
Instructions

1. Study the basics of programming GPU using CUDA.

2. Learn the fundamentals of the development of parallel algorithms with TNL library (www.tnl-

project.org).

3. Learn and understand parallel sorting algorithms, namely bitonic sort and quick sort.

4. Implement both algorithms into TNL library to run on CPU and GPU.

5. Implement unit tests for testing correctness of the implemented algorithms.

6. Perform measurement of speed-up compared to sorting algorithms in the STL library and GPU

implementation [1].

[1] https://github.com/davors/gpu-sorting

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 30 November 2020 in Prague.

Assignment of bachelor’s thesis

Title: Development of parallel sorting algorithms for GPU

Student: Xuan Thang Nguyen

Supervisor: Ing. Tomáš Oberhuber, Ph.D.

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2021/2022

Bachelor’s thesis

Development of parallel sorting algorithms
for GPU

Nguyen Xuan Thang

Department of Theoretical Computer Science
Supervisor: Ing. Tomáš Oberhuber, Ph.D.

May 13, 2021

Acknowledgements

I would like to thank my supervisor Ing. Tomáš Oberhuber, Ph.D. for his sup-
port, guidance and advices throughout the whole time of creating this thesis.

My gratitude also goes to my family that helped me during these hard
times.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Xuan Thang Nguyen. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Nguyen, Xuan Thang. Development of parallel sorting algorithms for GPU.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2021.

Abstrakt

Tato práce se zabývá vybranými paralelními řadícími algoritmy vhodnými
pro implementaci na GPU. Jedná se konkrétně o Bitonic sort a Quicksort.
Bitonic sort, i když má vyšší časovou složitost, je vhodným kandidátem na řa-
zení malých posloupností. Paralelní Quicksort je rychlejší pro větší vstupy, ale
potřebuje Θ(n) paměťi na pomocné pole pro přeskládání. Oba algoritmy jsou
popsány a implementovány pro GPU od NVIDIA s pomocí CUDA API a TNL
knihovny. Jako jazyk byl zvolen C++. U Bitonic sortu je navíc představena va-
rianta, která využívá jen lambda funkce a odprošťuje se tak od kontejneru dat.
Všechny implementace jsou řádně otestovány, změřeny a porovnány s jinými
implementacemi, které jsou dostupné pro CPU a GPU.

Klíčová slova paralelní řazení, GPU, CUDA, C++, TNL, Bitonic sort,
Quicksort

vii

Abstract

This thesis is about selected sorting algorithms suitable for GPU implemen-
tation. The chosen algorithms are Bitonic sort and Quicksort. Although
Bitonic sort has a worse theoretical time complexity, it is a suitable candi-
date for sorting smaller inputs. Quicksort is faster for bigger inputs, but for
parallel implementation, Θ(n) auxiliary memory is needed because it is an
out-of-place algorithm. Both algorithms were studied and then implemented
in C++ extended with CUDA API with the help of TNL library. For Bitonic
sort, a version that only uses lambda functions is introduced. The resulting
work was then tested, measured, and compared with other CPU and GPU
implementations.

Keywords parallel sort, GPU, CUDA, C++, TNL, Bitonic sort, Quicksort

viii

Summary

Motivation
Sorting is an important operation used
in many algorithms, but a single-
threaded implementation can take a long
time to process big inputs. For this rea-
son, GPUs can be used to sort a se-
quence in parallel and gain speed-up.

Goals
The goal of this thesis is to implement a
parallel version of selected sorting algo-
rithms, namely Bitonic sort and Quick-
sort. These two functions will be run-
ning on GPU using CUDA with the help
of TNL library [1]. The implementa-
tions are to be tested, measured, and
compared against other known CPU and
GPU implementations.

Method
To explain the algorithms, GPU archi-
tecture, TNL library, and CUDA are
first explained. Then, the theory around
sorting is introduced and afterward, the
algorithms themselves.

The first part of the implementation
describes parts of Bitonic sort and shows
where speed-up was gained with the use
of faster shared memory. In the next
part, Quicksort kernels are explained in
detail and all steps necessary to parti-
tion a task are described. The use of

shared memory and its methods of gain-
ing speed-up is also explained.

Results
The resulting work contains an efficient
version of Bitonic sort that can be called
both from CPU and GPU. Measure-
ments show that this version’s Bitonic
sort can rival the implementation pro-
vided by CUDA SDK [2]. For big in-
puts, Bitonic quickly loses against other
algorithms with better time complex-
ity. Our parallel Quicksort runs faster
than the original solution implemented
by Cederman et al. [3] but loses against
Manca et al.’s [4] optimized implemen-
tation of Quicksort. TNL Quicksort was
also compared against thrust::sort[5]
available in the CUDA toolkit. The
results show worse performance than
the highly optimized thrust::sort, but
this stems from the fact that the func-
tion from thrust implements Radix sort
internally.

Conclusion
Both Bitonic sort and Quicksort were
properly tested and measured and are
ready to be added into the TNL li-
brary. Although the results do not show
the best performance, the speed-up com-
pared to CPU sort is still noticable.

ix

Contents

1 Introduction 1

2 Preliminaries 3
2.1 GPU architecture . 3
2.2 CUDA . 3

2.2.1 Thread grouping . 4
2.2.2 Memory hierarchy . 4
2.2.3 Thread Synchronization 5
2.2.4 CUDA dynamic parallelism 7

2.3 TNL . 7
2.3.1 TNL data structures . 7
2.3.2 TNL View structures . 8
2.3.3 Lambdas . 8

2.4 Notation . 8
2.5 Sorting problem . 9

2.5.1 Single thread limitation 9
2.5.2 Overview of existing algorithms 10

3 Bitonic Sort 11
3.1 The Bitonic sort algorithm . 11

3.1.1 Bitonic merge . 12
3.1.2 Sorting in-place . 14
3.1.3 The recursive algorithm 15
3.1.4 Time complexity . 15
3.1.5 Sorting not aligned sequences 16

3.2 Parallel algorithm . 16
3.2.1 Sorting network . 17
3.2.2 Time complexity of parallel implementation 19

3.3 Existing implementations . 19

xi

3.4 Implementation of Bitonic sort with CUDA 20
3.4.1 Host side . 21
3.4.2 Device side . 21
3.4.3 Calculating the direction of swap 22
3.4.4 Optimizations . 22
3.4.5 Shared memory in Bitonic Sort 23

3.5 Bitonic sort from GPU . 25

4 Quicksort 27
4.1 The Quicksort algorithm . 27

4.1.1 Partitioning algorithms 28
4.1.2 Pivot Choice . 29

4.2 Parallel algorithm . 30
4.2.1 Prefix sum . 30
4.2.2 Parallel Quicksort algorithm 31
4.2.3 Stopping in time . 32

4.3 Implementation of Parallel Quicksort with CUDA 32
4.3.1 Host Side . 33
4.3.2 Pivot choice . 34
4.3.3 First phase . 35
4.3.4 Multi block partitioning 35
4.3.5 Moving elements . 37
4.3.6 Writing pivot . 38
4.3.7 Creating new tasks . 38
4.3.8 Second phase . 39
4.3.9 Single block Quicksort 39
4.3.10 Explicit stack . 40

4.4 Optimizations . 40
4.4.1 Parallel prefix sum . 40
4.4.2 Optimization with array rotation 41
4.4.3 Elements per CUDA block 43

4.5 Using CUDA dynamic parallelism 43
4.5.1 Version 1 . 43
4.5.2 Version 2 . 45

5 Testing and measuring 47
5.1 Environment . 47
5.2 Testing . 47
5.3 Methods of measuring . 48

5.3.1 Testing data sets . 49
5.3.2 Comparison with other implementations 50
5.3.3 Results . 51

5.4 Profiling . 53
5.4.1 Bitonic sort . 53

xii

5.4.2 Quicksort . 54

Conclusion 57
Goals and results . 57
Future work . 58

Bibliography 59

A Acronyms 63

B Contents of enclosed medium 65

xiii

List of Figures

3.1 One step of Bitonic merge where an > a2n. 14
3.2 Sorting network comparator for two elements 17
3.3 Bitonic sorting network for 8 elements 18
3.4 Sorting 7 elements with a Bitonic sorting network 19
3.5 Shared memory usage for Bitonic sort with 8 elements 24

4.1 Recursive tree of Quicksort . 28
4.2 Using prefix sum to divide memory between threads 31
4.3 Distribution of auxiliary array during Quicksort 37

xv

List of Tables

5.1 Environments used to perform measuring and testing. 47
5.2 Speed-up of algorithms compared to std::sort for random distri-

bution . 51
5.3 Speed-up of algorithms compared to std::sort for staggered dis-

tribution . 52
5.4 Comparison of kernels of CUDA Bitonic sort against TNL Bitonic

sort for integer types. 54
5.5 Comparison of kernels of CUDA Bitonic sort that sorts (int, int)

against TNL Bitonic sort doubles. 54
5.6 Profilation of first phase and second phase of Quicksort 55

xvii

List of Algorithms

3.1.1 Recursive Bitonic sort . 15
3.1.2 Recursive Bitonic Merge . 15
3.4.1 Bitonic sort kernel launch . 21
3.4.2 Bitonic sort kernel launch with shared memory 23

4.1.1 Quicksort algorithm . 27
4.1.2 Hoare partition scheme . 28
4.1.3 Lomuto partition scheme . 29
4.2.1 Parallel Quicksort . 32
4.3.1 Quicksort kernel launch . 33
4.3.2 Parallel partitioning in the first phase of Quicksort 36
4.3.3 Second phase of parallel Quicksort 39
4.4.1 CUDA parallel inclusive prefix sum 42
4.5.1 Quicksort with CDP version 1 44
4.5.2 Quicksort with CDP version 2 45

xix

Chapter 1
Introduction

Sorting problem is one of the most studied fields in computer science with
a wide variety of applications. All libraries that deal with computation and
numbers usually contain a sorting function to be used. Sorting also can be
applied to many problems, either to simplify the problem or when the sorted
property is required. If a search operation is used often, it might be better to
give order to the input and use binary search to find elements faster.

As shown, sorting is very useful, and it is meaningful to study this problem.
In some cases, fast sorting can have real-time impact. For this reason, this
thesis will present implementations of sorting functions that can run faster
than single threaded sorts.

A sorting algorithm that only uses comparisons has to make Ω(n log n)
compares and as such will run in Ω(n log n) time. However, this limitation only
applies to single-threaded implementations. With the help of more compute
units, it is possible to occupy the hardware and spread out the load to gain
speed-up. A CPU, usually labeled as a multi-core device, has only tens of
cores to use at the same time and can only handle tens to low hundreds of
threads at best. GPUs on the other hand can handle thousands of threads
and are generally more suitable for mass parallelization.

The thesis’ main goal is to implement selected sorting algorithms suitable
for GPU and create a solution ready to be incorporated into the TNL library
[1]. The implementation, as part of a templated library, has to be able to
sort data of arbitrary type and not only numeric values. The code has to be
implemented in C++ with the help of CUDA as this platform is used in the
library.

In the first part of the theoretical section, the necessary hardware and
software will be introduced. Then the sorting problem itself is explained
and improvements are proposed. A general overview of existing GPU sorting
implementations will also be present. Not all algorithms are suitable to be
parallelized, for this reason, the advantages and disadvantages of the chosen
algorithms are explained.

1

1. Introduction

For the algorithms themselves (Bitonic sort and Quicksort), a whole chap-
ter is dedicated to their theory and how the algorithm will run. Bitonic sort,
albeit being intensively studied by specialists, is not very known by the out-
side community. Because of this, the algorithm is described in great detail
and a proof is given. Quicksort, while being well-known, has a different im-
plementation compared to its CPU version and the parallelization part is not
as straightforward compared to Bitonic sort. For this reason, this thesis will
also describe in detail the steps necessary to partition an input and how to
use the available resources efficiently.

In the implementation part, the code itself will be studied and the main
choices made explained. The algorithms are then further enhanced to utilize
faster shared memory available to threads during run-time and then problem-
atic spots will be analyzed.

Finally, this thesis will present experimental results measured on a pro-
fessional grade GPU and then, comparison between the implementation and
other CPU and GPU sorts will be shown.

2

Chapter 2
Preliminaries

2.1 GPU architecture

A GPU (Graphics processing unit) is a specialized device that works with
CPU (Central processing unit) to compute tasks. The main difference be-
tween them is how each device is designed. CPUs are highly optimized to run
at high frequency using only one or a few threads on one processing unit. A
thread is a sequence of instructions that need to be carried out and a pro-
cessing unit is the hardware that can perform the operations. A CPU, to
achieve high throughput, uses many tricks and optimizations such as data
and instruction caching, out-of-order execution or branch predicting. A GPU
on the other hand relies on simpler hardware but contains more computing
units. A CPU by design devotes most of the surface to data cache and other
transistors to optimize flow control and minimize data access latency while a
GPU occupies the space available with hardware necessary to do calculations.
This allows GPU devices to start thousands of threads to use the high num-
ber of computing units to process data in parallel and mask data latency this
way [6].

2.2 CUDA

CUDA is a computing platform and programming model that allows the pro-
grammer to utilize NVIDIA GPUs [6]. The CUDA toolkit not only contains
a software environment extending C++ but also other tools to help the pro-
grammer develop efficient programs on GPUs, such as debugging and profiling
applications. With CUDA, it is also necessary to install the correct driver to
enable communication with the GPU. The CUDA API is extensive and is in
detail described in the CUDA guide documentation [6]. In this thesis, only the
important parts of the CUDA API will be described to give a brief overview.

3

2. Preliminaries

2.2.1 Thread grouping

The fundamental building blocks of a CUDA program are kernels. Kernels are
CUDA C++ extended functions that are executed in parallel by n different
CUDA threads [6]. Threads that execute a kernel are grouped into a block
and the size of the block is set by the programmer during kernel launch. The
size of the block is usually set as a multiplier of 32 because of warp execution.
A warp is a group of 32 threads within a block that have consecutive thread
id (e.g. thread 0. . .31 create a warp).

Each thread in a kernel has access to multiple hidden variables avail-
able from anywhere in the device code to identify themselves. The variable
blockDim holds information about how many threads there are in a block and
threadIdx is used to identify the thread in a block. To check how many blocks
were launched, all threads have access to gridDim. It should be noted how-
ever, that all three previously mentioned constants are 3 dimensional struc-
tures with three fields — x, y, z. For simplicity, the implementation will only
use the x field to identify a thread inside a CUDA block.

There are also limitations on how many threads can be launched. Each
CUDA block has a limited amount of shared memory and registers given by
the hardware and the resources need to be divided between threads. For this
reason, on the current GPUs, the number of threads per block is limited to
1024 [6].

2.2.2 Memory hierarchy

When accessing memory while programming with CUDA, it is necessary to
differentiate between GPU memory and CPU memory. CPU memory can be
allocated using malloc or new, but to allocate memory on GPU, CUDA API
has to be used. An allocating operation returns a pointer to the first available
memory address. A problem arises when pointers to GPU and CPU memory
are mixed and not differentiated. Memory in GPU lies in a different address
space than CPU memory, as such, accessing a GPU memory from CPU can
lead to segmentation fault. The same thing happens when a CUDA thread
tries to access CPU memory. To access a GPU variable from CPU, first, the
block of memory needs to be copied from GPU to CPU. Similarly, to pass a
CPU variable to a GPU kernel, the variable has to be copied into GPU.

Each thread in a kernel has access to many kinds of memory, each with
different access speed and size, and it is the programmer’s responsibility to
structure the program in a way that maximal throughput is achieved. At the
top level, all running threads have access to global memory. Access to global
memory is very slow and read/write operations should be minimized for best
performance. Still, the use of global memory is inevitable because the input
data has to be stored somewhere during kernel launch. Because of this, CUDA
devices enable some optimization for the developer. One of the fundamental

4

2.2. CUDA

access patterns is coalesced read and write. When a warp accesses memory,
the device groups up the operations into one or more transactions depending
on the distribution of the memory addresses accessed [6]. Failing to group
addresses can lead to serialization of this transaction and can degrade the
performance of the program.

Every block has a faster local memory labeled as shared. This on-chip
memory is visible to every thread in the same block and can be used as user-
managed data cache [7]. There are two ways to allocate shared memory.
The first type is statically allocated shared variables. All these variables are
declared using static __shared__ keywords. The size of each static shared
variable has to be known at compile time. The second way is with the use of
extern __shared__ keywords. With the keyword extern, the programmer
declares that the memory will be dynamically allocated during kernel creation.
Dynamically allocated shared memory can be declared only once as an array.
To declare multiple variables, the initial array has to be split using type casting
and pointer arithmetic. To prevent data race, block synchronization should
be performed after writing into shared memory to ensure changes are visible
to other threads.

Every thread also disposes with a set of very fast registers visible only to
the thread. Data from registers can be shared with other threads in the same
warp using shuffle functions without the use of shared memory. The number
of registers available to the thread is limited by the architecture of the GPU
and the compiler tries to minimize the amount of registers used by the block.

2.2.3 Thread Synchronization
The CUDA API enables multiple means to synchronize CUDA threads. The
first and most important synchronization is between kernel launches. A kernel
launch starts from the CPU and until all threads are done, no other kernel
is executed at the same time. This call is nonblocking for the host device,
meaning the control is returned right back to CPU, but the work does not
have to be executed on the GPU yet. This allows the CPU to push tasks
to GPU rapidly and the GPU will perform the tasks in the correct order
whenever the hardware is not occupied and ready to be used. To explicitly
block the host until all GPU works are done, the programmer has multiple
options. One solution is to call cudaDeviceSynchronize(). This function
waits until all tasks on GPU are done and returns an error code if anything
failed, otherwise cudaSuccess. Another way to synchronize host and device
is to copy memory between these two platforms.

On the lowest level, some CUDA threads are implicitly synchronized on
the hardware level due to the execution model. CUDA threads are executed
in groups of 32, also known as warp. Warp size is important because during
any instance, all threads within warp execute the same instruction (if warps
do not diverge because of branching). This approach of execution is labeled as

5

2. Preliminaries

SIMT (single instruction multiple threads) architecture. When warps diverge,
it is necessary to stop the warps that take a different branch path and only
allow a subset of threads to execute the instruction. This divergence leads to
a performance penalty and diverging threads should be kept to minimum.

To implicitly synchronize threads, the CUDA programming model provides
a simple barrier function implemented as __synchthreads(). It is important
to note that this function can only synchronize threads within the same CUDA
block. Upon calling this function, the thread is blocked and has to wait for all
the other threads in the same CUDA block to call __synchthreads() as well.
Once all threads have called the function, all blocked threads are released.

The use of synchronization in a block is to ensure that all critical sections
are handled properly and shared memory is properly updated and can be used
by other threads, i.e. the data that a thread holds need to be given to another
thread. The CUDA API also supports warp shuffle operations. These sets
of functions allow active threads in a warp to exchange data with the use of
registers and are available to devices with compute capability 3.x or higher [6].
With this, data can be moved between threads in a warp without having to
stop other threads with synchronization and this approach is generally much
faster than writing into shared memory and then calling __synchthreads().

If multiple CUDA blocks need to be synchronized, the best option is to
store the data on hand into global memory, end the kernel and synchronize
through CPU. Lastly, start a new kernel to continue where the last kernel
stopped. This solution works on all CUDA enabled GPUs but on newer de-
vices, the CUDA API introduced the concept of cooperative groups [6].
This feature allows the programmer to synchronize threads across blocks with-
out having to end the kernel and inside a CUDA block, it provides a mean to
synchronize threads with finer granularity than __synchthreads(). The only
drawback is that this feature is only available on GPUs supporting CUDA 9
and higher. As such, this feature was not used in the implementation and
only the basic synchronization means were used.

To ensure that operations on global memory are executed deterministically,
atomic operations were used. To demonstrate how they work, only atomicAdd
will be described. There are also other atomic operations, but they all work
similarly. The function atomicAdd takes a memory address and a value as
parameter. It atomically adds the value to the address and returns the old
value that lied in memory. When two threads add to the same address at
the same time, the operation is performed in sequence, meaning one of the
threads will have to wait until the first thread finishes the operation before
atomicAdd can be executed again. The use of atomic operations should be
minimized to gain the best possible performance.

6

2.3. TNL

2.2.4 CUDA dynamic parallelism

CDP or CUDA dynamic parallelism is an extension of the CUDA API that
allows the programmer to launch new kernels within the kernels themselves.
This approach is only available to devices with compute capability of 3.5 and
higher [6]. By default, only two levels of kernel launch recursion are allowed
and to enable deeper recursion, max depth has to be explicitly set on host
before kernel launch. With each recursive kernel launch, more memory has to
be set aside for parent-child synchronization. Because of this limitation, most
algorithms using CDP are memory bound.

2.3 TNL
TNL is an open-source library that helps with the development of efficient
numerical solvers. The library is mainly written in C++ and uses templates
and other tricks to give the programmer a user-friendly interface. TNL also
provides support for modern hardware, such as multicore CPUs, GPUs, and
distributed systems. One of the core concepts of TNL is unifying the interface
of data structures and algorithms for different memory spaces [1].

2.3.1 TNL data structures

TNL contains some very useful structures to store data, one of which is
TNL::Containers::Array. The class allows the user to create array-like struc-
tures to store information without having to implement memory allocation and
deallocation. To create data in GPUs, the memory has to be allocated using
CUDA API. This can lead to a lot of coding just to allocate memory, initialize
and then deallocate at an appropriate time. Furthermore, every GPU opera-
tion has to be checked as failed function calls from CUDA API are not caught
explicitly. All allocations and deallocations are handled in the constructor
and destructor of the object using RAII [1] and only a high level interface is
accessible to the user.

The Array class exposes some public methods allowing data reading and
modification. To access memory, Array::getElement can be used. This
method guarantees that the element is returned even if called from the wrong
address space (i.e. Array holds data in GPU and the CPU fetches the data).
Similarly, Array::setElement can be used to modify an element and the
method guarantees correctness, no matter which device called the method.

Array also implements operator[], allowing the developer to access to
the elements as if it were a regular array of elements. The operator returns
a reference to the element, as such, calling the method from host for data
allocated on device (or vice versa) leads to segmentation fault (on the host
system) or broken state of the device [1].

7

2. Preliminaries

1 ArrayView<int, Device> view = ...;
2 auto addLambda = [=]__cuda_callable__(int i, int j)
3 {return view[i] + view[j];}

Listing 1: Example of a lambda capturing a View. The lambda adds two
values from Array.

2.3.2 TNL View structures

To create efficient algorithms, memory operations — such as copying — should
be kept to minimum. To move Array around, there are two efficient solutions.
One is to capture the object by reference. This approach works well when the
object is needed in the same device, but when launching a kernel, all parame-
ters need to be captured by value. Another problem arises when lambdas are
used. To create a lambda callable in kernel, all variables need to be captured
by value. This leads to a lot of unnecessary copying of data and the perfor-
mance is greatly degraded. All these problems stem from the fact that CPU
memory and GPU memory are separate and referencing data from the wrong
memory space can lead to failure of the program.

The other solution, and the one used in TNL, relies on binding the inter-
nal pointer and wrapping it in another class. This shallow copy of Array is
labeled as ArrayView and implements the same methods as the original class.
Creation and copying of ArrayView is very fast because only the pointer and
the size of the array are passed around.

2.3.3 Lambdas

CUDA kernels support the use of C++ lambdas and these user defined func-
tions can be used in many general templated functions. CUDA lambdas, to be
callable from GPU, need to have __device__ specifier. The TNL library uni-
fies both __host__ and __device__ specifiers under the __cuda_callable__
macro. To give an example, in Listing 1, the piece of code creates a lambda
that adds two elements from a view. Lambdas created in CPU and called
in GPU also can not capture variables by reference because of difference in
memory address space, as such all variables need to be captured by value.

2.4 Notation

In this work, the goal of the algorithms is to sort a sequence. A sequence a
containing (a1, a2, a3 . . . an) will be used as a[1 . . . n]. Element at position i is
denoted as ai. To concatenate sequences a[i . . . j] and a[k . . . l] , a[i . . . j, k . . . l]
will be used.

8

2.5. Sorting problem

For algorithms, this thesis will also provide information about how long the
implementation will run. The standard notation for time and space complexity
is the asymptotic notation [8] and this notation will also be used in this thesis.
An algorithm that needs at most n operations that take constant time is
denoted as O(n). If exactly n log n operations are needed — Θ(n log n). Ω(n2)
will be used when the algorithm needs at least n2 operations.

2.5 Sorting problem

In this thesis, the goal is to sort data of arbitrary type. As such, only algo-
rithms using a binary operator < will be considered. The comparison operator
is a function that answers for every two elements ai, aj whether <, > or = is
true [8].

The sorting problem is about reordering the input in such a way that
ai < ai+1 or ai = ai+1 for 1 ≤ i < n − 1. There are many types of sorting
algorithms and each has a different property. As stated in [8], the most notable
property that a sorting procedure can have is:

Definition 2.1. Let ai, aj are equal. Also, let ai′ is the new position of ai

and aj′ is the new position of aj after sorting. A sorting algorithm is stable if
i ≤ j then i′ ≤ j′.

Definition 2.2. A sort algorithm is in-place if the amount of memory needed
to move the elements is constant. An auxiliary array to store the elements
temporarily is allowed, but only a constant number of elements can be outside
the input array.

2.5.1 Single thread limitation

For comparison-based sorting algorithms, the best deterministic implementa-
tion will work in time Ω(n log n) [8] for the worst input. To gain any real
speed-up, there are a few options that come to mind. One solution is to
implement an algorithm that works in time Θ(n log n) but has a small multi-
plicative constant. Another solution is to use a faster CPU that can execute
instructions faster. Both of these solutions are still limited by the theoretical
time complexity.

To gain theoretical speed-up, at least one of the constraints needs to be
broken. One of which is using a non-comparison based sorting algorithm. A
representative of such algorithm is Radix sort or Counting sort [8]. These
solutions are not ideal because they cannot sort non-numeric values.

The solution introduced by this thesis breaks the deterministic constraint
and parallelization of the algorithm will be done to sort faster than O(n log n).

9

2. Preliminaries

2.5.2 Overview of existing algorithms
For CPU, many efficient sorting algorithms have been implemented and almost
any numerical or standard library contains a sort function. For C++, the
standard is std::sort from the libstdc++ library. The sorting algorithm
selected in the library comprises of two algorithms — Introsort is used on a
big input and then the algorithm switches to Insertion sort once the input is
small enough. To give an example for other languages, Java 7, Python, Swift,
and Rust, to name a few, implement Timsort [9]. This algorithm uses Merge
sort and Insert Sort. As shown, these highly optimized sorts in the libraries
all have one thing in common, in the first phase, a more complex method is
used to preprocess a big input and then a simpler procedure is used to finish
the sorting on smaller subsequences.

For parallel implementation, the goal of the algorithm is not only to have
a good time complexity but a big bottle neck comes from how memory is
accessed. A major factor that influences overall time needed to sort comes
from the limited bandwidth of the GPU [10]. The main optimizations that
can be done to improve run-time usually are based on memory access patterns
and efficient use of faster memory. This is also recommended by the CUDA
Programming Guide [6] as the most important aspect to gain speed-up.

The CUDA toolkit comes with a library supporting various operations on
GPU called thrust [5]. This templated library contains a sorting function
that can be run on either CPU or GPU. Internally the function implements
Radix sort, one of the most popular sorting algorithm for GPU [10]. Another
popular parallel sorting algorithm is Bitonic sort [11]. Bitonic sort belongs
to the family of so called sorting network algorithms. Algorithms from this
group are easy to implement as it is possible to map the network directly to
a GPU kernel [10]. A very natural approach to parallelizing sorting involves
reducing a big problem to smaller problems and recursively (and in parallel)
process newly created buckets. This solution was presented by Cederman et
al. in their GPU-Sort paper [3] that uses Quicksort to partition a sequence in
parallel on GPU. Later on, Manca et al. [4] published their optimization of
GPU-Sort for CUDA devices.

In this thesis, Quicksort and Bitonic sort will be implemented. Both of
them are comparison based algorithms that only need a comparator defined.
This allows for the data type to be of arbitrary type.

10

Chapter 3
Bitonic Sort

3.1 The Bitonic sort algorithm
Bitonic sort was first introduced by K. E. Batcher in 1968 [11]. It is a
comparison-based sorting algorithm that uses multiple layers of sorting net-
works to sort the whole input sequence. To understand the algorithm, it is
necessary to define the following terms.

Definition 3.1. A sequence is bitonic if it is a concatenation of two monotonic
sequences, one ascending and the other descending. Furthermore, the sequence
is still bitonic, even if we split the sequence anywhere and interchange the
sequences.

Definition 3.2. Bitonic merge is an operation that transforms a bitonic se-
quence into a monotonic sequence.

With these definitions, the sorting process is simple: split the input array
in two parts, sort one part recursively in one direction and the other part
in a different direction. Because the two parts are next to each other, a
concatenation operation is not needed and by definition, the input is now
bitonic. Then Bitonic merge is used to transform the bitonic sequence into a
monotonic one and the input is sorted. The operation is called Bitonic merge
because it merges two monotonic sequences and creates a bigger monotonic
sequence.
Example 3.1. Any sequence of length 1 is bitonic, additionally any sequence
of length 2 is also bitonic. The first element creates an ascending monotonic
sequence of length 1 and the second element creates a descending monotonic
sequence.

Furthermore, any sequence of length 3 is also bitonic. Any two neighbour-
ing elements create a monotonic sequence and the leftover third element can
be either ascending or descending depending on the need.

11

3. Bitonic Sort

Example 3.2. a = (1, 2, 4, 5) is a bitonic sequence. The subsequence (1, 2, 4, 5)
is ascending and the descending part is of length 0. Another way to split the
input can be (1, 2, 4) and (5) where the first part is ascending and the second
part is descending.
Example 3.3. a = (3, 4, 6, 5, 0, 2) is a bitonic sequence. First, split the sequence
a into (3, 4, 6, 5) and (0, 2) and interchange them, creating a′ = (0, 2, 3, 4, 6, 5).
The sequence a′ is bitonic which means the original a was also bitonic.
Example 3.4. a = (3, 4, 6, 5, 0, 5) does not create a bitonic sequence.

3.1.1 Bitonic merge
Theorem 3.1. Let a[1 . . . 2n] be bitonic sequence. Let di = min(ai, ai+n)
and ei = max(ai, ai+n) for 1 ≤ i ≤ n. Then both d[1 . . . n] and e[1 . . . n] are
bitonic. Also, max(d[1 . . . n]) ≤ min(e[1 . . . n]). We call this operation Bitonic
split.

The merging operation is described in [11]. To transform a bitonic sequence
into monotonic, Bitonic split is repeatedly performed on the input. This
operation splits the input into two bitonic sequences, one holding n smaller
elements while the other holds n bigger elements. This operation is then
recursively applied to each of the newly created bitonic sequences until the
input is of size 1. The original input is now monotonic.

To prove Theorem 3.1, some definitions and lemmas will be needed first.

Definition 3.3. A left cyclic shift is an operation that reorders the input
sequence a[1 . . . n] into a[2 . . . n, 1]. Similarly, a right cyclic shift moves all
elements by 1 to the right, creating a[n, 1 . . . n− 1].

Formally, left cyclic shift can be written as

a′
i =

{
ai+1 i < n

a1 i = n

and right cyclic shift as

a′
i =

{
an i = 1
ai−1 i > 1

Remark 3.1. Splitting a sequence of length 2n into 2 sequences of length |k| and
|l|, such that 2n = |k|+ |l|, and interchanging them can be seen as performing
left cyclic shift |k|-times or right cyclic shift |l|-times.

Lemma 3.1.1. Performing a right cyclic shift on a[1 . . . 2n] also cyclically
shifts d[1 . . . n] and e[1 . . . n]. The sequences undergo the same change when
left cyclic shift is applied.

12

3.1. The Bitonic sort algorithm

Proof. For every element ai, there exists exactly one other element that is n
positions away (meaning the paired element is ai+n or ai−n). The pair is not
broken up even after cyclically shifting a[1 . . . 2n].

Therefore, it is possible to cyclically shift the input until

a1 ≤ a2 ≤ . . . ≤ aj ≥ aj+1 ≥ . . . ≥ a2n

aj is the global maximum of the input and a[1 . . . j] is increasing and a[j . . . 2n]
is decreasing. This satisfies the bitonic property and does not change the
maximum value of d[1 . . . n] nor minimum of e[1 . . . n].

Lemma 3.1.2. Flipping the input a[1 . . . 2n] into a[2n . . . 1] does not affect
the bitonic property. After flipping, d[1 . . . n] becomes d[n . . . 1] and e[1 . . . n]
is also flipped.

Using Lemma 3.1.2, it is sufficient to prove Theorem 3.1 for case a1 ≤ a2 ≤
. . . ≤ aj ≥ aj+1 ≥ . . . ≥ a2n, where n < j ≤ 2n.

Now with all the necessary conditions set, Theorem 3.1 can be proven.

Proof. Let a[1 . . . 2n] be the bitonic sequence that needs to be merged by
Bitonic merge. There are 2 cases that can happen.

Let an ≤ a2n, then for 1 ≤ i ≤ n, ai ≤ ai+n so di = min(ai, ai+n) = ai and
ei = min(ai, ai+n) = ai+n. d[1 . . . n] = a[1 . . . n] and it has been proposed that
the sequence is ascending in this part, therefore max(d[1 . . . n]) = dn = an.
e[1 . . . n] = a[n+1 . . . 2n], furthermore, min(e[1 . . . j−n]) = e1 = an+1 because
this part is increasing and min(e[j − n . . . n]) = en = a2n as this part is
decreasing. In total, min(e[1 . . . n]) = min(e1, en) = min(an+1, a2n).

Together max(d[1 . . . n]) = an ≤ min(an+1, a2n) = min(e[1 . . . n]). If an+1
is minimum then the inequality is still true because a[1 . . . j] is increasing,
otherwise a2n is minimum and the inequality is also true because of the initial
proposition.

Let an > a2n, then there exists such a k : j ≤ k ≤ 2n, that ak−n ≤ ak and
ak−n+1 > ak+1. This stems from the fact that a[j−n . . . j] is increasing while
a[j . . . 2n] is decreasing. di and ei are created as follows:

di = ai

ei = ai+n

}
for 1 ≤ i ≤ k − n

and

di = ai+n

ei = ai

}
for k − n < i ≤ n

13

3. Bitonic Sort

aj

a2n

an

aj

a2n

ak

d[1 . . . n]

e[1 . . . n]

Figure 3.1: One step of Bitonic merge where an > a2n.

The first part d[1 . . . k − n] = a[1 . . . k − n] is ascending and the second
part d[k − n + 1 . . . n] = a[k + 1 . . . 2n] is descending, this satisfies the bitonic
property. e[1 . . . j − n] = a[n + 1 . . . j] is ascending, e[j − n + 1 . . . k − n] =
a[j +1 . . . k] is descending and e[k−n+1 . . . n] = a[k−n+1 . . . n] is ascending.
Let us also notice that it is possible to perform right cyclic shifts on e[1 . . . n]
to create e[k − n + 1 . . . n, n + 1 . . . k − n] = a[k − n + 1 . . . k] which is in part
ascending until ej−n = aj and then descending till the end. Sequence e[1 . . . n]
therefore also satisfies the bitonic property.

After analyzing, max(d[1 . . . n]) = max(dk−n, dk−n+1) = max(ak−n, ak+1)
and min(e[1 . . . n]) = min(a[k−n+1 . . . k]) = min(ak−n+1, ak). If dk−n = ak−n

is the maximum, then ak−n ≤ ak−n+1 because this part is ascending and
ak−n ≤ ak due to initial proposition. Else dk−n+1 = ak+1 is maximum, then
ak+1 ≤ ak−n+1 due to intial proposition and ak+1 ≤ ak because the sequence
is descending in this part. In all 4 cases, the inequality holds.

3.1.2 Sorting in-place

To split the input, the sequences d[1 . . . n] and e[1 . . . n] do not need to be
allocated. It is sufficient for d[1 . . . n] = a[1 . . . n] and e[1 . . . n] = a[n+1 . . . 2n].
With this, it is only necessary to compare ai and ai+n and swap the elements
if needed.

Formally di = ai = min(ai, ai+n), ei = ai+n = max(ai, ai+n) for 1 ≤ i ≤ n.
Here the min function uses the < comparator to determine which element
is smaller, similarly max returns the bigger element of the two. These 2
operations can furthermore be optimized to compare ai+n < ai first and only
swap them if they are in the wrong order.

14

3.1. The Bitonic sort algorithm

3.1.3 The recursive algorithm
The resulting algorithm can be seen in Algorithm 3.1.1 and Algorithm 3.1.2.
To sort the input, BitonicSort is recursively called twice, once on a[1 . . . n]
and the second time on a[n + 1 . . . 2n]. It should be noted that one of the
sequences needs to be sorted in the opposite direction in order for them to
create a bitonic sequence at the end.

The last operation that needs to be done is BitonicMerge. The function
implements Bitonic split — moves n smaller elements into the first half and n
bigger elements into the second half. The two resulting subsequences are also
bitonic. Then BitonicMerge is called on both the subsequences.

Algorithm 3.1.1: Recursive Bitonic sort
Input: array a[1 . . . 2n], sort ordering ordering

1 if 2n = 1 then
2 return
3 BitonicSort(a[1 . . . n], opposite ordering)
4 BitonicSort(a[n + 1 . . . 2n], ordering)
5 BitonicMerge(a[1 . . . 2n], ordering)

Algorithm 3.1.2: Recursive Bitonic Merge
Input: array a[1 . . . 2n], sort ordering ordering

1 if 2n = 1 then
2 return
3 for i from 1 to n do
4 if ordering is ascending then
5 if ai+n < ai then
6 swap(ai, ai+n)

7 else if ordering is descending then
8 if ai < ai+n then
9 swap(ai, ai+n)

10 BitonicMerge(a[1 . . . n], ordering)
11 BitonicMerge(a[n + 1 . . . 2n], ordering)

3.1.4 Time complexity
Bitonic split creates the sequences d[1 . . . n] and e[1 . . . n]. For each compar-
ison, two elements from a[1 . . . 2n] are processed so a Bitonic split is of time
n
2 = Θ(n). Bitonic merge performs one Bitonic split and then recursively

15

3. Bitonic Sort

calls itself twice (once on d[1 . . . n] and once on e[1 . . . n]). From this, we get
T (n) = n

2 + 2T (n
2), using Master theorem, the result is T (n) = Θ(n log n).

To sort the whole sequence, first the input is split in half and Bitonic
sort is called on each half, then merge operation is called. The complexity is
T (n) = 2T (n

2) + n log n = Θ(n log2 n) [12].

3.1.5 Sorting not aligned sequences
So far, the Bitonic sort that has been introduced could sort only sequences
of length n = 2m. To sort sequences of any length, the algorithm has to be
modified. There is the trivial solution [13] of extending the sequence to the
length of the next closest power of 2 and fill the missing elements with max-
value (min-value when sorting in descending order). However, such a solution
is not very efficient for big inputs. First, a new temporary array of length
2k ≥ n has to be allocated, the whole input has to be copied into auxiliary
memory, sorted there and then copied back without padding elements. With
temporary memory, the option to sort in place is lost and the space complexity
becomes Θ(n). However, for smaller elements this approach might be more
efficient due to low overhead compared to the next introduced solution.

The Bitonic merge operation only requires the input to be bitonic and it
does not matter whether the sequence is a concatenation of an ascending and
then descending sequence or descending and then ascending sequence. Using
this, the change is as follows [13]: let n ≥ 1 be the length of input and k is
the biggest power of 2 that still smaller than n (formally k < n ≤ 2k), then
split the original sequence into a[1 . . . k] as left part and a[k + 1 . . . n] as right
part. Sort the left part in descending order and the right part in ascending
order. Lastly, call Bitonic merge on the newly created bitonic sequence.

Let us notice that the left part is of size k which is a power of 2. Sorting
this part can proceed as normal. For the right part, whenever ai — where
i > n — is needed, a max-value (if sorting in descending order, then min-
value is used) can be substituted in. In this situation, no swap is needed and
the max-value does not have to exist physically in memory. This approach is
called virtual padding. With virtual padding, only the direction of sorting has
to be minded during calculation and the algorithm does not lose the property
of being in-place nor is the time complexity degraded.

3.2 Parallel algorithm
To implement an efficient parallel version of Bitonic sort, the algorithm has
to be modified a little. Instead of using recursion, it is better to build the
monotonic sequences in iterations [11]. The algorithm first creates monotonic
sequences of length 1, this is trivial. Now the input a[1 . . . n] consists of n
monotonic sequences. In the next step, Bitonic merge is used on two neigh-
bouring monotonic sequences, each with length k. This creates new monotonic

16

3.2. Parallel algorithm

a

b

min(a, b)

max(a, b)

Figure 3.2: Sorting network comparator for two elements, adopted from [11].
The comparator sorts in ascending order.

sequences of length 2k. To be able to use Bitonic merge, the two monotonic
sequences had to be sorted each in different directions (so they create a bitonic
sequence). It is also necessary to merge the correct way (ascending or descend-
ing) so that the next step will have two oppositely sorted sequences to merge
again.

3.2.1 Sorting network
Bitonic sort, when used iteratively, can be represented as a sorting network.
A sorting network, as defined in [14], is a hardware sorter circuit. The basic
element of a sorting network is a comparator. A comparator has two input
lines and two output lines. It receives two numbers on its input lines, compares
them, and outputs the maximum on its higher output line and the minimum
on its lower output line. By interchanging the output lines, a comparator that
sorts in descending order can be gained. A simple scheme of a comparator is
shown in Figure 3.2.

To sort the input, the comparators need to be connected in such a way
that they permutate the input correctly and send the elements in the correct
order to the output. The sorting network in Figure 3.3 shows a way to con-
nect comparators to simulate Bitonic sort. The network consists of multiple
layers which are called steps and multiple steps are grouped into phases. The
strength of sorting networks lies in the fact that it can be implemented on the
hardware level to run parallel. Bitonic sort due to its recursive property is
very convenient for mass production of the hardware. A large bitonic sorter
can be created by connecting smaller Bitonic sorters.

Example 3.5. In this example, only phase 2, step 1 and 2 of Bitonic merge will
be demonstrated. The steps will be described in text and a general scheme
with a bitonic sorter will be shown in Figure 3.4.

Let input a[1 . . . n] = ((6, 5), (3, 7), (10,−3), (5)) be a concatenation of 4
monotonic sequences.

Setup: The current monotonic length is 2 (the last part (5) is an exception
as the input is not aligned into power of 2). In the beginning, concatenate
two neighbouring monotonic sequences to create a bitonic sequence twice as

17

3. Bitonic Sort

a8

a7

a6

a5

a4

a3

a2

a1

Phase

Step

1

1

2

1 2

3

1 2 3

Figure 3.3: Bitonic sorting network for 8 elements, adopted from [13].

big. ((6, 5), (3, 7)) is bitonic and Bitonic split can be applied. The same thing
happens to ((10,−3), (5)). The sequence ((10,−3), (5)) is not aligned and
needs to sorted in ascending order, this forces the left part ((6, 5), (3, 7)) to be
sorted in descending order.

Phase 2, step 1: The elements 6 and 3 are compared first, maximum
is sent through the top line and minimum though bottom line, same with
5 and 7. This creates the sequence (6, 7, 3, 5). Here d[1 . . . k] = (6, 7) and
e[1 . . . k] = (3, 5). At the same time, 10 and 5 are compared and swapped as
they are in the wrong order. −3 does not have a partner and is not swapped.
After Bitonic split, the input becomes (6, 7, 3, 5, 5,−3, 10). It should be noted
that all comparisons and swaps done in this step were independent and can
be performed in parallel.

Phase 2, step 2: Each bitonic sequence is now of length 2. To demon-
strate, the input can be split as ((6, 7), (3, 5), (5,−3), (10)). Elements 6 and
7 are still part of a sequence that needs to be sorted in descending order
and therefore are in wrong order and need to be swapped. Same with (3, 5).
(5,−3) needs to be sorted in ascending order and are also swapped. (10) does
not have a partner and is not swapped.

The result then turns into ((7, 6, 5, 3), (−3, 5, 10)) and the sequence is ready
for another application of Bitonic merge which will turn the input into 1
monotonic sequence.

As demonstrated in Example 3.5, a Bitonic merge phase consists of mul-
tiple Bitonic splits. All swaps in one Bitonic merge step are independent and
can be performed in parallel.

18

3.3. Existing implementations

a7 5

a6
−3

a5 10

a4 7

a3 3

a2 5

a1 6

5

−3

10

7

3

5

6

10

−3

5

5

3

7

6

10

5

−3

3

5

6

7

10

6

7

3

5

5

−3

10

6

7

5

5

3

−3

10

7

6

5

5

3

−3

Figure 3.4: Sorting example 3.5 with a Bitonic sorting network.

3.2.2 Time complexity of parallel implementation
If there are O(n) threads available to work during each step, it is possible
to perform all

⌈
n
2

⌉
swaps of a Bitonic split in O(1) as all comparisons are

independent. The time complexity then collapses to the number of phases
and steps. After the first phase, each part is a sorted sequence of length 2.
After second phase, the length is 4. After k phases, each part is a monotonic
sequence of length 2k. Thus, the number of phases is O(log2 n). The first step
of phase i will split a bitonic sequence of length 2i into 2 bitonic sequences,
each with length 2i−1. Bitonic split is then applied on each of the newly
created bitonic sequences until they are of length 1. Therefore, each phase
needs log2 2i = i steps.

Together, the complexity of bitonic sort is
log2 n∑
i=1

i = log2 n
1 + log2 n

2
= O(log2 n)

3.3 Existing implementations
Bitonic sort for GPU has been studied intensively due to its simplicity [10] and
has been implemented by many researchers. Despite this, most of them are
implemented to sort only integer types and can only handle aligned sequences.
A very good and optimized implementation of Bitonic sort is available in the
CUDA SDK [2], but this implementation can only sort unsigned integer types
and the interface forces the user to sort key-value which greatly reduces the
performance when keys are also values. The goal is to implement a Bitonic

19

3. Bitonic Sort

1 ArrayView<double, Device::Cuda> view = ...;
2 auto Fetch = [=]__cuda_callable__(int i){return view[i];};
3 auto Cmp = [=]__cuda_callable__(const double & a,
4 const double & b)
5 {return a < b;};
6 auto Swap = [=]__cuda_callable__(int i, int j) mutable
7 {TNL::swap(view[i], view[j]);};
8 bitonicSort(0, view.getSize(), Fetch, Cmp, Swap);

Listing 2: Example of fetch and swap version of Bitonic sort with lambdas.

sort that can be called both from CPU and GPU. The function will not be
restricting, meaning the data type will be templated and there will be no
restriction on the size of the input.

3.4 Implementation of Bitonic sort with CUDA
On the highest abstract level, there are two available interfaces of Bitonic sort.
The main one is BitonicSort(ArrayView<Value, Device>). This function
takes an ArrayView as input and will sort the input using Bitonic sort on GPU.
As default, the comparator for two elements from the input is operator< and
as such will sort in ascending order. Same as with std::sort, an overloaded
version of this function with custom comparator is available. It should be
noted that the comparator has to be callable from device, because of this,
the function or lambda has to have __device__ specifier. With a different
comparator, it is possible to sort any data type ascending or descending.

To sort key and value types of data, the programmer has two options: to
zip the key and value into one structure and then use a custom comparator, or
to use the BitonicSort interface with fetch and swap. The second approach
allows the user to sort any type of indexed container (arrays, vectors, lists
etc.) in-place without having to create additional structure to zip key-value.
The function needs five values — first and last index of the structure that
needs to be sorted, a fetch function that returns the element on i-th position,
a compare function that compares two elements and a swap function that
swaps elements on i-th and j-th position. The swap function allows the user
not only to swap the fetched elements but also perform other operations (such
as swap values in another structure or do other calculations). Because swap
takes non const values as argument and changes memory, if used as lambda,
the keyword mutable has to be used, on top of __device__ specifier. This
approach is universal for almost any data container, but the performance is
greatly reduced because all operations have to be carried out in global memory.
An example on how to call the function is provided in Listing 2.

20

3.4. Implementation of Bitonic sort with CUDA

3.4.1 Host side

To sort the input, Bitonic merge has to be repeatedly called, each time with
different parameters. In section 3.2, the algorithm was described and pointed
out how many times Bitonic merge needs to be called during i-th phase. The
Algorithm 3.4.1 shows that the iterative approach can be easily implemented
with two nested for loops.

Algorithm 3.4.1: Bitonic sort kernel launch
Input: array arr[1 . . . n]

1 gridSize, blockSize← calculate optimal configuration
2 for i← 1 to ⌈log n⌉ do
3 for j ← i to 1 do
4 BitonicMergei,j<gridSize, blockSize>(arr[1 . . . n])

The host side is mainly used to synchronize kernels inbetween kernel
launches. Each kernel launch will start the swapping of a layer of a Bitonic
sorting network. It is assumed that the number of threads available in GPU
is at least half the size of the input sequence. Each block will be started with
512 or 256 threads and the theoretical maximum number of blocks that can
be launched is 231−1 [6]. To use up all threads, the input would have to have
more than 240 elements and it is not assumed that such a big input will fit in
the memory of a GPU.

In host, blockSize and gridSize is calculated and these two numbers are
used for every kernel launch until the input sorted. Each CUDA thread is
implemented to compare two elements and simulate a comparator in a step of
a sorting network, as such, to sort a sequence with n elements,

⌈
n
2

⌉
threads

will be needed in total.
To maximize shared memory usage, the number of threads per CUDA

block is selected as 512 or 256. By default, 512 is used and 1024 elements
are processed in every CUDA block, but if the data type is too large (some
complicated structure), 256 can be used to reduce the memory consumption
per block. If even 256×2 elements cannot be copied into shared memory, then
all operations will be executed in global memory with 512 threads per block.

3.4.2 Device side

Each CUDA thread in Bitonic sort is implemented to simulate a comparator
from Bitonic sorting network. The kernel consists of calculating which two
elements need to be fetched, calculating whether the two elements need to be
sorted in ascending or descending order and the last operation that needs to
be done is comparing them and then execute swap on the elements if needed.

21

3. Bitonic Sort

1 int i = blockIdx.x * blockDim.x + threadIdx.x;
2 int offset = bitonicLen / 2;
3 int s = (i / offset) * bitonicLen + (i % offset);
4 int e = s + offset;

Listing 3: Implementation of how the two compared elements by thread i —
as and ae — are calculated.

To calculate which two elements need to be accessed by a thread, the
global thread id needs to be known and the current step and phase of the
Bitonic merge. In the implementation, one of the parameters passed to the
kernel is bitonicLen, this value indicates how long each bitonic sequence is in
the input and directly corresponds to the phase and step of the Bitonic sort.
Global id of the thread can be calculated (as shown in Listing 3) with just
CUDA available thread variables (blockDim, blockIdx, threadIdx) and is
labaled as i. These two values are then used to calculate the first element
that will be used. The first element is on position s and the second element
is on e = s + bitonicLen/2. These two values correspond to as = ai and
ae = ai+n introduced in the theoretical part.

3.4.3 Calculating the direction of swap
A common operation that every thread calculates is whether the two com-
pared elements should be in ascending or descending order. After completing
a phase, the order of every two neighbouring monotonic subsequences should
be alternating so they can create a bitonic sequence. In the implementation,
it has been decided that every even subsequence will be sorted in descending
order and every odd subsequence sorted in ascending order. The only excep-
tion is for the last two subsequences. As discussed in subsection 3.1.5, the
implementation will use the version with virtual padding and it is important
to sort the last subsequence — which can potentially be not aligned — in
ascending order.

3.4.4 Optimizations
To optimize Bitonic sort, shared memory will be used. Nevertheless, the use of
shared memory is not the only optimization that can be done to gain speed-up.
One of the tricks used in the implementation is based on bitwise operations.
The modulo operator is very slow in GPUs and can be replaced with faster
bitwise & under some circumstances. Whenever (i mod m) is calculated and
m is a power of 2, the whole operation can be replaced with i&(m-1) [6].

Instruction change is not the only optimization that can be used in GPU.
Another big improvement can be gained by reducing divergent threads in a
warp. For this, a faster version of compare and swapped is used (Listing 4).

22

3.4. Implementation of Bitonic sort with CUDA

1 template <typename Value, typename CMP>
2 __cuda_callable__
3 void cmpSwap(Value &a, Value &b,
4 bool ascending, const CMP &Cmp)
5 {
6 if (ascending == Cmp(b, a))
7 TNL::swap(a, b);
8 }

Listing 4: Implementation of fast compare and swap with templated parame-
ters.

The comparison consists of checking the direction of swapping that is required
and calling the Cmp function on two elements. Here, Cmp is just a lambda that
replaces operator<. With this implementation, the check for ascending does
not create a fork and only 1 call of Cmp is needed. It should also be noted that
Cmp is called as b < a. This lambda call checks if the two elements are sorted
in descending order.

3.4.5 Shared memory in Bitonic Sort

Algorithm 3.4.2: Bitonic sort kernel launch with shared memory
Input: array arr[1 . . . n]

1 gridSize, blockSize← calculate optimal configuration
2 bitoniSort1stPhase<gridSize, blockSize>(arr[1 . . . n])
3 for i← log2 blockSize + 1 to ⌈log n⌉ do
4 for j ← i to 1 do
5 if 2j > 2 ∗ blockSize then
6 bitonicMergei,j<gridSize, blockSize>(arr[1 . . . n])
7 else
8 bitonicMergeSharedi,j<gridSize, blockSize>(arr[1 . . . n])
9 break

To maximize the usage of shared memory available to a CUDA block,
Bitonic sort is implemented in three parts (Algorithm 3.4.2). The first op-
timization is used when a whole bitonic sequence can be copied into shared
memory. In this case, the only synchronization that will be needed is block-
wide synchronization. The function is labeled as bitonicMergeShared in the
implementation. As seen (Figure 3.5, part b), a CUDA block accesses the
same elements multiple times and thus can be processed in shared memory.

23

3. Bitonic Sort

a8

a7

a6

a5

a4

a3

a2

a1

Phase

Step

1

1

2

1 2

3

1 2 3

a) b)c)

Figure 3.5: Display of shared memory usage for Bitonic sort with 8 elements
and 2 CUDA blocks, each block having 2 threads:
a) usage of shared memory in bitoniSort1stStepSharedMemory,
b) usage of shared memory in bitonicMergeShared,
c) comparison and swapping is done in global memory through bitonicMerge.

First, the elements are cached in shared memory, then the elements in shared
memory are sorted using repeated application of Bitonic Merge. It is neces-
sary to synchronize threads in the CUDA block after every merge to update
the shared memory correctly. Once the elements in shared memory are sorted,
they are copied back into global memory.

The second optimization is used right in the beginning. Instead of build-
ing the monotonic sequences iteratively, it is possible to create monotonic
sequences of length blockDim.x*2 directly in a CUDA block. Each CUDA
block copies a part of the sequence into memory and sorts it completely in
shared memory (Figure 3.5, part a). It is necessary for neighbouring CUDA
blocks (their blockIdx differs by 1) to sort the subsequences in opposite di-
rections so once block sort is done, the neighbouring monotonic sequences
can be concatenated into a bitonic sequence. The whole procedure is done in
bitoniSort1stPhase.

The last function is a regular Bitonic merge that accesses elements in global
memory and only simulates one step of Bitonic sort (Figure 3.5, part c).

24

3.5. Bitonic sort from GPU

1 template <typename Value, typename CMP>
2 __device__
3 void bitonicSort_Block(ArrayView<Value, Devices::Cuda> src,
4 ArrayView<Value, Devices::Cuda> dst,
5 Value *sharedMem, const CMP &Cmp);

Listing 5: Interface of block Bitonic sort that uses shared memory. The func-
tion is callable directly from a CUDA kernel.

3.5 Bitonic sort from GPU
Bitonic sort was also implemented to be able to sort from GPU. These sets of
functions were implemented so that the sort procedure could be called directly
from a GPU kernel. The device function requires every thread in a block
to call the bitonicSort_Block function. The function has two overloaded
versions. The first one uses shared memory to sort, as such, pointer to shared
memory address has to be passed as parameter. It is also necessary for shared
memory to be at least as big as the input array because the whole data will
first be copied in shared memory, sorted there and then copied back. The last
operation copies from shared memory back into global memory. We used this
to our advantage and allowed in the implementation to copy the result into
another array than the source array. This allow the function interface to be
more flexible. The full signature of the function is shown in Listing 5.

The other overloaded version of the function with the same name also
allows a CUDA block to use Bitonic sort directly from GPU but will not use
shared memory. The Bitonic sort used in this version is in-place and executes
all compares and swap in global memory.

25

Chapter 4
Quicksort

4.1 The Quicksort algorithm

Quicksort is one of the fastest sequential comparison based algorithm in prac-
tice with optimal theoretical time complexity on average — O(n log n)[8]. The
pseudo code of the algorithm is shown in 4.1.1.

Algorithm 4.1.1: Quicksort algorithm
Input : array A[1 . . . n]

1 if n ≤ 1 then
2 return
3 pivot← select an element from A[1 . . . n]
4 i← partition A[1 . . . n] using pivot
5 quicksort(A[1 . . . i])
6 quicksort(A[i + 1 . . . n])

This basic idea of Quicksort was initially introduced in [15]. First, a par-
tition procedure is applied on the input sequence. This operation moves all
elements smaller than the pivot to A[1 . . . i], all elements greater or equal to
pivot into A[i + 1 . . . n]. There also exist versions of partitioning that split the
array A[1 . . . n] into three parts, the left part will hold elements smaller than
pivot, the middle part will have elements equal to the pivot, and the right
part will contain elements greater than the pivot Then Quicksort is recur-
sively called on the left and then right part. This approach of problem solving
where a big input is split into smaller problems is categorized as divide and
conquer algorithm [8]. The amount of work needed afterwards depends on
pivot selection. A general idea of how the memory is partitioned is shown in
Figure 4.1.

27

4. Quicksort

Unsorted sequence

P1< >

P2 P1 P3< > < >

Sorted sequence

Figure 4.1: Recursive tree of Quicksort

4.1.1 Partitioning algorithms
In Hoare’s paper [16], the author suggested using two pointers that go against
each other, whenever both elements are in wrong order, they are swapped.
The process stops when i and j cross.

Algorithm 4.1.2: Hoare partition scheme
Input : array A, index p, index r

1 pivot← A[p]
2 i← p− 1
3 j = r + 1
4 while True do
5 do
6 j ← j − 1
7 while A[j] ≤ pivot;
8 do
9 i← i + 1

10 while A[i] ≥ pivot;
11 if i < j then
12 swap(A[i], A[j])
13 else
14 return j

Another partition scheme was introduced by Lomuto [17], this method of
partitioning also uses two pointers, but this time they start from the beginning
of the sequence. At any given iteration, A[p . . . i] will hold elements smaller

28

4.1. The Quicksort algorithm

Algorithm 4.1.3: Lomuto partition scheme
Input : array A, index p, index r

1 pivot← A[r]
2 i← p− 1
3 for j = p to r − 1 do
4 if A[j] ≤ pivot then
5 i = i + 1
6 swap(A[i + 1], A[j])

7 swap(A[i + 1], A[r])
8 return i + 1

than or equal to the pivot, A[i + 1 . . . j] will have elements greater than the
pivot. The rest of the array still has not been processed.

The two previously shown implementations of partitioning work in-place
and have a time complexity of Θ(n), this is also the best possible algorithm
asymptotically. Every element needs to be compared with the pivot at least
once to check if the relative order in memory is correct.

4.1.2 Pivot Choice

With an inappropriate pivot, the load balance between the two newly created
sections after partitioning can greatly degrade the performance. In the worst
case, only one element gets processed — the pivot — and one of the sections
holds the rest of the sequence. After each partitioning, the section that still
needs to be sorted gets smaller by 1. This degrades the time complexity of
the algorithm to Θ(n2).

Ideally, the true median of the input is chosen as the pivot. Then the two
sections are of equal size and the recursive tree will have log2 n depth. This
best case gives the algorithm a Θ(n log n) time complexity [8].

In practice, finding the true median is an expensive operation and only an
approximation of it is needed. One of the many options on how to choose a
pivot is by selecting an element on the same position every time. An example
of this approach is choosing the first or last element of the subsequence that
needs to be partitioned. This way of selecting pivot will degrade the algorithm
to Θ(n2) for sorted sequences. In [18], the author suggested picking the pivot
as the median of three elements, A[1], A[n

2] and A[n]. This choice of pivot is
slightly better as it is resistant against sorted sequences.

Another fast way to choose a pivot is by randomly picking an element
from the input. It can be proven that the Worst-case Expected-Time of the
algorithm is O(n log n) [19].

29

4. Quicksort

4.2 Parallel algorithm
A very natural approach to parallelizing Quicksort is to assign each unsorted
subsequence after partitioning to a compute unit and let it sort the subse-
quences independently in parallel. However, this solution is not optimal dur-
ing the first few phases. In the beginning, the sequence can be very big and
only one thread will not be enough to perform the partitioning. For this rea-
son, not only do the subsequences need to be handled in parallel, but the
partitioning procedure also needs to be parallelized.

The partitioning procedure uses a prefix sum primitive internally to enable
efficient communication between threads. Because of this, prefix sum needs
to be described first.

4.2.1 Prefix sum
Prefix sum, or also scan, is an operation that transforms the input a[1 . . . n]
into a′[1 . . . n] so that

a′
i =

i∑
1

ai

This version of prefix sum is called inclusive prefix sum as the element ai is also
included. An exclusive prefix sum adds up all previous element but without
ai. Prefix sum can also be defined to use any associative binary operation,
but for the implementation, only binary + will be used on integers.

A sequential implementation of prefix sum is simple, for inclusive prefix
sum

a′
i =

{
ai i = 1
a′

i−1 + ai i > 1

and for exclusive prefix sum

a′
i =

{
0 i = 1
a′

i−1 + ai−1 i > 1

This implementation can not be parallelized as each element has to wait
for the result from the previous index. In [20], Blelloch introduced a way to
parallelize this operation and reduce the time complexity from linear O(n) to
O(n

p + log p) where n is the length of sequence and p is a fixed amount of
processing units available. It should be noted that this only holds if n > p,
meaning each processing unit has to perform more than one reduction. For
n
p ≥ log2 p, the parallel prefix sum operation can be performed in O(n

p). If p
can be arbitrary, then the time complexity is further reduced to O(log n) and⌈

n
2

⌉
processors will be needed.

30

4.2. Parallel algorithm

... A B C P > ...

Figure 4.2: Scheme displaying, how auxiliary memory will be split after using
prefix sum:
(A) part of memory used by threads with threadId < i,
(B) part of memory used only by thread i,
(C) part of memory used by threads with threadId > i,
(P) pivot(s) position,
(>) part of memory used for elements greater than pivot P.

The parallel version of prefix sum will be used as a subroutine during the
partition process to gain even more speed-up. The implementation details will
be discussed in subsection 4.4.1

4.2.2 Parallel Quicksort algorithm

In [3, 20], a solution on how to partition in parallel was proposed. With
p threads, the input sequence is divided equally between them so that each
thread reads n

p elements. Each thread then computes amount of smaller and
bigger elements compared to the pivot in the assigned subsequence. Smaller
elements need to be moved to the left and bigger elements to the right, but
threads do not know where to write the element in memory. To ensure correct-
ness, the threads need to communicate with each other and be synchronized.
A mutex on a global counter can ensure that only one thread at a time will
access the memory, but this approach is not very efficient for devices that use
thousands of threads. It is better to calculate a prefix sum on smaller and
bigger arrays. This way, each thread will know how many elements smaller
than the pivot were read by threads with lower id, the same principle applies
to elements bigger than the pivot. With prefix sum, the threads can propa-
gate the information about how much space they will need to other threads
efficiently without blocking other threads. It should be noted however, to
partition a subsequence this way, auxiliary memory will be needed to move
the elements. With this, the elements can then be moved in parallel, and
without synchronization, from arr into their designated place in aux. The
whole partitioning process is shown in Algorithm 4.2.1.

The last operation is mapping threads onto the created subsequences and
sort them in parallel. At some points there will be more subsequences than
threads available. At that stage, the threads will have to sort their assigned
subsequence sequentially.

31

4. Quicksort

Algorithm 4.2.1: Parallel Quicksort
Input : array A[1 . . . n], array aux[1 . . . n]

1 shared pivot← select a pivot from A[1 . . . n]
2 split A[1 . . . n] between p threads
3 for thread i← 0 to p do in parallel
4 smaller[i]← compute number of elements smaller than pivot
5 bigger[i]← compute number of elements bigger than pivot

6 scanSmaller[1 . . . p]← inclusive prefix sum of smaller[1 . . . p]
7 scanBigger[1 . . . p]← inclusive prefix sum of bigger[1 . . . p]
8 for thread i← 0 to p do in parallel
9 startSmalleri ← scanSmaller[i]− smaller[i]

10 startBiggeri ← scanBigger[i]− bigger[i]
11 aux[startSmalleri . . . scanSmaller[i]]← elements smaller than

pivot
12 aux[startBiggeri . . . scanBigger[i]]← elements bigger than pivot

13 pivotBegin← scanSmaller[p]
14 pivotEnd← n− scanBigger[p]
15 for i← pivotBegin to pivotEnd do
16 aux[i]← pivot

17 A[1 . . . n]← aux[1 . . . n]
18 sort A[1 . . . pivotBegin− 1] and A[pivotEnd + 1 . . . n] in parallel

4.2.3 Stopping in time
For smaller inputs the overhead needed to partition a section can be bigger
than the work actually done through partitioning. Hoare, in their original
paper [16], suggested to switch to a simpler algorithm once the subsequence
is small enough. In both source papers [3, 4] that this work is based on, the
authors suggested to use Bitonic sort. As such, we also decided to use Bitonic
sort to help Quicksort to process small subsequences.

4.3 Implementation of Parallel Quicksort with
CUDA

To call Quicksort, all that is needed is to include the source code and call the
function quicksort. The function accepts an ArrayView as parameter and
an optional lambda to be used as a comparison function. The whole function
is implemented with templates to allow sorting of arbitrary data type. For
types that do not have implicit operator< defined, a comparator needs to be
passed as well. The lambda comparator, as described in section 3.4, allows the
programmer to not only compare any data type, but also sort in descending

32

4.3. Implementation of Parallel Quicksort with CUDA

order if the lambda uses operator>. The lambda has to be able to compare
from GPU, as such __device__ specifier will be needed.

Quicksort internally is implemented as out-of-place sort procedure, be-
cause of this, during the initializing stage, an auxiliary array is allocated and
this array has the same size as input. For bigger sequences, auxiliary array
allocation may fail due to memory limits, this all depends on the memory size
of the GPU. With the auxiliary array, other work variables and arrays are also
allocated, but their size is constant. The overall extra space needed is O(n).

Quicksort, implemented with CUDA, is composed of two phases. When
the sequences are too big for one CUDA block to partition, multiple CUDA
blocks will work together to partition the sequence and reduce the problem.
This is labeled as first phase of Quicksort. The first phase is repeatedly called
to partition the input until each section is small enough to be sorted indepen-
dently by a single block. Afterwards, the second phase is called to sort each
unsorted section using one CUDA block only. During the second phase, the
CUDA block sorts the subsequences until they are completely sorted. The
block also works completely independently and no communication with other
CUDA blocks will be needed. The second phase of Quicksort is not executed
immediately when a small subsequence is created. Instead, these tasks are
accumulated over time and performed at once in parallel once there are no
more big subsequences.

4.3.1 Host Side

Algorithm 4.3.1: Quicksort kernel launch
Input : array Arr[start . . . end]

1 auxiliary ← new array
2 cuda_tasks, cuda_newTasks, cuda_2ndPhaseTasks ← new TASK

array
3 cuda_tasks ← (start, end)
4 while cuda_tasks is not empty do
5 gridSize ← initialize(cuda_tasks)
6 cuda_newTasks ← firstPhase<gridSize>(Arr, auxiliary,

cuda_tasks)
7 remove small tasks from cuda_newTasks and insert them into

cuda_2ndPhaseTasks
8 Arr ← auxiliary
9 cuda_tasks ← cuda_newTasks

10 secondPhase< |cuda_2ndPhaseTasks| >(Arr, auxiliary,
cuda_2ndPhaseTasks)

33

4. Quicksort

As mentioned, Quicksort first partitions the input and then recursively
applies itself on the newly created subsequences. However, this recursive ap-
proach can not be easily implemented with the CUDA API. Instead, an iter-
ative approach will be implemented (Algorithm 4.3.1). In the first iteration,
there is only one big sequence that needs to be partitioned. After partitioning,
the big sequence is broken up into three parts and two of the parts need to
be partitioned again. Here, the CUDA blocks will be synchronized explicitly
through the host. The host will have at this point two subsequences and will
map CUDA blocks to these subsequences and partition both of them at the
same time. Once partitioning is done, there will be at most four subsequences.
The four tasks are then again mapped to CUDA blocks and then partitioned
again. The important bit of this iterative approach is that CUDA blocks have
to wait for everyone else to finish before the next partitioning can be per-
formed again. After i-th iteration of the first phase of Quicksort, there will
be at most 2i subsequences.

To be able to partition all sections at once in parallel, an array of tasks
cuda_tasks is allocated. Each element from cuda_tasks holds information
about the start and end of the section that needs to be partitioned. The first
phase is repeatedly called until cuda_tasks is empty. In the implementation,
cuda_tasks has a fixed size and with a bad pivot choice, it can quickly fill
up. Once cuda_tasks is full, the second phase is called and one CUDA block
is mapped to a leftover task that is present.

To call the first phase of Quicksort, each task first needs to be initialized.
The initialization consists of choosing a pivot for the section and calculating
how many CUDA blocks a section will need for partitioning and mapping
them to the correct task. The total CUDA blocks needed by all sections are
summed up and returned as gridSize.

Then, parallel partitioning is called. The partitioning is done in two steps.
The first step moves all elements smaller than the pivot to the left and all
elements greater than the pivot to the right. The second step consists of
inserting pivots into the correct position and then creating two new tasks —
one task for the left part with smaller elements, one task for the right part
with bigger elements. The newly created tasks can be either inserted into
cuda_2ndPhaseTasks or cuda_newTasks. The first situation occurs when the
new sequence is small enough to be sorted by one CUDA block. Otherwise
the subsequence is still too big and needs to be partitioned again using first
phase of Quicksort and will be inserted into cuda_newTasks.

Once there are no more big subsequences, all tasks in cuda_2ndPhaseTasks
are sorted in parallel using second phase of Quicksort.

4.3.2 Pivot choice
A good pivot choice is essential for the partition procedure and all the com-
plications that can happen with a bad pivot choice are mentioned in subsec-

34

4.3. Implementation of Parallel Quicksort with CUDA

tion 4.1.2. In the implementation of TNL Quicksort, the pivot is chosen as
the median of three elements: first, middle and last element of the section.

Another thing that should be noted is that the partitioning of Quicksort
first phase is done in parallel and the absolute order of elements is not deter-
ministic. This leads to a degree of randomization of the subsequences and can
help with the pivot choice.

To lower memory usage, only the index of the pivot is used to store the
value. To load the pivot from memory, two global reads will be needed. One
read to pick up the pivot position and another read to load the element from
global memory. This is an optimization that reduces overall memory usage of
the sorting procedure.

4.3.3 First phase
The first phase of Quicksort consists of three parts. In the first part, CUDA
blocks work together to move elements from the input array into the auxiliary
array in such a way that all elements smaller than the pivot are on the left
side and the right part will have elements greater than the pivot. Then syn-
chronization will be performed. In the second part, pivot(s) will be inserted
into the middle part. The last part of first phase is creating new tasks for the
left and right subsequences so they can be sorted in the next iteration. In the
implementation, the second part and the third part are implemented in the
same kernel.

4.3.4 Multi block partitioning
During partitioning, the whole block works together and moves smaller ele-
ments to the left and all bigger elements to the right. Each thread in a block
reads part of the sequence and calculates how many elements are greater than
the pivot and how many are smaller (Algorithm 4.3.2, lines 4–9). The reading
is done through coalesced memory load.

After reading is done, each thread will hold in private registers two counters
— ltthreadIdx and gtthreadIdx. This information now needs to be propagated
to other threads in the block to arrange where each element will be copied
into. This is done through block-wide parallel inclusive prefix sum. For thread
0 ≤ j < blockDim.x, the prefix sum function returns sum of all values passed
by threads 0 . . . j. The scan operation is called twice, once for elements smaller
than pivot, once for elements greater than pivot (Algorithm 4.3.2, lines 10 and
11). Threads inside the block now know what offset to use in order not to
overwrite other threads’ writes.

To start moving the elements, the blocks will reserve a part of the auxiliary
memory. It should be noted that the last thread in the block holds the sum
of all counters, which means this thread knows exactly how many elements
are smaller than the pivot and how many elements are greater than the pivot.

35

4. Quicksort

Algorithm 4.3.2: Parallel partitioning in the first phase of Quick-
sort [3]

Input : array arr[start . . . end], array aux[start . . . end], TASK task
1 (startblockIdx, endblockIdx)← subsection managed by blockIdx
2 array reference src ← arr[startblockIdx . . . endblockIdx]
3 shared pivot ← arr[task.pivotIndex]
4 ltthreadIdx, gtthreadIdx ← 0, 0
5 for i ← threadIdx; i < |src|; i ← i + blockDim do
6 if src[i] < pivot then
7 ltthreadIdx ← ltthreadIdx + 1
8 else if src[i] > pivot then
9 gtthreadIdx ← gtthreadIdx + 1

10 ltSumthreadIdx ←
∑threadIdx

i=0 lti

11 gtSumthreadIdx ←
∑threadIdx

i=0 gti

12 shared ltStart, gtStart
13 if threadIdx = blockDim - 1 then
14 ltStart ← atomicAdd(task.dstBegin, ltSumthreadIdx)
15 gtStart ← atomicSub(task.dstEnd, gtSumthreadIdx) −

gtSumthreadIdx

16 ltFrom ← ltSumthreadIdx − ltthreadIdx

17 gtFrom ← gtSumthreadIdx − gtthreadIdx

18 shared array sharedSmaller ← array[0 . . . ltSumblockDim−1]
19 shared array sharedBigger ← array[0 . . . gtSumblockDim−1]
20 for i ← threadIdx; i < |src|; i ← i + blockDim do
21 if src[i] < pivot then
22 sharedSmaller[ltFrom] ← src[i]
23 ltFrom ← ltFrom +1
24 else if src[i] > pivot then
25 sharedBigger[gtFrom] ← src[i]
26 gtFrom ← gtFrom +1

27 for i ← threadIdx; i < ltSumblockDim−1; i ← i + blockDim do
28 aux[ltFrom+i] ← sharedSmaller[i]
29 for i← threadIdx; i < gtSumblockDim−1; i← i + blockDim do
30 aux[gtFrom+i] ← sharedBigger[i]
31 for i← task.dstBegin to task.dstEnd do in parallel
32 aux[i]← pivot

36

4.3. Implementation of Parallel Quicksort with CUDA

auxiliary arrayunsorted sectionp p... ...

section< < >>

reserved memory by block iA B C

Figure 4.3: Distribution of auxiliary array during Quicksort:
(P) pivots inserted from previous iterations of Quicksort,
(A) reserved memory space for threads with id < j in CUDA block i,
(B) reserved memory space for thread j in CUDA block i,
(C) reserved memory space for threads with id > j in CUDA block i.

This value will be used to reserve space by moving the task.dstBegin and
task.dstEnd counters (Algorithm 4.3.2, lines 12–15). These two values are
in global memory space and are shared with other CUDA blocks too, for this
reason, reading and modification have to be done atomically. This is achieved
by calling atomicAdd. It is guaranteed that no other CUDA block will access
the reserved part of the auxiliary memory.

The starts of memory for smaller and bigger elements are then written into
shared memory so that other threads also know which part of the auxiliary ar-
ray can be used. Because shared memory was modified, block synchronization
has to be performed. The two values are labeled as ltStart and gtStart.

Each thread now knows which part of the auxiliary memory the CUDA
block can modify and what the relative order of the elements will be with
the help of parallel prefix sum. The last operation that needs to be done is
moving the elements from the input array into the auxiliary array. The full
global view on how memory is split is shown in Figure 4.3.

4.3.5 Moving elements
The whole CUDA block has reserved part of the auxiliary array with the
help of atomicAdd, but this subsection still needs to be divided between the
threads inside the block. Each CUDA thread can calculate the first unused
memory address for the thread by calculating exclusive prefix sum of lti and
gti (Algorithm 4.3.2, lines 16–17). The exclusive prefix sum holds the sum of
all counters by threads with lower id.

To achieve both coalesced read and write, in [4], the author suggested copy-
ing the elements into shared memory first and then copy the elements from
shared memory into auxiliary array (Algorithm 4.3.2, lines 18–30). The first
part of copying starts with the thread reading the original element and if the el-

37

4. Quicksort

ement is smaller than the pivot, it gets copied into sharedSmaller[ltFrom] (Al-
gorithm 4.3.2, lines 20–23). The next smaller element read by the thread needs
to be copied into aux[ltFrom + 1] and so on. Similarly, for elements bigger than
the pivot, sharedBigger[gtFrom] is used. It is sufficient for |sharedSmaller|+
|sharedBigger| ≤ |src|. After shared memory has been filled, the threads
need to be synchronized and then they copy in parallel from shared memory
into global auxiliary memory (Algorithm 4.3.2, lines 27–30).

With shared memory used as a buffer, coalesced read is achieved and the
store operation happens very fast as shared memory is on chip. Coalesced
write into global memory is also achieved as the neighbouring elements in
shared memory will also be neighbours in the auxiliary array. Using this, the
full bandwidth of the GPU can be used to move the elements.

4.3.6 Writing pivot

After partitioning, all elements smaller than the pivot have been moved to
the left and all elements bigger than the pivot have been moved to the right.
Only in the middle part, the pivot(s) have not been written in the correct
position. Because the CUDA Programming model restricts synchronization
between CUDA blocks, this has to be handled in a new kernel launch to assure
that all CUDA blocks have moved their elements into the auxiliary array and
the task.dstBegin and task.dstEnd variables have been updated correctly.
These two values are key to calculating where the pivot will be inserted. The
correct position is between the counters dstBegin and dstEnd that have been
moved around during the partitioning. The writing of pivots is done in parallel
by only one CUDA block (Algorithm 4.3.2, lines 31–32).

4.3.7 Creating new tasks

With the pivot inserted, the whole section is now partitioned with the left part
holding all elements smaller than the pivot, the middle part has all elements
equal to the pivot, and in the right part are elements greater than the pivot.
The next step of Quicksort is to sort the left part and the right part. These
two sections need to be created and added into the queue of works and then
partitioned in the next iteration. This is handled in the same kernel as the
pivot writing kernel after the pivots have been inserted.

The insertion can be done with only one thread and other threads can
retire. The insertion starts with the one active thread reserving memory for
one task. This is done through using atomicAdd, as other CUDA blocks,
which working on other partitions, might want to insert new tasks too. The
new task can be either inserted into cuda_2ndPhaseTasks or cuda_newTasks,
depending on the size of the task.

With new tasks created, an iteration of parallel partitioning is done.

38

4.3. Implementation of Parallel Quicksort with CUDA

4.3.8 Second phase
In the second phase, each CUDA block works independently on a task without
synchronizing with other blocks. Because of this, a simpler version of parallel
Quicksort is implemented. The idea for partitioning is the same as in the first
phase, but the newly created tasks need to be handled by the same CUDA
block. For parts smaller than a threshold (bitonicSize), the sorting procedure
switches from Quicksort to Bitonic sort. Bitonic sort works well for smaller
inputs and the overhead is much smaller compared to Quicksort.

Algorithm 4.3.3: Second phase of parallel Quicksort
Input : array arr, array aux

1 shared workStack ← ∅
2 workStack ← (0, |arr|)
3 while workStack is not empty do
4 shared (begin, end) ← pop from workStack
5 if end− begin ≤ bitonicSize then
6 BitonicSort(arr[begin. . . end])
7 else
8 shared pivot ← pick pivot from arr[begin. . . end]
9 pivotBegin, pivotEnd ← use pivot to partition arr[

begin. . . end] into aux[begin. . . end]
10 arr[begin. . . end] ← aux[begin. . . end]
11 push bigger task of (begin, pivotBegin) and (pivotEnd, end)

into workStack
12 push smaller task of (begin, pivotBegin) and (pivotEnd, end)

into workStack

4.3.9 Single block Quicksort
As mentioned, Quicksort comprises of parallel partitioning and then recursive
application on the left part and the right part. The partitioning procedure
works similarly as described in subsection 4.3.4. First, a pivot is chosen —
the pivot is calculated as the median of three elements. Then, smaller and
bigger elements are counted. Afterwards, parallel inclusive prefix sum is called.
All the steps so far are the same as in the first phase. The difference now
comes with how memory in the auxiliary array is reserved. Because only one
block is partitioning the section, atomicAdd is not needed to communicate
with other CUDA blocks and only shared variables are used to propagate
information about the reserved section to other threads. Elements are then
copied from source to auxiliary through shared memory as a buffer to achieve

39

4. Quicksort

both coalesced read and write — the method was described in subsection 4.3.5.
The last operation of partitioning is writing the pivot into the correct position.

To finish sorting, the left part (begin–pivotBegin) and the right part
(pivotEnd–end) need to be sorted too. To sort these sections, the implemen-
tation uses a stack to substitute stack frames needed for recursion.

4.3.10 Explicit stack
Each kernel has a limited number of fast local registers and upon using them
up, spilled memory is stored into global memory. To minimize the usage of
the implicit stack frame, the original paper [3] suggested implementing a stack
in shared memory to substitute recursion. The stack only saves begin and end
positions of the subsequence that still needs to be sorted. The stack is a static
array allocated in shared memory and the size of shared memory is known
at compile time. By default, the shared memory is allocated to be able to
handle recursion of depth 32. Worth noting is the similarity between a stack
frame used in the second phase and a CUDA task used in the first phase (an
element of cuda_tasks). Both serve the same purpose — to indicate which
part of the sequence has not been sorted yet.

The start of the function starts with picking up a section that needs to be
partitioned (Algorithm 4.3.3, line 4). Only one thread is needed to manipulate
with the stack and all necessary information is saved in shared memory to
broadcast the information to other threads. Synchronization here is necessary
to guarantee the update of values.

Small subsequences are sorted using Bitonic sort, but bigger subsequences
need to be partitioned first (Algorithm 4.3.3, lines 7–10). After partitioning,
two new tasks are created and they need to be pushed into the stack (Algo-
rithm 4.3.3, lines 11-12). Only one thread is needed to execute this operation.
To guarantee O(log n) recursion depth, in [21], the author proposed to insert
the bigger part first and then the smaller part. This way, the smaller part is
sorted first and stack frame is immediately freed.

4.4 Optimizations
To gain an optimized implementation of Quicksort, some changes need to be
made. The first optimization was already described in subsection 4.3.5, where
shared memory was used to achieve coalesced reads and writes. Other changes
will be described in the following chapters.

4.4.1 Parallel prefix sum
Prefix sum is an essential operation used in partitioning operation to speed
up the arrangement of elements. To gain an even more efficient algorithm,

40

4.4. Optimizations

prefix sum was implemented (Algorithm 4.4.1) to run in parallel and reduce
the number of operations needed.

The parallel prefix sum, as implemented, only needs local registers of
threads and a static shared array of size 32. The function requires every
thread in the block to contribute a value into the scan operation and for
thread i, the function returns the sum of all values given by threads 0 . . . i.

First, parallel scan is performed on a warp level. Warps are implicitly
synchronized on the hardware level due to how they are executed. Scan is
here used with the help of shuffle intrinsic. Data is passed between threads
in a warp through registers and no shared memory is needed for this stage.

Let us observe what value each thread has after the warp scan was per-
formed. For warp group 0 (threads 0 . . . 31) all threads have the correct value.
For warp group 1, thread 32 ≤ p < 64, only has values from threads 32 . . . p.

warpScanp =
p∑

i=32
xi

To calculate the the correct values, every thread from warp group 1 still needs
to add all the values from warp group 0. Let us also notice that warp 31
holds the sum of all values from warp group 0. This value can be shared be-
tween threads in warp group 1 to finish the calculation. For warp group 2
(threads 64 . . . 95), every thread needs sum of both warp group 0 and 1
(threads 0 . . . 63). This missing value can be taken from warpScan31 and
warpScan63. Similarly, for the rest of the warp groups, each thread needs the
values warpScan32i−1.

With this bit of information, the last threads from each warp group need
to share their value with other threads in the CUDA block. This is achieved
by using a shared array[0 . . . 31] and synchronizing all threads after the shared
array has been filled. The maximum CUDA block size is 1024 and warp size
is 32, because of this, at most 32 = 1024

32 variables are needed.
The last bit of parallel scan optimization is done through transforming the

shared array into exclusive scan of the array itself, i.e. array′
i =

∑i−1
j=0 arrayi.

This optimization is done so that thread 1023 will not have to access array
31 times to add up the missing values.

The whole procedure is written in pseudo code again in Algorithm 4.4.1.

4.4.2 Optimization with array rotation
Quicksort as implemented, uses an auxiliary array for partitioning. To con-
tinue the next iteration of partitioning, the input would need to be copied
from auxiliary array back to input array. For smaller inputs, the time needed
to copy could be negligible, but for big arrays, each copy could pose a serious
bottleneck to the function. For this reason, an approach of source rotation is
chosen.

41

4. Quicksort

Algorithm 4.4.1: CUDA parallel inclusive prefix sum
Input : value

1 warpId, warpGroup← calculate warp identification values
2 shared array[0 . . . 31]
3 warpScanthreadId ← warpInclusiveScan(value)
4 if warpId = 31 then
5 array[warpGroup]← warpScanthreadId

6 if warpGroup = 0 then
7 array[warpId]← warpExclusiveScan(array[warpId])
8 return warpScanthreadId + array[warpGroup]

In the first iteration, the data is in the input array and the partitioning
function moves the elements into the auxiliary array. In the next iteration,
the threads will read data from the auxiliary array and move them back into
the original array. This solution saves time by not copying the arrays after
every iteration, but the overhead is now higher due to the need to check which
array actually holds the data.

To keep track of the current source array, a simple counter is used —
iteration. The counter denotes how many iterations of partitioning have
been performed. For even iteration, the data can be found in the input
array, whereas for odd iteration, the data that needs to be partitioned is in
the auxiliary array.

The same optimization can be used for cuda_tasks and cuda_newTasks
(Algorithm 4.1.1). When iteration is even, cuda_tasks array will hold the
current tasks and new tasks will be written into cuda_newTasks. For odd
iteration, the two arrays are interchanged.

Care should be given to the sorting procedure so that the sorted results
are correctly inserted back into the input array. A problem arises for elements
in resting position, i.e. the elements will not be moved again. The only case
when this can happen is when pivots are inserted or when the small subsection
is sorted using Bitonic sort. For pivots, the solution is to always write into the
input array. The pivot writing procedure is done by only one CUDA block
and it is guaranteed that no thread will be reading from global memory at the
same address.

With small sequence being sorted by Bitonic sort, the solution is also not
complicated. In the implementation, Bitonic sort is used if the subsequence
can be copied into shared memory. Once the subsequence is sorted in shared
memory, block synchronization is performed and then the result is copied
directly into the input sequence.

42

4.5. Using CUDA dynamic parallelism

4.4.3 Elements per CUDA block

Special care was also given to the distribution of tasks during the first phase of
Quicksort. For a subsequence of length n and CUDA blocks with 512 threads,
it is necessary to decide how many blocks will be needed to partition the
subsequence. It is possible to map each thread to one element. Using this,⌈

n
512

⌉
blocks will be needed. The other extreme is using only one CUDA block

and map
⌈

n
512

⌉
elements per thread and thus most of parallelism will be lost.

In the implementation, each thread processes at most 8 elements. With
this, the number of CUDA blocks will be lowered and the overall number of
atomicAdd calls is also lowered, while still having enough CUDA blocks to
occupy the hardware. The number 8 was chosen after careful tuning and pro-
filing to get a good overall result. The number of elements per thread is further
adjusted during run-time to allow use of shared memory for the moving part of
the first phase of Quicksort (subsection 4.3.5). With too many elements being
handled by a CUDA block, there is a chance that the whole part will not fit into
shared memory (elemPerBlock*sizeof(arr[0]) <= sharedMemSize).

4.5 Using CUDA dynamic parallelism
With the help of CDP, it is possible to remove the iterative part of first phase
of Quicksort and launch newly created tasks directly inside the kernel. In this
section, two approaches will be described on how to leverage nested kernel
launch to sort independently. This section is mainly of theoretical character.

4.5.1 Version 1

The first version of CDP Quicksort uses CDP to sort new tasks. In the original
implementation of Quicksort first phase, after the first iteration, the whole
input sequence was partitioned into three parts. The left part held elements
smaller than the pivot, the middle part had elements equal to the pivot and
the right part consisted of elements greater than the selected pivot. Then
synchronization with CPU had to be done and only afterwards could the left
part and right part be partitioned in parallel again. With CDP, we propose
to use multiple CUDA blocks to partition the input and then only the last
active CUDA block will launch new CUDA kernels to process left and right
parts (Algorithm 4.5.1 lines 6–20). The important part is how to recognize
which CUDA block is the last one working. To solve this, task will hold
a counter labeled as stillWorking. This counter was initialized with the
number of blocks allocated to worked together to partition the subsequences
(lBlocks and rBlocks). Each time a CUDA block is done with moving all
its elements, one atomicAdd(&task.stillWorking, -1) will called. The last
working CUDA block will get 1 as the return value.

43

4. Quicksort

Algorithm 4.5.1: Quicksort with CDP version 1
Input : array arr[1 . . . n], array aux[1 . . . n], TASK task

1 if gridDim = 1 then
2 deallocate task
3 QuickSort_2ndPhase(arr[1 . . . n], aux[1 . . . n])
4 else
5 isLast← partition(arr[1 . . . n], aux[1 . . . n], task)
6 if isLast = False then
7 return

8 shared (pivotBegin, pivotEnd, pivot) ← task
9 i← pivotBegin + threadIdx

10 for ; i < pivotEnd ; i← i + blockDim do
11 aux[i]← pivot

12 arr[1 . . . n]← aux[1 . . . n]
13 if threadIdx ̸= 0 then
14 return
15 deallocate task
16 if pivotBegin > 0 then
17 lBlocks← calcBlocksNeeded(pivotBegin)
18 lpivot← pick pivot from arr[1 . . . pivotBegin− 1]
19 leftTask ← new (1, pivotBegin, lBlocks, lpivot)
20 QuickSort<lBlocks, new stream>(arr[1 . . . pivotBegin− 1],

aux[1 . . . pivotBegin− 1], leftTask)

21 if n− pivotEnd > 0 then
22 rBlocks← calcBlocksNeeded(n− pivotEnd)
23 rpivot← pick pivot from arr[pivotEnd + 1 . . . n]
24 rightTask ← new (pivotEnd + 1, end, rBlocks, rpivot)
25 QuickSort<rBlocks, new stream>(arr[pivotEnd + 1 . . . n],

aux[pivotEnd + 1 . . . n], rightTask)

44

4.5. Using CUDA dynamic parallelism

The last CUDA block can safely insert pivots into global memory (Algo-
rithm 4.5.1 lines 6–11). Once pivots are inserted, the new tasks need to be
sorted in parallel. To start new kernels, only 1 CUDA thread will be needed
and all other threads can retire (Algorithm 4.5.1 lines 13–14). Then thread 0
creates new kernels that use one or more CUDA blocks to sort a subsection.
Worth noting here is that to enable concurrent sorting, each kernel launch has
to be in its own CUDA Stream. Failing to sort them in different streams leads
to serialization of the kernel launches, i.e. left part will be sorted completely
first and only then will the recursive sort on the right part be executed.

Another interesting part is how to enable communication between blocks
with the use of atomicAdd during the partitioning part. The task has to be
allocated in global memory so that every CUDA block can access it. Then, a
problem arises with which CUDA block will have the responsibility to deal-
locate the created task. The solution chosen in this work is to wait until the
last CUDA block is completely done with partitioning and only then free up
the memory (Algorithm 4.5.1 lines 2–15).

4.5.2 Version 2

Algorithm 4.5.2: Quicksort with CDP version 2
Input : array arr[1 . . . n], array arr[1 . . . n]

1 pivot ← pick pivot from arr[1 . . . n]
2 blocksNeeded ← calculate blocks needed to partition arr[1 . . . n]
3 task ← new (1, n, pivot, blocksNeeded)
4 partition<blocksNeeded, new stream>(arr[1 . . . n], arr[1 . . . n], task)
5 arr[1 . . . n]← arr[1 . . . n]
6 (pivotBegin, pivotEnd, pivot) ← task
7 deallocate task
8 if pivotBegin− 1 > 0 then
9 QuickSort<new stream>(arr[1 . . . pivotBegin− 1],

arr[1 . . . pivotBegin− 1])

10 if end− pivotEnd > 0 then
11 QuickSort<new stream>(arr[pivotEnd + 1 . . . end],

arr[pivotEnd + 1 . . . end])

Definition 4.1. A controller CUDA thread is a thread that can launch new
kernels. A worker CUDA thread is a thread that executes a cannot launch
new kernels.

To start CDP Quicksort version 2, the CPU only needs to launch the kernel
with one CUDA thread. The one thread will perform the role of a controller

45

4. Quicksort

and control the flow of Quicksort. First, the input needs to be partitioned. In
this part, the controller thread will start a new kernel of workers to partition
the input (Algorithm 4.5.2, lines 1–6). The partitioning can be performed
the same way as in the regular first phase of Quicksort. After the partition
kernel has been launched, it is necessary to synchronize the workers and the
controller. Once partitioning is done, the controller will know how big the left
part and the right part is. The controller can then launch two new kernels.
One controller to sort the left part and another to sort the right one. Same
as with version 1, the newly created controller kernels need to be in separate
streams.

In total, version 2 of CDP Quicksort uses parallelism in two ways. One
kernel launch is used for partitioning and another two kernel launches are used
in order to sort in parallel.

46

Chapter 5
Testing and measuring

This chapter will be about testing and measuring the time needed for execution
of the implemented algorithms.

5.1 Environment
All measurements were done on gp1 systems hosted by Faculty of Nuclear
Sciences and Physical Engineering, CTU in Prague. The specifications are as
follows:

gp1
CPU Intel Xeon CPU E5-2630 v3 @ 2.40GHz
GPU NVIDIA Quadro P6000
RAM 125 GB
OS Arch Linux 5.10.5-arch1-1
nvcc 11.2
g++ (GCC)10.2.0
driver 460.323.0

Table 5.1: Environments used to perform measuring and testing.

On the gp1 machine, a professional Quadro GPU with 24 GB was used.
To compile the source code, nvcc is used in combination with local g++

compiler to link libraries. The compilation flags are -O3 with -std=c++14 and
debugging from the TNL library has been turned off with -DNDEBUG.

5.2 Testing
For each implemented algorithm, a set of unit tests is present. The tests
ensure that the algorithms run correctly and can be incorporated into the TNL

47

5. Testing and measuring

1 template <typename Value, typename Function>
2 bool is_sorted(ArrayView<Value, Devices::Cuda> arr
3 const Function &Cmp)
4 {
5 if (arr.getSize() <= 1)
6 return true;
7

8 auto fetch = [=] __cuda_callable__(int i)
9 { return !Cmp(arr[i], arr[i - 1]); };

10 auto reduction = [] __cuda_callable__(bool a, bool b)
11 { return a && b; };
12 return TNL::Algorithms::Reduction<Devices::Cuda>::reduce
13 (1, arr.getSize(), fetch, reduction, true);
14 }

Listing 6: Implementation of is_sorted.

library. The tests have been performed multiple times and all tests passed on
every launch. It should be noted that the algorithms run in parallel and the
execution order of threads is not deterministic. Therefore, it is impossible to
guarantee complete correctness of the implementations, but with the extent
of testing done, no bugs have been found yet.

The tests not only assure that the sorting is done correctly but also make
sure that the templating is implemented correctly. The unit tests contain
sorting of non integer values, sorting with lambdas, sorting structures.

To speed up the checking process, a simple is_sorted was implemented.
The function (Listing 6) uses parallel reduction provided by the TNL library to
check if every two consecutive elements are in the correct order. The function
uses operator < and as such, the actual check is done by testing whether
element ai+1 < ai (this should fail for sorted input).

All tests were created with the help of gTest [22] framework provided by
Google.

5.3 Methods of measuring
To give a better understanding of the performance of the implementations,
the functions were measured on the gp1 machine. For sorting purposes, it is
assumed that all data is already on GPU and only the time of sort without
copying from CPU and GPU was measured.

To measure the time elapsed between the function call and when the
control is returned, a TIMER class was implemented. The object measures
the time elapsed between creation of the object and when the destructor
is called. The constructor of the class takes a lambda as a parameter and

48

5.3. Methods of measuring

1 Array<Value, Devices::Cuda> arr(data);
2 auto view = arr.getView();
3 {
4 TIMER t([](double res){std::cout<<res<<std::endl;});
5 quicksort(view);
6 }

Listing 7: Example of TIMER usage, block scope is used to forcibly call de-
structor. The timer prints on standard output the measured time.

it is used as a call-back to evaluate, what to do with the result, once the
destructor is called. The default call-back prints the time on the standard
output. The result is of type double and represents how many milliseconds
have been measured. The time is measured as difference between each call
of std::chrono::high_resolution_clock. An example on how to use the
timer is in Listing 7.

All measurements were done 20 times and then the final result was calcu-
lated as the average of all measurements.

Worth noting is that CUDA kernel launches are non-blocking, therefore
it is necessary to at least call cudaDeviceSynchronize() to ensure that all
kernels have finished.

5.3.1 Testing data sets
For input data, different kinds of sequences were generated. The sequence
types are:

Random A sequence with random values, each value has the same probability
of being generated. The data was generated with std::rand() after
being seeded.

Shuffle std::random_shuffle was used to permutate the sequence 1 . . . n.

Sorted A sorted sequence 0 . . . n− 1.

Almost sorted A sorted sequence 0 . . . n − 1 but three random swaps were
done on the array.

Decreasing Sequence n . . . 1.

Zero entropy All values are the same.

Gaussian distribution Each value is created by calculating the arithmetic
average of four randomly picked values from uniform distribution.

49

5. Testing and measuring

Bucket The data set is divided into p blocks and each block is further divided
into p sections, where p > 0. Section i > 1 contains randomly selected
values between (i− 1)231

p and i231

p − 1.

Staggered The data set is divided into p blocks. The staggered distribution
is then created by assigning values for block i, where i ≤

⌊p
2
⌋
, so that

they all lie between (2i + 1)231

p and (2i + 2)231

p − 1. For blocks where
i >

⌊p
2
⌋
, the values lie between (2i− p)231

p and (2i− p + 1)231

p .

The last three distributions (Gaussian, Bucket, Stagger) were originally
proposed and implemented in [3].

5.3.2 Comparison with other implementations
For Bitonic sort, there were not many efficient implementations using CUDA.
Most of them were either very basic or did not work properly. However,
NVIDIA sample implementations [2] contain an efficient implementation and
it was used as a baseline for measurement.

With Quicksort, the parallel implementations that were chosen are as fol-
lows:

1. cdpAdvancedQuickSort provided by NVIDIA sample library [2],

2. GPUQuicksort by Cederman et al. [3],

3. CUDAQuickSort by Manca et al. [4].

To compare with other algorithms too, std::sort was chosen as baseline
for sequential sort. As for other parallel algorithms, thrust::sort [5] from the
CUDA toolkit was selected. The sort provided by the thrust library is based
on Radix sort and can not be directly compared to Quicksort. This is due to
how the algorithms work. Quicksort is a comparison based algorithm that uses
operator< to split up the input, while Radix sort uses base decomposition
of the numbers to split the input into buckets in order to sort the input [23].
Despite this, the results are included to provide a better context for how much
faster parallel sort can be, compared to a single threaded implementation.

One of the requirements for this work was to compare the implementation
with [24]. This was not done due to the complicated structure of the source
code. With all the dependencies throughout the whole code base, it was im-
possible to include or refactor out the needed functions to create a runnable
code. Furthermore, the implementation provided by [24] uses <Windows.h>
header file, which makes it also impossible to compile and execute in a Linux
environment. Because of all the previously mentioned reasons, the implemen-
tation provided by the supervisor was not used.

50

5.3. Methods of measuring

5.3.3 Results

All mentioned algorithms were measured using the distributions mentioned in
subsection 5.3.1. As baseline, std::sort was used and for other algorithms,
the number indicates what the speed-up is compared to std::sort.

STL NVBt Bit cedQs manQs NVQs Qs thrust
t[ms] S S S S S S S

size
10 0.033 1.65 0.22 0.00 0.03 0.00 0.07 0.94
11 0.074 3.21 0.48 0.03 0.08 0.01 0.15 2.31
12 0.172 5.73 1.06 0.07 0.18 0.04 0.31 5.21
13 0.377 9.19 2.17 0.15 0.38 0.09 0.46 2.99
14 0.780 13.92 4.17 0.33 0.77 0.19 0.84 6.04
15 1.685 18.11 7.23 0.76 1.59 0.40 1.56 12.86
16 3.540 23.91 11.91 1.55 3.16 0.90 2.37 23.13
17 7.612 30.69 17.82 3.07 6.47 1.83 4.59 40.70
18 15.924 33.45 24.84 5.19 11.28 2.93 8.43 43.50
19 33.741 20.20 28.86 8.26 19.13 5.31 14.12 64.39
20 71.678 20.47 27.93 8.39 31.77 8.42 22.64 109.26
21 146.668 19.08 27.10 7.07 47.25 11.66 31.38 161.52
22 306.145 17.75 26.45 6.79 57.69 14.21 40.86 225.43
23 647.072 16.62 25.79 6.85 68.52 17.57 47.28 280.11
24 1335.382 15.18 24.49 6.80 72.88 18.94 51.35 310.19
25 2789.663 14.10 23.50 6.65 80.00 16.15 54.35 342.87

Table 5.2: Speed-up of algorithms compared to std::sort for various input
sizes. Random distribution was used as input. The first column is input size
in log2 scale. The second column is time it took std::sort to sort the input
in milliseconds on gp1. All other values are speed-up compared to std::sort.
The implementations used are:
(STL) std::sort from the STL library [25],
(NVBt) NVIDA’s implementation of Bitonic sort [2],
(Bit) TNL implementation of Bitonic sort,
(cedQs) Cederman et al.’s implementation of Quicksort [3],
(manQs) Manca et al.’s implementation of Quicksort [4],
(NVQs) NVIDA’s implementation of Quicksort with CDP [2],
(Qs) TNL implementation of Quicksort,
(thrust) thrust’s implementation of Radix sort in thrust::sort [5].

51

5. Testing and measuring

STL NVBt Bit cedQs manQs NVQs Qs thrust
t[ms] S S S S S S S

size
10 0.033 1.73 0.23 0.01 0.03 0.00 0.07 1.03
11 0.075 3.26 0.49 0.03 0.08 0.01 0.15 2.34
12 0.167 5.56 1.03 0.07 0.17 0.04 0.30 5.06
13 0.363 8.85 2.09 0.15 0.36 0.08 0.49 2.40
14 0.750 13.39 4.01 0.31 0.71 0.18 0.80 4.83
15 1.544 16.78 6.74 0.66 1.19 0.36 1.35 9.89
16 3.137 22.73 10.49 1.31 2.35 0.79 2.05 17.52
17 6.441 26.07 16.06 2.50 4.80 1.52 3.68 32.04
18 13.834 29.18 21.61 4.35 9.23 2.41 6.94 36.79
19 29.384 17.64 25.15 7.09 15.12 1.80 11.75 53.52
20 60.164 17.30 23.46 6.78 23.86 0.75 18.09 87.06
21 121.900 15.95 22.54 6.33 32.95 0.71 23.70 127.64
22 250.738 14.62 21.68 6.23 40.84 0.69 26.91 176.20
23 582.956 15.04 23.23 6.21 51.44 0.74 28.14 244.52
24 1338.513 15.29 24.53 6.92 62.40 0.80 27.69 314.42
25 2943.701 14.95 24.77 7.37 70.05 0.82 22.96 350.69

Table 5.3: Speed-up of algorithms compared to std::sort for various input
sizes. Staggered distribution was used as input. The first column is input size
in log2 scale. The second column is time it took std::sort to sort the input
in milliseconds on gp1. All other values are speed-up compared to std::sort.
The implementations used are:
(STL) std::sort from the STL library [25],
(NVBt) NVIDA’s implementation of Bitonic sort [2],
(Bit) TNL implementation of Bitonic sort,
(cedQs) Cederman et al.’s implementation of Quicksort [3],
(manQs) Manca et al.’s implementation of Quicksort [4],
(NVQs) NVIDA’s implementation of Quicksort with CDP [2],
(Qs) TNL implementation of Quicksort,
(thrust) thrust’s implementation of Radix sort in thrust::sort [5].

In Table 5.2, the speed-up is shown with Random distribution. To de-
scribe, the baseline implementation of std::sort works very fast for smaller
inputs but is overtaken by other parallel algorithms for bigger sequences.

TNL Bitonic sort is faster than std::sort with input being bigger than
212 but not much speed-up is gained with sequences bigger than 218. This is
an expected result as Bitonic sort has to do many global memory operations
for very big inputs and the time complexity is O(log2 n) only. It is worthwhile
to mention that Bitonic sort will always do the same number of phases no
matter the distribution. As such, the time will not change significantly with

52

5.4. Profiling

a different distribution.
Quicksort on the other hand is slower for smaller inputs due to its high

overhead but quickly overtakes Bitonic sort for inputs bigger than 220. The
implementation of TNL Quicksort is also consistently faster than NVIDIA’s
Quicksort and the Quicksort implemented by Cederman. When compared
with Manca’s more optimized sort, our implementation is ≈ 1.4x slower. A
hypothesis on why our implementation is slower is given in subsection 5.4.2.

A notable observation can be made by comparing the algorithms with a
staggered distribution. The complete results are in Table 5.3. The speed-up of
TNL Quicksort when compared to std::sort is only ≈ 20x for bigger inputs.
With the implemented method of picking pivot as median of 3 elements, this
kind of distribution forces the algorithm to choose a bad pivot most of the
time. With a bad pivot, the partitioning phase will not be able to split the
subsequence evenly and this leads to more partitioning being needed. Manca’s
implementation appears to slow down a little bit but the performance penalty
is not as big. The comparison shows how important a good pivot choice is to
the algorithm.

Other distributions were also used to measure the sorting time and are
included in the medium. The results are in line with measurements done with
Random distribution.

5.4 Profiling
Both of the implemented algorithms were profiled using NVIDIA NSight Sys-
tems [26] and compared to baseline implementations. The profiling was done
on the local machine with GTX 1650 laptop GPU and the implementations
sorted an integer sequence of length 225 with Random distribution. The exe-
cutable binaries were started using nsys profile and the application emitted
a .qdrep file. The file was then used for visualization in Nsight systems and
the screenshots of the application can be found in the included medium.

5.4.1 Bitonic sort
TNL Bitonic sort was profiled and compared with CUDA Samples’ [2] im-
plementation of Bitonic sort. The main kernels that were compared are: the
first phase, where shared memory was used to sort the beginning, then the
merge stage that was done in global memory, also labeled as global merge,
and finally merge shared, an operation that merges in shared memory (Al-
gorithm 3.4.2). Both implementations used a configuration of 512 threads per
CUDA block and 32765 CUDA blocks to sort the sequence. The results can
be seen in Table 5.4.

The global merge and shared merge measured times were averaged as
each run took a different amount of time due to the scheduler and data de-
pendencies during swapping. In total, TNL Bitonic sort was faster in every

53

5. Testing and measuring

CUDA Bitonic TNL Bitonic
first phase 44.4 ms 36.6 ms
global merge 3.8 ms 1.3 ms
shared merge 6.5 ms 6 ms

Table 5.4: Comparison of kernels of CUDA Bitonic sort against TNL Bitonic
sort for integer types.

phase of the run. This might be due to the fact that CUDA Bitonic sort uses
a sorting procedure that sorts both keys and values. With the data being
double the size, more memory access were needed. This is especially evident
with global merge. More data needed to be fetched and it worsened the
performance of kernel by a factor of 3.

To give a more fair comparison, TNL Bitonic sort was profiled again, this
time with the same sequence but the data are of type double. The results are
as follows:

CUDA Bitonic (int, int) TNL Bitonic (double)
first phase 44.4ms 47ms
global merge 3.8ms 2.3ms
shared merge 6.5ms 7.5ms

Table 5.5: Comparison of kernels of CUDA Bitonic sort that sorts (int, int)
against TNL Bitonic sort doubles.

Here (Table 5.5), the data show a much more reasonable comparison. TNL
Bitonic sort loses against CUDA Bitonic sort during the phases where shared
memory was used, this might have been caused by bank conflicts during mem-
ory access in shared memory as double is not aligned to 4 bytes as required by
shared memory bank. On the other hand, TNL Bitonic sort’s global merge
is 1 ms faster than the one done by CUDA Bitonic sort. This might be due
to where the data are saved in global memory. For TNL Bitonic sort, the
whole 512*2*8 memory block (blockSize*2*sizeof(double)) can be found
in one place, whereas for CUDA Bitonic sort, the key and value are be in two
different memory segments.

5.4.2 Quicksort
As baseline for parallel Quicksort, CUDAQuickSort implemented by Manca et
al. [4] was chosen. Both Manca’s Quicksort and TNL Quicksort work in two
phases, the first phase partitions sequences in parallel and the second phase fin-
ishes sorting smaller subsequences. These two phases are the main bottleneck

54

5.4. Profiling

of the procedure and were intensively profiled. The resulting measurement is
shown in Table 5.6.

Manca Quicksort TNL Quicksort
First phase time 5 ms 3.7 ms
First phase count 17 27
Second phase time 30 ms 60 ms

Table 5.6: Results of profiling done on the first and second phases of Quicksort
implemented by Manca et al. [4] compared to TNL Quicksort. First phase
time denotes time of each kernel launch. First phase count denotes number
of kernel launches. Second phase time denotes time needed to finish sorting
using second phase of Quicksort.

The first big difference is the number of iterations of the first phase of
Quicksort that have been done. Manca’s implementation ran in total 17 times
whereas TNL Quicksort had to partition 27 times with the first phase of
Quicksort. This might be due to how the pivot is chosen in each of the al-
gorithms. TNL Quicksort chooses pivot as median of 3 elements. Manca’s
implementation on the other hand chooses median as the average of minimum
and maximum of the subsequence. Here, the main bottleneck of Manca’s ap-
proach is that every element has to be compared multiple times to find the
minimum and maximum. Furthermore, this policy of pivot choosing can not
be generalized to sort non numeric data types as calculating average does not
have to make sense for all data types. With a better pivot, Manca’s implemen-
tation has to do the expensive first phase fewer times and the subsequences
at the end divide the load more equally. For future works, it is possible to
add a specialization of Quicksort in order to choose the pivot the same and
compare the implementation. Such a change however requires major changes
in the algorithm and requires more memory in order to store minimum and
maximum for each partition.

Another thing to note is the configuration that was used in order to par-
tition during the first phase. Manca’s implementation used on average 32000
CUDA blocks with 256 threads (the implementation does not work with 512
threads). TNL Quicksort’s implementation used on average 8200 CUDA
blocks with each block having 512 threads. In subsection 4.4.3, the method
was described. The resulting work maps at most 8 elements per CUDA thread
and reduces the number of CUDA blocks. As a result, TNL Quicksort has less
overhead needed to switch context for CUDA blocks but more importantly,
fewer atomicAdd need to be called in total. This all leads to TNL Quicksort
taking less time for the first phase of parallel Quicksort.

For the second phase, TNL Quicksort works twice as slow compared to
Manca’s Quicksort. This is mainly due to the way pivot is chosen and how

55

5. Testing and measuring

big the resulting subsequences are. Manca’s approach chooses pivot as an
element very close to median and spreads out the work load very evenly.
Then, Bitonic sort during the second phase has very little work to do to finish
its task. TNL Quicksort on the other has a limited task queue and switches
to second phase once there are more than 214 tasks. Some subsequences are
still too big and are further partitioned by Quicksort in one CUDA block. This
leaves a big penalty on the performance. The queue size was also expanded
to exchange memory needed to store tasks for more partitioning in order not
to overwhelm the second phase, but no visible improvements were made this
way. All the time that was saved in the second phase was transferred to the
first phase and more first phase iterations were executed.

In total, TNL Quicksort runs slower than Manca’s implementation. Pro-
filation showed that the problem lies in the way the pivot is chosen. The
partitioning procedure runs faster than Manca’s implementation but more
partitioning needed to be done.

56

Conclusion

Goals and results

The goal of this work was to study and implement efficient sorting algorithms
for GPUs, namely Bitonic sort and Quicksort. First, the algorithms were
described in detail and then the implementations were presented. Interesting
and important sections of the code were commented to explain the thought
process behind the made decisions. Finally, the presented work was tested,
measured, and compared with known implementations for CPU and GPU.

This thesis lays the groundwork for sorting primitives to be added into the
TNL library. TNL is mainly written in C++ extended with CUDA, as such
the code was also written in C++.

The resulting work contains the implementation of both previously men-
tioned algorithms. For Bitonic sort, a CPU version is available and a version
for a CUDA block is also present. This version of Bitonic sort can sort inputs
of any type and of any length. Shared memory was used in combination with
other techniques to gain speed-up. Bitonic sort was tested for various inputs
of different lengths and different types. Measurement against CPU std::sort
show ≈ 25x speed-up for sequences of length 218–225 with 32 bit integers.

With the help of block Bitonic sort, an efficient version of Quicksort was
created based on Cederman et al.’s [3] and Manca et al.’s [4] work. The im-
plementation can also sort inputs of any type and of any length. Compared
to Bitonic sort, TNL Quicksort is slower for smaller inputs but quickly gains
speed-up for sequences of length greater than 221. However, when compared
to Manca et al.’s CUDAQuicksort or thrust::sort, both Bitonic sort and
Quicksort are slower. Against std::sort, Quicksort shows improvement by
a factor of ≈ 50 for sequences of length 224–225. It should also be noted that
at least double the memory is needed to run Quicksort as the algorithm is
implemented as out-of-place algorithm.

57

Conclusion

Future work
This thesis’ implementation of Quicksort, as shown in subsection 5.3.2, is
slower than Manca et al.’s [4] implementation. This stems from the way the
pivot is chosen. For future work, a better choice of pivot can be studied and
then implemented. With a better pivot, the task load can be spread out more
evenly and speed-up can be gained this way. Another improvement can be
made by extending the code to support sorting on multiple GPUs at once.
This can be achieved using MPI [27].

58

Bibliography

1. OBERHUBER, Tomáš; KLINKOVSKÝ, Jakub; FUČÍK, Radek. Tem-
plate Numerical Library [online]. 2021 [visited on 2021-04-22]. Available
from: https://tnl-project.org/.

2. NVIDIA. Cuda Samples [comp. software]. [N.d.]. Version 11.2 [visited on
2021-02-22]. Available from: https://docs.nvidia.com/cuda/cuda-
samples/index.html.

3. CEDERMAN, Daniel; TSIGAS, Philippas. GPU-Quicksort: A Practical
Quicksort Algorithm for Graphics Processors. ACM J. Exp. Algorithmics.
2010, vol. 14. issn 1084-6654. Available from doi: 10.1145/1498698.
1564500.

4. MANCA, Emanuele; MANCONI, Andrea; ORRO, Alessandro; AR-
MANO, Giuliano; MILANESI, Luciano. CUDA-quicksort: an improved
GPU-based implementation of quicksort. Concurrency and Computa-
tion: Practice and Experience. 2016, vol. 28, no. 1, pp. 21–43. Available
from doi: https://doi.org/10.1002/cpe.3611.

5. HOBEROCK, Jared; BELL, Nathan. thrust [online]. 2021 [visited on
2021-04-24]. Available from: https://github.com/NVIDIA/thrust/.
[software].

6. NVIDIA CORPORATION. CUDA C++ Programming Guide [online].
2021 [visited on 2021-04-03]. Available from: https://docs.nvidia.
com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

7. HARRIS, Mark. Using Shared Memory in CUDA C/C++ [online]. 2013
[visited on 2021-04-03]. Available from: https://developer.nvidia.
com/blog/using-shared-memory-cuda-cc/.

8. MAREŠ, Martin; VALLA, Tomáš. Průvodce labyrintem algoritmů. 1.
electronic edition. Praha: Edice CZ.NIC, 2017. isbn 8088168198.

59

https://tnl-project.org/
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://docs.nvidia.com/cuda/cuda-samples/index.html
https://doi.org/10.1145/1498698.1564500
https://doi.org/10.1145/1498698.1564500
https://doi.org/https://doi.org/10.1002/cpe.3611
https://github.com/NVIDIA/thrust/
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/

Bibliography

9. PETERS, Tim. Python-Dev Sorting [online]. 2002 [visited on 2021-05-
10]. Available from: https://mail.python.org/pipermail/python-
dev/2002-July/026837.html.

10. ARKHIPOV, Dmitri I; WU, Di; LI, Keqin; REGAN, Amelia C. Sorting
with gpus: A survey. arXiv preprint arXiv:1709.02520. 2017.

11. BATCHER, Kenneth E. Sorting Networks and Their Applications. In:
Proceedings of the April 30–May 2, 1968, Spring Joint Computer Confer-
ence. Atlantic City, New Jersey: Association for Computing Machinery,
1968, pp. 307–314. AFIPS ’68 (Spring). isbn 9781450378970. Available
from doi: 10.1145/1468075.1468121.

12. Solving the recurrence relation T(n) = 2T(n/2) + nlog n via summa-
tion [online]. 2019 [visited on 2021-05-05]. Available from: https://cs.
stackexchange.com/questions/115274/solving-the-recurrence-
relation-tn-2tn-2-nlog-n-via-summation.

13. PETERS, Hagen; SCHULZ-HILDEBRANDT, Ole; LUTTENBERGER,
Norbert. Fast In-Place Sorting with CUDA Based on Bitonic Sort. In:
WYRZYKOWSKI, Roman; DONGARRA, Jack; KARCZEWSKI, Kon-
rad; WASNIEWSKI, Jerzy (eds.). Parallel Processing and Applied Math-
ematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 403–
410. isbn 978-3-642-14390-8.

14. AL-HAJ BADDAR, Sherenaz W.; BATCHER, Kenneth E. Designing
Sorting Networks: A New Paradigm. 1st 2011;1. Aufl.; New York, NY:
Springer New York, 2011. isbn 9781461418511.

15. HOARE, Charles A. R. Algorithm 64: Quicksort. Commun. ACM. 1961,
vol. 4, no. 7, p. 321. issn 0001-0782. Available from doi: 10 . 1145 /
366622.366644.

16. HOARE, Charles A. R. Quicksort. The Computer Journal. 1962, vol. 5,
no. 1, pp. 10–16. issn 0010-4620. Available from doi: 10.1093/comjnl/
5.1.10.

17. STEIN, Clifford; LEISERSON, Charles E.; CORMEN, Thomas H.;
RIVEST, Ronald L. Introduction to algorithms. Quicksort. 2009. isbn
0262033844.

18. SINGLETON, Richard C. Algorithm 347: An Efficient Algorithm for
Sorting with Minimal Storage [M1]. Commun. ACM. 1969, vol. 12, no.
3, pp. 185–186. issn 0001-0782. Available from doi: 10.1145/362875.
362901.

19. BLUM, Avrim. Probabilistic Analysis and Randomized Quicksort [online].
2011 [visited on 2021-05-05]. Available from: https://www.cs.cmu.edu/
~avrim/451f11/lectures/lect0906.pdf.

20. BLELLOCH, Guy E. Synthesis of Parallel Algorithms. Prefix sums and
their applications. Morgan Kaufmann, 1993.

60

https://mail.python.org/pipermail/python-dev/2002-July/026837.html
https://mail.python.org/pipermail/python-dev/2002-July/026837.html
https://doi.org/10.1145/1468075.1468121
https://cs.stackexchange.com/questions/115274/solving-the-recurrence-relation-tn-2tn-2-nlog-n-via-summation
https://cs.stackexchange.com/questions/115274/solving-the-recurrence-relation-tn-2tn-2-nlog-n-via-summation
https://cs.stackexchange.com/questions/115274/solving-the-recurrence-relation-tn-2tn-2-nlog-n-via-summation
https://doi.org/10.1145/366622.366644
https://doi.org/10.1145/366622.366644
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1093/comjnl/5.1.10
https://doi.org/10.1145/362875.362901
https://doi.org/10.1145/362875.362901
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0906.pdf
https://www.cs.cmu.edu/~avrim/451f11/lectures/lect0906.pdf

Bibliography

21. SEDGEWICK, Robert. Implementing Quicksort Programs. Commun.
ACM. 1978, vol. 21, no. 10, pp. 847–857. issn 0001-0782. Available from
doi: 10.1145/359619.359631.

22. GOOGLE LLC. GoogleTest [comp. software]. 2019. Version v1.10.0 [vis-
ited on 2021-03-20]. Available from: https://github.com/google/
googletest.

23. EVANS, D.J.; DUNBAR, R.C. The parallel quicksort algorithm part
i–run time analysis. International Journal of Computer Mathemat-
ics. 1982, vol. 12, no. 1, pp. 19–55. Available from doi: 10 . 1080 /
00207168208803323.

24. BOŽIDAR, Darko. Vzporedni algoritmi za urejanje podatkov. Ljubljana,
2015. MA thesis. University of Ljubljana, Faculty of Computer and In-
formation Science. Supervised by doc. dr. Tomaž DOBRAVEC.

25. GNU C++ Standard Library Documentation [online]. 2009 [visited on
2021-05-05]. Available from: https : / / gcc . gnu . org / onlinedocs /
libstdc++/libstdc++-html-USERS-4.4/a01027.html. [software].

26. NVIDIA. NVIDIA Nsight Systems [online]. 2021. Version 2021.2 [vis-
ited on 2021-05-12]. Available from: https://developer.nvidia.com/
nsight-systems.

27. MPI [online]. [N.d.] [visited on 2021-05-12]. Available from: https://
www.mpi-forum.org/docs/. [software].

61

https://doi.org/10.1145/359619.359631
https://github.com/google/googletest
https://github.com/google/googletest
https://doi.org/10.1080/00207168208803323
https://doi.org/10.1080/00207168208803323
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01027.html
https://gcc.gnu.org/onlinedocs/libstdc++/libstdc++-html-USERS-4.4/a01027.html
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/

Appendix A
Acronyms

CDP CUDA Dynamic Parallelism

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

SIMT Single Instruction, Multiple Threads

STL Standard Template Library

TNL Template Numeric Library

63

Appendix B
Contents of enclosed medium

readme.txt....................the file with medium contents description
src...the directory of source codes

GPUSort......................................implementation sources
measuring.................the directory of measurement source codes
otherGPUSorts................the directory of other implementations

text....................the directory of LATEX source codes of the thesis
extra.........................extra pictures and tables of measurements
thesis.pdf...............................the thesis text in PDF format

65

	Introduction
	Preliminaries
	GPU architecture
	CUDA
	Thread grouping
	Memory hierarchy
	Thread Synchronization
	CUDA dynamic parallelism

	TNL
	TNL data structures
	TNL View structures
	Lambdas

	Notation
	Sorting problem
	Single thread limitation
	Overview of existing algorithms

	Bitonic Sort
	The Bitonic sort algorithm
	Bitonic merge
	Sorting in-place
	The recursive algorithm
	Time complexity
	Sorting not aligned sequences

	Parallel algorithm
	Sorting network
	Time complexity of parallel implementation

	Existing implementations
	Implementation of Bitonic sort with CUDA
	Host side
	Device side
	Calculating the direction of swap
	Optimizations
	Shared memory in Bitonic Sort

	Bitonic sort from GPU

	Quicksort
	The Quicksort algorithm
	Partitioning algorithms
	Pivot Choice

	Parallel algorithm
	Prefix sum
	Parallel Quicksort algorithm
	Stopping in time

	Implementation of Parallel Quicksort with CUDA
	Host Side
	Pivot choice
	First phase
	Multi block partitioning
	Moving elements
	Writing pivot
	Creating new tasks
	Second phase
	Single block Quicksort
	Explicit stack

	Optimizations
	Parallel prefix sum
	Optimization with array rotation
	Elements per CUDA block

	Using CUDA dynamic parallelism
	Version 1
	Version 2

	Testing and measuring
	Environment
	Testing
	Methods of measuring
	Testing data sets
	Comparison with other implementations
	Results

	Profiling
	Bitonic sort
	Quicksort

	Conclusion
	Goals and results
	Future work

	Bibliography
	Acronyms
	Contents of enclosed medium

