provide information
about how well the model fits the data and whenever it can be improved [7].

Looking at the mean of the residuals can reveal bias in the fitted model.
Non-zero means suggest that the model is biased [7]. In addition, it is desirable
that residuals are normally distributed and have constant variance [7].

2.12 Time series cross-validation

Evaluation of model forecast accuracy in order to be reliable needs to be
observed on data the model has not been fit on [7]. One approach is to split
the available data into testing and training sets, fit the model on the training
set and evaluate the forecast accuracy on the testing set [7].

An alternative approach is cross-validation, where the forecasts evaluation
is done with rolling origin. Time series cross-validation is an approach to
time series model evaluation which, instead of providing a static split between
training and testing sets of data, performs multiple evaluations [7]. The train-
ing set consists of all prior observations, and the test set is formed by a single
observation ahead, or in a case of multi-step ahead, multiple observations [7].
Each testing set is evaluated, and a step forward in time is taken, and the pro-
cess is repeated until the end of the available testing data. Measuring MSE
and RMSE values and their mean over errors in the rolling testing set offers
a suitable method for selecting the best performing forecasting model [7].
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2.13 Bottom up approach to Hierarchical Time
Series

Hierarchical time series allows forecasting series forming predefined hierarchi-
cal relationships described by a tree structure. The parent series are formed
as the aggregate of its children series. In this thesis, the bottom-up approach
to HTS forecasting is used. With this approach, the bottom level series are
forecasted individually, and the forecasts are aggregated to form a top-level
forecast according to the defined hierarchy.

Formally, HTS can be described by the following equation,

yt = S ∗ bt (2.28)

where S is the n∗m summing matrix defining the bottom-level aggregation,
yt is an n−dimensional vector including bottom level and aggregated forecasts
and bt is an m−dimensional vector with bottom level forecasts.

yt =



ytotal,t

yA,t

yB,t

yAA,t

yAB,t

yBA,t

yBB,t


=



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


∗


yAA,t

yAB,t

yBA,t

yBB,t

 (2.29)

In the example 2.29 equation, the hierarchy can be described as a sym-
metrical tree where the root has two children, each with two leaves. Where
yA,t indicates forecasts at time t for the left child on the first level and yAB,t

the forecast at time t node second from the left [7].
The usage of Hierarchical Time Series is not new in forecasting web traffic.

An example can be a case study by Hauskrecht, Liu and Yan [22], which intro-
duce an improved framework for HTS and its usage in web traffic forecasting.

2.14 Cloud computing Queuing Theory Simulator
A simulator would be needed to evaluate the usefulness of the resulting fore-
casts in this thesis for cloud environment scaling. The simulator of choice was
developed by Vondra [4] and is based on Queuing Theory. The simulator, writ-
ten in R, comes along with a set of auto-scaling functions, approaches which
based on the observed utilisation, latency, request-queue length, and a hybrid
combination of those provide a decision making logic for scaling the environ-
ment at each step in time. Each approach to auto-scaling has to be evaluated
on multiple criteria and trade-offs. Among those criteria are machine-hours,
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starts and stops of the instances and metrics user satisfaction with interactive
services.

Machine-hours refers to the total number of hours of running instances
[4]. Starts and stops of the instances refer to the number of instances that
were stopped or started during the observed time, where a large number may
suggest that the used method is unstable. It may also be undesirable as some
providers have costs attached to starting and stopping instances [4]. The way
user satisfaction is quantified is by using the Apdex formula (2.30) applied to
time intervals [4]. Apdex is a response time formula based on splitting the
users into groups, satisfied, tolerating and frustrated, where thresholds T and
F are set to divide them, T is set by the user and F is defined as F = 4T [4].

Apdex =
Requestssatisfied + Requeststolerating

2
Requestsall

(2.30)

Apdex can split into conservative and strict approaches with the setting
of T . In the conservative approach, it is between one to three seconds, while
in the strict approach, it is slightly above the average response time [4]. The
final metric used in the simulator is the number of time intervals where Apdex
(Conservative - 1 second) was below 0.95 (users seeing significant latencies)
and the percentage of intervals and where Apdex (Strict) was below 0.7 (the
system was overloaded) [4].

The simulator runs in a stepwise fashion where each step is fifteen minutes
long. During each step, the scaling logic is consulted for scaling decisions in the
environment. If a decision is made to scale up or down, the fifteen-minute step
offers substantial time to allow for additional machines to be fully started. A
necessary parameter that needs to be specified before the simulation is service
demand. This parameter is defined as the lower bound on the service time of
a request given by its computational demand [4].

The available simulator methods used for comparison have parameters up
and down, which provide boundaries in the threshold-based implementations.
To provide an example, in the utilisation based approach, the up parameter
refers to the environment utilisation boundary needed to scale up. Once the
value is above, a decision to scale is made. The simulator offers a parameter
sweep mode which allows finding optimal choice for the threshold parameters.
The available autoscalers are listed below:

• Utilisation based autoscaler - Threshold-based approach focused on
environment utilisation. The utilisation based approach tends to show
larger machine-hours during low utilisation and has an increased chance
for Service Level Objective (SLO) violations [4].

• Latency based autoscaler - Threshold-based approach focused on
request latency [4].
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• Queue length based autoscaler - Threshold-based approach focused
on average load balancer queue length. The queue-based autoscaler
tends to show more stability with fewer starts but with a larger number
of machine-hours [4].

• Latency-queue hybrid autoscaler - Threshold-based approach com-
bining latency and queue length. The latency is used for scaling up while
queue length is used for scaling down [4].

• Latency-utilisation hybrid autoscaler - Threshold-based approach
combining latency and utilisation. The latency is used for scaling up,
and utilisation for scaling down [4].
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Chapter 3
Realisation

3.1 Implementation environment and structure

The analysis, labelling and forecasting in this thesis were conducted in in-
dividual Jupyter notebook files, each covering different thesis stages. The
notebooks themselves contain all code, models, analysis and forecasts and
chronologically walk through the stages. The notebooks and their content is
described in the appendix A.

The language of choice in the notebooks is Python 3.7. For data manipu-
lation and analysis the Numpy [23], SciPy [24] and Pandas [25] libraries were
used. For data visualisation, the selected library was Matplotlib [26] library
enhanced with Seaborn [27] for a more high-level interface allowing for faster
creation of visually appealing plots. As for forecasting, the R language was
considered as it offers very mature packages for time series forecasting such
as the forecast [28] package, but the language and libraries struggled to deal
with the relatively large data size. For this reason the Python libraries of
Statsmodels [29], Pmdarima [15], Scikit-learn [10] were used for forecasting
instead.

The previously mentioned R language played a role later, as the used cloud
environment simulator is written in it, a jupyter notebook adaptation of the
simulator code was created with minor modifications to fit the template.

3.2 Data origin

The data has been collected by Seznam.cz on the web servers of Novinky.cz
site. It accounts for from 6.25% to 12.5% of the requests logged in the environ-
ment, varying through time. The dataset spans from 12.06.2019 to 06.08.2019,
55 days in total.
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3.3 Data format & preparation
The data comes in a reduced form of the Common Log Format for web servers
split into multiple files. The regular columns for client address, user-identifier,
HTTP status code and byte size have been removed. The remaining informa-
tion consists of the request’s date and time, the HTTP method and a hash of
the requested resource name. The data provider has done this censorship as a
means to remove sensitive information from the dataset. Example entries are
shown in the 3.1 listing.

Listing 3.1: Example entries in the provided data.
[23/ Jul /2019 :06 :30 :26+0200 ] ”GET e93fa2ab48a1d7f395028dbb379c406b ”
[23/ Jul /2019 :06 :30 :26+0200 ] ”GET e93fa2ab48a1d7f395028dbb379c406b ”
[23/ Jul /2019 :06 :30 :26+0200 ] ”GET 094 fb9abe3ee6c1a78c2a6da1801f672 ”

The data has been transformed into CSV (comma-separated value) format
and unified into a single file for easy reading and parsing by concatenating the
individual files by a shell script.

3.4 Initial analysis
In total, the 64,993,615 requests in the data consist of 1,791,756 unique items
(hashes), out of which only 33.32% appear more than once, and only 3.47%
of items appear more than ten times. This low recurrence suggests that the
number of items with significant traffic is much smaller than the total number
of unique items, most receiving little to none. On average, there are 21,719
requests daily belonging to hashes, never to appear again, hashes with less or
equal to 10 requests have a daily mean of 53,160 requests and hashes with 100
or less have 76,272 requests.

The requests had to be aggregated and summed over time intervals to work
with the data as a time series. Multiple time intervals have been used in the
thesis; the most common would be 1, 5, 15 minute and hourly intervals, with
an interval being a sum of all specific item (unique hash) requests over the
selected period. For example, a 15-minute interval would be formed by the
sum of requests from 00:00:00 to 00:14:59, followed by 00:15:00 to 00:29:59 up
until the end of the series. The sum of requests over a selected interval then
forms a single observation, and the frequency of the observations is referred
to as a sample rate. Data summed over one-minute intervals leads to a one-
minute sample rate with each observation tied to a specific minute in time.

When looking at the dataset as a whole, either by a sum or by mean over
time, clear daily seasonality with no apparent trend can be observed. This
seasonality reflects people’s behaviour interacting with online news, interest
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Figure 3.1: Figure shows mean requests over day-time through working week
and weekend.

peaking during the afternoon and diminishing at the end of the day. As shown
in figure 3.1 apparent scale differences between the working week and weekends
have been observed, the latter seeing lower interest. This difference suggests
a potential weekly seasonality.

The initial analysis revealed some concerns about the data. First, the scale
of the collection as a part of daily traffic differs across dates and, secondly,
it contains deployment events in the environment, which leads to gaps in the
dataset. These concerns will have to be addressed. Both the gaps and variety
in scale can be observed in figure 3.2

The figure 3.3 shows a lag plot analysis with yt+24 for correlation with
hourly lagged request sums of one day and with yt+168 for a lag of one week.
In both cases, the figures show correlation and alongside the patterns observed
from the plots of the total sum serve as further evidence for daily and weekly
seasonality.
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Figure 3.2: Figure shows total hourly request sum over dataset lifespan with
moving average of 24 hours.
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Figure 3.3: Figure shows lag plot of the sum of all requests with 24 and and
168 hour lags, 1 day and 1 week.
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3.5. Data correction

3.5 Data correction
In the time span of 12—13 June 2019, the data collected accounted for 12.5%
of the entire activity in the environment. This period is at the beginning of
the dataset and is the only time where it was so. Other days accounted for
6.25%. To prevent this irregularity from affecting further efforts, the range
starting from the earliest request on 12.06 up until 6:30 AM the following day
has been removed. As up to that moment, the irregularity could be observed.

In addition, downtime caused by deployment events has affected the en-
vironment. These events have happened on 01.07.2019 (Starting from 6:30
AM and lasting for 24 hours), close to the middle of the observed range, and
06.08.2019 at the very end. Both took a day to resolve. This gap leads to
disturbance in data continuity. Data at the end, starting from 05.08.2019 at
6 AM, has been removed.

Removing the downtime on 01.07 was not an option as it would break the
continuity of the data. Therefore, a different method had to be used.

In addition to outages and known differences in the scale of the data col-
lection, a particular type of anomaly can be observed. These anomalies take
the form of a sudden decrease in the volume of incoming requests, frequently
preceded or followed by a peak in requests, and they tend to be short-lived
(few minutes to roughly forty-five minutes) and have varying length. There
is no clear pattern. In the case of outages, no requests were coming in, while
in this case, requests did come in, just in a noticeably smaller volume.

3.6 Downtime correction methods
Two methods have been used in this thesis’s scope, at different times, one
replacing the other once it was found to provide better general results. To
reduce the number of series affected by the correction, both methods attempt
to modify only those series, where an argument can be made that they have
been affected by this downtime. The series had to show activity before and
after the downtime on 01.07.2019 to be considered for correction.

Both methods look at intervals of a specified size in time before and after
the gap. Then, they compute a mean of those two intervals and replaces
the missing values with the newly computed data. To provide an example,
missing values for 3:00 PM would be replaced with the mean of 3:00 PM from
the previous and following days.

The methods differ in the window size over which the mean is computed.
The first one uses seven days before and after the gap, and the mean is com-
puted from fourteen total days. With the second method, the interval size
is reduced to a day before and after. The motivation to reduce the interval
size in the second method is to improve performance on the series experi-
encing non-repeating patterns, influencing the mean. When an irregularity,
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Figure 3.4: Figure shows the corrected data comparison on two example series,
the blue series shows corrected data using the larger mean window and the
red using the smaller one. Original data showed zero requests in the corrected
interval (Interval of the red series).

frequently in the form of a sudden surge of requests, is observed within the
correction window, it strongly influences the newly computed corrected data.

The main flaw with the methods is lack of robustness, a series that con-
tained a significant peak over a short period of time, either before or after the
downtime, has seen its gap filled by another smaller peak, which is caused by
the mean values collected over the entire lifespan being significantly affected
by the prominent existing peak, this was despite the likely-hood of such peak
in the gap occurring being very slim. On the other hand, seasonal series
mostly did not suffer from this phenomenon as irregularities are few and less
impactful. This behaviour can be observed in the 3.4 figure.

The effect an observed irregularity has on the series with a smaller window
is potentially more significant as the larger mean window moderates the irreg-
ularity impact better than a smaller one. Decreasing windows size might seem
counterproductive, but with the smaller window, the number of series repeat-
ing the irregularity is significantly smaller as the irregularity is less likely to
be within the selected window.

It is essential to note at which stages of the thesis the methods were em-
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ployed. The first method was used initially. The data corrected by this
method has been used in the labelling stage of the thesis, which sees as its
goal to split the series by their behaviour and provide basic labelling. Fur-
ther stages used the second method with a smaller mean window. Part of
the labelling stage contained efforts to visually inspect the individual series
revealing the flaws of using a large correction window. Once this stage has
been completed, there was nothing to be gained by re-doing the mostly man-
ual effort using the succeeding method. The series were already labelled, and
the methods or the process itself are not the thesis’s point.

As for the previously mentioned irregular anomalies, when a correction
using means of future and previous observations was attempted on the indi-
vidual series level, the results were not good, and this approach did not work
on these outages. The cause of these anomalies remained unknown. There-
fore, the data was not modified until a later stage in the thesis, where a sum
of the series was used.

3.7 Time series labelling, classification
The series, stripped of information about their nature, forced a need to spend
considerable efforts to provide useful labelling for further work. With the
relationship between the series and request addresses gone, the ability to tell
which time series was an article, discussion page, news section, or other also
disappeared.

Under ideal conditions, the classification method could be built around
knowledge of the resource address, its nature being part of a well-defined
structure. In the form, as the data was received, no such classification is
possible. Only speculations can be made. The most popular series covering the
entire span of the dataset and showing consistent daily seasonality are good
candidates for the web’s individual news sections (such as weather, sports,
local news or others). Series displaying peaks in interest over a short span of
days disappearing into obscurity seem to match articles’ expected behaviour.

The idea of working with articles and section had to be abandoned in
favour of more universal labels. For this, two basic labels have been used:

• Short-living peak dominated series - Series with a small number of
dominating peaks and otherwise uninteresting static behaviour.

• Long-living seasonal series - Series that display resolute daily sea-
sonality through the majority of their lifespan.

With the desired labels defined, the series were split into these groups
based on their behaviour using hierarchical clustering, the process of which is
the topic of the following few sections.
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3.7.1 Extracting features from the time series for clustering
To provide data for feature-based clustering of the time series. Features with
origin in statistical properties, local extremes, auto-regressive model parame-
ters, lifespan, minute interval counts, and differentiated time-series statistical
properties were calculated. Many of those have been identified by Polák in
Server Load Clustering [30]. The features are listed in the table 3.1.

Table 3.1: Table lists features used in time series clustering. Features marked
with * have been used by Polák in [30]
Feature Description
Non-zero occurrences 15 Minute sample-rate observations

with non-zero requests
Occurrences Total amount of observations in the

series
Non-zero ratio Ratio of zero to non-zero observa-

tions
Mean* Mean requests over observations
Std* Standard deviation of the series
Skew* Time series skew
Sum Sum of all requests
3 Largest values Largest observations by amount of

requests
95% Confidence interval Series 95% Confidence interval.
Local maxima above 95% CI* Number of local maxima observa-

tions above the 95% interval.
Akaike information criterion* Model selection criterion
Bayesian information criterion* Model selection criterion
Auto-regressive model intercept* The intercept of a fitted auto-

regressive model.
Auto-regressive model lag values*
(0, 2, 4, 8, 12, 24, 47 hours)

The parameter values of a fitted
auto-regressive model.

Differentiated time series Mean* Mean of the series after differentia-
tion

Differentiated time series Std* Standard deviation after differenti-
ation

Differentiated time series Skew* Time series skew after differentia-
tion

Lifespan Length of the time series in days

A dataset with the listed features was created, with features being cal-
culated per each time series that met the minimal criteria to be considered
worthwhile of investigating. Such criteria have been based on the total num-
ber of requests of the specific series. Series with low recurrence of requests
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were not considered for clustering and further efforts, as the impact such series
has on the environment is minimal.

In the analysis, it has been observed that only 3.47% of series have more
than ten requests, with the number of needed requests being selected as 100
this number drops to 0.007%, 13034 in total.

This removal seems like a significant loss in the considered data, but this
small number of series can explain the vast majority of the total requests. Out
of the total 60,964,213 requests (post-correction), 56,982,512 belong to series
with more than 100 requests. By percentage, this is 93.4%.

A further advantage of this decision is that the computation of the features
is difficult. The total amount of time needed drops from days to within a day
(With the possibility of optimisation, this could be reduced).

Another variable that should be mentioned is the sample rate over which
the requests form the time series, as the selected interval affects the resulting
features. A sample rate of 15 minutes has been selected, although 5-minute
sample rate features have been computed as well, usage of these features did
not introduce any benefits in the clustering section, and they were not used.

3.7.2 Clustering, methods and features
With the vast amount of features defined in the previous section, in order to
find the best possible clusters, a systematic approach was needed. Subsets of
features were selected, including the entire set as well, as using only all of the
defined features at once was unlikely to provide the best results due to high
dimensionality.

Out of all possible combinations, only a subset has been explored; 48
combinations have been explored in total. Out of this large subset, the most
promising methods have been selected for a more detailed review, 11 in total.
Promising methods offer split into clusters meeting expectations set by the
previous analysis. The long being in hundreds compared to thousands of
short-living series.

From the clustering process, it has been observed that long-living series
mostly end up in one cluster; however, this cluster appears early in the process,
and with further merges, as the process continues, it is polluted and results
in a larger cluster consisting of mixed series. This outcome is not desirable.

The explored methods and features are specified as:

• All features - All computed features, 4 and 12 final clusters. On raw,
scaled, normalised and scaled and normalised features.

• Model based features - Akaike information criterion, Bayesian in-
formation criterion, auto-regressive model intercept, auto-regressive lag
values (7 in total). With 12 final clusters. On normalised and scaled
features.
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• Lifespan based features - Non-zero occurrences, occurrences, non-
zero ratio, local maxima above 95% CI, Auto-regressive lag values (after
24 and 47 hours) and lifespan with 12 final clusters. On normalised and
scaled features.

• Behaviour based features - Mean, standard deviation, skew, non-
zero ratio, local maxima above 95% CI, Differentiated time-series mean,
std with 12 final clusters, on normalised and scaled features.

• Value based features - Mean, standard deviation, skew, three largest
values, local maxima above 95% CI with 12 final clusters. On normalised
and scaled features.

The initial clustering result selection has been based on visualisations and
numerical distribution of the resulting clusters. For each of the combinations,
box plots showing the feature distribution and graphs of five of the most and
least requested series in the clusters have been plotted.

The ideal outcome would be a method providing a clean split of 2 clusters
for each series type. No such outcome was observed with the explored meth-
ods. Methods providing a split with a smaller cluster with the least and most
requested series being long-living have been favoured. Methods providing
roughly equally-sized split in terms of numbers or major cluster accompa-
nied by insignificant clusters or clusters formed by individual series have been
immediately discarded.

A large number of series and combinations led to difficulties in reviewing
and selecting the best results. Cluster plots become unreadable and convo-
luted with just a small number of series involved. Numerical distribution
amongst clusters paired with the knowledge of the ratio of series types is
helpful but does not offer a complete understanding of the observed clus-
ters. The feature box plots are numerous and difficult to interpret. Together,
they provide an overview, which is good enough to filter out some of the
non-satisfactory results but not to decide on without a more detailed review.
Figure 3.5 shows a good candidate, the second cluster is small, and the least
and most requested series seem to be long-living seasonal series.

3.7.3 Clustering review & behaviour labelling
The promising methods and their final clusters selected in the previous section
have been observed in greater detail. All series, in each of the methods per
cluster, have been plotted in groups of five. The resulting plots have been
manually inspected, and based on the observations, labelling was attributed
to each cluster. Some clusters consisted only of a single type, and others were
a mix of multiple types. No method could find a clean split where all or the
vast majority of the series would be in clusters consisting of one type.
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Figure 3.5: Figure shows an example plot with cluster least and most popular
series plots. The figure comes from lifespan features, ward linkage with scaled
and normalised features and 12 total clusters; only three are shown in this
figure.
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With the individual clusters marked by the types of series found in them,
each method’s outcome could be evaluated with more accuracy. The result
where the number of series belonging to mixed clusters was smallest has been
favoured.

Four best splits have been selected based on these criteria, and each series
has been assigned a final type label if in all four best methods it belongs to
a cluster with the same label. To provide an example, a series that belongs
to short-living clusters in all four methods would be labelled as such. Series
belonging to mixed clusters or belonging to clusters with varying labelling had
to be manually assigned to a cluster based on per-series observations.

This method reduced the number of series to label from 13034 to 1216,
considering the remaining number was still overwhelmingly short-lived, the
number of series which had to be manually assigned to the long-living cate-
gory was small. An additional advantage of this method is the reduction in
misclassification caused by manual review of a large number of convoluted
plots or by the series passing as either type.

3.8 Post-labelling analysis
A group focused analysis was conducted with the series split and labelled into
the predefined long and short living groups. In hindsight, the request cutoff
number for series to be considered could have been much larger, although, in
small numbers, nonsensical series with few requests were still in the selected
data, those were usually also hard to classify as they showed patterns typical
for both groups. The short-living peaks account for 18,864,794 requests by
12,780 series, and the long-living seasonal account for 39,003,417 requests by
187 series. Combined, these series account for 93.4% of requests. The missing
data consists of series with less than 100 total requests. The total series and
the sums of the groups can be observed in the 3.11 figure.

3.8.1 Long-living series analysis
The long-living seasonal series are dominated by few largest series. The largest
long-living series accounts for 24% of requests of all long-living series. The five
largest together account for 75.4% per cent of all the 39 million requests from
their category and for 50.8% of the total considered requests. On average,
daily, there are 722,285 requests attributed to this category.

3.8.2 Short-living series analysis
To achieve the same share of requests as in the long-living category (75%),
adding the 2,985 largest series together would be needed. This comparison
is, of course, unfair. The longer the period observed in the data, the smaller
the share a singular peak-series would have, while the long-living series would
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likely maintain their share. For this reason, in order to correctly assess the
impact a peak series had, a reduction in the window size from the entire
dataset to a much smaller interval was needed.

The largest of the peak series, on 15-minute intervals, held at its peak a
15% share of the requests in the environment. A much better result, if only
short-lived. For the ten largest peak-series, their largest shares average 12.2%.
For 100 largest, the number is lower at 8.6%. Figure 3.6 shows the largest
shares for the largest 1000 series in descending order. It can be observed that
while the share tends to decrease with series size, numerous exceptions exist.
The share that a series has out of the total number of requests helped identify
periods where peak series played an important role. This can be seen in figure
3.7, where this approach was used.
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Figure 3.6: Figure shows the share of requests for the 1000 largest peak-series,
in descending order.

It has been observed that the majority of series begin during the day, with
the first quartile being at 9:00 AM, the median at noon and the third quantile
being at 3 PM, likely corresponding to articles being published through the
day. Figure 3.8 shows publish time counts. Analysis revealed that while the
largest series by the total number of requests are mostly published during the
day, the relationship between publishing time and the size of the total sum of
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series requests is not strong. In this case, the visualisation is deceiving as the
majority of the weight is in the lower counts (sums) regardless of publishing
hour. Even when reducing the number of observed series to the largest hun-
dred or thousand series, no stronger relationship between publishing time and
series size could be observed.

3.8.3 Growth in long-living series during short-living series
peaks

Further analysis has been performed to answer how the long-living series group
behaves during peaks in the short-living series. Moments where individual
series exceeded 10% of the request share, have been evaluated. It has been
observed that the larger a short-living peak was, the larger growth was in
the long-living series. The largest measured value was around 53%. This
large value is likely an outlier as the requests were highly volatile during such
peaks, and the real growth was smaller. The mean increase in long-living
series is 15%, the distribution and relationship is better explained in the 3.2
table and the 3.10 figure. This relationship is, however, not only positive.
Smaller peaks can mean even a 24% decrease over the average requests in the
long-living group than usual.

Table 3.2: Measured growth in long-living series requests during peaks.
1. quartile median 3. quartile

Series growth 9.91% 15.89% 22.15%

3.8.4 Short-living series - Describing peaks

With the short-living series playing a wildcard role, being able to increase the
total number of incoming requests in a short period of time, it became crucial
to gain an understanding of when does this occur, how much time is after that
the series start until it starts to have an effect on the environment and for how
long does this effect last.

3.8.5 Peak-detection method

The beginnings of request peaks, usually the only steep growth of a series,
have been identified with moving averages. Fast and slow-moving averages
have been used. A timestamp being marked as a beginning of a peak when
the slow-moving average exceeded the fast-moving one. Before the moving av-
erages could be used, the series sample rate and slow and fast-moving average
windows had to be specified.
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3.8.6 Parameter selection

The delay and response time is crucial in detecting peaks and their future
impact. Too long of an interval, and the detection will be slow and miss the
first peaks. As, by the time a peak is detected, assuming the method would
be used in real-time, the peak is too old, or worse, the peak occurred before
the method had a chance to detect it. Too small and the series becomes too
volatile, and accurate detection becomes very difficult.

A large number of combinations with series sampling rates, fast and slow-
moving average window sizes and the possibility of using exponential moving
averages led to an examination of the moving average behaviour with different
parameter choices. The outcome was that with increasing moving average
window sizes, similar results to those with lower window sizes but longer
sample rates were observed.

With the possibilities more clear, the next step was settling on parame-
ters providing good detection. A small initial sample of series with different
behaviour was selected on which the parameter selection and resulting perfor-
mance was judged. Both exponential and normal moving averages have been
observed. The series sample rate has been selected as ten seconds, and multi-
ple promising parameter options have been found. On the small sample, the
best performing option was exponential moving average with the window sizes
of ten and twelve for fast and slow-moving averages. In addition, a minimum
condition was specified for successful peak detection. A minimal amount of
requests has to be observed within an interval to be considered. The slow-
moving average has to exceed more than eight requests. This minimum has
been set to prevent early marking of a peak start when the series is volatile
and does not yet experience steep growth of any significance.

With the parameters set, the method has been applied to all short-lived
series with over five thousand total requests. This was done to filter out less
interesting series out of the thousands of series available, with most being
judged unimportant for future forecasting. With the minimal number of re-
quests set, a relatively large number of series remained (864). Even with the
number of series reduced, the method failed to find any peaks for 568 of the 864
considered series. It became clear that the method had to be improved. By
observing the series with undetected peaks, it was apparent that the method
failed to mark series where the peak was much less steep or where the number
of requests did not meet the specified criteria for the minimum amount.

Initially, the minimum number of requests was lower at 1000 requests.
However, it did not present a good filter for meaningful series. Hence the
requirements were raised. Nonetheless, the method has been evaluated on
this number as well, with 3,714 of the 4,238 series meeting criteria have not
had peaks found using the described method, this reinforced the decision to
improve the method.

Once again, a small sample was taken, this time out of the undetected
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series, and multiple parameter options have been tried. The result was that
slower exponential moving averages on slower sample rates were better than
the relatively fast-paced option for the series with yet undetected peaks. This
split brings problems where one set of parameters outperforms the other on a
particular type of series, with the roles being reversed for another type. The
series with steep growth take priority, but the remaining series can not be
ignored. Both moving averages would be used to alleviate this problem, one
faster, as specified before, and one slower. The slower exponential moving
average is based on the 30-second series sample rate and with window sizes of
ten and fourteen. This makes the minimum amount of time needed for this
method mark a peak as seven minutes. For the faster-moving average, this is
two minutes.

For the majority of the series, this works well. Exceptions, however, do
exists, as can be observed in the figure 3.13. In the third example, the series
growth is much less steep, and the condition for a minimum of requests per
interval plays a more significant role than moving average crossover.

3.8.7 Method shortcomings
The result with the combined moving averages was better than using a single
moving average. The number of series where a peak was detected increased
from 296 to 833. A much better result. However, even with improvements,
31 (1,663 for 1000 minimal size) series before labelled as short-living series
had no peaks detected. To gain a better understanding of the nature of such
series, an additional analysis was conducted.

The improved method was also applied to the series meeting less strict
criteria of one thousand minimum requests. The results ended up with an
increase from 524 detected peaks to 2,575. However, this still left 1,663 series
without a marked peak.

Comparing the two groups, series with and without a detected peak, re-
vealed that the undetected group’s series were smaller, with a shorter lifespan,
smaller mean and smaller maximum values. The exact values can be found in
the 3.3 table. In summary, the total number of requests per group is 8,100,901
for detected-peak and 192,788 for undetected (12,750,070 and 2,978,523 for
1000 minimal size). The visualised sum of request comparison can be seen
in the 3.11 figure. The undetected group is significantly less important than
the detected peak group. The undetected-peak series were not considered for
further analysis.

3.8.8 First peaks in short-living series
It has been observed that 50% of the considered series have the first peak
within the first 21 minutes. For 75% of the series, the peak is within 67
minutes from the first known request. Figure 3.14 shows the time until the

34



3.8. Post-labelling analysis

Table 3.3: Table shows comparison of the distributions of the measured val-
ues across both considered series groups and remainder after the minimum
requests criteria.

Detected-peak group
Series requests Series lifespan (min) Series maximum

1. quartile 6,273 16,938.25 9
median 7,910 34,543.66 11

3. quartile 11,318 53,900.83 15
Mean 9,725.47 35,692.94 12.66

Undetected-peak group
Series requests Series lifespan (min) Series maximum

1. quartile 561 37,275.62 3
median 722 75,815.29 5

3. quartile 761 76,232.75 6
Mean 6,220.38 52,079.73 4.80

Remaining group, below 5000 total requests
Series requests Series lifespan (min) Series maximum

1. quartile 198 9,462.25 2
median 461 29,554.50 3

3. quartile 1,142 54,254.75 5
Mean 887.09 33,262.55 3.90

peak in greater detail, figure 3.15 shows empirical distribution function with
the probability of a first peak occurring by minutes passed from the series
start. Clearly, most series show the beginning of a peak within a brief period
of time since the start of their lifespan.

To better understand how steeply the peaks grow, the relationship between
the size of the series and the steepness of the first peak has been explored. To
determine the steepness of a series peak, a Linear Regression model has been
fitted on the series from its beginning until the moment of peak detection,
and the slope from the best-fit line has been measured. The relationship can
be observed in the 3.12 figure. The correlation between the two variables has
been measured as 0.45. No relationship can be observed.

In addition, the same has been explored for the size of the series when
the peak was detected and the fitted line slope, there the relationship is very
noticeable with a correlation of 0.78. The conclusion from these results was
that how fast the series grows during its initial peak does not seem to affect
the final series size and vice versa. The other less surprising observation is
that there is a linear relationship between peak size and steepness of growth.
More prominent peaks tend to grow faster.
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3.8.9 First peak request drop-offs
With the beginning of the peaks know, additional questions about the series
nature can be answered. How long do peaks last, how quickly do they lose
requests and what proportion of the total requests associated with the series
is within the marked peak?

A peak’s lifespan was measured by moving average with a window of ten
minutes starting from half of the window size before the marked beginning of
a peak on the sample rate of five seconds. For each series, three occurrences
are searched for, the 25%, 50% and 75% drop-off from the mean measured
around the peak beginning. The drop-off in mean values allows measuring the
longevity and pace at which requests are lost. For many series, the post-peak
drop-off in mean requests is quick, happening in the first ten minutes after a
peak was marked. The measured values for all measured 25%, 50% and 75%
decrease in the mean are in the 3.16 figure.

To judge the series peaks’ size, a percentage of the number of requests
from the marked start until drop-off out of the total sum of requests has been
measured. The observation results can be seen in the 3.17 figure.
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Figure 3.7: Figure shows two days, where a single peak-series exceeded its
share of requests for more than 10% of the total number of requests. This
leads to peak-series spikes being visible in the total sum of all requests, all
while the long-living series did not experience growth at the same pace.
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Figure 3.8: Figure shows the number of short-living series published by hour.
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Figure 3.9: Figure shows the sum of all requests and sums of all short and
long living series.
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Figure 3.10: Figure explores the relationship of short and long-living series
during peaks. The figure on the left compares the short-living series peak size
with the requests in the long-living category measured simultaneously. The
right figure compares the peak size with the percentual growth of long-living
series during said peak over the mean measured at that time over the dataset.
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Figure 3.11: Figure compares total sums of the two series groups (with de-
tected peaks and without).
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Figure 3.12: Figure shows a relationship between the total request size and
the slope of the best-fit line until the first peak. The orange line is another
best-fit line on the output data. The same is shown for the first peak size and
best-fit slope.
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Figure 3.13: Figure shows four examples of the peak-series startup detection
method by moving averages. The green series represents the slow-moving
average, the red series fast-moving, and the purple vertical line indicates where
the start of a peak was detected.
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Figure 3.14: Figure shows histogram with 5 minute interval bins for series
startup in minutes.
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Figure 3.15: Figure shows the empirical distribution function for peak occur-
rence in minutes from beginning of the series.
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Figure 3.16: Figure shows minute interval counts of when a mean window value
achieves a perceptual drop from the mean window value measured around the
beginning of the peak on individual short-living series.
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3.9. Forecasting sudden increases

3.9 Forecasting sudden increases
With the data analysed and better understood, a method for short-term pre-
diction could be formed. Multiple models have been tried ARIMAX, AR(1),
TBATS, benchmark models and the most complex out of the considered mod-
els, models based on HTS (Hierarchical time series). For the HTS models, the
data has been split into multiple components where each was forecasted in-
dividually, the component forecasts representing bottom-levels of a simple
hierarchical time series. Using a bottom-up HTS approach, the lower-level
forecasts were unified to form one top-level forecast representing the incoming
request’s total number. Two HTS models have been used, a strict real-time
model for a more conservative approach and a speculative model to allow for
a situation closer to potential real-time use.

The forecasting has been attempted on one and fifteen-minute sample
rates. The very fast-paced forecast on the one-minute sample rate has the
potential to notice disturbances caused by sudden peaks, as observed in the
analysis where peaks can happen within minutes but may fail to provide rea-
sonable forecasts for more extended periods as the quality of the forecast
deteriorates with more steps-ahead away from the last observations. The
fifteen-minute sample rate forecast should provide forecasts further ahead in
time. The intention is to provide a reasonable forecast for the immediate
thirty minutes ahead and a medium-term forecast for the few following hours.

3.9.1 Model evaluation
The dataset has been split into test and training parts with a 70% to 30%
ratio. They range from 13.6.2019 to 20.7.2019 for the training set and from
the end of the training set to 5.8.2019 for the testing set. The training set
has been used to fit the initial model, which was then evaluated using cross-
validation with steps-ahead chosen by sample rate over the remaining testing
data.

The root mean square errors and mean square errors have been observed
on the short-term forecasts prepared by the cross-validation approach. This
approach allowed for the evaluation of forecasts as if they were made in real-
time. The cross-validation method of evaluation has been chosen to reward
models performing well in the short-term instead of long-term forecasts, which
would potentially benefit from a more static approach with the split of training
and testing sets. The motivation being as to focus on the sudden peaks that
are the topic of this thesis.

The errors were calculated by iterating over each observation in the testing
set, each previous observation has been made known to the fitted model, and
forecasts of three hours for the fifteen-minute sample rate model and thirty
minutes for the one-minute sample rates have been made. To provide an
example, if the testing set contained ten observations, ten forecasts would
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be made by the model, and errors would be calculated by subtracting the
forecasts from the observed values over the forecasted range. The errors of
the final forecasts where no comparison with observed values can be made
would be zero. The final total error is given as a mean of RMSE and MSE
errors on individual forecasts made.

The components used in HTS models have been evaluated differently. For
components modelled by traditional time series models, the evaluation de-
scribed above was used, the components where different models were employed
were evaluated over multiple individual series, a more detailed description be-
ing in the 3.9.4.1 section. The individual components of the HTS models are
covered in the next section.

3.9.2 HTS Forecast components

The first component consists of requests attributed to the previously identified
long-living series, which together form a strong and stable seasonal compo-
nent. The short-living series form the remaining components and a tracked
series component where selected series, varying through time, are forecasted
individually.

Two approaches were attempted with the short-living components. The
first one was a strict approach where the data is used as observed in its current
form in real-time. This real-time use is a very restrictive approach as the
anonymised data does not allow for immediate identification of series. When
a series first appears, it can not be said as to how it will behave. In a real-
world scenario, the information about the series nature, such as belonging to
a newly published article, would not be difficult to acquire, and assumptions
could be made on the series’s future behaviour.

The second, more speculative approach attempts to compensate for this
loss of information in the data. Part of the peak components matching the
expected behaviour of impactful articles is selected beforehand. This specula-
tion simulates a method where the information about newly published articles
is known as it appears rather than with delay as in the first method. From the
previous chapters’ analysis, the amount of time until a newly observed short-
living series starts to have an impact can be small. Thus, the ability to forecast
their impact could be crucial for successfully detecting peaks, something the
first method may fail at.

In both approaches, the short-living series were split into eleven compo-
nents; ten of the short-living series were picked at one point in time and
forecasted individually using regression models and a remainder component
containing the sum of all remaining short-living series posing as the more sta-
ble seasonal component with its volatility reduced by removing most impactful
peaks.

The equation 3.1 shows how the final forecast is acquired. The ŷl,t stands
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3.9. Forecasting sudden increases

for the forecast of the long-living model at time t, the ŷsr,t is the forecast of
the remainder component of the short-living series at time t and the ŷtrn,t is
the n-th tracked short-living series at time t.

ŷt = ŷl,t + ŷsr,t + ŷtr1,t + . . . + ŷtr10,t (3.1)

In HTS matrix notation this becomes 3.2 where ys,t are all short-living
series and the ytr,t represents all tracked series.

ŷt

ŷl,t

ŷs,t

ŷl,t

ŷsr,t

ŷtr,t


=



1 1 1
1 0 0
0 1 1
1 0 0
0 1 0
0 0 1


∗

 ŷl,t

ŷsr,t

ŷtr,t

 (3.2)

The first approach uses the last thirty minutes (15-minute sample rate)
and ten minutes (1-minute sample rate) moving window over which sums of
all short-living series are considered. The series with the most considerable
sums are selected, and each is forecasted individually. This approach catches
the most impactful series but may fail to do so fast enough.

The second approach attempts to re-mediate the shortcomings of the first
method. Five series are selected as in the first method by their current size.
The second half is tracking series previously identified and tracked by the first
method. Instead of waiting for the series to be large enough to be caught by
the moving window size, the previously identified series is tracked as soon as
it becomes available. The newly tracked series replaces the least requested
currently tracked series. To prevent this approach from replacing series before
they have a chance to grow, each newly tracked series has a short, safe period
when it can not be replaced. It may, however, grow large enough where it is
considered one of the five largest. In this case, the series is forecasted as a
part of this group freeing up space for another series.

3.9.3 Long-living series forecasting
For forecasting the long-living series, multiple models have been tried. Naive,
Average and Seasonal naive models have been used as a benchmark for com-
parison with the Auto-regressive model with an order of one, TBATS model
and an ARIMAX model with Fourier terms modelling the daily seasonality.
Fourier terms for weekly seasonality have been considered as well. However,
this increased the number of combinations significantly, making the process
computationally tricky. In addition, the initial results showed that using
weekly seasonality led to little difference in terms of AIC. For these reasons,
models with multiple seasonalities have not been further evaluated. By min-
imising AIC, the ARIMAX order was selected as (3, 0, 9) with Fourier order
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of six for the fifteen-minute sample rate and (9, 1, 2) with Fourier order of
eight for one minute.

Table 3.4: Long-living forecasts measured model mean RMSE values per sam-
ple rate.

Model 15-Minute RMSE 1-Minute RMSE
ARIMAX with Fourier
terms

895.39 59.47

Naive 1411.14 91.06
AR(1) 1385.91 135.69
Average 1803.89 77.22
Seasonal naive 1359.26 124.64
TBATS 2450.75 111.75

On both sample rates, the best performing model ended up being the
ARIMAX model with Fourier terms. The TBATS model struggled to capture
the seasonality during late night and early morning, consistently forecasting
fewer requests than observed. The measured errors can be observed in the 3.4
table for RMSE and in 3.5 for MSE.

Table 3.5: Long-living forecasts measured model mean MSE values per sample
rate.

Model 15-Minute MSE 1-Minute MSE
ARIMAX with Fourier
terms

1,704,294.04 7,162.09

Naive 3,872,358.86 12,890.16
AR(1) 3,204,636.81 23,762.77
Average 5,111,863.00 11,084.42
Seasonal naive 3,911,814.81 25,337.92
TBATS 7,967,196.16 16,633.06

3.9.4 Short-living series forecasting
The forecasting of short-living series has been split into two parts. In the first
part, the individual series selected by the real-time and speculative models are
forecasted. In the second, the remainder component, a strong seasonal series
itself, is forecasted.

3.9.4.1 Regression for tracked series forecasting

Forecasting individual series by the same model forced certain constraints.
The model should learn from all the different short-living series available in the
training set and be generic enough to forecast similar but different series. This
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prevented the usage of traditional time series models with fitted parameters
such as auto-regressive or moving average models, which attempt to best fit
a particular series.

In order to use all available training data, the problem was restructured.
Instead of solving a time series forecasting problem, the series data was trans-
formed so that the problem could be solved as a more generic regression prob-
lem. This approach can take advantage of all available training data.

To do so, each available training series was iterated over, and for each of
the observations at time t, a vector was taken from previous and future values.
Multiple regression models have been explored together with a varying number
of predictor variables as defined by 3.3.

predictor =
∣∣∣yt−9 yt−8 ... yt−1 yt

∣∣∣ (3.3)

While multiple predictor variable lengths have been explored per sample
rate, only one length was tried for the dependant variables (3.4) per sample
rate.

dependent =
∣∣∣yt+1 yt+2 ... yt+29 yt+30

∣∣∣ (3.4)

The summary of which feature lengths were explored per sample rate and
the time-span they cover is shown in the 3.6 table.

Table 3.6: Table shows the considered predictor and dependent variable
lengths.
Sample rate Predictors Dependent Predictors time Dependent time
15-Minute 12 12 3 Hours 3 Hours
1-Minute 10 30 10 Minutes 30 Minutes
1-Minute 30 30 30 Minutes 30 Minutes

Entries, where the future or historical observations were not available,
were filled with zeros. The motivation for exploring such a short range of 10
minutes in the 1-minute sample rate is that some of the considered regression
models are severely affected by the initial empty observations. This lack of
values skewed the forecast and was magnified because a vast portion of the
considered series contains a peak within 10 minutes from the start.

With the data prepared, a variety of regression models have been fit
and compared. The selected models were Random Forest, Gradient Boost-
ing (GB), AdaBoost, Linear Regression and K-Nearest Neighbours regression
(KNN). The MSE and RMSE errors have been measured on a set of short-
living series from within the testing data interval to evaluate the models.

While the fifteen-minute sample rate measurement went without problems,
on the one-minute sample rate, the amount of data in the testing set increased
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Table 3.7: The table shows MSE and RMSE errors for the considered regres-
sion models on fifteen minute sample rate.

15-Minute sample rate
Model Predictors MSE RMSE P. MSE P. RMSE
Random Forest 12 10304 101.50 66316 257.52
Gradient Boosting 12 10779 103.82 67969 260.71
AdaBoost 12 34748 186.40 71372 267.15
Linear Regression 12 10739 103.62 67938 260.65
KNN Regression 12 15474 124.39 65205 255.35

dramatically, especially with multiple considered predictor lengths. The eval-
uation of the complete testing set for all models was unrealistic. While some
models required only a few hours to produce testing set predictions, others,
like Gradient Boosting, would take days, if not weeks. To alleviate the issue
without fully losing a general overview on individual model performance, the
testing set was randomly shuffled, and a subset with the size of one-tenth of
the complete set was used instead. While far from ideal as valuable data was
dropped from evaluation, this reduced the number of samples from 3,784,144
samples to 378,414 and should allow for a general evaluation of model perfor-
mance.

Considering the method for selecting tracked series, the models’ priority
is to perform well around peaks and larger series. For this reason, additional
error measures have been made on the series previously identified in the peak-
analysis section of the thesis. The errors have been measured from the start
of the series until the detected peak time extended by one hour to capture
behaviour shortly after a peak.

The fifteen-minute sample rate results were close, with Random Forest
achieving the best performance on total MSE and RMSE. Most models showed
similar errors except for AdaBoost and KNN regression which under-performed.
Outcomes on the errors around peaks were even closer. Here the KNN model
showed the best score followed by Random Forest. However, the difference
was not significant (MSE 1.6%) and is offset by the large difference between
RF and KNN models on general errors (RF MSE being 33.4% smaller than
KNN). The taken measurements can be found in the 3.7 table. On this sample
rate, the models were unlikely to predict an upcoming peak. This was mainly
because peaks are very likely to occur soon after the series is first observed.
In terms of observations, this can mean peaks occur in the first one or two
observations. Finding a model providing accurate peak prediction on so few
observations remained difficult. The sample rate is likely too large to allow
for the prediction of peaks.

On the one-minute sample rate, in terms of total errors, the best-performing
model ended up being Linear Regression with 30 predictors followed by LR
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Table 3.8: RMSE and MSE errors measured with each regression model on
all testing data and testing data limited to peaks (P. MSE and P. RMSE).
Models fitted on reduced peak-only data are marked with (P).

1-Minute sample rate - 10 Predictors
Model MSE RMSE P. MSE P. RMSE
Random Forest 19.68 4.43 249.09 15.78
Gradient Boosting 53.05 7.28 249.76 15.80
AdaBoost 3181.07 56.40 1763.66 41.99
Linear Regression 15.61 3.95 254.35 15.94
KNN Regression 94.73 9.73 260.62 16.14

1-Minute sample rate - 30 Predictors
Random Forest 15.63 3.95 251.84 15.86
Gradient Boosting 16.70 4.08 239.36 15.47
AdaBoost 3266.18 57.15 2012.96 44.86
Linear Regression 15.03 3.87 256.26 16.00
KNN Regression 21.41 4.62 275.91 16.61

1-Minute sample rate - 10 Predictors - Peak data
Random Forest (P) 48.16 6.93 279.94 16.73
Gradient Boosting (P) 32.84 5.73 229.87 15.16
AdaBoost (P) 2263.84 47.57 1487.57 38.56
Linear Regression (P) 58.57 7.65 246.18 15.69
KNN Regression (P) 29.02 5.38 273.79 16.54

1-Minute sample rate - 30 Predictors - Peak data
Random Forest (P) 201.42 14.19 372.55 19.30
Gradient Boosting (P) 26.77 5.17 240.67 15.51
AdaBoost (P) 1964.27 44.32 1197.99 34.61
Linear Regression (P) 58.96 7.67 268.88 16.39
KNN Regression (P) 24.86 4.98 686.69 26.20
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10, RF 30 and GB 30 models. The errors are close up until the last four ob-
served models, where errors grew dramatically. All of these poorly performing
models are variants of the AdaBoost model. An interesting observation can be
made about the number of predictors with KNN and GB. While most models
did not show a significant difference in error with varying predictor lengths,
the number of predictors was of major impact on the KNN and GB models.

By observing the models’ forecasts, it became apparent that the models
do not attempt to predict peaks but tend to try to predict the series outside
of peaks, such as the gradual decline after peaks that form the majority of
the series data. This part was handled well. However, the models were failing
in the crucial ability to forecast peaks. Without this ability, the usefulness
of the selected approach was threatened. The majority of forecasts started
around the last observed number of requests and predicted a downward slope.
This hesitance around peaks was especially apparent with Linear regression.
To improve the capabilities of the models for peak prediction, a subset of the
training data was created focused on peaks. Only data until the peak with a
half-hour post-peak extension was used to fit additional models with 10 and
30 predictors.

The results can be observed in the 3.8 table. Example forecasts made by
the GB model with 30 predictors and its behaviour can be seen in the 3.18
figure. As the peak grows, the model attempts to predict where the peak will
end. This seems to manifest itself as an increase from the current number of
requests followed by a steady, almost level decrease in requests. Once the peak
is reached, the model forecasts a steady decrease. The decreasing trend seems
to be captured well. Unfortunately, the model is unable to forecast the peak
from the beginning of the series perfectly. The sought-after peak-predicting
behaviour was rare in the observed models and was strongest in the selected
example.

Errors measured around peaks were lowest for GB (10 predictors, trained
on peaks), with three of the best scoring models being GB variants. The first
fourteen model variants were close in terms of error, with the errors gradually
increasing, the last six variants showing a dramatic increase.

The selected models were RF for the fifteen-minute sample rate where the
choice was relatively easy, with RF achieving good results both around peaks
and for whole series and KNN struggling in the total errors. The selection on
the one-minute sample rate was much more difficult.

The model had to meet three criteria. It had to show attempts to forecast
peaks. It had not only to try safe forecasts with downwards slope from current
values but forecast actual upward surges in requests and achieve low errors
around peaks. Whenever the model forecasts peaks or just a downwards slope
was apparent from observing sample predictions, besides, the model had to
have decent overall performance in terms of errors and had to capture the
peak series trend well.

52



3.9. Forecasting sudden increases

12:00 12:30 13:00 13:30 14:00 14:30
0

100

200

Peak forecast examples

16:00 17:0015:30 15:45 16:15 16:30 16:45 17:15

50

100

150

200

18:30 19:00 20:0018:45 19:15 19:30 19:45 20:15
0

50

100

150

R
eq
ue
st

co
un

t

Figure 3.18: Figure shows three sample peaks from the short-living series
category with forecasts made by the GB regression model on a 1-minute sample
rate. At each minute, a forecast is drawn. As the peak grows, the model
attempts to adjust but fails to predict the peak end. The trend of decreasing
requests after the peak is captured well.
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With these criteria in mind, the GB models seemed very promising. The
models seemed to attempt to forecast peaks and achieve good performance
around peaks in terms of error. The GB models did not do as well as other
models on the whole series but did not fall too far behind.

Linear regression models performed well on the general errors and could
capture the trend but failed to predict peaks. Random Forests seemed to be
a decent choice, doing well in terms of error, but the models did not stand
out. The KNN regression models seemed to under-perform and were heav-
ily dependant on the number of predictors and training data. Finally, the
AdaBoost models seemed to be most likely to predict more significant peaks
but struggled greatly in error, being consistently the model with the most
significant errors.

In the end, the GB model with 30 predictors trained on reduced peak data
was selected. Other models remain viable options as the results are close but
were not further explored.

3.9.4.2 Remainder series forecasting

The remainder components of both real-time and speculative methods for the
short-living series has been forecasted using the TBATS and ARIMAX with
Fourier terms models. The Fourier order was selected by repeated calls of
auto_arima for each considered Fourier order (1-11) and selecting minimal
AIC models. The Fourier order for a one-minute sample rate was six. For
fifteen-minute, this was five and six for speculative and real-time, respectively.
The selected ARIMAX orders are specified in the 3.9 table.

Table 3.9: Selected orders for ARIMAX models used in remainder series fore-
casting.

ARIMAX Model ARIMA Orders Fourier order
15-minute Real-time (3, 0, 3) 6
15-minute Speculative (2, 0, 4) 5
1-minute Real-time (3, 1, 4) 6
1-minute Speculative (3, 1, 4) 6

With similar results, the ARIMAX model ended up outperforming the
TBATS model, scoring lower RMSE and MSE errors in all cases. On all
considered sample rates and HTS models, the ARIMAX models were chosen
and preferred over TBATS to model the remainder component. The mod-
els provided very similar day-time forecasts, but the TBATS model had a
significantly worse performance during the night and early morning, where
it consistently under-estimated the number of requests. This was the same
outcome as in long-living series forecasts.

The measured RMSE errors can be observed in the table 3.10. The MSE
errors in table 3.11 gave the same results, with ARIMAX being the superior
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Table 3.10: Total sum of observed mean RMSE values on short-term forecasts.
Model 15-minute RMSE 1-minute RMSE
ARIMAX with Fourier
terms (Real-time)

458.30 41.15

TBATS (Real-time) 750.97 63.21
ARIMAX with Fourier
terms (Speculative)

495.89 42.62

TBATS (Speculative) 807.01 65.70

model for this series. The residuals from the automatic TBATS models did
not form a normal distribution, suggesting that the model failed to capture
the series.

Table 3.11: Total sum of observed mean MSE values on short-term forecasts.
Model 15-minute MSE 1-minute MSE
ARIMAX with Fourier
terms (Real-time)

336,484.03 2517.73

TBATS (Real-time) 723,240.08 4676.24
ARIMAX with Fourier
terms (Speculative)

399,132.52 2732.24

TBATS (Speculative) 843,236.12 5113.54

3.9.5 Forecasting methods comparison
The resulting methods leveraging request decomposition were compared to
models applied to the total sum of requests on fifteen and one-minute sample
rates.

To determine the Gradient Boosting and Random Forest effect for the
tracked series component and the impact on the final forecast, an additional
HTS model was created. This model, referred to as HTS Oracle, is purely
for evaluation purposes as it removes the uncertainty in the tracked series by
using the actual observed values. This means the error for this model will be
caused by the long-living and remainder ARIMAX models, and it will simulate
a situation where the tracked series and their peaks are forecasted perfectly.

Using mean MSE and RMSE as a metric, the HTS Oracle model showed
the best results. This outcome is understandable since the model knows the
series beforehand. It is not capable of actual forecasts and is meant only
as a benchmark for other models. Out of the remaining models, the ARI-
MAX model with Fourier term ended up having the best performance on
the fifteen-minute interval followed by the HTS models, speculative achieving
slightly better results than the strict model. The hierarchical models offer
good forecasts, but considering the complexity, themselves being formed by
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multiple ARIMAX and RF models, the usage of a singular ARIMAX model
would be preferred. The TBATS model underperformed and failed to beat
the trivial benchmark methods except for the average method on measured
MSE. A more detailed comparison of RMSE and MSE model errors can be
observed in the 3.20 figure. An example of model forecasts can be observed in
the 3.19 figure. The measured errors can be found in the 3.12 and 3.13 tables.

Table 3.12: Total requests forecasts measured model RMSE values per sample
rate.

Model 15-Minute RMSE 1-Minute RMSE
ARIMAX with Fourier
terms

1,746.46 101.81

Naive 2,699.19 133.11
AR(1) 2,620.14 227.46
Average 3,466.21 125.15
Seasonal naive 2,568.07 205.31
TBATS 3,561.89 198.48
HTS Real-time 1,843.07 103.51
HTS Speculative 1,817.82 103.29
HTS Oracle 818.58 88.31

As for the results on the one-minute sample rate (figure 3.21), the HTS
models ended up faring better and outperformed the ARIMAX model on mean
MSE and achieving only 1.6% worse result on mean RMSE to the ARIMAX
model but 6.4% better result in mean MSE (RT). This very close outcome
on both sample rates between ARIMAX and hierarchical models suggested
that the variable short-living series and its tracked peaks components did not
have as large of an impact as was assumed prior, or the selected component
models did not perform well enough to give a significant boost to the forecast
accuracy.

The Oracle model showed an improvement over the one-minute sample
rate over the real-time model of 14.6% in RMSE and 33.5% in MSE. On a
fifteen-minute sample rate, the results are more significant and account for
55.5% for RMSE and 65.3% for MSE.

The seasonal naive method’s poor performance, where even the naive
method without seasonality outperformed the method on a series with such
a strong seasonal pattern, may be surprising. This was due to the method
of evaluation of the forecasts. On long-term forecasts, the seasonal method
would perform significantly better. The short nature of the forecasts means
that the errors are local and that the last observation does not diverge far
from the selected interval’s future values. On more extended forecasts, the
repeated seasonal pattern would be superior to a naive approach.

With the models’ overall performance in terms of error established and
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Table 3.13: Total requests forecasts measured model mean MSE values per
sample rate.

Model 15-Minute MSE 1-Minute MSE
ARIMAX with Fourier
terms

6,078,994.88 24,234.51

Naive 13,442,580.23 33,192.76
AR(1) 11,099,274.31 69,731.61
Average 18,395,951.51 33,218.23
Seasonal naive 13,698,202.49 80,127.55
TBATS 1,7723,170.43 54,606.14
HTS Real-time 7,008,621.28 22,677.99
HTS Speculative 6,846,454.05 22,648.98
HTS Oracle 2,426,625.16 15,068.93

evaluated, an additional analysis into model behaviour was performed to gain
a better understanding of the forecasts. Evaluation based purely on errors
is insufficient as it may be misleading. The scale of the training set hid the
information on how the models behave around sudden increases in requests.
Furthermore, the sheer number of forecasts performed made it challenging
to evaluate. The additional analysis was more visual, local and focused on
request peaks.

3.9.6 Local forecast analysis
The local analysis was conducted on peaks occurring in the testing set of the
data. The models selected for deeper analysis were the ARIMAX models,
and all considered HTS models. In total, seventeen peaks have been observed
during the testing set period. In terms of individual series impact, the shares
of a short-living series ranged from 10.1% to 16.0%.

The ARIMAX, HTS real-time and HTS speculative showed similar be-
haviour around peaks on the fifteen-minute sample rate. That is, peaks outside
of the modelled daily seasonality were not predicted but purely reacted upon.
The models failed to predict peaks (such behaviour could not be expected of
the ARIMAX model), but the models provide reasonable forecasts on future
development during their occurrence. In the benchmark Oracle method, the
more visual analysis can reflect on the previous assumptions about overall
total series behaviour and how the tracked series influence it. The Oracle
model forecasts the shape of the peaks, but examples exist where the model
underestimates the total number of requests. The example of this occurring
can be seen in one of the plots in the 3.22 figure. This suggested that the
share the tracked series has, and therefore the most extensive short-living se-
ries with peaks, is lower than was initially assumed, as even a perfect forecast
in tracked series can diverge from the actual observations.
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Figure 3.19: Figure shows live forecast made by the ARIMAX model.

Previous analysis showed that the peak, primarily formed by a new dis-
ruptive series, does not exist in a vacuum and that other series show similar
behaviour during the occurrence of the peak, the sum of which then forms

58



3.9. Forecasting sudden increases

0

2000

4000

6000

8000

Mean RMSE

TBATS
ARIMAX with
Fourier terms
HTS Real time
HTS Speculative
HTS Oracle
Naive
Seasonal naive
Average
AR(1)

0.0

0.5

1.0

1.5

×107
Mean MSE

Observed models

M
ea
su
re
d
er
ro
r
m
ea
ns

Figure 3.20: Figure shows 15-minute sample rate measured RMSE errors
model comparison (Lower is better).
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Figure 3.21: Figure shows 1-minute sample rate measured RMSE errors model
comparison (Lower is better).

the total peak. A mild case of this occurrence can be observed in the first
example in the 3.7 figure, where a sudden growth in the short-living series is
accompanied by a lesser growth in the long-living series. The approach in this
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Figure 3.22: Figure shows two examples of 15-minute HTS Oracle and Real-
time model behaviour around peaks. In the upper plot, the Oracle model
underestimates the total number of requests, despite knowing the tracked
series future values.

thesis underestimated the impact of this correlated growth behaviour between
series groups. With this in mind, even if this shortcoming was addressed, the
fifteen-minute sample rate would likely remain too slow to efficiently forecast
sudden peaks that can occur in short periods of time. However, the models
remain very capable of forecasting the near future development of the series
and adapt to unforeseen changes.

The series at the one-minute sample rate is much more noisy and challeng-
ing to interpret. The visualisations become cluttered and unclear. Additional
issues arise when considering simulation, with the available simulator being
suited for a fifteen-minute sample rate. The steps in the simulator are chosen
as 15 minutes. Besides, the logic used for scaling decisions based on the indi-
vidual forecasts would likely have to be very complex and robust to accommo-
date volatile forecasts. Different approaches for transforming the one-minute
sample rate forecasts into less volatile and robust forecasts have been explored
to remediate the issues and allow for a closer analysis of model behaviour and
simulation, such as averaging and merging multiple forecasts.

One of the simplest methods is to convert the forecasts to the same format
as those seen on the fifteen-minute sample rate. The 30 steps ahead have
been aggregated to two steps, and the same timestamp index has been used.
This means forecasts made in between fifteen minutes were dropped. This
leads to a significant loss of information. If this were the selected option,
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3.9. Forecasting sudden increases

the advantages of using a small sample rate would disappear. It can, however,
serve as a proof of concept, and indeed the observed summed forecasts seemed
to fit the series relatively well.

Another approach was with using the means of the forecasts. When applied
to all forecasts made during the half an hour that is the forecast window size,
the mean fits the series very well, including peaks. This is not surprising, as
this turns the forecasts into one step ahead since all forecasts need to be made
before their mean can be computed.

A balance between those approaches had to be found. The benefits of the
one-minute sample rate had to be preserved, and the outcome should have a
minimal range of forecasts and should be on the fifteen-minute sample rate so
that it could be used in the simulations.

While not ideal, the solution was to move to the fifteen-minute sample
rate using a mean of the first five forecasts, that is, forecasts made over the
first five minutes. This way, volatility is reduced, a significant portion of the
information is preserved in the mean, and for the first step, it leaves a 10-
minute in-advance window of when forecasts are available. This is especially
important in the simulation, where the number of machines changes between
steps and the time needed for machine instance start needs to be accounted for.
This approach provides reasonable forecasts but can not accurately predict
peaks. It can, however, forecast a trend around those. An example of such
forecasts can be seen in the 3.23 figure. The usefulness of such a method
should be determined by simulation, as a failure to accurately predict a peak
in its full extent, but only a portion of it may still lead to a decision to scale
up.

In general, a forecast that is at least hinting at a potential upcoming
peak is unlikely to occur with any significant head-start. The time bought
by this approach is potentially in a matter of few minutes rather than any
significant block of time. This is reinforced by the peak occurrence analysis,
which suggests little available time for reaction. Combined with the need for
the regression model to react on more observations, leveraging the forecast is
likely to prove difficult.

61



3. Realisation

17:0009:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00
12500

15000

17500

5-Minute mean model forecasts behaviour around peaks
Requests
HTS - Oracle
HTS - RT

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

12000

14000

R
eq
ue
st

co
un

t

Figure 3.23: Figure shows mean of the first five forecasts made by the 1-minute
models with 15-minute intervals.

3.10 Environment Scaling simulation

With the models compared, the forecasts from the HTS and ARIMAX models
were taken and used in environment scaling simulations. Their behaviour has
been compared not only between each other but also with other purely reactive
forms of autoscaling and a static approach where the number of instances does
not change. The simulator used was developed by Vondra [4] and was briefly
introduced in the theoretical part of the thesis.

3.10.1 Simulation process

The simulation runs over the entire testing data set, for which forecasts are
available.

Additional two functions combining reactive approaches with the available
forecasts for auto-scaling were created. The more straightforward function,
which only considers forecasts for scaling up, is defined by the 1 algorithm,
the second one, which uses forecasts for both up and downscaling, is defined
in the 2 algorithm.

The functions are basing the future number of machines on the forecasts
made by a model of choice. This forecast is combined with observations of
utilisation to anchor the forecasted series to the environment. The reactive el-
ements step in with extreme cases where the forecast fails to predict the actual
development in requests. The anchoring with utilisation is critical. Without
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3.10. Environment Scaling simulation

Algorithm 1: Logic used for forecast based scaling.
input : up - Change in requests per second for request growth

down - Utilisation threshold for down-scaling
utilisationt - Percentage of environment utilisation at time t
h - Forecast steps ahead
on_cooldown - Marks whenever a scaling decision was
recently made, used to reduce volatility, when used marked
with (cd).

output: machinest+1 - Returns the number of machines needed at
time t + 1.

if utilisationt ≥ 75% then
// Model failed to forecast a surge, reactive scale up.
return machinest + 1;

else if utilisationt ≤ 40% & ¬on_cooldown then
// Reactive scale down.
return machinest − 1;

if requestst + up < ŷt+h then
return machinest + 1;

return machinest;

it, the decision would be made blindly regardless of the current state. This
could then turn disastrous in cases where the forecast fails or gets too detached
and would likely force a much more complicated implementation, which would
likely end up suffering from the same detached symptoms. If the state of the
environment is not aligned with the forecasting logic, the approach does not
work. An example of such a scenario can be made even when all forecasts
are successful. Regularly, at the end of the day, a decrease in requests can
be observed. The models are usually able to predict this accurately. When
the environment is undergoing this decline, each step where the forecasts are
considered will notice this and notify the environment. This seems like a de-
sirable outcome. However, without information about the current state of the
environment, the next step will arrive to the same conclusion as the number
of steps during the decline is larger than one. For each of the steps, the fore-
casts will be accurate, the decision correct, but in sequence, this will cause the
environment to quickly reach the minimum allowed number of running ma-
chines which will lead to the environment being overwhelmed. Both functions
contain a cooldown condition for down-scaling, which prevents down-scaling
right after up-scaling. This reduces volatility and improves service quality at
the cost of more used machine hours.

For each of the considered approaches (static, reactive and forecast based),
a parameter sweep was run. This search shows hints to the behaviour of each
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method, but, most important in this section, it allows finding the optimal
choice of parameters for each approach for the observed time series.

In addition, for each of the considered models in the forecast based ap-
proaches, the steps ahead are evaluated independently. That is, the parameter
sweep process was applied multiple times per model, with different choice of
h steps ahead.

As the large number of combinations from the parameter sweep was over-
whelming, A set of conditions was placed on the results. From observations
of the considered series, approaches with a large number of starts or stops
were judged too volatile and were discarded. Results, where the reactive ap-
proach achieved good results in terms of Apdex but did not differ much from
the static approach, were dropped as well. Additional results dismissed were
based on the Apdex C. metric, results where the metric exceeded 2% were
discarded, when no results could be found with a lower score, the smallest
percentage achieved was used instead.

Out of these reduced results, the ones with the lowest Apdex C. and S.
metrics, machine hours and lowest number of starts and stops and were chosen.
When a reasonable trade-off between worse Apdex measures and lower starts
and stops was found, it was added for consideration.

The simulation process was repeated twice with different simulator param-
eter for service demand. In the first option, this was chosen as 25 milliseconds.
The results with this value were good for the majority of the considered meth-
ods, including reactive, which could deliver good efficiency and no service vio-
lations. The range of needed machines with this value is from four to roughly
twenty around the peaks. This is a reasonable number of machines. This,
however, did not allow for a good comparison as achieving good results was
easy for the majority of the considered approaches. A second value chosen
as 80 milliseconds comes from measurements of the web application, where
80 milliseconds was the measured average of one thousand HTTP requests
collected by using the application. This value increases the strain on the en-
vironment, and the number of machines needed to provide service grew. This
number of machines is less realistic, but the additional stress and volatility
allow for a better comparison of the evaluated approaches.
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Algorithm 2: Logic used for forecast based scaling.
input : up - Change in requests per second for request growth

down - Change in requests per second for request decline
utilisationt - Percentage of environment utilisation at time t
h - Forecast steps ahead
on_cooldown - Marks whenever a scaling decision was
recently made, used to reduce volatility, when used marked
with (cd).

output: machinest+1 - Returns the number of machines needed at
time t + 1.

if utilisationt ≥ 75% then
// Model failed to forecast a surge, reactive scale up.
return machinest + 1;

else if utilisationt ≤ 40% & ¬on_cooldown then
// Model failed to forecast request decline, reactive

scale down.
return machinest − 1;

// No need for immediate reaction. Consider forecasts.
if utilisationt ≥ 70% then

// Utilisation is high, consider forecast only for
scaling up, else maintain current number.

if requestst + up > ŷt+h then
return machinest + 1;

return machinest;
else if utilisationt ≤ 50% then

// Utilisation is low consider forecast only for
scaling down, else maintain current number.

if requestst − down < ŷt+h & ¬on_cooldown then
return machinest − 1;

return machinest;
else

// Utilisation is within reasonable bounds, consider
forecast for scaling up or down.

if requestst + up > ŷt+h then
return machinest + 1;

else if requestst − down < ŷt+h & ¬on_cooldown then
return machinest − 1;

// Maintain current number, no growth or decline expected.
return machinest;
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3.10.2 Simulation results
The selected results from the simulation are in the 3.14 and 3.15 tables. The
static approach serves as a baseline for comparison to other approaches, while
the real observation approach uses the actual observed values instead of fore-
casts and can demonstrate the forecast-based method’s capabilities.

In the case of 25-millisecond service demand, the measurements offer ex-
cellent results but are not very useful for direct comparison. The reactive
utilisation approach achieves results that avoid SLO violations and are good
in machine hours while avoiding volatility. The forecast based approaches of-
fer similar results with reduced machine hours over the static approach while
offering no or little to no SLO violations. The results vary in terms of starts
and stops and machine hours, but the differences are not significant, and with
parameter, tweaking can be replicated by other predictive approaches. Fur-
ther forecast steps ahead were measured and considered but did not offer any
benefits. For clarity, they are mostly not shown in the result tables. With
these conditions using the utilisation based approach makes the most sense.

With service demand being chosen as 80 milliseconds, the results are more
interesting as the difference between reactive and proactive approaches grows
larger. In the reactive group, the utilisation approach achieves the best per-
formance with results that significantly reduce machine hours over static ap-
proach or lesser reduction for slightly fewer SLO violations. For predictive
approaches, the real observations offer the best possible result with eleven
thousand machine hours and Apdex C. of 0.73%, a nearly identical result
to the static approach with a significant saving of hours, that is when using
42 instances for comparison, which are better suited to deal with peaks, on
32 instances the advantage in hours is smaller. However, clear benefits in
Apdex metrics can be observed. The SLO violations observed with 32 static
instances are purely caused by sudden peaks. Other predictive approaches
offer good results as well. The Mean HTS RT method using the algorithm
2 achieves the same results for Apdex metrics as with the real observations
with a slight increase in machine hours. With a cost of the significant in-
crease to hours, the mean speculative approach can replicate this using the
1 algorithm. A surprising result is that the Mean HTS Oracle method could
reproduce the same result as Mean HTS RT only with a significant increase
in machine hours. Overall, while differences have been measured, they are
insignificant and can not serve as strong evidence for the superiority of the
considered predictive methods. Even when using observed values as forecasts
or the Oracle methods, the observed SLO violations are around extreme peaks,
and other predictive approaches achieve close results. However, the predictive
approaches appear to outperform the reactive approaches offering better or
similar results in terms of SLO violations with lesser hours.

The scaling decisions made by selected methods can be observed in the
3.24 figure.
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Table 3.14: Table shows selected results for different autoscaling approaches
grouped by type using 25 ms service demand.

Forecast based - Algorithm 2
Model up down h Hours Starts Stops Apdex S. Apdex C.

Real Observations 23 16 1 3879.75 194 199 0 0.00%
ARIMAX 29.0 12.5 1 4048 165 170 0 0.13%
HTS RT 12.5 26.5 1 4265.5 165 170 0 0.00%

HTS Speculative 13.5 26.5 1 4110.25 185 190 0 0.06%
HTS Oracle 5.0 24.0 1 4268.5 169 174 0 0.00%

Mean ARIMAX 15.0 25.5 1 4130.00 193 198 0 0.06%
Mean HTS RT 30.0 21.0 1 4094.25 188 193 0 0.13%
Mean HTS RT 7.0 17.5 1 4133.00 203 208 0 0.06%

Mean HTS Speculative 19.0 22.5 1 4127.75 191 196 0 0.06%
Mean HTS Oracle 26.5 24.5 1 4089.50 177 182 0 0.06%

Forecast based - Algorithm 1
Model up down h Hours Starts Stops Apdex S. Apdex C.

Real Observations 30.0 45 1 3881.50 202 209 0 0.00%
ARIMAX 30.0 40 1 4134.25 195 201 0 0.00%
HTS RT 30.0 40 1 4054.25 176 182 0 0.00%

HTS Speculative 30.0 40 1 4071.0 180 186 0 0.00%
HTS Oracle 30.0 40 1 4043.00 173 179 0 0.00%

Mean ARIMAX 30.0 40 1 4332.00 214 220 0 0.00%
Mean HTS RT 30.0 40 1 4371.75 220 226 0 0.00%

Mean HTS Speculative 30.0 40 1 4203.25 198 204 0 0.00%
Mean HTS Oracle 30.0 40 1 4187.0 193 194 0 0.00%

Reactive
Method up down h Hours Starts Stops Apdex S. Apdex C.

Utilisation 55 35 — 4489.25 174 179 0 0.00%
Utilisation 60 40 — 4076.50 170 176 0 0.13%
Utilisation 65 45 — 3686.75 163 170 3 0.39%
Queue 10 5 — 3389.0 194 200 67 17.57%
Latency 35 30 — 2790.5 277 282 21 6.12%

Hybrid latency-utilisation 30 15 — 4939.75 16 14 8 0.59%
Hybrid latency-utilisation 30 20 — 4193.50 39 40 11 0.86%
Hybrid latency-queue 30 5 — 3409.50 190 196 11 1.99%

Static
Instances up down h Hours Starts Stops Apdex S. Apdex C.

16 — — — 6005.00 6 0 0 0.06%
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Table 3.15: Table shows selected results for different autoscaling approaches
grouped by type using 80 ms service demand.

Forecast based - Algorithm 2
Model up down h Hours Starts Stops Apdex S. Apdex C.

Real Observations 16 8 1 10985.50 413 415 9 0.73%
Real Observations 17 18 2 11307.00 397 397 9 0.73%

ARIMAX 5 21 1 12108.00 413 407 10 0.86%
HTS RT 7 23 1 11759.50 389 386 13 0.99%

HTS Speculative 8 22 1 11751.50 394 391 13 0.99%
HTS Oracle 8 29 1 12154.75 378 372 10 0.86%

Mean ARIMAX 6 29 1 12157.25 406 400 9 0.79%
Mean HTS RT 5 27 1 12335.25 405 399 9 0.73%

Mean HTS Speculative 6 12 1 11846.50 429 423 10 0.93%
Mean HTS Oracle 8 23 1 12029.00 397 392 10 0.93%

Forecast based - Algorithm 1
Model up down h Hours Starts Stops Apdex S. Apdex C.

Real Observations 16.0 50 1 11311.5 455 455 9 0.73%
Real Observations 13.0 40 2 12988.50 432 428 8 0.66%

ARIMAX 18.0 45 1 12412.50 432 428 11 0.93%
ARIMAX 23.0 55 1 10710.00 456 459 12 1.06%
HTS RT 12.5 45 1 12611.00 403 399 11 0.93%

HTS Speculative 8.0 60 1 11656.75 515 507 11 0.93%
HTS Oracle 8.5 55 1 12877.75 484 485 11 0.86%

Mean ARIMAX 19.5 40 1 12937.75 389 374 11 0.86%
Mean HTS RT 26.5 30 1 13869.00 294 285 10 0.86%

Mean HTS Speculative 10.0 45 1 14965.75 473 441 9 0.73%
Mean HTS Speculative 14.0 50 1 13283.00 440 436 10 0.86%

Mean HTS Oracle 15.5 50 1 12413.50 427 428 11 0.86%

Reactive
Method up down h Hours Starts Stops Apdex S. Apdex C.

Utilisation 70 25 — 12505.75 180 175 15 1.19%
Utilisation 60 25 — 14027.00 246 238 10 0.79%
Queue 20 15 — 15139.50 428 434 81 7.78%
Latency 90 85 — 8139.75 471 476 118 10.58%

Hybrid latency-utilisation 85 25 — 11178.75 113 108 30 2.39%
Hybrid latency-utilisation 85 30 — 10642.25 169 168 36 3.12%
Hybrid latency-queue 85 10 — 10224.50 293 295 80 6.79%

Static
Instances up down h Hours Starts Stops Apdex S. Apdex C.

42 — — — 15771 0 0 10 0.73%
32 — — — 12016 0 0 49 3.52%
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3.10. Environment Scaling simulation
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Figure 3.24: The top figure shows incoming requests rescaled to match the
total volume of data noted by λ. The figures below show selected methods
for autoscaling for two simulation scenarios with 80 ms and 25 ms service
demand, respectively. In the 80 ms scenario, the Mean HTS RT forecasts
mostly lead to the same decisions as with the ARIMAX forecasts but seem
more aggressive around peaks. This is a desirable characteristic.
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3. Realisation

3.11 Discussion

The quality of the data played a significant role in this thesis. Even with
efforts to split and label the data, the outcome was destined to remain spec-
ulative. A method with access to the original non-anonymised data should
see improvements as the method for selecting tracked peaks could determine
the importance of a series in real-time without delay. Even the speculative
approach likely does not take full advantage of the data.

Additionally, the HTS method should see better results if the correlation
of the series groups and their shared growth is leveraged. This varies through
various encountered peaks. In some, this would be of minor significance or
even negative, while it would be of significant impact in others.

The observed article peaks are shorter and with a smaller impact than
initially assumed. No explored model was able to predict such sudden peaks
accurately. The one-minute sample rate methods offer greater capability in
forecasting around the peaks as the model is quick to react to the sudden
surge even with a delay, the more long-term method on a higher sample rate
is too slow to notice the peak, and frequently the sudden peak ceases to have a
significant effect on the environment within the steps contained in one forecast.

The one minute models are the only models with a chance to predict peaks,
but even if handled perfectly, leveraging them becomes difficult, mainly with
the predictive autoscaling methods used. In this thesis, the forecasts had to be
handled with a significant loss of information as the evaluation was otherwise
unworkable. With a more granular approach to simulation with smaller steps
in time (this significantly increases the complexity of the simulation), the
results could be better evaluated. However, the best possible outcome is likely
models reacting to a peak a few minutes ahead rather than any significant
period of time.

Section 2.6 cites multiple publications with a focus on article prediction
using additional features. Such features could compensate for the difficulties
encountered during time-series peak prediction, where predicting the total
peak size was unsuccessful. In addition, additional information about the
articles could be used to potentially achieve a larger head-start and more
accurate prediction.

The simulation outcome is mostly indecisive, with good results being
achieved and methods making good autoscaling decision close to results achieved
using real data. While the HTS models did seem to fare slightly better, the
results are not significant enough to support the usage of such a method.
This outcome suggests that further improvements to the forecast are unlikely
to make a significant difference, and a more straightforward method may be
preferable unless a predictive autoscaling approach that can better utilise the
future peaks is found.

The main focus of this thesis was on time series forecasting using a combi-
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3.11. Discussion

nation of article peak forecasts with total request series for autoscaling. This
proved a difficult task. As even an unlikely perfect forecast is of little value
when it can not be leveraged by the autoscaling method, further focus should
be placed on the autoscaling method and its adaptation to peak prediction.

The idea of keeping the time series forecasting simple and shifting the
peak prediction attempts to the autoscaler component seems like a possible
way forward. Implementing such a method could be more straightforward as
using a single ARIMAX model is not difficult and offers good general forecasts
during the entire day. This forecast could then be used as a component in
more complex autoscaler logic making on both the forecast and additional
article tracking component.
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Chapter 4
Conclusion

During this thesis, the web traffic data has been cleaned, transformed and
an analysis was conducted. The patterns appearing in the data have been
identified and the total requests decomposed into individual series. Both the
individual series and total requests have been corrected to remediate outages
and anomalies where necessary.

Further efforts have been made to revert the loss of information formed
by the anonymisation the data suffered. The data was split into preconceived
behavioural groups based on the known structure of the application. With
the use of hierarchical time series clustering, the process was successful, and
the resulting split matched expectations.

With the data split finished, the resulting groups were analysed deeper.
Special attention has been given to a large number of series with temporal
peaks and their impact. Such series forming a large share of requests observed
in the news application. The nature of the impactful initial peaks of such
temporal series was analysed, and an understanding of the peaks resulted
from the analysis. The individual impact of these temporal peaks was smaller
than initially expected, and the time window until the full peak impact was
found to be short.

Multiple forecasting approaches have been attempted and compared, span-
ning from forecast benchmark methods to established time series forecasting
models and a combined approach using HTS models attempting to leverage
the specific temporal series component of news application traffic. In addi-
tion, potential best-case variants of the HTS models have been observed to
properly evaluate the theoretical gains from such approaches.

The resulting models have been compared using error measurements and
visual inspection. As a result, the best performing models have been identified,
and a deeper analysis focused on behaviour around request peaks has been
performed.

A cloud environment simulation has been conducted to evaluate the use-
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4. Conclusion

fulness of the resulting models. The simulation showed good performance
but did not distinguish the peak-focused approaches from other predictive ap-
proaches in a major way. The explored methods are unlikely to provide more
than a few minutes ahead head start to sudden peaks. Even with perfect
forecasts, the bottleneck is the autoscaling method. A more sophisticated au-
toscaling method would be needed to fully take advantage of forecasted peaks
regardless of the model.
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Appendix A
Project structure

0 Initial data transformation - Set of notebooks for initial data preparation
and transformation.

0.1 Data preparation - Notebook dedicated for preparing the data into
easily accessible CSV format.

0.2 Data resampling - Short notebook useful for transforming data be-
tween sample rates.

1 Data analysis - Initial analysis of the data.
2 Data preprocessing - Data outage correction.
3 Clustering features - Clustering feature calculation from series.
4 Clustering - Labelling series.

4.0.1 Clustering template - Template notebook for clustering with differ-
ent features.

4.0.2 Clustering methods - A collection of reusable methods for cluster-
ing.

4.1.1 All features - Clustering using all features.
4.1.2 All features multiple clusters - Clustering using all features and

multiple clusters.
4.2 Model features - Clustering using model based features.
4.3 Lifespan features - Clustering using features related to lifespan.
4.4 Behaviour features - Clustering using behavioural features.
4.5 Value features - Clustering using measured value features.
4.6 Clustering review - The review of all considered clustering ap-

proaches.
4.7 Review plots - Plotting the series by label for final evaluation.
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A. Project structure

5 Downtime data fix - Improvements in the initial data correction with
improvements for forecasting.

6 Cluster analysis - Comparison analysis of the resulting clusters.
7 Peak analysis - A collection of notebooks for analysis of the short-living
series and their peaks.

7.1 Moving average options - Exploring the parameter options for mov-
ing averages.

7.2 Method selection - Selecting the method for detecting peaks in the
series.

7.3 Undetected series group analysis - Analysing the short-living series
without detected peak.

7.4 Peak-series lifespan - Analysing the lifespan of short-living series
with a peak.

8 Forecasting - Collection of notebooks covering forecasts of components
and their combination.

8.1 Forecasting methods - Reusable methods for forecasting.
8.2.1 1-minute seasonal model - 1-minute sample rate forecasting model

for long-living series.
8.2.2 15-minute seasonal model - 15-minute sample rate forecasting model

for long-living series.
8.3.1 1-minute peaks model - 1-minute sample rate forecasting model for

short-living series.
8.3.2 15-minute peaks model - 15-minute sample rate forecasting model

for short-living series.
8.4.1 1-minute combined model - Combined model on 1-minute sample

rate for total requests.
8.4.2 15-minute combined model - Combined model on 15-minute sample

rate for total requests.
8.5.1 1-minute combined model - Combined model on 1-minute sample

rate for total requests.
8.5.2 15-minute combined model - Combined model on 15-minute sample

rate for total requests.

9 Simulation plots - Simulation plots and simulation parameter search
analysis.
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Appendix B
Acronyms

AIC Akaike information criterion

ANN Artificial neural network

ARIMA Autoregressive integrated moving average

ARIMAX Autoregressive integrated moving average model with an exoge-
nous variable

BIC Bayesian information criterion

CLF Common Log Format

CSV Comma-separated values

GB Gradient Boosting

HTS Hierarchical Time Series

HTTP Hypertext Transfer Protocol

KNN K-Nearest Neighbours

MSE Mean Square Error

RF Random forest

RMSE Root Mean Square Error

SLO Service Level Objective

SVR Support Vector Regression
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Appendix C
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src............................................... source codes directory

notebooks.........................................project notebooks
cloud-sim..............................modified cloud simulator files

plots..........................................generated plots directory
plots.tar.gz..........................................archived plots

data......................................................data directory
data.tar.gz..........................archived data, features, results

text............................................ the thesis text directory
thesis.pdf............................the thesis text in PDF format
thesis.tar.gz..........................archived LATEX thesis source
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