
Instructions

Study the PRAM algorithm for a parallel run of k-local finite tree automata. [1]

Explore existing libraries and frameworks for parallelization.

After an agreement with the supervisor implement the algorithm with the use of suitable technology.

Test your implementation and compare the speed of the calculation with sequential algorithm for the

problem.

[1] Plachý Š., Janoušek J. (2020) On Synchronizing Tree Automata and Their Work–Optimal Parallel Run,

Usable for Parallel Tree Pattern Matching. In: Chatzigeorgiou A. et al. (eds) SOFSEM 2020: Theory and

Practice of Computer Science. SOFSEM 2020. Lecture Notes in Computer Science, vol 12011. Springer,

Cham. https://doi.org/10.1007/978-3-030-38919-2_47

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 4 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: Implementation of parallel algorithm for run of k-local tree automata

Student: Milan Borový

Supervisor: Ing. Štěpán Plachý

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Implementation of parallel algorithm for
run of k-local tree automata

Department of Theoretical Computer Science

Supervisor: Ing. Štěpán Plachý

May 13, 2021

Acknowledgements

I would like to thank my parents for the tremendous support they are giving
to me during my study.

I would also like to thank my thesis supervisor Ing. Štěpán Plachý for all
the help and valuable feedback he gave me during creation of this bachelor’s
thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular
that the Czech Technical University in Prague has the right to conclude a
license agreement on the utilization of this thesis as a school work under the
provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague

Faculty of Information Technology

© 2021 Milan Borový. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Borový, Milan. Implementation of parallel algorithm for run of k-local tree
automata. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2021.

Abstract

This thesis deals with k-local deterministic finite tree automata (DFTA) which
are important for tree pattern matching. There exists a work-optimal parallel
algorithm for a run of k-local DFTA on EREW PRAM. This algorithm will
be implemented, experimentally measured and compared with the sequential
algorithm in this thesis.

Keywords k-locality, deterministic finite tree automaton, parallel run im-
plementation, EREW PRAM, OpenMP

Abstrakt

Tato práce se zabývá k-lokálńımi deterministickými konečnými stromovými
automaty (DKSA), které hraj́ı d̊uležitou roli při hledáńı vzor̊u ve stromových
strukturách. Existuje pracovně optimálńı paralelńı algoritmus pro běh k-lokálńıch
DKSA na výpočetńım modelu EREW PRAM. Tento algoritmus bude imple-
mentován, experimentálně změřen a porovnán se sekvenčńım algoritmem v
této práci.

vii

Kĺıčová slova k-lokálnost, deterministický konečný stromový automat, im-
plementace paralelńıho běhu, EREW PRAM, OpenMP

viii

Contents

Introduction 1
Goals . 1

1 Theory 3
1.1 Basic definitions . 3

1.1.1 Graph . 3
1.1.2 Tree . 5
1.1.3 Tree language . 7
1.1.4 Tree automaton . 9
1.1.5 k-local tree automaton 10

1.2 Algorithm Complexity . 10
1.2.1 Sequential Complexity 10
1.2.2 Parallel Complexity . 11

1.3 Parallel Computation Models 12
1.4 Reduction and Scan . 14
1.5 Lists . 15
1.6 Euler Tour Technique . 18
1.7 Parentheses Matching . 19

2 Analysis and Design 21
2.1 Structures . 21

2.1.1 Array . 21
2.1.2 Tree . 22
2.1.3 Arc . 22
2.1.4 DFTA . 23

2.2 Reduction and Scan . 23
2.2.1 Reduction . 23

2.2.1.1 Algorithms . 23
2.2.1.2 Implementations 26

ix

2.2.2 Inclusive scan . 27
2.2.2.1 Algorithms . 27
2.2.2.2 Implementations 35

2.2.3 Exclusive scan . 35
2.2.3.1 Algorithms . 35
2.2.3.2 Implementations 36

2.2.4 Segmented scan . 36
2.2.4.1 Algorithms . 36
2.2.4.2 Implementations 36

2.3 Lists . 37
2.3.1 Linked list . 37

2.3.1.1 Implementations 37
2.3.2 List Ranking . 37

2.3.2.1 6-coloring . 42
2.3.2.2 3-coloring . 44
2.3.2.3 Work-optimal list ranking 44
2.3.2.4 Implementations 49

2.4 Euler Tour Technique . 49
2.4.1 Algorithms . 49
2.4.2 Implementations . 52
2.4.3 Applications . 52

2.5 Parentheses matching . 53
2.5.1 Algorithms . 54
2.5.2 Implementations . 60

2.6 Run of k-local DFTA . 60
2.6.1 Main algorithm . 61
2.6.2 Depth-mod-k sort . 62
2.6.3 Step computation . 65
2.6.4 State computation . 67
2.6.5 Complexity analysis . 68
2.6.6 Implementations . 70

3 Implementation 71
3.1 Libraries . 71
3.2 Structures . 72

3.2.1 Array . 72
3.2.2 Tree . 72
3.2.3 Arc . 73
3.2.4 DFTA . 73

3.3 Reduction and Scan . 74
3.3.1 Reduction . 74
3.3.2 Inclusive scan . 74
3.3.3 Exclusive scan . 74
3.3.4 Segmented scan . 75

x

3.4 Lists . 75
3.4.1 Linked list . 75
3.4.2 k-coloring . 75
3.4.3 List Ranking . 76

3.5 Euler Tour Technique . 76
3.6 Parentheses matching . 77
3.7 Run of k-local DFTA . 78

3.7.1 Main algorithm . 78
3.7.2 Depth-mod-k sort . 78
3.7.3 Step computation . 78
3.7.4 State computation . 79

4 Testing 81
4.1 Unit Tests . 81

4.1.1 Reduction and Scans . 81
4.1.2 Coloring and List ranking 82
4.1.3 Euler Tour Technique 82
4.1.4 Parentheses matching 83
4.1.5 Other . 83

4.2 System test . 83

5 Time measurements 87
5.1 Methodology . 87
5.2 Hardware . 88

5.2.1 Test Data . 88
5.2.1.1 Data Generation 88

5.3 Results . 88

Conclusions and Future work 93
Future work . 94

Bibliography 95

A Acronyms 97

B Symbols 99

C User manual 101
C.1 Prerequisities . 101
C.2 Compilation . 101
C.3 Usage . 102

D Contents of enclosed CD 103

xi

List of Figures

2.1 Parallel reduction computation . 25
2.2 Hillis-Steele algorithm for input of size 16 28
2.3 Up Sweep step for the input of the size 8 32
2.4 Down Sweep step for the input of the size 8 33
2.5 Dynamic linked list . 37
2.6 Successor array representation of a linked list 37
2.7 Parallel list ranking by pointer jumping 39
2.8 (a) Euler circit of tree (b) Array representation of arcs 50

3.1 (a) inclusive scan with min operator (b) segmented inclusive scan
with + operator . 78

4.1 Reduction and scans unit tests . 81
4.2 Coloring and list ranking unit tests 82
4.3 Euler tour technique unit tests . 82
4.4 Parentheses matching unit tests . 83
4.5 Parentheses matching unit tests . 84
4.6 Pre-defined 3-local DFTA . 84
4.7 Pre-defined trees A-F with states after run of DFTA 84
4.8 Pre-defined tree G with states after run of DFTA 85

5.1 Time measurement results . 90
5.2 Parallel algorithms time comparisons based on number of processors 91
5.3 Time comparisons based on algorithm 92

xiii

Introduction

There are many problems that, even though effective algorithms are known
to solve them, are incomputable for large enough inputs. That is where par-
allel algorithms comes in play since increasing performance of computers is
unsustainable.

One of such problems is problem of evaluating a tree. Effective algorithm for
this runs in linear time, but running time could be improved asymptotically
presuming enough processors are available without pushing their physical lim-
its.

Standard computation model for trees and tree languages is finite tree automa-
ton (FTA). This thesis aims to implement parallel run of k-local deterministic
finite tree automaton (DFTA), which is special kind of FTA, that is especially
important for tree pattern matching since pattern of depth k can be matched
by k-local DFTA.

Work-optimal algorithm for parallel run of k-local DFTA was created and
theoretically described on computation model EREW PRAM[1]. This thesis
will implement this algorithm alongside with all support functions needed and
execution time of this implementation will be experimentally measured and
compared to the sequential algorithm for run of k-local DFTA.

Goals

The first goal of this thesis is to study all the needed theory and existing
algorithms for run of k-local DFTA and all other needed algorithms, their
analysis and analysis of their existing implementations.

1

Introduction

The second goal of this thesis is to implement parallel run of k-local DFTA
and all the needed algorithms.

The third and last goal of this thesis is to measure and compare execution
times of the created implementations.

2

Chapter 1
Theory

In this chapter all the needed theory will be presented. Starting with basics of
graph theory[2], tree languages[1] and algorithm complexity[3] through com-
putation models[3] to definition of individual problems that are needed to be
solved to run k-local DFTA in parallel.

All problems defined in this chapter will be analysed in chapter 2.

Notation in this chapter will be similar to the notation in [3] and [1] for tree
languages.

1.1 Basic definitions

1.1.1 Graph

Definition 1.1 Graph is a pair G = (V,E), where

• V is a set of elements called vertices or nodes

• E = {{u, v} : u, v ∈ V ∧ u 6= v} is a set of edges

Definition 1.2 Let G = (V,E) be a graph. Degree of a vertex u ∈ V is

deg(u) := |{{u, v} : v ∈ V, {u, v} ∈ E}|

3

1. Theory

Definition 1.3 Path x1 − xn in the graph G = (V,E) is an unempty
sequence of vertices x1 . . . xn, where

• (∀i ≤ n)xi ∈ V

• (∀i < n){xi, xi+1} ∈ E

• (∀i, j ≤ n)i = j ∨ xi 6= xj

Length of the path x1 − xn is

length of x1 − xn = n− 1

Definition 1.4 Connected graph is a graph G = (V,E) where for each
pair of vertices u, v ∈ V, u 6= v exists a path u− v.

Definition 1.5 Cycle in the graph G = (V,E) is a sequence of vertices
x1 . . . xn, where

• n ≥ 3

• (∀i ≤ n)xi ∈ V

• (∀i < n){xi, xi+1} ∈ E

• (∀i, j < n)i = j ∨ xi 6= xj

• {x1, xn} ∈ E

Definition 1.6 Acyclic graph is a graph that doesn’t contain any cycle
in it.

Definition 1.7 Oriented graph is a pair G = (V,E), where

• V is a set of elements called vertices or nodes

• E = {(u, v) : u, v ∈ V ∧ u 6= v} is a set of oriented edges

4

1.1. Basic definitions

Definition 1.8 Let G = (V,E) be an oriented graph. In-degree of a
vertex u ∈ V is

degin(u) := |{(v, u) : v ∈ V, (v, u) ∈ E}|

Out-degree of a vertex u ∈ V is

degout(u) := |{(u, v) : v ∈ V, (u, v) ∈ E}|

Definition 1.9 Oriented path x1 − xn in the oriented graph G = (V,E)
is an unempty sequence of vertices x1 . . . xn, where

• (∀i ≤ n)xi ∈ V

• (∀i < n)(xi, xi+1) ∈ E

• (∀i, j ≤ n)i = j ∨ xi 6= xj

Length of the path x1 − xn is

length of x1 − xn = n− 1

Definition 1.10 Weakly connected graph is an oriented graph G = (V,E)
where for each pair of vertices u, v ∈ V , u 6= v exists a path u−v (ignoring
edges orientation).

Definition 1.11 Strongly connected graph is an oriented graph G =
(V,E) where for each pair of vertices u, v ∈ V, u 6= v exists an oriented
path u− v.

1.1.2 Tree

Definition 1.12 Tree is acyclic and connected graph.

Definition 1.13 Rooted tree is a tree, where one vertex has been desig-
nated the root of the tree.

Definition 1.14 Depth of the vertex u in a tree with the root r is length
of the path r − u and is denoted depth(u).

5

1. Theory

Definition 1.15 Let G = (V,E) be a tree and u, v any two vertices of G
such that {u, v} ∈ E and depth(u) < depth(v). Then the vertex u is called
parent of the vertex v denoted by parent(v) and the vertex v is called child
of the vertex u. Set of childs of vertex u is denoted by childs(u).

Definition 1.16 Let G = (V,E) be a tree and u any vertex of that tree.
Then ∀v, w ∈ childs(u) such that v 6= w the vertex v is called sibling of
vertex w. Set of siblings of vertex v is denoted by siblings(v).

Definition 1.17 Let G = (V,E) be a tree and u, v ∈ V two vertices of
that tree. Vertex u is called an ancestor of the vertex v if

• u = parent(v) or

• ∃w ∈ V such that u is ancestor of the vertex w and w is ancestor of
the vertex v.

Set of ancestors of the vertex v is denoted by ancestors(v).

Definition 1.18 Let G = (V,E) be a tree and u, v ∈ V such that u ∈
ancestors(v). Then v is called descendant of the vertex u. Set of descen-
dants of the vertex u is denoted by descendants(u).

Definition 1.19 Subtree G′ = (V ′, E′) of the tree G = (V,E) is a tree
such that V ′ ⊆ V and(

∀u, v ∈ V ′
)
{u, v} ∈ E′ ⇔ {u, v} ∈ E

Definition 1.20 Let G = (V,E) be a tree and u ∈ V vertex of that tree.
Arity of vertex u is

arity(u) = |childs(u)|

Definition 1.21 Let G = (V,E) be a tree and u ∈ V vertex of that tree.
u is called a leaf if arity(u) = 0. Vertex that is not a leaf is called inner
vertex. Set of leaves is denoted by leaves(G).

6

1.1. Basic definitions

Definition 1.22 Ordered tree G = (V,E) is a tree such that ∀u ∈ V
childs(u) is ordered set.

Definition 1.23 Let G = (V,E) be an ordered tree and u, v ∈ V vertices
of that tree such that v ∈ childs(u). v is called i-th child of vertex u if v
is on i-th position in ordered set childs(u) denoted by childi(u).

1.1.3 Tree language

Definition 1.24 Alphabet Σ is a finite set of symbols.

Definition 1.25 String over the alphabet Σ is sequence of symbols a1 . . . an
from alphabet Σ.
ε denotes empty string.
|a1 . . . an| = n denotes length of string a1 . . . an.
Set of strings over the alphabet Σ is denoted by Σ∗.
|w|a denotes number of occurences of symbol a ∈ Σ in a string w ∈ Σ∗.
wi denotes i-th symbol of string w ∈ Σ∗

Definition 1.26 Concatenation of strings over the alphabet Σ is mapping
· : Σ∗ × Σ∗ → Σ∗ such that

(a1 . . . an) · (b1 . . . bn) = (a1 . . . an b1 . . . bn)

Definition 1.27 Substring of string w over the alphabet Σ is such string
s that

(∃t, u ∈ Σ∗)w = t · s · u

Definition 1.28 Prefix of string w over the alphabet Σ is such string p
that

(∃t ∈ Σ∗)w = p · t

Definition 1.29 Postfix of string w over the alphabet Σ is such string p
that

(∃t ∈ Σ∗)w = t · p

7

1. Theory

Definition 1.30 Ranked alphabet is a pair F = (Σ, rank), where

• Σ is alphabet.

• rank is function Σ → N0 which for each symbol from the alphabet
Σ assigns a natural number as its rank.

Fr = {a : a ∈ Σ ∧ rank(a) = r} denotes subset of symbols with rank r.

Definition 1.31 Set of terms T (F ,X) over the ranked alphabet F and
set of constants called variables X , where X ∩F0 = ∅, is the smallest set
defined by

• F0 ⊆ T (F ,X) and

• X ⊆ T (F ,X) and

• (r ≥ 1 ∧ f ∈ Fr ∧ t1, . . . , tr ∈ T (F ,X))⇒ f(t1, . . . , tr) ∈ T (F ,X)

Each t ∈ T (F ,X) is called a term over the ranked alphabet F .

Definition 1.32 Term t ∈ T (F ,X) where X = ∅ is called a ground term
over the ranked alphabet F . Set of ground terms over the ranked alphabet
F is denoted by T (F).

Theorem 1.1 Term t = f(t1, . . . , tr) ∈ T (F ,X) is equivalent to an or-
dered tree G = (V,E) such that

V = {node(t)} ∪
(

r⋃
i=1

V ′i

)

E = {{node(t), root(G′i)} : ∀i ∈ r̂} ∪
(

r⋃
i=1

E′i

)
where node(t) denotes node representing term t, G′i = (V ′i , E′i) is a tree
equivalent to the term ti and set of childs of node(t) is ordered with respect
to i (i.e. childi(node(t)) = node(ti)). label(node(t)) denotes symbol f
(i.e. top-level symbol).

8

1.1. Basic definitions

Definition 1.33 Ground substition sigma over the set of the variables X
and the ranked alphabet F is mapping X → T (F) which for each variable
x ∈ X assigns a ground term t ∈ T (F).

Definition 1.34 Subterm t|p of a term t ∈ T (F ,X) at position p ∈ N∗0
is defined by the following:

• t|ε = t

• if t = f(t1, . . . , tr) then t|ip′ = ti|p′ for i ≤ r

Set of subterms of term t is denoted by subterms(t).

Definition 1.35 Tree language over the ranked alphabet F is a set of
ground terms L ⊆ T (F).

1.1.4 Tree automaton

Definition 1.36 Deterministic finite tree automaton (DFTA) over a ranked
alphabet F is a quadruple A = (Q,F , Qf ,∆), where

• Q is a finite set of states.

• F is a ranked alphabet.

• Qf ⊆ Q is a set of final states.

• ∆ is a transition function of type f(q1, . . . , qr)→ q, where

– f ∈ Fr
– q1, . . . , qr, q ∈ Q

Definition 1.37 Extended transition function of DFTA A = (Q,F , Qf ,∆)
is a mapping ∆̂ : T (F)→ Q defined as follows:

• (∀f ∈ F0)∆̂(f) = ∆(f)

• (∀r > 0)(∀f ∈ Fr)(∀t1, . . . , tr ∈ T (F))

∆̂(f(t1, . . . , tr)) = ∆(f(∆̂(t1), . . . , ∆̂(tr)))

9

1. Theory

Definition 1.38 A ground term t ∈ T (F) is accepted by the DFTA
A = (Q,F , Qf ,∆) if ∆̂(t) ∈ Qf .

1.1.5 k-local tree automaton

Definition 1.39 Let A = (Q,F , Qf ,∆) be a DFTA and t ∈ T (F ,X) be
a term over the ranked alphabet F . Term t is called synchronizing for A
if

(∃q ∈ Q)(∀σ)∆̂(σ(t)) = q

Definition 1.40 Minimal variable depth is a function MVD : T (F ,X)→ N0
such that

• (∀f ∈ F0)MVD(f) = +∞

• (∀x ∈ X)MVD(x) = 0

• (∀p > 0)(∀f ∈ Fp)(∀t1, . . . , tp ∈ T (F ,X))MVD(f(t1, . . . , tp)) =
1 +minpi=1MVD(ti)

Definition 1.41 k-local DFTA A = (Q,F , Qf ,∆) is a DFTA such that

(∀t ∈ T (F ,X))MVD(t) ≥ k ⇒ t is synchronizing

1.2 Algorithm Complexity

1.2.1 Sequential Complexity

Definition 1.42 Time complexity TKA (n) of algorithm A solving problem
K for input of size n is a computer time required to run that algorithm.

Definition 1.43 Sequential lower bound SLK(n) of problem K is func-
tion such that

(∀A)TKA (n) ∈ Ω
(
SLK(n)

)

10

1.2. Algorithm Complexity

Definition 1.44 Algorithm A is the best known sequential algorithm for
solving problem K if there’s not any known algorithm B such that

TKA (n) ∈ ω
(
TKB (n)

)

Definition 1.45 Sequential upper bound SUK(n) of problem K worst-
case time complexity of the best known sequential algorithm solving K.

Definition 1.46 Algorithm A is called optimal sequential algorithm for
solving problem K if

TKA (n) ∈ Θ
(
SLK(n)

)

1.2.2 Parallel Complexity

Definition 1.47 Parallel time complexity TKA (n, p) of parallel algorithm
A solving problem K for input of size n using p processors is a total time
elapsed from the beginning of execution until the last processor finishes.

Definition 1.48 Parallel speedup of parallel algorithm A solving problem
K for input of size n using p processors is

SKA (n, p) = SUK(n)
TKA (n, p)

Definition 1.49 Parallel cost of algorithm A solving problem K for input
of size n using p processors is

CKA (n, p) = p · TKA (n, p)

Definition 1.50 Algorithm A is called cost-optimal if

CKA (n, p) ∈ Θ
(
SUK(n)

)

11

1. Theory

Definition 1.51 Synchronous parallel work of a synchronous algorithm
A solving problem K for input of size n using p processors in τ parallel
steps where pi denotes number of active processors in step i is

WK
A (n, p) =

τ∑
i=1

pi

Definition 1.52 Asynchronous parallel work of an asynchronous algo-
rithm A solving problem K for input of size n using p processors where
Ti denotes number of steps executed by i-th processor is

WK
A (n, p) =

p∑
i=1

Ti

Definition 1.53 Algorithm A is called work-optimal if

WK
A (n, p) ∈ Θ

(
SUK(n)

)

Definition 1.54 Parallel efficiency of algorithm A solving problem K for
input of size n using p processors is

EKA (n, p) = SUK(n)
CKA (n, p)

1.3 Parallel Computation Models

Parallel computation models are split in 2 groups.

• Shared-memory models where all processors share one common memory.

• Distributed-memory models where each processor (or group of proces-
sors) have private memories and pass data through messages.

This thesis is focused on shared-memory models, specifically on PRAM model.
For more insights [3] is recommended.

12

1.3. Parallel Computation Models

Definition 1.55 Random Access Machine (RAM) model is computation
model consisting of a single processor with bounded number of registers,
unbounded number of local memory cells with a user-defined program,
read-only input tape and write-only output tape.

Instruction set of processor contains instructions for simple data manipu-
lation, comparisons, branching and basic arithmetic operations. Program
is executed from first instruction until HALT instruction.

Definition 1.56 Parallel Random Access Machine (PRAM) model is com-
putation model consisting of multiple RAM processors p2, p2, . . . without
input and output tapes and without local memory, all processors are con-
nected to a shared memory with unbounded number of cells M1,M2,
Each processors pi knows its index i. Each processor have constant-time
access to any Mj unless there are access conflicts. All processors work
synchronously and can communicate with each other only through writing
to and reading from shared memory. p1 has control role and starts execu-
tion of other processors. p1 can halt only when other processors halted.

Access conflicts mentioned in previous definition are handled based on conflict
handling strategy of specific PRAM submodel.

Definition 1.57 Exclusive Read Exclusive Write (EREW) PRAM model
is PRAM submodel that doesn’t allow 2 processors to access the same
memory cell simultaneously.

Definition 1.58 Concurrent Read Exclusive Write (CREW) PRAM model
is PRAM submodel that allows reading from a single memory cell to mul-
tiple processors simultaneously but only 1 processor may attempt to write
on given cell at a time.

Definition 1.59 Concurrent Read Concurrent Write (CRCW) PRAM
model is PRAM submodel that allows multiple processors to read simulta-
neously single cell and multiple processors may attempt to write on given
cell at a time.

Concurrent read operations don’t affect each other but concurrent write op-
erations don’t have clear semantics and thus those must be defined.

13

1. Theory

Definition 1.60 Priority CRCW PRAM model is CRCW PRAM sub-
model that has fixed distinct priorities and the processor with highest pri-
ority is allowed to complete write operation.

Definition 1.61 Arbitrary CRCW PRAM model is CRCW PRAM sub-
model that allows to 1 randomly chosen processor to complete write oper-
ation.

Definition 1.62 Common CRCW PRAM model is CRCW PRAM sub-
model that allows all processors to complete write operation but all pro-
cessors must write the same value to the given memory cell and Common
CRCW PRAM algorithms must ensure that this condition is satisfied.

1.4 Reduction and Scan

Definition 1.63 Let X = {x1, . . . , xn} be a finite set of values and ⊕ an
associative binary operator X ×X→ X.
Problem of finding x1⊕· · ·⊕xn is called reduction and ⊕ is called reduc-
tion operator.

Definition 1.64 Let (xi)ni=1 be a finite sequence of values from X and ⊕
an associative binary operator X ×X→ X.
Problem of finding a sequence (yi)ni=1 such that

(∀i ∈ n̂)yi = x1 ⊕ · · · ⊕ xi

is called inclusive scan.

Definition 1.65 Let (xi)ni=1 be a finite sequence of values from X and ⊕
an associative binary operator X ×X→ X.
Problem of finding a sequence (yi)ni=1 such that

(∀i ∈ n̂)yi = x1 ⊕ · · · ⊕ xi−1

is called exclusive scan.

14

1.5. Lists

Definition 1.66 Let (xi)ni=1 be a finite sequence of values from X and ⊕
an associative binary operator X ×X→ X.
Let X be a set of subsequences of (xi)ni=1 where each subsequence contains
consecutive run of elements from (xi)ni=1, each 2 subsequences are disjunct
and concatenation of all subsequences forms (xi)ni=1.
Problem of finding an inclusive (or exclusive) scan of each subsequence
from X is called segmented inclusive (or exlusive) scan.

1.5 Lists

Definition 1.67 Linked list is a pair L = (X,S) where

• X is an unempty set of nodes

• S is an injective successor function X → X such that

– (∃!h ∈ X)(∀x ∈ X)S(x) 6= h, node h is called head and is
denoted by head(L).

– (∃!t ∈ X)S(t) is undefined, node t is called tail and is denoted
by tail(L).

Lemma 1.1 Let L = (X,S) be a linked list. Then

X =
|X|−1⋃
i=0
{Si(head(L))}

15

1. Theory

Proof 1.1 Let L = (X,S) be a linked list.
If |X| = 1 then head(L) = S0(head(L)) = tail(L) and

X =
1−1⋃
i=0
{Si(head(L))} = {head(L)}

If |X| ≥ 2 then exists list L′ = (X ′, S′) such that

X \X ′ = {tail(L)}

and

(∀x ∈ X ′)S′(x) =
{
S(x), iff S(x) 6= tail(L)
undefined, otherwise

and then
X = X ′ ∪ {S(tail(L′))}

Recursive application of this results in

X = {head(L′...′′)} ∪ {S(tail(L′...′′))} ∪ {S(tail(L′...′))} ∪ · · · ∪ {tail(L′)}

and if a linked list L′...′′ = (X ′...′′, S′...′′) has size |X ′...′′| = 1 then

X = {head(L′...′′)}∪{S(head(L′...′′))}
∪{S(S(head(L′...′′)))}
∪ . . .
∪{S|X|−1(head(L′...′′))}

=
|X|−1⋃
i=0
{Si(head(L))}

�

Definition 1.68 Let L = (X,S) be a linked list. Independent set I ⊂ X
of a linked list L is such subset of X that

(∀i ∈ I)S(i) is undefined ∨ S(i) /∈ I

Lemma 1.2 Independent set I of linked list L can be removed from L in
parallel on EREW PRAM.

16

1.5. Lists

Proof 1.2 Let L = (X,S) be a linked list and I ⊂ X its independent set.
Since for each pair of nodes i, j ∈ I S(i) 6= j there are no neighbouring
nodes in the independent set I. Thus each node can be removed from L
by relinking its predecessor to its successor (i.e. iff S(i) ∈ I then S(i)←
S(S(i))) without any conflicts. �

Definition 1.69 Let L = (X,S) be a linked list and C a set of colors of
size k. X ∩ C = ∅. Problem of finding a mapping color : X → C such
that

(∀x, y ∈ X)S(x) = y ⇒ color(x) 6= color(y)

is called list k-coloring.

Lemma 1.3 Let color be a k-coloring of a linked list L = (X,S).
The set of local minima of the k-coloring

{x : (x ∈ X)(∀y ∈ X)(S(x) = y ∨ S(y) = x)⇒ color(x) < color(y)}

is an independent set of the linked list L of a size Ω(nk).

Proof 1.3 Let x, y be 2 local minima of a k-colouring color of a linked
list L = (X,S) with no other local minima in between.
Since the k-coloring assigns different colors to adjacent nodes for each
pair of nodes u, v such that S(u) = v color(u) < color(v) or color(u) >
color(v) thus x and y cannot be adjacent thus set of local minima forms
an independent set.
Since there are no local minima in between x and y colours of nodes be-
tween x and y must form a bitonic sequence1that has at most 2k − 3
colours. Thus the size of the set of the local minima is at least n

2·k−2 ∈
Ω(nk). �

Definition 1.70 Let L = (X,S) be a linked list. Problem of finding a
mapping rank : X → N0 such that

(∀x ∈ X)Srank(x)(head(L)) = x

is called list ranking.

1sequence (a)n
1 such that (∃k, 1 < k < n) for which (a)k

1 is monotonic increasing and
(a)n

k is monotonic decreasing or vice versa.

17

1. Theory

1.6 Euler Tour Technique

Definition 1.71 (Oriented) Euler tour of a (oriented) graph G = (V,E)
is a sequence of consecutive (oriented) edges in the graph G that traverses
every (oriented) edge in E exactly once.
(Oriented) Graph G that contains Euler tour is called (oriented) Euler
graph.

Theorem 1.2 (Euler’s theorem[2]) A connected graph G = (V,E) is Eu-
ler if and only if

(∀u ∈ V)deg(u) is even

Theorem 1.3 A connected oriented graph G = (V,E) is Euler if and
only if

(∀u ∈ V)degin(u) = degout(u)

Theorem 1.4 Let G = (V,E) be a tree. An oriented graph G′ = (V,E′)
such that

(∀u, v ∈ V)((u, v) ∈ E′ ∧ (v, u) ∈ E′)⇔ {u, v} ∈ E

is an oriented Euler graph.

Proof 1.4 Since G = (V,E) is connected and each edge in E was re-
placed with pair of edges in both directions, G′ = (V ′, E′) must be strongly
connected and

(∀u ∈ V)(∀u′ ∈ V ′)u = u′ ⇒ (deg(u) = degin(u′) = degout(u′))

Hence G′ is oriented Euler graph. �

Definition 1.72 Euler tour technique is a problem of finding of an Euler
tour of an ordered tree.

18

1.7. Parentheses Matching

1.7 Parentheses Matching

Definition 1.73 String of parentheses w ∈ {(,)}∗ is well-formed when

• w = (), or

• w = u · v, where u, v are well-formed, or

• w = (v), where v is well-formed.

Definition 1.74 Let w ∈ {(,)}∗ be a well-formed string of parentheses.
Problem of finding a mapping match : N→ N0 such that (∀i, j ∈ |̂w|)

match(i) = j ⇔ match(j) = i⇔ (i < j ∧ wi . . . wj is well − formed)

is called parentheses matching.

19

Chapter 2
Analysis and Design

In this chapter used data structures will be designed first, then algorithms
solving problems defined in chapter 1 will be analysed.

All those algorithms are needed to run k-local DFTA in parallel work-optimally
and are used as support algorithms in the main algorithm which will be anal-
ysed at the end of this chapter.

2.1 Structures

2.1.1 Array

An array is a consecutive memory block of a specific type that provides random
access to its elements.

There are several implementations for arrays. The most simple one is the
C-like array which is just an allocated block of memory.

Standard C++ libraries include multiple implementations of the array. The
most important are std::vector and std::array.

std::array is a statically allocated array that cannot be resized during run-time.
It is simple wrapper around C-like arrays that adds boundary checks, iterators
and other C++ functionalities that satisfies the requirements of Container,
ReversibleContainer, ContiguousContainer and partially SequenceContainer.

std::vector is a dynamically allocated array wrapping a C-like array that allows
resizing of the array on run-time. This occurs when capacity of the vector is

21

2. Analysis and Design

insufficient for stored elements. Resizing must move all elements of the vector
thus insertion has O (()n) time complexity but this is just in the case of
increasing capacity which is very infrequent. Amortized time of insert is thus
Θ∗ (1).

Both of those implementations are however designed for sequential use only
and are slow for use in parallel programming.

Boost library contains parallel implementation of the array boost::compute::vector
that stores values in OpenCL buffer for fast computations.

2.1.2 Tree

Tree in this thesis will represent term t ∈ T (F ,X) as described in theorem 1.1
and could be represented as a pair of arrays:

• labels including symbols of ranked alphabet F stored in each vertex

• childs pointing to (including indices of) childs of each vertex

and a pointer to (index of) a root of the tree.

2.1.3 Arc

Arc of the Euler tour of the tree is a 4-tuple consisting of:

• pointer to (index of) source vertex

• pointer to (index of) target vertex

• pointer to (index of) opposite arc

• type of the arc (upgoing/downgoing)

Since Arc is a very specific struct with specific usage there are no implemen-
tations of it in C++ standard libraries nor Boost libraries.

22

2.2. Reduction and Scan

2.1.4 DFTA

DFTA as defined in definition 1.36 is a 4-tuple A = (Q,F , Qf ,∆). Since the
ranked alphabet F and transition function ∆ must contain the same set of
symbols DFTA may be represented by a 3-tuple consisting of

• a finite set of states.

• a finite set of final states.

• a transition function.

Assuming that states are numbers 0, . . . , n finite set of states can be repre-
sented by the state with the greatest number (i.e. n).

Since transition function has different arity for different symbols, this can be
represented by a table associating symbol to corresponding transition function
of symbol-specific arity.

2.2 Reduction and Scan

In the following algorithms, for purpose of simplicity, the size of the input
is assumed to be a power of two. There are as many processors as needed
available and in the parallel sections of the algorithms, all processors execute
the same statement in synchrony.

2.2.1 Reduction

Problem of reduction is defined by definition 1.63.

2.2.1.1 Algorithms

Since the operator ⊕ is associative the problem

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ · · · ⊕ xn−3 ⊕ xn−2 ⊕ xn−1 ⊕ xn

can be reformulated into a linear order

((((. . . (((x1 ⊕ x2)⊕ x3)⊕ x4)⊕ · · · ⊕ xn−3)⊕ xn−2)⊕ xn−1)⊕ xn)

23

2. Analysis and Design

or a tree-like order

(. . . ((x1 ⊕ x2)⊕ (x3 ⊕ x4))⊕ · · · ⊕ ((xn−3 ⊕ xn−2)⊕ (xn−1 ⊕ xn)) . . .)

Sequential solution of this problem can be easily made from the linear order
because except for the first pair of values reduction operator is always applied
to a cumulative intermediate result and a value xi, 3 ≤ i ≤ n. Let 0 be a
left-identity with respect to the reduction operator ⊕. Then linear order can
be written as

((((. . . ((((0⊕ x1)⊕ x2)⊕ x3)⊕ x4)⊕ · · · ⊕ xn−3)⊕ xn−2)⊕ xn−1)⊕ xn)

and if we consider 0 to be a first cumulative intermediate result then reduction
operator is applied to a cumulative intermediate result and value xi, ∀i ∈ n̂.
Hence the algorithm 1.

Algorithm 1: Sequential reduction
Input: values x1, . . . , xn
Result: reduction of values
r ← 0;
for i← 1 to n do

r ← r ⊕ xi;
end
return r;

Each value xi is on the right side of the reduction operator ⊕ only once in
algorithm 1. Hence the time complexity

T (n) = O (n)

And because each value xi must appear at least once on left or right side of
the reduction operator problem cannot be solved faster than in linear time.

SL (n) = SU (n) = T (n) = O (n)

Parallel solution of reduction is achievable with usage of the tree-like order of
the problem

(. . . ((x1 ⊕ x2)⊕ (x3 ⊕ x4))⊕ · · · ⊕ ((xn−3 ⊕ xn−2)⊕ (xn−1 ⊕ xn)) . . .)

because application of reduction operator on pairs of values colored in red
depicted above doesn’t contain any read/write conflicts and thus can run

24

2.2. Reduction and Scan

result

...

x1 x2 x3 x4

...

xn−3 xn−2 xn−1 xn⊕ ⊕ ⊕ ⊕

⊕ ⊕

⊕

step 1

step 2

step log2 n

Figure 2.1: Parallel reduction computation

independently on each other in parallel. Solving those independent pairs leads
to

(. . . (x1,2 ⊕ x3,4)⊕ · · · ⊕ (xn−3,n−2 ⊕ xn−1,n) . . .)

which is the problem of reduction too and can be solved in the same way. This
can be repeated until a single value (result) remains. Figure 2.1 depicts how
parallel reduction is computed.

This can be formulated as algorithm 2.

Algorithm 2: Parallel reduction (EREW PRAM)
Input: values {xi : i ∈ n̂} and n is power of 2
Result: reduction of values
Auxiliary: intermediate results r1, . . . , rn

2
, left and right indices

lefti, righti,∀i ∈ n̂
2

for i← 1 to log2 n do
for j ← 1 to n

2i do in parallel
leftj ← 1 + (j − 1) · 2i;
rightj ← left+ 2i−1;
rleftj ← rleftj ⊕ rrightj ;

end
end
return r1;

25

2. Analysis and Design

Each thread in inner cycle executes O (1) arithmetic operations and thus runs
in O

(
n
p

)
time using p processors. Outer cycle has O (log2 n) iterations taking

O
(
n
p

)
time, hence the parallel time

T (n, p) = O

(
n · log2 n

p

)

Speedup is
S (n, p) = n · p

n · log2 n
= p

log2 n

Parallel cost of algorithm 2 is

C (n, p) = p ·O (log2 n) = O (n · log2 n) = ω (SU (n))

thus the algorithm is not cost-optimal.

A source of non-cost-optimality is the fact that in each step half of the threads
are active than in the previous step.

A parallel work of the algorithm is

W (n, p) =
log2 n∑
i=1

n

2i =
log2 n∑
i=1

Θ (n) = log2 n·Θ (n) = O (n · log2 n) = ω (SU (n))

hence the algorithm is not work-optimal.

As shown before there are no read/write conflicts during execution thus those
complexities apply on EREW PRAM.

This algorithm can be made cost and work-optimal by splitting the input
into smaller portions that are precomputed sequentially by individual proces-
sors and then reducing the results of the sequential reductions. This trick is
described in more detail in the inclusive scan section.

2.2.1.2 Implementations

There exists multiple implementation of reduction. For sequential reduction
there exists function std::reduce in C++17 numeric library. This implemen-
tation works in O(n) time and is similar to algorithm 1.

For parallel reduction overriden function std::reduce can be used that uses the
work-optimal modification of the algorithm described above.

26

2.2. Reduction and Scan

Boost library includes its own implementation of reduction boost::compute::reduce
that runs in logarithmic time too, but is implemented using OpenCL (com-
putation using graphic cards) and thus is much faster than (std::reduce).

OpenMP comes with implementation of reduction too that is implemented
similarly to algorithm 2 but uses preprocessor directives instead of function.

2.2.2 Inclusive scan

Problem of inclusive scan is defined by definition 1.64.

Problem of inclusive scan is very similar to the problem of reduction. The
only difference is that reduction aims to obtain result only for the whole set
of values {x1, . . . , xn} but inclusive scan aims to obtain results of all subsets
{x1, . . . , xi} such that i ≤ n. That means to get all intermediate results of
linear order described in reduction analysis 2.2.1.

2.2.2.1 Algorithms

Sequential solution of this problem is a simple modification of the sequential
solution of the reduction. It is just needed to store all the intermediate results.

Algorithm 3: Sequential inclusive scan
Input: values x1, . . . , xn
Output: inclusive scan s1, . . . , sn
r ← 0;
for i← 1 to n do

r ← r ⊕ xi;
si ← r;

end

Since the algorithm 3 is the same as the algorithm 1 complexities are the same
too.

The same applies to the lower bound of the problem.

T (n) = SL (n) = SU (n) = O (n)

Since to achieve parallelism for the reduction tree-like order of problem must
be used but intermediate results of linear order are needed, parallel solution
of inclusive scan cannot be similarly simple modification of parallel reduction
as in case of the sequential solution.

27

2. Analysis and Design

x1

⊕1
1

⊕1
1

⊕1
1

⊕1
1

x2

⊕2
1

⊕2
1

⊕2
1

⊕2
1

x3

⊕3
2

⊕3
1

⊕3
1

⊕3
1

x4

⊕4
3

⊕4
1

⊕4
1

⊕4
1

x5

⊕5
4

⊕5
2

⊕5
1

⊕5
1

x6

⊕6
5

⊕6
3

⊕6
1

⊕6
1

x7

⊕7
6

⊕7
4

⊕7
1

⊕7
1

x8

⊕8
7

⊕8
5

⊕8
1

⊕8
1

x9

⊕9
8

⊕9
6

⊕9
2

⊕9
1

x10

⊕10
9

⊕10
7

⊕10
3

⊕10
1

x11

⊕11
10

⊕11
8

⊕11
4

⊕11
1

x12

⊕12
11

⊕12
9

⊕12
5

⊕12
1

x13

⊕13
12

⊕13
10

⊕13
6

⊕13
1

x14

⊕14
13

⊕14
11

⊕14
7

⊕14
1

x15

⊕15
14

⊕15
12

⊕15
8

⊕15
1

x16

⊕16
15

⊕16
13

⊕16
9

⊕16
1

Figure 2.2: Hillis-Steele algorithm for input of size 16

To achieve parallel solution logically redundant applications of ⊕ operator
must be added to the parallel solution of the reduction. This solution was
firstly presented by Hillis and Steele. Figure 2.2 depicts how is inclusive scan
of an array of size 16 computed using Hillis-Steele algorithm[4].

The algorithm 4 applies ⊕ operator to each pair of consecutive elements in
the first iteration and in every following iteration it applies ⊕ operator to each
pair of elements that are double the distance from previous iteration far away
from each other.

Hillis-Steele algorithm 4 contains read/write conflict but could be easily solved
by using auxiliary array to temporarily store values from previous iteration
thus is applicable for EREW PRAM.

Copying input to output on the first line could be executed in O
(
n
p

)
time in

parallel using p processors.

28

2.2. Reduction and Scan

Algorithm 4: Hillis-Steele scan algorithm (CREW PRAM)
Input: values x1, . . . , xn
Output: inclusive scan s1, . . . , sn
si ← xi,∀i ∈ n̂;
for i← 1 to log2 n do

for j ← 1 to n− 2i−1 do in parallel
sj+2i−1 ← sj ⊕ sj+2i−1 ;

end
end
return r1;

The inner loop of the algorithm contains O (1) arithmetic operations and is ex-
ecuted in parallel thus outer loop withO (log2 n) steps execute inO (1 · log2 n).

Hence the complexities

T (n, p) = O

(
n

p

)
+O (log2 n) ·O (1) = O

(
n

p
+ log2 n

)
T (n, n) = O (log2 n)

S (n, p) = n
n
p + log2 n

S (n, n) = n

log2 n

C (n, p) = p ·O
(
n

p
+ log2 n

)
= O (n+ p · log2 n)

C (n, n) = O (n+ n · log2 n) = O (n · log2 n) = ω (SU (n))

thus Hillis-Steele algorithm is not cost-optimal. It has the same reason as in
the case of parallel reduction.

A parallel work of the algorithm is

W (n, p) =
log2 n∑
i=1

n−2i−1 = n · log2 n−
log2 n∑
i=1

2i−1 = O (n · log2 n) = ω (SU (n))

since
log2 n∑
i=1

2i−1 ≤
log2 n∑
i=1

2log2 n =
log2 n∑
i=1

n = n · log2 n

thus the algorithm is not work-optimal.

To achieve work-optimality of the algorithm simple trick could be used. The
input is split to same-sized smaller portions that are precomputed sequentially.

29

2. Analysis and Design

Algorithm 5: Modified Hillis-Steele scan algorithm (CREW PRAM)
Input: values x1, . . . , xn
Output: inclusive scan s1, . . . , sn
Auxiliary: intermediate results r1, . . . , rp where p is the number of

processors
split x1, . . . , xn to p consecutive sections of size n

p ;
foreach section xi, . . . , xj do in parallel

sequential inclusive scan (in: xi, . . . , xj , out: xi, . . . , xj);
rtid ← sj ;

end
Hillis-Steele algorithm (in: r, out: r);
foreach section xi, . . . , xj do in parallel

for k ← i to j do
if tid 6= 1 then

sk ← rtid−1 ⊕ sk;
end

end
end

Results of those precomputation are then used in Hillis-Steele algorithm and
then applied back to the smaller portions.

The precomputation of the portion takes n
p time. Then Hillis-steele is executed

in log2 p time. Total parallel time is

T (n, p) = O

(
n

p
+ log2 p

)
and using n

log2 n processors this is

T

(
n,

n

log2 n

)
= O

(
n
n

log2 n

+ log2
n

log2 n

)
= O

(
log2 n+ log2

n

log2 n

)
and since

log2
n

log2 n
= O (log2 n)

the parallel time results in

T

(
n,

n

log2 n

)
= O (log2 n)

The parallel time and speedup are unafffected by the modification. But the
parallel cost and work are now

C (n, p) = p ·O
(
n

p
+ log2 p

)
= O (()n+ p · log2 p)

30

2.2. Reduction and Scan

C

(
n,

n

log2 n

)
= O

(
n

log2 n
· log2 n

)
= O (n) = Θ (SU (n))

W (n, p) = n+O (p · log2 p) = O (n+ p · log2 p)

W

(
n,

n

log2 n

)
=O

(
n

log2 n
+ n

log2 n
· log2

n

log2 n

)
=O

(
n

log2 n
+ n

log2 n
· log2 n

)
=O (n) = Θ (SU (n))

thus the modified algorithm is cost-optimal and work-optimal.

Another parallel solution of this was presented by Blelloch[5]. The algorithm
consists of 2 steps. The first one, called up-sweep step, is almost identical to
the parallel reduction.

Algorithm 6: Up-Sweep step of Blelloch scan algorithm (EREW
PRAM)

Input: values x1, . . . , xn
Output: intermediate results r1, . . . , rn
Auxiliary: left and right indices left1, . . . , leftn

2
and

right1, . . . , rightn
2

ri ← xi,∀i ∈ n̂;
for i← 1 to log2 n do

for j ← 1 to n
2i do in parallel

leftj ← 1 + (j − 1) · 2i;
rightj ← left+ 2i−1;
rleftj ← rleftj ⊕ rrightj ;

end
end

The first step formulated by algorithm 6 can be depicted as a tree where the
computation proceeds from the leaves to the root and thus is called Up Sweep
step. Result of the Up Sweep step can be used to compute scan of the input.

The second step is called down-sweep step because computation proceeds from
the root to the leaves. At the beginning identity 0 is set to the root. At each
step (level of the tree) the algorithm passes value from parent to its left child
and ⊕ applied to the parent and left child is passed to the right child.

The figures 2.3 and 2.4 depicts up-sweep and down-sweep step respectively for
input size of 8 elements. As can be seen from figure 2.4 this step is natively
exclusive, but it will prove useful in the algorithm as a whole.

31

2. Analysis and Design

⊕8
1

⊕4
1

⊕2
1

x1 x2

⊕4
3

x3 x4

⊕8
5

⊕6
5

x5 x6

⊕8
7

x7 x8

Figure 2.3: Up Sweep step for the input of the size 8

Algorithm 7: Down-Sweep step of Blelloch scan algorithm (EREW
PRAM)

Input: values x1, . . . , xn and n is power of 2
Output: scan s1, . . . , sn
Auxiliary: left and right indices left1, . . . , leftn

2
and

right1, . . . , rightn
2
, temporary values t1, . . . , tn

2

si ← xi, ∀i ∈ n̂;
for i← log2 n downto 1 do

for j ← 1 to n
2i do in parallel

leftj ← 1 + (j − 1) · 2i;
rightj ← left+ 2i−1;
tj ← sleftj ⊕ srightj ;
sleftj ← srightj ;
srightj ← tj ;

end
end

32

2.2. Reduction and Scan

0

0

0

0
⊕1

1

⊕2
1

⊕2
1

⊕3
1

⊕4
1

⊕4
1

⊕4
1

⊕5
1

⊕6
1

⊕6
1

⊕7
1

Figure 2.4: Down Sweep step for the input of the size 8

Inner loop in both steps contains O (1) arithmetic operations and thus both
outer loops executes in O

(
n
p · log2 n

)
time using p processors. Copying input

to output values at the beginning of both steps takes O
(
n
p

)
time.

If there’s a fixed number of processors p ≤ n the input can be split into p
almost equally-sized sections, each scanned sequentially by single processor.
Since the sequential algorithm runs in O(n) time and size of each section is
about n

p this will take O
(
n
p

)
time.

Then the values ⊕j
i from each section starting with xi and ending with xj

will together form an input for a parallel scan. This means for parallel scan
there will be the input of the size p and thus will run in O (log2 p) time.

Results of parallel scan will be used by processors as offset for values to apply
to its section. This takes O

(
n
p

)
time.

In the algorithm 8 tid ∈ p̂ denotes id of executing thread and for each two
sections xi, . . . , xj and xk, . . . , xl where i < j < k < l section xi, . . . , xj is
executed by a thread with lower id than the other section.

The total parallel time of the Blelloch algorithm is

T (n, p) =O
(
n

p

)
+O (log2 p) +O (log2 p) +O

(
n

p

)
= O

(
n

p
+ log2 p

)
T

(
n,

n

log2 n

)
=O

(
n
n

log2n

+ log2
n

log2 n

)
= O

(
log2 n+ log2

n

log2 n

)
=O (log2 n)

33

2. Analysis and Design

Algorithm 8: Blelloch scan alorithm (EREW PRAM)
Input: values x1, . . . , xn
Output: inclusive scan s1, . . . , sn
Auxiliary: intermediate results r1, . . . , rp where p is the number of

processors
split x1, . . . , xn to p consecutive sections of size n

p ;
foreach section xi, . . . , xj do in parallel

sequential inclusive scan (in: xi, . . . , xj , out: si, . . . , sj);
rtid ← sj ;

end
up-sweep (in: r, out: r);
down-sweep (in: r, out: r);
foreach section xi, . . . , xj do in parallel

for k ← i to j do
sk ← rtid ⊕ sk;

end
end

Speedup of the algorithm is

S (n, p) = n
n
p + log2 p

S

(
n,

n

log2 n

)
= n

log2 n

which is the same as in the case of Hillis-Steele algorithm. Despite the fact that
Blelloch and Hillis-Steele algorithm have asymptotically same parallel time,
Hillis-Steele algorithm should be faster and when unmodified is applicable for
linked lists.

Cost of the Blelloch algorithm is

C (n, p) = p ·O
(
n

p
+ log2 p

)
= O (n+ p · log2 p)

C

(
n,

n

log2 n

)
= O

(
n+ n

log2 n
· log2

n

log2 n

)
= O (n) = Θ (SU (n))

thus Blelloch algorithm is cost-optimal. The same applies to parallel work

W (n, p) = n+O (p · log2 p) +O (p · log2 p) + n

= O (n+ p · log2 p)

34

2.2. Reduction and Scan

W

(
n,

n

log2 n

)
=O

(
n

log2 n
+ n

log2 n
· log2

n

log2 n

)
=O

(
n

log2 n
+ n

log2 n
· log2 n

)
=O (n) = Θ (SU (n))

since
log2

n

log2 n
= O (log2 n)

Parallel work of up and down-sweep steps are derived from parallel reduction
work.

2.2.2.2 Implementations

As in the case of reduction there exist multiple implementations of inclusive
scan. The most important are implementation in C++17 standard numeric
library std::inclusive scan for both, sequential and parallel, scans and im-
plementation in Boost compute library boost::compute::inclusive scan that is
parallel only.

The standard implementation uses a modified Hillis-Steele algorithm for the
purpose of speed. The implementation in Boost library does the same but
instead of processors is employing graphic cards for the computation to achieve
an even better time.

2.2.3 Exclusive scan

Problem of exclusive scan is defined by definition 1.65.

The problem of exclusive scan is almost the same as inclusive scan. The only
difference is that result of the exclusive scan is shifted relative to the result of
the inclusive scan.

2.2.3.1 Algorithms

Thus algorithms for the inclusive scan are valid algorithms for the exclusive
scan with an added shifting of the result.

35

2. Analysis and Design

2.2.3.2 Implementations

There are implementations of exclusive scan in both standard C++17 nu-
meric library and Boost compute library. Those are std::exclusive scan and
boost::compute::exclusive scan respectively implemented in the same way as
the inclusive scan.

2.2.4 Segmented scan

Problem of segmented scan is defined by definition 1.66.

2.2.4.1 Algorithms

Since segmented scan (inclusive or exclusive) is the same problem as its non-
segmented variant but has only modified ⊕ operator to take into account
a segment indicator, all algorithm for non-segmented variant applies to the
segmented scan too.

2.2.4.2 Implementations

There are no implementations of segmented scans in C++17 standard numeric
library nor Boost compute library.

36

2.3. Lists

2.3 Lists

2.3.1 Linked list

Linked lists are defined by definition 1.67.

Linked lists could be implemented as

• a dynamic linked structure where each element (node) of the list is rep-
resented by a structure consisting of a node value and a pointer to its
succesor.

4 2 7 1 5 6 8 3

Figure 2.5: Dynamic linked list

• an array (successor array) where each element of the array represents
one element (node) of the list and contains an index of its successor and
may contain a value of the node.

5 7 3 2 6 8 1 3

1 2 3 4 5 6 7 8

Figure 2.6: Successor array representation of a linked list

2.3.1.1 Implementations

C++ standard list library contains a class list which is an implementation of
a linked list. This implementation uses the first approach to represent the
linked list, that is as a dynamic linked structure.

2.3.2 List Ranking

The problem of list ranking is defined by definition 1.70.

The rank of the node in the linked list is equal to the number of nodes pre-
ceding it in the list. This can be acquired using inclusive scan on the list,

37

2. Analysis and Design

where initial value of each node is set to 1. The inclusive scan as described in
analysis 2.2.2 is inclusive scan on arrays.

Sequential solution of a list ranking is simply counting the number of node
already traversed and assigning this count to the current node as its rank.
Hence the algorithm 9.

Algorithm 9: Sequential list ranking
Input: linked list given as successor array s1, . . . , sn, index of list

head h
Output: list ranking r1, . . . , rn
r ← 0;
while sh 6= h do

r ← r + 1;
rh ← r;
h← sh;

end
r ← r + 1;
rh ← r;

This algorithm visits each node exactly once hence the time complexity

T (n) = O (n)

Since to assign the rank to the node each node must be visited at least once
the lower bound must be at least linear

SL (n) = SU (n) = T (n) = O (n)

Parallel solution of the list ranking can be achieved by modifying the Hillis-
Steele algorithm 4 for inclusive scan.

In the Hillis-Steele algorithm distance between two elements on which ⊕ op-
erator is applied is doubled each iteration. This can be easily achieved on
linked lists by assigning si ← ssi in each iteration. This act is called pointer
jumping.

Figure 2.7 depicts how list ranking is computed by pointer jumping. Value
inside each node is the resulting rank.

Inner loop of the algorithm 10 executes O (1) arithmetic operations. The inner
loop is executed in parallel using p processors. The outer loop has log2 n steps
hence the parallel time

T (n, p) = O

(
n

p
· log2 n

)
38

2.3. Lists

1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2

1 2 3 4 4 4 4 4

1 2 3 4 5 6 7 8

Figure 2.7: Parallel list ranking by pointer jumping

Algorithm 10: List ranking by pointer jumping (CREW PRAM)
Input: linked list given as successor array s1, . . . , sn
Output: list ranking r1, . . . , rn
Auxiliary: node active indicators a1, . . . , an
ai ← active,∀i ∈ n̂;
ri ← 1, ∀i ∈ n̂;
for i← 1 to log2 n do

for j ← 1 to n do in parallel
if ai = active then

rsi ← ri + rsi ;
if si = ssi then

ai ← inactive;
else

si ← ssi ;
end

end
end

end

39

2. Analysis and Design

T (n, n) = O (log2 n)

and parallel speedup

S (n, p) = n · p
n · log2 n

= p

log2 n

Parallel cost of this algorithm is

C (n, p) = p ·O
(
n

p
· log2 n

)
= O (n · log2 n) = ω (SU (n))

and parallel work is

W (n, p) =
log2 n∑
i=1

n = O (n · log2 n) = ω (SU (n))

thus algorithm is neither cost-optimal nor work-optimal.

There doesn’t exist any algorithm that is able to identify same-sized consec-
utive portions of the linked list in logarithmic time thus this modification of
Hillis-Steele algorithm cannot be made optimal by splitting the input into
smaller portions.

The idea of cost and work-optimal list ranking comes from the following ob-
servation.

Observation 2.1 Let there be a linked list of size n′ = n
log2 n then using

p = n′ = n
log2 n processors list ranking by pointer jumping of this linked

list is executed in parallel time

T
(
n′, n′

)
= O

(
log2 n

′) = O

(
log2

n

log2 n

)
= O (log2 n)

and has parallel cost

C
(
n′, n′

)
= O

(
n′ · log2 n

′) = O

(
n

log2 n
· log2

n

log2 n

)
=

= O

(
n

log2 n
· log2 n

)
= O (n) = Θ (SU (n))

The general idea is formulated in algorithm 11.

This idea demands from shrinking and restoring to run in T
(
n, n

log2 n

)
=

O (log2 n) time with parallel cost C
(
n, n

log2 n

)
= O (n).

40

2.3. Lists

Algorithm 11: Idea of work-optimal list ranking
Input: linked list L with n elements
Output: list ranking r
shrink L to L′ of size n′ = O

(
n

log2 n

)
using Θ

(
n

log2 n

)
processors;

apply pointer jumping on L′;
restore L from L′ and finish ranking for elements in L \ L′ with the
same complexity as in the case of shrinking;

If those demands are met then this algorithm runs in parallel time

T

(
n,

n

log2 n

)
= O (n)

with speedup
S

(
n,

n

log2 n

)
= n

log2 n

Has cost

C

(
n,

n

log2 n

)
= O (n+ n+ n) = O (n) = Θ (SU (n))

and work

W

(
n,

n

log2 n

)
= O (n+ n+ n) = O (n) = Θ (SU (n))

thus is cost and work-optimal.

There exists a way to achieve a work-optimality but not a cost-optimality.
This approach utilizes an independent sets of a linked list defined by definition
1.68. As mentioned in lemma 1.3 the set of local minima in k-coloring forms
an independent set of size Ω(nk).

The best k-coloring achievable in parallel on EREW PRAM is a 3-coloring.

Size of the independent set formed from 3-coloring is at least n
2·3−2 = n

4 . Thus
size of the linked list L′ = L \ I is n − n

4 = 3
4 · n. Linked list L′ could be

shrinked in the same way.

41

2. Analysis and Design

After s removals the size of the shrinked linked list is
(

3
4

)s
· n. To achieve

the required size of at most n
log2 n Θ(log2

2 n) removals must be applied to the
linked list L because(3

4

)s
· n ≤ n

log2 n
⇒
(3

4

)s
≤ 1
log2n

⇒
(4

3

)s
≥ log2 n

⇒s ≥ log 4
3
log2 n = log2

2 n

log2
4
3

= Θ
(
log2

2 n
)

2.3.2.1 6-coloring

Problem of k-coloring is defined by definition 1.69.

The first step in obtaining a 3-coloring of a linked list is to obtain it’s 6-
coloring. This can be achieved by using technique called Deterministi Coin
Tossing (DCT) to reduce n-coloring to 6-coloring.

Let xbin be a binary representation of x and let diff(x, y) be the least bit
number in which xbin and ybin differ. x[i] denotes i-th bit of x. Let log∗b be a
function defined as

log∗b x := min{i : logib x ≤ 1}

Algorithm 12: 6-coloring (CREW PRAM)
Input: linked list given as successor array s1, . . . , sn
Output: 6-coloring c1, . . . , cn
Auxiliary: diff result storage π1, . . . , πn
(∗ Generate n− coloring ∗)
for i← 1 to n do in parallel

ci ← i;
end
(∗ Reduce to 6− coloring ∗)
for i← 1 to log∗2 n do

for j ← 1 to n do in parallel
πj ← diff(cj , csj);
cj ← 2 · πj + cj[πj];

end
end

42

2.3. Lists

The inner loop produces a valid coloring c′ from a valid coloring c. Since c is
a valid coloring for all adjacent pairs of nodes ci 6= csi . Thus πi is well defined
for each such pair. If πi 6= πsi then

c′i = 2 · πi + ci[πi] 6= 2 · πsi + csi[πsi] = ci

because ci, csi ∈ {0, 1}.

If c′ is not valid coloring then πi must be equal to πsi but then

2 · πi + ci[πi] = 2 · πi + csi[pii]

ci[πi] = csi[πi]

And that is in contradiction with the fact that ci 6= csi and πi is the least bit
numbere where ci and csi differ. Thus c′ must be valid coloring.

Let n be the greatest color number in coloring c, then blog2 nc is the greates
value of πi in such coloring and thus the greatest color number in coloring c′
is 2 · blog2 nc+ 1.

DCT can reduce n-coloring to 6-coloring only. If blog2 nc = 2 then the greatest
color number reached by further reduction is 2 · 2 + 1 = 5 but blog2 5c = 2
thus DCT cannot further reduce coloring.

Since both parallel loops execute O(1) arithmetic operations they can run in
O(1) time using n processors. The outer loop that has log∗2 n steps won’t
exceed 6 steps for any realistic value since log∗2 n = 6 ⇒ 265536 < 2265536

thus the outer loop can be approximated to have O(1) steps thus this can be
approximated to O(1) steps.

The parallel time (considering the mentioned approximation) of 6-coloring is

T (n, p) = O

(
n

p

)

Parallel cost and work of this algorithm are

C (n, p) = p ·O
(
n

p

)
= O (n)

W (n, p) = n+ n · log∗2 n = O (n)

considering approximation that log∗2 n = O (1).

43

2. Analysis and Design

Algorithm 13: 3-coloring (EREW PRAM)
Input: linked list given as successor array s1, . . . , sn
Output: 3-coloring c1, . . . , cn
6-coloring (in: s, out: c);
for i← 1 to n do in parallel

if ci = 5 then
ci ← any of{0, 1, 2} \ {csi , cj}, where sj = i;

end
end
for i← 1 to n do in parallel

if ci = 4 then
ci ← any of{0, 1, 2} \ {csi , cj}, where sj = i;

end
end
for i← 1 to n do in parallel

if ci = 3 then
ci ← any of{0, 1, 2} \ {csi , cj}, where sj = i;

end
end

2.3.2.2 3-coloring

The 3-coloring is obtainable from 6-coloring simply by replacing colors greater
than 2 with color ∈ {0, 1, 2} that is not assigned to its neighbours.

Loops execute O(1) arithmetic operations each. The parallel time of this
algorithm is

T (n, p) = 4 ·O
(
n

p

)
= O

(
n

p

)

The parallel cost and work are then

C (n, p) = p ·O
(
n

p

)
= O (n)

W (n, p) = O (n) + 3 · n = O (n)

2.3.2.3 Work-optimal list ranking

The following algorithm is application of idea in algorithm 11 using 3-coloring
to identify independent sets.[3][6]

44

2.3. Lists

Algorithm 14: Work-optimal list ranking (CREW PRAM)
Input: linked list given as successor array s1, . . . , sn
Output: list ranking r1, . . . , rn
Auxiliary: indicators f1, . . . , fn, results n1, . . . , nn, coloring

c1, . . . , cn, predecessors p1, . . . , pn, stack S, temporary
t1, . . . , tn

S ← ∅, n′ ← n, ri ← 1,∀i ∈ n̂;
reverse successor list s to obtain predecessor list p;
while n′ > n

log2 n do
ti ← ∅, ∀i;
3-coloring(in: s1, . . . , sn′ , out: c1, . . . , cn′);
(∗ Identify I ∗)
for i← 1 to n′ do in parallel

if ci < min(cpi , csi) then
fi ← >, ni ← 1;

else
fi ← ⊥, ni ← 0;

end
end
(∗ ! Remove I from L ∗)
inclusive scan(in: n1, . . . , nn′ , out: n1, . . . , nn′);
for ı← 1 to n′ do in parallel

if fi then
tni ← (i, si, pi, ri);
rpi ← rpi + ri;
spi ← si, psi ← pi;

end
end
(∗ Compact L′ = L \ I to consecutive memory locations ∗)
ni ← 0 iff fi else 1, ∀i ∈ n̂;
inclusive scan(in: n1, . . . , nn′ , out: n1, . . . , nn′);
for ı← 1 to n′ do in parallel

if ¬fi then
sni ← nsi , pni ← npi ;
rni ← ri;

end
end
S ← (S, {ti : ti 6= ∅});
n′ ← n′ − |{ti : ti 6= ∅}|;

end
list ranking by pointer jumping (in: s1, . . . , sn′ , out: r1, . . . , rn′);
restore L and rank removed nodes by emptying stack S and reversing
steps in while loop starting with ! in comment;

45

2. Analysis and Design

The first line of this algorithm can be executed in O
(
n
p

)
time with O (n)

work using p processors since there is assignment to O (n) variables that can
be executed in parallel.

Reversing list is a simple operation

(∀i ∈ n̂)(i 6= si ∧ j = si)⇒ i = pj

(∀i ∈ n̂)((∀j ∈ n̂)i 6= sj)⇒ i = pi

and since there aren’t 2 nodes that are successor of single node, this operation
can run in parallel with time O

(
n
p

)
and work O (n) using p processors.

Asigning to n different variables on the first line inside the loop takes O
(
n
p

)
time and O (n) work.

3-coloring has time and work complexity of O
(
n
p

)
and O (n) respectively

considering approximation of log∗2 n = O (1).

Identifying Ik is a loop of O (n) steps executed in parallel. Since there are
O (1) arithmetic operations inside the loop this loop executes in O

(
n
p

)
time

with O (n) work.

Inclusive scan has parallel time O
(
n
p + log2 p

)
and work O (n)

Removal of I from L consists of inclusive scan and a loop of O (n) steps
executed in parallel with O (1) arithmetic operations inside. Thus takes
O
(
n
p + log2 p

)
time and O (n) work using p processors.

Compacting L′ to consecutive memory consist of parallel assignment to n
different variables, inclusive scan and sligtly modified loop from previous step,
thus has parallel time O

(
2 · np

)
+O

(
n
p + log2 p

)
= O

(
n
p + log2 p

)
and work

O (3 · n) = O (n).

Last 2 rows inside the loop are simple assignments that take O (1) time and
work.

Since the size of I created by 3-coloring is of size Ω
(
n
3
)

the total number of

46

2.3. Lists

steps k of the loop is(2
3

)k
· n > n

log2 n
⇒
(2

3

)k
>

1
log2 n

⇒
(3

2

)k
< log2 n

⇒log 3
2
log2 n < k

⇒k = O (log2 log2 n)

Whole loop executes in parallel time

T (n, p) =O (log2 log2 n) ·
(

7 ·O
(
n

p

)
+ 2 ·O

(
n

p
+ log2 p

)
+ 2 ·O (1)

)
=O

((
n

p
+ log2 p

)
· log2 log2 n

)

with parallel work

W (n, p) = 9 ·O (n) + 2 ·O (1) = O (n)

Pointer jumping is applied to a list of size O
(

n
log2 n

)
with parallel time

T

(
n

log2 n
, p

)
=O

(
n

p · log2 n
· log2

n

log2 n

)
=O

(
n

p · log2 n
· log2 n

)
=O

(
n

p

)

and parallel work

W

(
n

log2 n
, p

)
= O

(
n

log2 n
· log2

n

log2 n

)
= O

(
n

log2 n
· log2 n

)
= O (n)

The last row has the same complexity as the code in while loop starting with
exclamation mark in comment (including the surrounding loop) thus

T (n, p) = O

((
n

p
+ log2 p

)
· log2 log2 n

)
47

2. Analysis and Design

W (n, p) = O (n)

Overall, the algorithm executes in parallel time

T (n, p) =3 ·O
(
n

p

)
+ 2 ·O

((
n

p
+ log2 p

)
· log2 log2 n

)
=O

((
n

p
+ log2 p

)
· log2 log2 n

)

T

(
n,

n

log2 n

)
=O

((
n
n

log2 n

+ log2
n

log2 n

)
· log2 log2 n

)
=O (log2 n · log2 log2 n)

Has speedup
S (n, p) = n(

n
p + log2 p

)
· log2 log2 n

S ((, n) , n

log2 n
) = n

log2 n · log2 log2 n

and cost

C (n, p) =p ·O
((

n

p
+ log2 p

)
· log2 log2 n

)
=O ((n+ p · log2 p) · log2 log2 n)

C

(
n,

n

log2 n

)
=O

((
n+ n

log2 n
· log2

n

log2 n

)
· log2 log2 n

)
=O (n · log2 log2 n) = ω (SU (n))

thus is not cost-optimal but

W (n, p) = 5 ·O (n) = O (n) = Θ (SU (n))

is work-optimal.

This algorithm is more efficient but is slower than pointer jumping.

48

2.4. Euler Tour Technique

2.3.2.4 Implementations

There’s no implementation of list ranking neither in C++ standard libraries,
Boost libraries nor any other popular C++ libraries. For sequential solution
standard C++ inclusive scan together with standard C++ list could be used
but there’s no sufficient substitute for parallel solution.

2.4 Euler Tour Technique

Euler Tour Technique is defined by definition 1.72.

This is not a single algorithm but technique used by multiple algorithms. All
of the algorithms use Euler tour of a tree, which starts and ends at its root.

2.4.1 Algorithms

Each edge could be represented by a pair of arcs. One arc is downgoing and
the other one is upgoing. If there is a tree of size n on the input, that tree
has n− 1 edges and thus this tree can be represented by 2 · n− 2 arcs.

Note 2.1 The sequential solution of the Euler Tour construction will not
be described in this thesis since there will be no sequential implementation
but Euler tour can be sequentially constructed using simple modification
of DFS. Thus the time complexity is T (n) = SU (n) = O (n) and since
each arc must be visited at least once, the lower bound
is SL (n) = O (n).

For parallel solution those arcs can be arranged into an array where all arcs
representing edges originated in single vertex form a consecutive portion of
the array and pairs of opposite arcs are adjacent.

origin(a), target(a), type(a) and opposite(a) denotes an source node, target
node, type of the arc (upgoing/downgoing) and opposite arc respectively.

Let there be a function next(a) that assings to each arc such arc that

next(arc x−y) =

arc x− childi+1(x), iff y = childi(x), where i 6= arity(x)
arc x− parent(x), iff y = childarity(x)(x) ∧ parent(x) 6= root

arc x− child1(x), iff a is arc x− parent(x) ∧ arity(x) > 0
arc x− y, otherwise

49

2. Analysis and Design

u

v

w x

(a)

u v w x

uv ↓ vu ↑ vw ↓ wv ↑ vx ↓ xv ↑

(b)

Figure 2.8: (a) Euler circit of tree (b) Array representation of arcs

Figure 2.8 (b) depicts the mentioned representation of a tree. The red arrow
shows what is assigned to each arc by function next(a).

The path is then constructed as follows

(∀a ∈ arcs)path(a) := next(opposite(a))

with exception of the arc f = childarity(root)(root) − root for this arc path is
defined as

path(f) := f

The path together with arcs form a linked list where arcs are elements of that
linked list and path is a successor function.

If arcs are reordered with respect to the list ranking of that linked list then
array of arcs forms an Euler tour of the input tree. Hence the algorithm 15.[7]

Arcs can be created in O (1) for each edge. Since those arcs are opposite to
each other there’s no need to search opposite arcs.

To arrange those arcs into consecutive location of an array based on node of
origin of the edge, prefix computations to prepare indices of individual arcs
can be used. Thus preparation of this indices takes O

(
n
p

)
time and those 2

arcs can be then inside the loop assigned in O (1) time to the right position.

Thus the first loop considering the preparation step takes O
(
n
p

)
time since it

has O (n) steps executed in parallel.

Path computation can be made in O
(
n
p

)
time using p processors on EREW

PRAM since there are no read-write conflicts and loop runs in parallel.

50

2.4. Euler Tour Technique

Algorithm 15: Euler Tour construction (EREW PRAM)
Input: tree T = (V,E) of n nodes
Output: Euler tour a1, . . . , a2·n−2
Auxiliary: path p1, . . . , p2·n−2, ranks r1, . . . , r2·n−2
foreach (u, v) ∈ E do in parallel

create 2 arcs u− v (downgoing) and v − u (upgoing) and arrange
them into the array a as mentioned above;

end
for i← 1 to 2 · n− 2 do in parallel

pi ← index of next(opposite(ai));
end
pi ← i where i is index of arc childarity(root)(root)− root;
list ranking (in: p, out: r);
reorder a with respect to ranking r;

List ranking takes O
(
n
p · log2 n

)
time using pointer jumping or

O
((

n
p + log2 p

)
· log2 log2 n

)
using work-optimal algorithm.

Reordering of array with respect to the result of list ranking takes n
p time if

executed in parallel using p processors.

The total parallel time is

T (n, p) = 3 ·O
(
n

p

)
+O (1) +O

(
n

p
· log2 n

)
= O

(
n

p
· log2 n

)
using pointer jumping or

T (n, p) =3 ·O
(
n

p

)
+O (1) +O

((
n

p
+ log2 p

)
· log2 log2 n

)
=O

((
n

p
+ log2 p

)
· log2 log2 n

)

using work-optimal list ranking.

The speedup of this algorithm is

S (n, p) = n
n
p · log2 n

= p

log2 n

using pointer jumping or

S (n, p) = n(
n
p + log2 p

)
· log2 log2 n

51

2. Analysis and Design

using work-optimal list ranking.

Since time complexity is determined by time complexity of list ranking, cost
will be the same for algorithm 15 as for the used list ranking algorith. This
means

C (n, p) = O (n · log2 n) = ω (SU (n))

in the case of pointer jumping and

C (n, p) = O ((n+ p · log2 p) · log2 log2 n) = ω (SU (n))

and thus cost-optimality is dependent on cost-optimality of the list ranking
algorithm.

Parallel work is

W (n, p) = 4 ·O (n) +Wlist ranking(n, p)

thus the work-optimality is fully dependent on the used list-ranking algorithm.

If pointer jumping is used then

W (n, p) = O (n) +O (n · log2 n) = O (n · log2 n) = ω (SU (n))

this algorithm is not work-optimal but in the case that work-optimal list
ranking is used

W (n, p) = O (n) +O (n) = O (n) = Θ (SU (n))

the Euler tour construction is work-optimal too.

2.4.2 Implementations

There are no implementations of the Euler Tour construction in the C++
standard libraries, Boost libraries nor any other popular libraries. Though for
the sequential solution Boost boost::depth first search or any other implemen-
tation of DFS that allows modification of behaviour of this function can be
used.

2.4.3 Applications

There are many application for Euler Tour technique.

The most important one is computation of depths of each node of the tree in
parallel. This application is formulated in algorithm 16.

52

2.5. Parentheses matching

Algorithm 16: Get depths of each node of the tree (EREW PRAM)
Input: tree T = (V,E) of n nodes
Output: array of depths d1, . . . , dn
Auxiliary: array of arcs a1, . . . , a2·n−2, temporary array t1, . . . , t2·n−2
Euler tour construction (in: T , out: a);
for i← 1to 2 · n− 2 do in parallel

if ai is downgoing then
ti ← 1;

else
ti ← −1;

end
end
inclusive scan (in: t, out: t);
for i← 1 to 2 · n− 2 do in parallel

if ai is downgoing then
dtarget(ai) ← ti;

end
end

The last loop of this algorithm has potentially a lot of write-write conflicts.
But all arcs that targets the same node x will hold the same value. Thus this
conflict is not really a problem and this algorithm could be applied to EREW
PRAM computation model.

Similar loops (in terms of complexity) and inclusive scan are used inside the
Euler tour construction thus this algorithm has the same complexities as the
Euler tour construction itself.

2.5 Parentheses matching

Problem of parentheses matching is defined by definition 1.74.

For the purpose of simplicity only well-formed strings of parentheses are taken
into account. But all algorithms can be modified to be able to work with not
well-formed strings.

53

2. Analysis and Design

2.5.1 Algorithms

The sequential solution of parentheses matching problem can be found in
single pass utilising stack.

String of parentheses is read from left (lower indices) to right (higher in-
dices), each left parenthesis is pushed to the stack and each right parenthesis
is matched with left parenthesis on top of the stack, left parentheses is popped
from the stack when it is matched with right parenthesis.

Since the string on the input is well-formed each prefix of this string contains
at least the same amount of left parentheses as right parentheses. Thus stack
will never be empty when right parenthesis occurs in the input string and
because there is the same amount of left and right parentheses in the well-
formed string stack will be empty at the end of the string. Thus all parentheses
will be matched.

Algorithm 17: Sequential parentheses matching
Input: well-formed string of parentheses p1, . . . , pn
Output: match array match1, . . . ,matchn
Auxiliary: stack S
S ← ∅;
for i← 1 to n do

if pi is left parenthesis then
S ← (S, i);

else
t← top, where S = (S′, top);
S ← S′, where S = (S′, top);
matchi ← t;
matcht ← i;

end
end

This algorithm evaluates string of parentheses in a single pass in which it visits
each parenthesis exactly once. Hence the time complexity

T (n) = O (n)

and because to match each parenthesis, each parenthesis must be visited at
least once the lower and thus the upper bound will be

SL (n) = T (n) = SU (n) = O (n)

too.

54

2.5. Parentheses matching

There are multiple algorithms to solve parentheses matchin in parallel. Two
of them will be presented in this thesis.

The first one utilises properties of parenthesis depth defined as follows. [8]

Definition 2.1 Parenthesis p is nested in parentheses pair l, r if l and r
are matching parentheses in a string of parentheses that is in the form

. . . l . . . p . . . r . . .

Depth of the parenthesis p is the number of parentheses pairs li, ri in which
p is nested.

Observation 2.2 In a well-formed string a depth of the parenthesis p is
equal to the number of unmatched left parentheses in its prefix ending with
parentheses p (excluding p).

Observation 2.3 Left parenthesis l with depth dl matches the right paren-
thesis r with depth dr if and only if dl = dr, string is in the form

. . . l . . . r . . .

and there doesn’t exist any parenthesis p with depth dp such that dl = dp =
dr and the string is in the form

. . . l . . . p . . . r . . .

Based on the observation 2.3 if stable sort is applied to the array of parentheses
with respect to depth, matching parentheses will be adjacent to each other.

Permutation π in the following algorithm denotes function that for each index
i assigns index j such that stable sort applied on array {a1, . . . , ak} moves
element ai, that is on i-th position, to j-th position.

Inverse permutation π−1 in the following algorithm denotes inverse function
of π thus π−1(i) = j denotes that element that after application of stable sort
ends up on i-th position was on j-th position in the original array. Hence the
algorithm 18.

All three loops in this algorithm execute O (1) arithmetic operations in each
step and runs in parallel thus has time complexity O

(
n
p

)
. Since the total

number of steps is n
p and in each step p processors are active parallel work of

those loops is O (n).

55

2. Analysis and Design

Algorithm 18: Parallel parentheses matching using depth array
(EREW PRAM)

Input: well-formed string of parentheses p1, . . . , pn
Output: match array match1, . . . ,matchn
Auxiliary: depth array d1, . . . , dn
for i← 1 to n do in parallel

if pi is left parenthesis then
di ← 1;

else
di ← −1;

end
end
inclusive scan (in: d, out: d);
for i← 1 to n do in parallel

if pi is right parenthesis then
di ← di + 1;

end
end
acquire permutation π from stable sort applied to d;
for i← 1 to n

2 do in parallel
matchπ−1(2·i−1) ← π−1(2 · i);
matchπ−1(2·i) ← π−1(2 · i− 1);

end

Inclusive scan has parallel time O
(
n
p + log2 p

)
and work O (n).

Since lower bound of sorting is Ω (n · log2 n) any parallel stable sort cannot
run faster than Ω

(
n·log2 n

p

)
using p processors. Parallel work of such sorting

algorithm must be at least Ω (n · log2 n).

The overall parallel time is

T (n, p) = 3 ·O
(
n

p

)
+O

(
n

p
+ log2 p

)
+ Ω

(
n · log2 n

p

)
= Ω

(
n · log2 n

p

)
and speedup is

S (n, p) = n · p
n · log2 n

= p

log2 n

Since parallel cost of this algorithm is

C (n, p) = p · Ω
(
n · log2 n

p

)
= Ω (n · log2 n) = ω (SU (n))

56

2.5. Parentheses matching

this algorithm isn’t cost-optimal independently on which stable sorting algo-
rithm is used.

The same applies to the parallel work

W (n, p) = 4 ·O (n) + Ω (n · log2 n) = Ω (n · log2 n) = ω (SU (n))

Another approach to parallel parentheses matching is to modify algorithm 5.

Input is split into p consecutive segments that are matched sequentially. Un-
matched parentheses in each segment forms sequence of right parentheses
followed by sequence of left parentheses. Each processor creates list of its
unmatched right parentheses and list of its unmatched left parentheses.

Processors then split into pairs such that their segments combined form a
consecutive segment of the input. In each pair unmatched left parentheses in
the left segment are matched with unmatched right parentheses in the right
segment. Three situations can occur

• All these parentheses are matched.

• Some of the left parentheses remain unmatched. Then they’re prepended
to the unmatched left parentheses of the right segment.

• Some of the right parentheses remain unmatched. Then they’re ap-
pended to the unmatched right parentheses of the left segment.

Then one of the processors in that pair are no longer needed and total number
of segments is halved.

This can be repeated until single segment remains (i.e. input string). This
way all parentheses are matched.

In the algorithm 19 the number of processors available p is assumed to be
power of 2 for the purpose of simplicity.

Splitting of input to p consecutive segments can be done in O (1) time with
O (1) work.

Sequential parentheses matching, arranging unmatched parentheses and count-
ing unmatched parentheses can all be realised in a simple pass of the string,
thus their time complexity is O (n) and work O (n).

57

2. Analysis and Design

Algorithm 19: Work-optimal parallel parentheses matching (EREW
PRAM)

Input: well-formed string of parentheses s1, . . . , sn
Output: match array match1, . . . ,matchn
Auxiliary: unmatched parentheses indices t1, . . . , tn, # of unmatched

parentheses left1, . . . , leftp, right1, . . . , rightp where p is
number of processors

split s1, . . . , sn to p consecutive sections of size n
p ;

foreach section si, . . . , sj do in parallel
sequential parentheses matching (in: si, . . . , sj , out:
matchi, . . . ,matchj);

arrange unmatched parentheses indices in si, . . . , sj without
reordering into array ti, . . . , tj where unmatched left (resp. right)
parentheses are in consecutive memory locations and ends at
index j (resp. starts at index i);
lefttid ← # of unmatched left paretheses;
righttid ← # of unmatched right paretheses;

end
for i← 1 to log2 p do

for j ← 1 to n
2i do in parallel

llo← tid · 2i, rlo← llo+ 2i−1;
rbase← n · rlop , lbase← rbase− 1;
matched← min{leftllo, rightrlo};
for k ← 1 to matched do

match tlbase−k+1 with trbase+k−1;
end
if leftllo > matched then

rem← leftllo −matched;
rbase← n · rlo+2i−1

p − leftrlo − 1;
move tlbase−leftllo+1, . . . , tlbase−matched to
trbase−rem+1, . . . , trbase;

else if rightrlo > matched then
rem← rightllo −matched;
lbase← n · llop + leftllo;
move trbase+matched, . . . , trbase+rightrlo−1 to
tlbase, . . . , tlbase+rem−1;

end
leftllo ← leftllo + leftrlo −matched;
rightllo ← rightllo + rightrlo −matched;

end
end

58

2.5. Parentheses matching

The first loop hase p parallel steps each of the steps is executing O
(
n
p

)
oper-

ations. Hence the parallel time of the first loop O
(
n
p

)
. First loop uses O (n)

work.

Moving segments of memory in the second loop takes O (n) time with O (n)
work.

The inner-most loop has matched = O (n) steps executing O (1) arithmetic
operations.

The parallel loop executes 3 · O (n) = O (n) operations and since it runs in
parallel overall time complexity of the loop is O (n). Parallel work of this loop
is also O (n).

Second outer loop has atworstlog2 p steps and time complexity of each step
is O (n) thus the loop takes O (n · log2 p) time and also O (n · log2 p) work.

Overall time complexity of this algorithm is

T (n, p) = O (1) +O

(
n

p

)
+O (n · log2 p) = O (n · log2 p)

and parallel speedup

S (n, p) = n

n · log2 p
= 1
log2 p

Parallel cost of this algorithm is

C (n, p) = p ·O (n · log2 p) = O (p · n · log2 p)

and parallel work is

W (n, p) = O (1) +O (n) +O (n · log2 p) = O (n · log2 p)

This algorithm as is cost and work-optimal only if p = 1 (i.e. it work sequen-
tially). Problem of this algorithm is moving array and matching parentheses
in linear time inside the parallel loop.

The overall time can be improved by employing unused processors to speedup
move and match operations.

This algorithm is in worst-case slower than the sequential algorithm and is
not work-optimal but in most cases the move and match operation will run
nearly in constant time and the parallel time will get close to O

(
n
p

)
thus

this algorithm runs for most of the input strings faster than the sequential
algorithm.

59

2. Analysis and Design

This algorithm is also much more efficient in using processors and is closer
to work-optimality than the algorithm 18. It will also run faster when less
processors are available than the algorithm 18.

2.5.2 Implementations

There are no implementations of parentheses matching in C++ standard li-
brary nor Boost library.

2.6 Run of k-local DFTA

To run a k-local DFTA A = (Q,F , Qf ,∆) for ground term t ∈ T (F) means
to evaluate expression ∆̂(t), where ∆̂ is extended transition function of DFTA
A as defined by definition 1.37.

To evaluate a node, all its childs must be evaluated first. This can be achieved
by modifying DFS. Each node is evaluated right before it is closed in DFS
traversal of the tree.

Even though this approach is applicable for both sequential and parallel so-
lution, the parallel solution wouldn’t be optimal and better parallel solution
will be presented in this thesis.

Tree in the algorithm 20 is represented as mentioned in analysis 2.1.2 as a
3-tuple consisting of labels array, children array and root node.

Algorithm 20: Sequential run of k-local DFTA
Input: DFTA A = (Q,F , Qf ,∆), Tree t = (labels, children, root) of

size n
Output: state array state1, . . . , staten
foreach child ∈ childrenroot do

run (in: A, t′ = (labels, children, child), out: state);
end
stateroot ← ∆labelsroot(statei1 , . . . , stateiarity(root)), ∀ij ij is index of
j-th child of root;

60

2.6. Run of k-local DFTA

Since this algorithm is just a simple modification of DFS with addition of state
assignment that takes O (1) time, the overall time complexity is the same as
for DFS, that is

T (n) = O (n)

and since to assign state to each node each node must be visited at least once
the lower bound of the run of k-local DFTA is

SL (n) = T (n) = SU (n) = O (n)

The sequential algorithm above is applicable for any DFTA not only k-local
DFTA.

Parallel run of k-local DFTA is achievable utilising the fact that any term of
MVD at least k is synchronizing (i.e. subtrees below this depth of k don’t
affect the resulting state), thus states of nodes at layers separated by at least
k− 1 another layers can be computed in parallel without affecting each other.

2.6.1 Main algorithm

Even though the layers separated by at least k − 1 layers don’t affect each
other, to compute correctly each layer k − 1 layers below are needed.

That means to compute state of nodes in layer i layers i+ 1, . . . i+ k − 1 are
neeeded and even if layers i+k, . . . don’t affect results of layer i directly, they
may affect results of layers below i that are needed.

This problem can be solved by computing the states in 2 passes. In the first
pass states are set to arbitrary value. This is a synchronization pass, that is
used to obtain correct initial state for each node. (This is possible thanks to
the k-locality.) The second pass has already the correct initial states and thus
computes all the states correctly.

To ease those computations the input tree is linearized. To benefit from k-
locality as described above the order of nodes in the linear representation
(array) is determined by depth mod k and is in ascending order.

All nodes with same depth mod k may be computed fully in parallel, but there
will typically be lesser processors available. To use those processors effectively
and to ease synchronization before computation of states step array will be
precomputed expressing in which step will be each node computed.

Since complexity analysis of the algorithm 21 depends on used subroutines
that are analysed below, the overall analysis is located in subsection 2.6.5.

61

2. Analysis and Design

Algorithm 21: Parallel run of k-local DFTA (EREW PRAM)
Input: DFTA A = (Q,F , Qf ,∆), Tree t = (labels, children, root) of

size n
Output: state array state1, . . . , staten
Auxiliary: depth array depth1, . . . , depthn, step array

step1, . . . , stepn, depth-mod-k order dmk1, . . . , dmkn
get depths using ETT (in: t, out: depth);
depthModKSort (in: t, depth, out: dmk);
computeStep (in: dmk, depth, out: step);
statei ← 0,∀i ∈ n̂;
computeState (in: A, t, dmk, step, out: state);
computeState (in: A, t, dmk, step, out: state);

2.6.2 Depth-mod-k sort

To acquire depth-mod-k sort order is to obtain order of a modified BFS traver-
sal of the tree. Instead of traversing layer by layer, layer i + k follows after
layer i or if the i+ k is not a layer then layer (i mod k) + 1 follows instead.

The order starts on layer k−1 and ends with deepest layer such that i mod k =
k − 1.

This order forms a linked list. This linked list can be obtained by modifying
a parentheses matching.

Each arc in euler tour which is downgoing could be represented as right paren-
thesis and each which is upgoing as left parenthesis. This representation will
form a sequence of parentheses starting with sequence of right parentheses
and ending of left parentheses.

To obtain a well-formed string this sequence must be wrapped with parenthe-
ses. Number of these wrapping parentheses is equal to the total height of the
tree. This wrapped sequence will be a well-formed string of paretntheses.

This is thanks to the fact that each edge is represented by a pair of opposite
arcs. Depth of the parentheses is equal to the depth of the arc and thus on
each layer there will be only one unmatched left and one unmatched right
parenthesis. Those are matched by wrapping parentheses.

Those wrapping paretheses also helps to identify first and last arc of the layer
since they are matched with them.

Once those parentheses are matched, right parentheses that are representing

62

2.6. Run of k-local DFTA

arcs (i.e. not a wrapping parentheses) are linked to the opposite arc instead
of the matching parenthesis. This way a linked list for each layer is created,
going from the left-most arc to the right-most arc.

The final step is to relink arcs on the end of the layer to the next layer in
depth-mod-k order as described before.

Finally list ranking of this linked list can be used to create a depth-mod-k
order array.

Algorithm 22: depthModKSort (EREW PRAM)
Input: Tree t = (labels, children, root) of size n, depths array

depth1, . . . , depthn
Output: depth-mod-k order dmk1, . . . , dmkn
Auxiliary: euler tour e1, . . . , e2·n−2, parentheses string

par−max(depth), . . . , par2·n−2+max(depth)−1, successor array
of arcs next−max(depth), . . . , next2·n−2+max(depth)−1,
ranking r−max(depth), . . . , r2·n−2+max(depth)−1

Euler tour construction (in: t, out: e);
height← reduce (in: depth);
foreach ei ∈ e do in parallel

pari−1 ←
{
left, iff ei is downgoing

right, otherwise
;

end
for i← 1 to height do in parallel

par−i ← left;
par|e|−1+i ← right;

end
parentheses matching (in: par, out: next);
foreach ei ∈ e do in parallel

if ei is downgoing then
nexti−1 ← index of opposite(ei)− 1;

end
end
for i← 1 to height do in parallel

next|e|−1+i ←

next−i−k, iff i < height− k
next−i mod k − 2, iff i mod k 6= k − 1
|e| − 1 + i, otherwise

;

end
list ranking (in: next, out: r);
Using r construct dmk as array of lower nodes of corresponding arcs
with root(t) added to the beginning of that array;

63

2. Analysis and Design

Euler tour construction runs in O
(
n
p · log2 n

)
with O (n · log2 n) work using

non work-optimal list ranking or O
((

n
p + log2 p

)
· log2 log2 n

)
time and O (n)

work using work-optimal list ranking.

Parallel reduction has parallel time O
(
n
p + log2 p

)
and parallel work

O (n+ p · log2 p) if is modified to be work-optimal as described in analysis
2.2.1.

Parentheses matching could be done in O
(
n
p + log2 p

)
with work

O (n+ p · log2 p).

List ranking can be done in O
((

n
p + log2 p

)
· log2 log2 n

)
with parallel work

O (n). Or if the non work-optimal algorithm is used the parallel time is
O
(
n
p · log2 n

)
and work is O (n · log2 n).

All the other lines are (or can be implemented as) simple loops with assign-
ments without conflicts and thus can be done in O

(
n
p

)
with O (n) work.

For work-optimal list ranking it has parallel time

T (n, p) =2 ·O
(
n

p
+ log2 p

)
+ 2 ·O

((
n

p
+ log2 p

)
· log2 log2 n

)
+ 5 ·O

(
n

p

)
=O

((
n

p
+ log2 p

)
· log2 log2 n

)

T

(
n,

n

log2 n

)
=O

((
n
n

log2 n

+ log2
n

log2 n

)
· log2 log2 n

)
=O (log2 n · log2 log2 n)

parallel cost is

C (n, p) =p ·O
((

n

p
+ log2 p

)
· log2 log2 n

)
=O ((n+ p · log2 p) · log2 log2 n)

C

(
n,

n

log2 n

)
=O

((
n+ n

log2 n
· log2

n

log2 n

)
· log2 log2 n

)
=O (n · log2 log2 n)

64

2.6. Run of k-local DFTA

The parallel work of this algorithm is

W (n, p) = 7 ·O (n) + 3 ·O (n+ p · log2 p) = O (n+ p · log2 p)

W

(
n,

n

log2 n

)
= O

(
n+ n

log2 n
· log2

n

log2 n

)
= O (n+ n) = O (n)

Alternative to this is using the nom work-optimal list ranking, then the parallel
time is

T (n, p) = 2 ·O
(
n

p
· log2 n

)
+2 ·O

(
n

p
+ log2 p

)
+5 ·O

(
n

p

)
= O

(
n

p
· log2 n

)

T

(
n,

n

log2 n

)
= O

(
n · log2 n

n
· log2 n

)
= O

(
(log2 n)2

)
T (n, n) = O

(
n

n
· log2 n

)
= O (log2 n)

Using non work-optimal list ranking is faster, but only if more processors are
available. The parallel cost is

C (n, p) = p ·O
(
n

p
· log2 n

)
= O (n · log2 n)

which is worse than in case of work-optimal list ranking.

This approach results in parallel work

W (n, p) = 5 ·O (n) + 3 ·O (n+ p · log2 p) + 2 ·O (n · log2 n) = O (n · log2 n)

Non work-optimal list ranking may be faster, but is not optimal and needs
more processors to be actually faster. If speed is priority and Ω

(
n

log2 log2 n

)
processors are available, than non work-optimal list ranking is better choice,
otherwise work-optimal list ranking is better.

2.6.3 Step computation

Step computation is realised using depth-mod-k order of the nodes and their
depths.

At first nodes in depth-mod-k order are split into k groups based on their
depth mod k. These groups are consecutive in depth-mod-k order.

Those groups are split into consecutive subgroups of size p (excluding the
left-most subgroup which may have size in range 1 to p). Those subgroups

65

2. Analysis and Design

are numbered from right to left beginning from 1. Number of the subgroup
represents the step in which the group is computed.

The inclusive suffix scan in the algorithm 23 is inclusive scan that performs
scan in reverse order (i.e. for input x1, . . . , xn is it the same as performing
inclusive (prefix) scan for input xn, . . . , x1).

p in the algorithm 23 denotes number of processors available.

Algorithm 23: computeStep (EREW PRAM)
Input: depth-mod-k order dmk1, . . . , dmkn, depths array

depth1, . . . , depthn
Output: step array step1, . . . , stepn
Auxiliary: group group1, . . . , groupn, group end index gei1, . . . , gein
for i← 1 to n do in parallel

groupi ← depthdmki
mod k;

if i = n− 1 ∨ groupi 6= groupi+1 then
geii ← i;

else
geii ←∞;

end
end
inclusive suffix scan using min operator (in: gei, out: gei);
for i← 1 to n do in parallel

if (geii − i) mod p = 0 then
stepi ← 1;

else
stepi ← 0;

end
end
inclusive suffix scan (in: step, out: step);

Algorithm composes of 2 inclusive scans with parallel time O
(
n
p + log2 p

)
and work O (n) and 2 simple loops with assignments which have parallel time
O
(
n
p

)
and work O (n).

Thus the parallel time of the step computation has parallel time

T (n, p) = 2 ·O
(
n

p
+ log2 p

)
+ 2 ·O

(
n

p

)
= O

(
n

p
+ log2 p

)

T

(
n,

n

log2 n

)
= O

(
n · log2 n

n
+ log2

n

log2 n

)
= O (log2 n)

66

2.6. Run of k-local DFTA

Parallel cost of this algorithm is

C (n, p) = p ·O
(
n

p
+ log2 p

)
= O (n+ p · log2 p)

C

(
n,

n

log2 n

)
= O

(
n+ n

log2 n
· log2

n

log2 n

)
= O (n)

And parallel work is

W (n, p) = 4 ·O (n) = O (n)

2.6.4 State computation

State computation traverses the nodes in depth-mod-k order from right to
left. Processors are used effectively, only on boundary between 2 groups some
processors may stay.

If p processors are used maximal number of processors that will stall is p− 1.
There are k − 1 places where processors may stall thus maximal wasted work
will be (p− 1) · (k − 1) = O (p · k).

pid in the algorithm 24 denotes id of executing processor starting with 0 and
p denotes total number of processors.

Algorithm 24: computeState (EREW PRAM)
Input: DFTA A = (Q,F , Qf ,∆), Tree t = (labels, children, root) of

size n, depth-mod-k order dmk1, . . . , dmkn, step array
step1, . . . , stepn

Output: state array state1, . . . , staten
do in parallel

s← 1;
i← n− pid;
while i ≥ 1 do

if stepi = s then
statei ← ∆labelsi

(statechild1(i), . . . , statechildarity(i)(i));
i← i− p;

end
s← s+ 1;

end
end

The evaluation of ∆ is required to take O (1) time, that is ensured by transition
function (For more info see implementation 3.2.4).

67

2. Analysis and Design

The while loop executes O (1) operations in each step. Total number of steps
is O

(
n
p

)
since each processors starts at Θ (n) index, each step decreases index

value by O (p) and stalls maximaly O (k) = O (1) times.

Since everything is executed in parallel the total parallel time is

T (n, p) = O

(
n

p

)

the cost is

C (n, p) = p ·O
(
n

p

)
= O (n)

and parallel work is

W (n, p) = p · n
p

= O (n)

since there are O
(
n
p

)
steps and in each step p processors are active.

2.6.5 Complexity analysis

ETT and depthModKSort are dependent on used list ranking algorithm.
They can run work-optimally but potentially slower, or faster but not work-
optimally. Both variants will be analysed. For non work-optimal variant both
those algorithms run in O

(
n
p · log2 n

)
time with O (n · log2 n) work. And for

work-optimal variant those algorithms have parallel time
O
((

n
p + log2 p

)
· log2 log2 n

)
with O (n) work.

Compute step has parallel time O
(
n
p + log2 p

)
and parallel work O (n).

Compute state runs with O
(
n
p

)
time and O (n) work.

Assignment of arbitrary state can be achieved in O
(
n
p

)
parallel time with

O (n) work.

68

2.6. Run of k-local DFTA

Overall total parallel time of this algorithm is

T (n, p) =2 ·O
(
n

p
· log2 n

)
+O

(
n

p
+ log2 p

)
+ 3 ·O

(
n

p

)
=O

(
n

p
· log2 n

)

T

(
n,

n

log2 n

)
=O

(
n
n

log2 n

· log2 n

)
=O

(
(log2 n)2

)

T (n, n) =O
(
n

n
· log2 n

)
=O (log2 n)

using non work-optimal list ranking, or

T (n, p) =2 ·O
((

n

p
+ log2 p

)
· log2 log2 n

)
+O

(
n

p
+ log2 p

)
+ 3 ·O

(
n

p

)
=O

((
n

p
+ log2 p

)
· log2 log2 n

)

T

(
n,

n

log2 n

)
=O

((
n
n

log2 n

+ log2
n

log2 n

)
· log2 log2 n

)
=O (log2 n · log2 log2 n)

T (n, n) =O
((

n

n
+ log2 n

)
· log2 log2 n

)
=O (log2 n · log2 log2 n)

thus the non work-optimal list ranking could run faster than the work-optimal
variant, but needs more processors and as will be shown below it is wasting
work of processors. It also runs slower when there are not enough processors.
There needs to be at least Ω

(
n

log2 log2 n

)
processors to run faster than work-

optimal variant.

69

2. Analysis and Design

The parallel cost for non work-optimal variant is

C (n, p) = p ·O
(
n

p
· log2 n

)
= O (n · log2 n) = ω (SU (n))

and for the cost-optimal variant

C (n, p) =p ·O
((

n

p
+ log2 p

)
· log2 log2 n

)
=O ((n+ p · log2 p) · log2 log2 n)

C

(
n,

n

log2 n

)
=O

(
(n+ n

log2 n
· log2

n

log2 n
) · log2 log2 n

)
=O (n · log2 log2 n)
=ω (SU (n))

thus neither of those two variants are cost-optimal, but the work-optimal
variant has better cost than the other one.

Tha parallel work for non work-optimal variant is

W (n, p) = 2 ·O (n · log2 n) + 4 ·O (n) = O (n · log2 n) = ω (SU (n))

thus using non work-optimal list ranking causes that the whole algorithm is
not work-optimal. For the work-optimal list ranking the parallel work is

W (n, p) = 6 ·O (n) = O (n) = Θ (SU (n))

and the algorithm is work-optimal then.

The complexity of parallel run of k-local DFTA thus depends on the selection
of list ranking algorithm. For most of the cases the work-optimal list ranking
is better choice but if speed is the priority and Ω

(
n

log2 log2 n

)
processors are

available the non work-optimal list ranking could have better results.

2.6.6 Implementations

Since this algorithm is very specific and new algorithm there are no imple-
mentations of libraries that author of this thesis is aware of.

70

Chapter 3
Implementation

In this chapter available libraries for parallelisation will be briefly described
and library used by this work will be compared to others. Then implementa-
tion notes will follow.

3.1 Libraries

Support for parallelism could be ensured using POSIX threads (pthread) stan-
dard. This standard offers basic thread manipulation and synchronization
primitives.

Standard C++ library offers its own interface for pthread that is spread
through multiple classes and functions (e.g. std::thread,std::mutex, etc.).

This brings total control of how is threading implemented and those simple
building blocks (thread, mutex, etc.) are fully sufficient to build any paral-
lel application. But on the other hand this simple implementation imposes
responsibility for synchronization and threads creation and joining on the pro-
grammer and every simple task must be solved by the programmer.

Another library that supports parallelism is Threading Building Blocks (TBB)
that implements all that is implemented in pthread and on top of it some of
the parallel algorithms (e.g. reduction, scan, sort, . . .). The most impor-
tant feature of TBB is implemented workload balancing that distributes work
amongst processors to optimize run of implemented algorithms.

Another possibility is to use OpenMP[10] library, that offers simple interface
for parallel programming. OpenMP unlike the others uses preprocessor direc-
tives instead of template functions. Programmer doesn’t have full control over

71

3. Implementation

final code but OpenMP manages threads and partially synchronization on its
own as described by the directives. This library offers most comfort thanks
to the fact it solves trivial problems on its own and offers straightforward
parallelization of existing sequential code using directives.

OpenMP is also very useful on distributed systems when combined with Open-
MPI.

Since there’s no need to have full control over compiled code and OpenMP
offers most comfort and for potential future extension for distributed system all
parallel algorithms in this thesis will be implemented using OpenMP library.

3.2 Structures

3.2.1 Array

Since the implementations in standard C++ libraries aren’t designed for par-
allel use and Boost implementation is designed especially for Boost function
array will be implemented in this thesis as class borovmi5::types::ParallelArray.

This will be a wrapper around C-like arrays conforming to Container C++
named requirement.

ParallelArray will be similar to std::vector and std::array but most operations
(e.g., initialization, assignment, comparation, . . .) will be executed in parallel
in contrast with standard C++ implementations.

The ParallelArray will be dynamically allocated but won’t allow (for the pur-
pose of simplicity) adding or removing elements after construction.

Since all basic operations over the array are without any read/write conflicts,
they can be implemented in O(n/p) time using p < n processors or O(1) time
using p ≥ n processors on EREW PRAM.

3.2.2 Tree

Tree will be implemented in class borovmi5::types::Tree.

To represent arrays in the tree borovmi5::types::ParallelArray will be used.

72

3.2. Structures

3.2.3 Arc

Arc will be implemented in class borovmi5::types::Arc.

3.2.4 DFTA

DFTA will be implemented in class borovmi5::dfta::DFTA.

A finite set of states will be represented by it’s state with greatest number.

A finite set of final states is subset of the set of states with no other limitations.
Thus can be implemented using array of bools indexed by state numbers.
Value stored under state number represents whether the given state is final or
not. This method allows O (1) resolution whether the state is final.

The second possibility is to represent the set of final states with std::set,
assuming that most of the sets of final states will be relatively small, this is
a more space-efficient solution but provides worse resolution time O (log2 n).
But because this resolution takes place only once during the whole run of the
DFTA and assuming the final state set is small this fact is negligible.

Implementation in this work will use std::set to represent set of final states.

To represent transition function std::unordered map will be used that will as-
sign symbol-specific transition function to the symbols. The unordered map
(hash map) is used to conform the requirements of algorithm 24 that evalua-
tion of transition function has time complexity O (1).

Symbol-specific transition function will be represented by class
borovmi5::dfta::DFTA::TransitionTable that will be implemented as an array
indexed by child states. To neglect the fact that each TransitionTable may
have different arity, the transition table is flattened and member function
borovmi5::dfta::DFTA::TransitionTable::transition accepting vector of children
states handles the indexation.

73

3. Implementation

3.3 Reduction and Scan

3.3.1 Reduction

Despite the fact there exist many sufficient implementations of reduction,
both sequential and parallel reduction will be implemented in this thesis as
function borovmi5::scans::reduce that will have an interface corresponding to
other implemented functions. But this implementation will be very similar to
the implementation in standard C++17 libraries and could be replaced with
it.

The algorithm 2 is not work-optimal itself but could be made work-optimal in
the same manner as algorithms 5 and 8. Using n

log2 n processors and splitting
input into smaller portions precomputed sequentially by individual processors.

Parallel variant of borovmi5::scans::reduction will be implemented using the
work-optimal modification of the parallel algorithm mentioned above.

3.3.2 Inclusive scan

Implementation included in standard and Boost libraries would be sufficient
for this thesis but despite that, an inclusive scan will be implemented in this
thesis as a function borovmi5::scans::inclusiveScan. All three variants (sequen-
tial, modified Hillis-Steele and Blelloch) will be implemented and compared
in chapter Testing.

The algorithm 4 is designed for CREW PRAM and includes read/write con-
flict. This problem could be easily solved using simple synchronization. The
implementation will read current values in the first place, then synchronize
threads using synchronization barrier and after that will write new values.
This modification makes the Hillis-Steele algorithm EREW PRAM algorithm.

3.3.3 Exclusive scan

The exclusive scan will be implemented as function borovmi5::scans::exclusiveScan
in the same way as inclusive scan using the same algorithms.

74

3.4. Lists

3.3.4 Segmented scan

There doesn’t exist implementation of segmented scan in standard nor boost
library. Thus inclusive and exclusive segmented scan will be implemented in
this thesis as functions borovmi5::scans::segmentedInclusiveScan and
borovmi5::scans::segmentedExclusiveScan. Of parallel variants of the algo-
rithm, only Hillis-Steele will be implemented because it is as good as the
Blelloch algorithm.

3.4 Lists

3.4.1 Linked list

Since a dynamic linked structure is not an optimal approach for a parallel
implementation of algorithms over a linked lists the standard implementa-
tion std::list won’t be used. Instead a borovmi5::ParallelArray will be used
to represent linked lists where values stored in this array will be indices of
successors.

3.4.2 k-coloring

k-coloring will be implemented in this thesis. There will be 3 functions.

The first one will be borovmi5::ranking::coloring::nColoring that will assign
unique color to each node of the list.

The second one will be borovmi5::ranking::coloring::sixColoring that will use
the first function to generate n-coloring and then reduce it to 6-coloring using
DCT as described in algorithm 12.

The last one will be borovmi5::ranking::coloring::threeColorint that will use
the second function to generate 6-coloring and then reduce it to 3-coloring
using algorithm 13.

75

3. Implementation

3.4.3 List Ranking

List ranking will be implemented in this thesis as a function
borovmi5::ranking::listRanking using all three mentioned alorithms
(i.e. 9, 10, 14).

All three algorithms in analysis assigns ranks in range [1, n] but since arrays
in C++ are indexed starting with 0, algorithms implemented in this thesis
will assign ranks in range [0, n− 1].

In the case of sequential algorithm it means to assign the rank to the node
before incrementing it thus using exclusive scan instead of inclusive scan.

In the case of parallel algorithms initial rank of the head will be set to 0
instead of 1.

None of the functions will take head index as its argument. Implementations
of the list ranking in this thesis will find the head on their own. Sequential
solution will scan the linked list first to find the head in O (n) time. Parallel
functions will do the same but in parallel in O

(
n
p

)
time.

This can be slower than just accepting head as parameter of the function, but
will ensure that head will be really head of the list and doesn’t need that user
of the function finds head first.

3.5 Euler Tour Technique

Parallel solution of Euler tour construction will be implemented in this thesis
as function borovmi5::algorithm::EulerTour.

To arrange arcs into the array as described in analysis the indices of starts
of portions of arcs originated in each node will be precomputed applying ex-
clusive scan on array of child counts of each node. Result of this scan will be
an array that will assign base index to each node.

The fuction next mentioned in analysis will be replaced with an array next
that will assign each arc an arc corresponding to the behaviour of function
next. This will be achieved in 2 steps.

76

3.6. Parentheses matching

The first one will take care of downgoing arcs only. For each arc x− childi(x)
that will be stored at index baseIndexx+2·(i−1) the value baseIndexx+2·(i)
will be assigned in the case that childi(x) isn’t the right-most child of x or
baseIndexx (index of the 1st (left-most) childs) otherwise.

The second step will take care of upgoing arcs. For each upgoing arc x −
parent(x) that will be stored at index baseIndexparent(x) + 2 · (i − 1) + 1 (if
x = childi(parent(x))) the next value for the arc x − childarity(x)(x) will be
set to the index of this arc and next value for this arc will be set to the index
of the arc x − child1(x). If x has no childs, then next value for this arc will
be set to the index of this arc.

The algorithm 16 will be impemented as function borovmi5::dfta::getDepths
since it will be needed for run of DFTA.

3.6 Parentheses matching

Parentheses matching will be implemented as function
borovmi5::algorithm::matchParentheses.

All three presented algorithms will be implemented

Each segment of the input string will be processed in a single pass instead of
multiple passes as in the algorithm 19.

Move and match in parallel loop of the algorithm 19 will be implemented
to run in parallel and use free processors to speedup overall runtime of the
program.

Parallel merge sort is used as stable sort mentioned in algorithm 18. This is
implemented as simple parallelisation of merge sort. When input is split into
two parts that are then processed in merge sort they are processed in parallel.

77

3. Implementation

∞ ∞ ∞ 4 ∞ 6 ∞ 8

4 4 4 4 6 6 8 8

min(x, y)

0 0 0 4 0 6 0 8

⊥ ⊥ ⊥ > ⊥ > ⊥ >

4 4 4 4 6 6 8 8

segmented x+ y

(a) (b)

Figure 3.1: (a) inclusive scan with min operator (b) segmented inclusive scan
with + operator

3.7 Run of k-local DFTA

The run of k-local DFTA will be implemented in both its sequential and
parallel form.

3.7.1 Main algorithm

The main algorithm will be represented by function borovmi5::dfta::run.

The main algorithm will construct Euler tour, use it to compute depths and
pass it to the depthModKSort and thus will avoid redundant Euler tour con-
struction.

3.7.2 Depth-mod-k sort

The depthModKSort will be implemented as function
borovmi5::dfta::depthModKSort. It will be implemented with a little modifi-
cation mentioned above.

3.7.3 Step computation

Step array computation will be realised as function
borovmi5::dfta::computeSteps. Due to difficulties with using min function in
inclusive scan as is implemented, segmented inclusive scan will be used instead.
The segments will be regions with the same group end index.

Figure 3.1(a) depicts how is the group end index distributed in algorithm 24
and figure 3.1(b) depicts how is it realised in implementation.

78

3.7. Run of k-local DFTA

3.7.4 State computation

State computation traversal is implemented as function
borovmi5::dfta::computeState.

79

Chapter 4
Testing

In this chapter unit testing of individual support functions will be described
followed by a system test of the run of k-local DFTA.

4.1 Unit Tests

Unit tests will be used to test the functionality of support functions in this
thesis. Unit tests will be implemented using the GoogleTest framework.

4.1.1 Reduction and Scans

Unit tests for reduction and all scans are implemented in folder
test/functionality/scans as files reduce test.cpp, inclusive scan test.cpp, exclu-
sive scan test.cpp, segmented inclusive scan test.cpp and
segmented exclusive scan test.cpp. Each file includes corresponding Test Suite.
Each Test Suite consist of 9 tests. Individual tests are described in the table
4.1.

Test Input size Description
empty 0 empty input
zeroes 100 input is sequence of 0 (i.e. 0 . . . 0)
simple 100 input is sequence of 1 (i.e. 1 . . . 1)

negative 100 input is sequence of -1 (i.e. −1 . . . − 1)
alternating 100 input is alternating sequence of -1 and 1 (i.e. 1 − 1 . . . 1 − 1)

randomSmall 100 random input sequence
randomMedium 10.000 random input sequence

randomLarge 1.000.000 random input sequence
fullRandom random from [100, 1.000.000] random input sequence, 10 repetitions

Figure 4.1: Reduction and scans unit tests

81

4. Testing

Test Input size Description
empty 0 empty input
simple 100 list 1→ 2→ · · · → 99→ 100
reverse 100 list 100→ 99→ · · · → 2→ 1

randomSmall 100 random input sequence
randomMedium 10.000 random list

randomLarge 100.000 random list
fullRandom random from [100, 50.000] random list, 10 repetitions

Figure 4.2: Coloring and list ranking unit tests

Test Input size Description
empty 0 empty tree

singleNode 1 tree with root node only
simple 100 pre-defined tree

randomSmall 100 random tree
randomMedium 10.000 random tree

randomLarge 1.000.000 random tree
fullRandom random from [100, 1.000.000] random tree, 10 repetitions

Figure 4.3: Euler tour technique unit tests

4.1.2 Coloring and List ranking

Unit tests for coloring and list ranking are implemented in folder
test/functionality/ranking as files coloring test.cpp and list ranking test.cpp.
Each file includes corresponding Test Suite. Each Test Suite consist of 7 tests.
Individual tests are described in the table 4.2.

Random linked lists together with their correct ranking are acquired by a
function generateLinkedList in generators.

4.1.3 Euler Tour Technique

Unit tests for Euler tour construction are implemented in file
test/functionality/algorithm/euler tour test.cpp. Test Suite consists of 7 tests.
Individual tests are described in the table 4.3.

Random trees together with their correct Euler tour are acquired by a function
generateTreeWithTour in generators.

82

4.2. System test

Test Input size Description
empty 0 empty string
invalid 2)(

partiallyValid 4)()(
valid 2 ()

simple 24 (((())())()(()))(()(()))
randomSmall 100 random well-formed string

randomMedium 10.000 random well-formed string
randomLarge 1.000.000 random well-formed string
fullRandom random even from [100, 1.000.000] random well-formed string, 10 repetitions

Figure 4.4: Parentheses matching unit tests

4.1.4 Parentheses matching

Unit tests for Parentheses matching are implemented in file
test/functionality/algorithm/parentheses matching test.cpp. Test Suite con-
sists of 9 tests. Individual tests are described in the table 4.4.

Random well-formed strings together with their correct matching are acquired
by a function generatePars in generators.

4.1.5 Other

Other functions implemented in this thesis such as log∗2 or merge sort have
their unit tests too but will not be described further.

4.2 System test

Parallel and sequential run of k-local DFTA will be tested by system tests
using GoogleTest. They will be similar to the unit tests but will be applied
on the whole parallel run, not individual parts.

System test is implemented in file test/functionality/dfta/run dfta test.cpp
and includes several subtests described in the table 4.5.

Figure 4.6 depicts pre-defined DFTA used in testing. Figures 4.7 and 4.8
depicts pre-defined trees used in testing. Numbers in nodes of pre-defined
trees show states of the nodes after run of pre-defined DFTA.

83

4. Testing

Test Tree size k Description
empty 0 - empty tree and DFTA

trivialV 5, 6, 7 3 pre-defined DFTA and pre-defined trees A, B and C
trivialX 6, 7 3 pre-defined DFTA and pre-defined trees D and E
trivial 11 3 pre-defined DFTA and pre-defined tree F
basic 32 3 pre-defined DFTA and pre-defined tree G

randomSmall 100 random from [3, 5] random DFTA and random Tree
randomMedium 10.000 random from [3, 6] random DFTA and random Tree

randomLarge 1.000.000 random from [3, 8] random DFTA and random Tree (may take a long time)

Figure 4.5: Parentheses matching unit tests

DFTA A = ({0, 1, 2, 3, 4}, {a2, b1, c0}, {4},∆ :

a(2, 3) →4 b(1)→3 c→1
a(3, 3) →4 b(q)→2, q 6= 1
a(q1, q2)→0, q1 /∈ {2, 3} ∨ q2 6= 3

)

Figure 4.6: Pre-defined 3-local DFTA

a4

b3

c1

b3

c1

(A)

a4

b3

c1

b2

a0

c1c1

(B)

a4

b3

c1

b2

b3

c1

(C)

a0

b2

b3

c1

b3

c1

(D)

a0

b2

a0

c1c1

b3

c1

(E)

a0

b2

a4

b3

c1

b2

a0

c1c1

b3

c1

(F)

Figure 4.7: Pre-defined trees A-F with states after run of DFTA

84

4.2. System test

a0

b2

a4

b3

c1

b2

a0

a0

a0

b2

b3

c1

c1

a0

c1b2

b3

c1

c1

b2

b2

b2

a4

b3

c1

b2

a4

b3

c1

b2

b3

c1

Figure 4.8: Pre-defined tree G with states after run of DFTA

85

Chapter 5
Time measurements

In this chapter methodology of measuring the execution time of algorithms
will be described followed by measurements of execution times of run of k-local
DFTA. Execution times of sequential and parallel run will be compared.

5.1 Methodology

2 different times will be measured.

• Real Time - Elapsed time from the beginning to the end of execution of
the master thread.

• CPU time - Elapsed time during execution of the program on all pro-
cessors in all threads.

Real time should be analogue to parallel time and CPU time should be ana-
logue to parallel work.

Three algorithms will be tested in total. Sequential algorithm 20 which will
be denoted as S in the tables and figures. Parallel algorithm 21 which will be
using algorithm 10 as list ranking algorithm, this one will be denoted by PF
in the tables and figures. And parallel algorithm 21 which will be using work-
optimal list ranking algorithm 14, PW denotes this algorithm in the tables
and figures.

Multiple data sets will be tested with each algorithm. Each of those data sets
will consist of a single k-local DFTA and a single tree of size n.

Parallel algorithms will be tested for a various number of processors p.

87

5. Time measurements

Each test will be repeated multiple times and results will be averaged to
mitigate potential measurement error.

5.2 Hardware

All tests will be executed on Intel Xeon scalable processor (Cascade Lake)
with 6 vCPUs, base frequency of 3.1 GHz and 32 GB of RAM available.

5.2.1 Test Data

There will be pre-generated k-local DFTAs for k = 2, 3, 4, 8, 16 and 24.
For each DFTA there will be pre-generated trees of size n = 256, 1024, 4096,
16384, 32768, 65536, 131072 and 262144. Each such data set will be tested 5-
times. Parallel algorithms will be measured using p = 2, 3, 4 and 6 processors.

5.2.1.1 Data Generation

Test data are generated using Algorithms Library Toolkit[9] (ALT).

To generate k-local DFTA, a tree pattern of depth k is generated first us-
ing ALT. FTA accepting such pattern is k-local thus NFTA accepting this
generated pattern is generated using ALT. This NFTA is then determinized,
minimalized and normalized using ALT. This produces k-local DFTA of the
desired k.

To generate a ranked tree of size n, an unranked tree of this size is generated
using ALT first. Then based on the alphabet of previously generated DFTA
this tree is labelled to be valid input for this DFTA.

5.3 Results

Results of time measurements are presented in table 5.1. Column n is for
input tree size and column p for processor count.

For each algorithm and data set 2 times are presented. Real time and CPU
time.

88

5.3. Results

As shown in the analysis only place where k may affect the time is in the state
computation step, where high k may cause slowdown based on the number
of processors. This slowdown is maximally by O (p · k) time and since p is
constant in individual tests, the slowdown caused by different values of k is
O (k). This slowdown caused by the higher value of k is negligible and thus
values for the same input tree size are almost the same for different values of
k tested in this thesis.

Thus times presented in the table 5.1 and in the charts 5.2 and 5.3 are average
of all times across all values of k tested. Each test is repeated 5-times thus
each value represents average of 30 = 5·6 tests for given input size n, processor
count n and algorithm.

As can be seen from the charts 5.2 and 5.3, all three algorithms seem to have
O (n) Real time (which should be equivalent to the parallel time) and O (n)
CPU time (which should be equivalent of parallel work).

Both parallel implementations seem to have improving Real time at the cost
of CPU time with the increasing number of processors. Increasing work with
the increasing number of processors may be caused by the fact that not all
algorithms are implemented work-optimally and by the loops where in each
iteration more and more processors are becoming inactive and are waiting
for other processors to finish their work. This possibly may be solved by
refactoring those loops to yield processors that it no longer needs.

The processor count of 6 seems to be worse than 4, it has worse Real time and
much worse CPU time. This probably has the same cause as the increasing
work and the fact that processor count is not a power of 2 may harm the
performance in algorithms that are designed with the presumption of such
processor count. It is probable that with the further increasing number of
processors the Real time will be improving further and parallel work may be
better for 8 processors than for 6 processors.

The real time of parallel algorithms seems to be linear instead of logarithmic.
This is probably caused by the low number of processors. Both parallel imple-
mentations expect a number of processors to be scaling together with input
size. But processor count in all tests is fixed.

Since the increasing number of processors seems to lower Real time, it is
probable that if the number of processors is scaling together with input size
the resulting Real time will be closer to the expected parallel time.

The results look promising that the expected parallel time possibly could be
achieved with this implementation, but further testing must be performed to
make any conclusions.

89

5. Time measurements

n p
S PF PW

real cpu real cpu real cpu

256

1 294µs 294µs − − − −
2 − − 1.69ms 1.69ms 2.43ms 2.43ms
3 − − 1.47ms 1.47ms 2.19ms 2.19ms
4 − − 1.39ms 1.39ms 2.11ms 2.11ms
6 − − 1.70ms 1.70ms 2.55ms 2.55ms

1024

1 1.18ms 1.18ms − − − −
2 − − 5.43ms 9.30ms 7.76ms 12.5ms
3 − − 4.11ms 11.5ms 6.00ms 14.0ms
4 − − 3.50ms 3.51ms 5.22ms 17.2ms
6 − − 3.81ms 5.80ms 5.73ms 25.7ms

4096

1 4.72ms 4.72ms − − − −
2 − − 19.9ms 38.5ms 27.5ms 52.3ms
3 − − 14.1ms 38.1ms 19.9ms 57.5ms
4 − − 11.3ms 35.3ms 16.1ms 64.1ms
6 − − 12.6ms 72.0ms 17.9ms 97.9ms

16384

1 19.0ms 19.0ms − − − −
2 − − 79.6ms 157ms 108ms 214ms
3 − − 55.6ms 164ms 76ms 227ms
4 − − 43.4ms 165ms 60.4ms 240ms
6 − − 48.5ms 285ms 66.6ms 390ms

65536

1 77.4ms 77.4ms − − − −
2 − − 337ms 674ms 455ms 910ms
3 − − 235ms 703ms 321ms 961ms
4 − − 183ms 728ms 254ms 1.01s
6 − − 192ms 1.15s 267ms 1.60s

262144

1 313ms 313ms − − − −
2 − − 1.42s 2.84s 1.97s 3.95s
3 − − 986ms 2.96s 1.39s 4.17s
4 − − 768ms 3.07s 1.10s 4.40s
6 − − 807ms 4.86s 1.15s 6.95s

Figure 5.1: Time measurement results

90

5.3. Results

28 210 212 214 216 218

1

10

100

1,000

10,000

Input size n

T
im

e
[m
s]

Time comparisons of the algorithm PF for different values of p

p = 2 real
p = 2 cpu
p = 3 real
p = 3 cpu
p = 4 real
p = 4 cpu
p = 6 real
p = 6 cpu

28 210 212 214 216 218
1

10

100

1,000

10,000

Input size n

T
im

e
[m
s]

Time comparisons of the algorithm PW for different values of p

p = 2 real
p = 2 cpu
p = 3 real
p = 3 cpu
p = 4 real
p = 4 cpu
p = 6 real
p = 6 cpu

Figure 5.2: Parallel algorithms time comparisons based on number of proces-
sors

91

5. Time measurements

28 210 212 214 216 218
0.1

1

10

100

1,000

10,000

Input size n

T
im

e
[m
s]

Time comparisons of the algorithms

S real
S cpu

PF p = 4 real
PF p = 4 cpu
PW p = 4 real
PW p = 4 cpu

Figure 5.3: Time comparisons based on algorithm

92

Conclusions and Future work

This thesis was implementation of the parallel run of k-local DFTA.

Work-optimal parallel run of k-local DFTA was implemented successfully
alongside a sequential run of k-local DFTA and all needed support algorithms.

Most of the algorithms were implemented work-optimally. Solutions for some
problems were implemented using different algorithms (e.g. list ranking which
was implemented sequentially, by pointer jumping and using Cole’s algorithm).

A parallel run of k-local DFTA was implemented with the ability to select
which list ranking algorithm is used. This was because list ranking by pointer
jumping is potentially faster if enough processors are available but is not
work-optimal. Work-optimal list ranking is also faster when there are fewer
processors available.

Execution times of all three implementations of a run of k-local DFTA (i.e.
sequential, parallel with pointer jumping and parallel with work-optimal list
ranking) were experimentally measured and compared.

Testing was performed with up to 6 processor cores. Results of the measure-
ment seem to be promising that the expected parallel time may be possibly
achieved with this implementation, but further testing with more processor
cores and possibly bigger input trees is needed to be performed to make any
conclusions since provided number of processor cores during tests seems in-
sufficient for this algorithm to obtain some speedup.

93

Conclusions and Future work

Future work

Tests with bigger data and a higher number of processors could be performed
in the future on hardware with more cores.

This algorithm was described for the EREW PRAM computation model but
possibly may be modified for other computation models in the future. There’s
potential for migrating to distributed memory systems due to the need for high
parallelism. This algorithm could be modified for usage on GPGPU or other
SIMD architectures in the future.

All those future implementations possibly may serve as proof of concept for
this algorithm outside the PRAM computation model.

94

Bibliography

[1] Plachý, Š.; Janoušek, J. On Synchronizing Tree Automata and Their
Work–Optimal Parallel Run, Usable for Parallel Tree Pattern Match-
ing. In SOFSEM 2020: Theory and Practice of Computer Science,
edited by A. Chatzigeorgiou; R. Dondi; H. Herodotou; C. Kapoutsis;
Y. Manolopoulos; G. A. Papadopoulos; F. Sikora, Cham: Springer Inter-
national Publishing, 2020, ISBN 978-3-030-38919-2, pp. 576–586.

[2] Rahman, M. S. Basic graph theory. Cham, Switzerland: Springer, 2017,
ISBN 978-3-319-49475-3.

[3] Tvrd́ık, P. Parallel algorithms and computing. Praha: Vydavatelstv́ı
ČVUT, 2003, ISBN 80-01-02824-0.

[4] Hillis, W. D.; Steele, G. L. Data parallel algorithms. Communications
of the ACM, volume 29, no. 12, Dec. 1986: pp. 1170–1183, doi:10.1145/
7902.7903. Available from: https://doi.org/10.1145/7902.7903

[5] Blelloch, G. E. Prefix sums and their applications. Technical report CMU-
CS-90-190, School of Computer Science, Carnegie Mellon University,
1990.

[6] Cole, R.; Vishkin, U. Faster optimal parallel prefix sums and list rank-
ing. Information and Computation, volume 81, no. 3, 1989: pp. 334–
352, ISSN 0890-5401, doi:https://doi.org/10.1016/0890-5401(89)90036-
9. Available from: https://www.sciencedirect.com/science/article/
pii/0890540189900369

[7] Tarjan, R.; Vishkin, U. Finding biconnected componemts and comput-
ing tree functions in logarithmic parallel time. In 25th Annual Sym-
posium onFoundations of Computer Science, 1984., IEEE, 1984, doi:
10.1109/sfcs.1984.715896. Available from: https://doi.org/10.1109/
sfcs.1984.715896

95

https://doi.org/10.1145/7902.7903
https://www.sciencedirect.com/science/article/pii/0890540189900369
https://www.sciencedirect.com/science/article/pii/0890540189900369
https://doi.org/10.1109/sfcs.1984.715896
https://doi.org/10.1109/sfcs.1984.715896

Bibliography

[8] Levcopoulos, C.; Petersson, O. Matching parentheses in parallel. Dis-
crete Applied Mathematics, volume 40, no. 3, 1992: pp. 423–431, ISSN
0166-218X, doi:https://doi.org/10.1016/0166-218X(92)90011-X. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
0166218X9290011X

[9] Faculty of Information Technology, Czech Technical University in Prague.
Algorithms Library Toolkit. 2021-04-03, version 0.0.0.r1109.gc0ac370eb.
Available from: https://alt.fit.cvut.cz/

[10] OpenMP. 2020-11-17, version 5.1. Available from: https:
//www.openmp.org/

96

https://www.sciencedirect.com/science/article/pii/0166218X9290011X
https://www.sciencedirect.com/science/article/pii/0166218X9290011X
https://alt.fit.cvut.cz/
https://www.openmp.org/
https://www.openmp.org/

Appendix A
Acronyms

BFS Breadth first search

CRCW Concurrent Read Concurrent Write

CREW Concurrent Read Exclusive Write

DCT Deterministic Coin Tossing

DFS Depth first search

DFTA Deterministic finite tree automaton

EREW Exclusive Read Exclusive Write

ETT Euler’s Tour Technique

PRAM Parallel Random Access Machine

pthread POSIX threads

RAM Random Access Machine

TBB Thread Building Blocks

97

Appendix B
Symbols

N0 set of natural numbers

R+ set of positive real numbers

x̂ set {1, 2, . . . , x}

99

Appendix C
User manual

C.1 Prerequisities

• CMake v3.13 or newer

• OpenMP v5.1 or newer

• Algorithms Library Toolkit v0.0.0.r1109 or newer

C.2 Compilation

To compile this thesis follow these steps:

1. Navigate to the desired directory (hereinafter referred to as<BUILD DIR>)
where the compiled files should be created.

2. Type cmake <SRC DIR> in the terminal, replace <SRC DIR> with
the path to the root sources directory.

3. Type cmake –build <BUILD DIR> in the terminal.

101

C. User manual

C.3 Usage

The compilation of the source codes produces multiple files:

• <BUILD DIR>/src/libparallel run dfta lib.a library
containing the parallel run of k-local DFTA and all the other support
functions and structures.

• <BUILD DIR>/test/generators/libparallel run dfta generators.a library
containing generators of test data.

• <BUILD DIR>/test/functionality/parallel run dfta test executable that
runs unit tests of the implemented functions.

• <BUILD DIR>/test/measurements/parallel run dfta measure executable
that runs time measurement tests of the run of k-local DFTA.

• <BUILD DIR>/parallel run dfta demo executable that runs simple demon-
stration program that runs k-local DFTA in parallel for pre-defined input
tree G from figure 4.8 and 3-local DFTA from figure 4.6.

To run the demo program type ./<BUILD DIR>/parallel run dfta demo in
the terminal.

102

Appendix D
Contents of enclosed CD

readme.txt the file with CD contents description
data........................the directory of the pre-generated test data
results..................the directory of the time measurement results

results.csv........... the time measurement results in CSV format
src.......................................the directory of source codes

dfta....................................the implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

103

	Introduction
	Goals

	Theory
	Basic definitions
	Graph
	Tree
	Tree language
	Tree automaton
	k-local tree automaton

	Algorithm Complexity
	Sequential Complexity
	Parallel Complexity

	Parallel Computation Models
	Reduction and Scan
	Lists
	Euler Tour Technique
	Parentheses Matching

	Analysis and Design
	Structures
	Array
	Tree
	Arc
	DFTA

	Reduction and Scan
	Reduction
	Algorithms
	Implementations

	Inclusive scan
	Algorithms
	Implementations

	Exclusive scan
	Algorithms
	Implementations

	Segmented scan
	Algorithms
	Implementations

	Lists
	Linked list
	Implementations

	List Ranking
	6-coloring
	3-coloring
	Work-optimal list ranking
	Implementations

	Euler Tour Technique
	Algorithms
	Implementations
	Applications

	Parentheses matching
	Algorithms
	Implementations

	Run of k-local DFTA
	Main algorithm
	Depth-mod-k sort
	Step computation
	State computation
	Complexity analysis
	Implementations

	Implementation
	Libraries
	Structures
	Array
	Tree
	Arc
	DFTA

	Reduction and Scan
	Reduction
	Inclusive scan
	Exclusive scan
	Segmented scan

	Lists
	Linked list
	k-coloring
	List Ranking

	Euler Tour Technique
	Parentheses matching
	Run of k-local DFTA
	Main algorithm
	Depth-mod-k sort
	Step computation
	State computation

	Testing
	Unit Tests
	Reduction and Scans
	Coloring and List ranking
	Euler Tour Technique
	Parentheses matching
	Other

	System test

	Time measurements
	Methodology
	Hardware
	Test Data
	Data Generation

	Results

	Conclusions and Future work
	Future work

	Bibliography
	Acronyms
	Symbols
	User manual
	Prerequisities
	Compilation
	Usage

	Contents of enclosed CD

