
Instructions

The student will use an evolutionary algorithm, such as the genetic neural network, to create an agent 

capable of navigating randomly generated maze-like environments.

The finished agent will be able to navigate through previously unseen environments and 

environments of a different size than it trained on.

Voluntarily, the student can compare with methods using gradient descent.

1) Study relevant materials about the topic

2) Set up a visualization program

3) Create a functional agent using Evolutionary algorithm

4) Evaluate the agent

5) Compare different (mostly neural) architectures
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Abstrakt

Tato práce se zabývá generalizaćı agenta pro vyhledáváńı cesty v bludǐsti,
použit́ım neuronových śıt́ı učených evolućı, nazývaných Genetické Neuronové
Śıtě (GNN). Práce zkoumá v́ıcero evolučńıch př́ıstup̊u a srovnává jejich vlast-
nosti. Nejlépe funguj́ıćı GNN jsou poměřeny na složitěǰśıch bludǐst́ıch a jejich
výsledky ukazuj́ı potenciál v použit́ı GNN pro zpětnovazebńı učeńı.

Kĺıčová slova evolučńı algoritmus, evolučńı strategie, genetické neuronové
śıtě, generalizace prohledávaćıho agenta, navigace v bludǐsti

Abstract

This thesis attempts to generalize a maze solving agent using Artificial Neu-
ral Networks trained by evolution, referred to as Genetic Neural Networks
(GNNs). It explores multiple evolutionary approaches, giving their compara-
tive review. The best configurations of GNNs are evaluated on more complex,
previously unseen mazes. The results are signaling potential in the use of
GNNs for Reinforcement Learning.

Keywords evolutionary algorithm, evolution strategy, genetic neural net-
works, search agent generalization, maze navigation
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Introduction

The most important element of learning is the ability to generalize. Under-
standing several examples is good, understanding the underlying concept is
better. Ever since the first models of Artificial Intelligence (AI), researchers
are trying to create a model that generalizes best.

A simple example of the demonstration of learning is maze solving. Maze
solving capabilities can be tested on living mice and artificial agents alike. It
is also a great testing environment for the generalization properties since more
complex, bigger, or otherwise trickier mazes can always be generated.

This thesis presents a specific approach to maze solving, using a combi-
nation of currently prevalent Artificial Neural Networks (ANNs) and Evolu-
tionary Algorithms (EAs) into Genetic Neural Networks (GNNs). It combines
them by taking the architecture of an ANN, and the black-box optimization
capabilities of EA.

In reinforcement learning — that the maze solving problem is an example
of — the question of how to efficiently learn parameters of a model has always
been at the center of research. For supervised models, it is essential to have
a clear result for every input. However, in the case of reinforcement learning,
there often is no clear answer to a given input. EAs, being a black-box opti-
mization technique, do not need labeled data. Thus, it can be helpful in cases
like maze solving, where, even though there is one ideal path, with limited
information of the agent that navigates through it, its ideal decision cannot
always be the same, even when its surroundings (input, if you will) are.

Objectives of the thesis

The thesis aims to explore the capabilities of EAs on the optimization of ANNs
applied to the generalization of a maze solver.

The first objective is to explore the theory behind Evolutionary Algorithms
and their methods. The applications of EAs and other methods on the maze
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Introduction

solving problem will be reviewed. After that, the topic of interest will be the
implementation of the environment – the maze and the agent.

Thirdly, a swift discussion of the Visualization program, following with
the actual implementation of various Evolutionary techniques. With that, the
evaluation method will be explained, various EA configurations and Neural
architectures will be tested and their results compared.

These results will also be compared to results created in a separate work,
where instead of Neural Networks, Decision Trees were used as a model for
the agent’s behavior. They were also evolved using some similar evolutionary
techniques as presented here.
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Chapter 1
Theoretical Background

In the first chapter, the theoretical basis of the topic of this thesis will be
explored. Starting with the Evolutionary Algorithms and through Memetic
Algorithms (MAs) into Genetic Neural Networks. In the end, some theory on
Maze solving will be discussed.

In this chapter, basic knowledge of ANNs and optimization is assumed.

1.1 Evolutionary Algorithms

According to Whitley [1], EAs are tools that simulate evolution to find solu-
tions to search, optimization, or design problems.

There are many types of EAs, generally split into four categories:

• Genetic Algorithms (GAs), initially developed in the 1970s by John H.
Holland, are a multi-purpose tool utilizing all tools available. [2, 1] The
Evolutionary Algorithm used in this thesis belongs to this category.

• Evolution Strategies (ESs) originate from Germany, were created in the
1960s. They prefer mutation to crossover and are more used in opti-
mization. [1, 3] In this thesis, a popular algorithm Covariance Matrix
Adaptation – Evolution Strategy (CMA-ES) will be used and its perfor-
mance compared to the specific variant of GA.

• Evolutionary Programming (EP), created in the 1960s by Lawrence J.
Fogel, focused on evolving finite-state machines. [4]

• Genetic Programming (GP) was created in the 1990s and focuses mainly
on evolving computer programs. [5]

3



1. Theoretical Background

Table 1.1: Common vocabulary for Evolutionary Algorithms

Term Explanation
Gene An element of genotype
Genotype Individual’s representation that is mutated
Phenotype Translation of a genotype that can be evaluated
Individual Carrier of genetic information, has a fitness value
Fitness Evaluation of an individual, selection is based on fitness
Population Set of individuals

1.1.1 Vocabulary

Before getting into EAs it is necessary to explain part of the common vocab-
ulary. Using Beyer’s glossary [6] a selection of a few core terms is presented
in Table 1.1.

1.1.2 The generic algorithm

EAs are, at their core, quite simple algorithms, as seen in Figure 1.1. They
consist of 6 main components:

• Initialization sets the initial population of µ individuals, µ being a hy-
perparameter of the algorithm. [4]

• Evaluation requires a fitness function. This function takes an individual
and returns an orderable value so that the individuals can be sorted. In
this step, all individuals are assigned their respective values. [4]

• Selection represents natural selection based on the fitness values of the
individuals and implementation of the selection operator. It selects κ
individuals from the µ in the population. κ is a hyperparameter, not
constrained by µ since an individual can be selected multiple times. [4]

• In crossover κ selected individuals are combined between themselves,
creating λ offspring. In each step, n individuals are combined to create
m offspring. Typically n = m = 2. [4]

• Mutation operator makes a small random change in the genotype, ac-
cording to a given probability distribution. It does not change the num-
ber of individuals. [6]

• Replacement happens after λ individuals are finally complete and evalu-
ated. For the main population to not grow in size, replacement decides
which individuals will advance into the next generation, choosing µ out
of µ+ λ individuals. [4]

4



1.1. Evolutionary Algorithms

Evaluate population

Select parents from
current population Crossover parents

Mutate offspring

Evaluate offspring
Combine new

individuals with
current population

Yes

No

Is stopping
condition satisfied?

Initialize population

Return final
population

Figure 1.1: Diagram of a generic evolutionary algorithm

1.1.2.1 Initialization

In initialization, the first — initial — population of individuals is created.
This step is very problem-dependent and can significantly influence the perfor-
mance of the final population. If there is prior knowledge about the problem,
the initialization can be adapted to reflect that knowledge and to direct the
performance towards an optimum. If there is no such knowledge, the initial-
ization is done randomly to cover as much of the search space as possible to
boost exploration. [4]

1.1.2.2 Evaluation

Evaluation is even more problem-dependent. It must contain translation from
genotype to phenotype and a fitness function to assign the individual a fitness
value. If looking for a minimum of a function f , a likely choice is a genotype as
a vector of input variables x where each variable is a gene, phenotype mapping
is identity, and the fitness value of an individual x is just f(x). Then in the
selection, lower values of fitness are considered better.

1.1.2.3 Selection

In selection, better individuals, according to their assigned fitness, are selected
more often than those with worse values. A prime example of a fitness propor-
tional selection operator is Stochastic Universal Sampling (SUS). It samples
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1. Theoretical Background

Random offset

Precomputed
distance

Figure 1.2: Stochastic Universal Sampling diagram. All µ = 10 individuals
take up space proportional to their fitness, random offset ensures stochastic
selection, and κ = 10 equidistant pointers along the wheel ensure diversity
of selected individuals. The darkest individuals are selected twice, while the
lightest are not selected at all. Note that the individual with the worst fitness
value was also selected.

individuals with a probability proportional to their fitness. The exact way this
is done can be explained with an analogy of a roulette wheel, visualized in
Figure 1.2. All individuals take up space along the wheel, proportional to their
fitness value (supposing higher fitness is better). Then κ equidistant points
around the wheel are sampled by randomly offsetting the first one. Each of
the points selects the individual it points at. [4]

A common issue with fitness-proportional selection is that if one individual
has much better fitness than all other individuals, the selection operator will
choose the best individual multiple times. This effectively destroys diversity
in the population, which leads to premature convergence to a sub-optimal
solution.

There are ways of mitigating premature convergence, for example, the
method of fitness sharing, where individuals with similar genotypes share their
fitness and thus have a lower chance of getting all into the next generation.
The fitness is recomputed using an equation

fsh(i) = f(i)∑
j∈I sh(d(i, j))

6



1.1. Evolutionary Algorithms

where f(i) is the original fitness value of an individual i, I is the set of all
individuals, d(i, j) is the distance between individuals i and j, and sh(d) is a
sharing function defined as

sh(d) =
{

1− ( d
σsh

)αsh if d < σsh

0 otherwise

where σsh is a parameter called niche radius. It defines a radius of the neigh-
borhood around an individual. The parameter αsh can be used to decrease
the final shared fitness, but it is often chosen as 1. [7]

Another way to approach this issue is that instead of changing the fitness
values themselves, they are used to rank the individuals and these ranks are
used for selection. Or the fitness can be used only to compare random individ-
uals, like in Tournament selection. Tournament selection takes k > 2 random
individuals from the population and selects the one with the highest fitness
value. It repeats this process κ times. It is used often because it is faster and
simpler to implement than proportional methods and has similar properties
to methods using ranking. [4]

1.1.2.4 Crossover

Crossover is a process of taking at least two parents, combining their genotype,
and creating offspring. Not all selected individuals need to become parents.
Based on crossover probability or proportion, some individuals from the pop-
ulation become parents. The crossover process is typically stochastic, so two
parents can combine into many different offspring. However, if the parents are
identical, they will always create identical offspring to them.

It can happen that two good individuals will not generate as good offspring.
Imagine an example with bimodal function, each parent at one local optimum
and generated offspring between them, in the valley. This individual has a
minor chance of surviving replacement or will have low odds of being selected
in the next generation since its fitness is significantly lower.

This issue is addressed by modifying the crossover operator to generate
offspring more similar to either of the parents. Or by restricting the parent
selection to only similar parents so that the distance between them is less
likely to contain a valley.

Basic examples of crossover operators for bit vector genotypes are one- and
two-point crossover. A point or two points on the vector are randomly selected,
and the parents cut into 2 or 3 parts. One part (the middle part in the case of
two-point crossover) is then exchanged between them, creating two offspring.
Both crossover operators are described in Figure 1.3. N-point crossover is a
generalization of this principle. It is a simple and efficient crossover, especially
if there are relations between neighboring genes. [4]
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1 0 1 1 0 01 1 0 1 0

0 1 1 0 1 01 0 0 0 1 1

1 1 0 1 1 0 0

1 1 0 1 0 0 1 1 0 1 0

1 0 0 0 1 1

1

1 0 1 1 0 01 1 0 1 0

0 1 1 0 1 01 0 0 0 1 1

1

1

0 1 1 0 01 1

0 1 0

0

1 1 0 1 01 0 0

0 1 11

Figure 1.3: Bit vector crossover: on the top, one-point crossover; on the
bottom two-point crossover, the middle part between the selected points is
swapped. Different colors are there only to help identify the origin of a part
of the individual.

1.1.2.5 Mutation

The mutation operator introduces a small random change to the individual.
Just as the crossover, the proportion of mutated individuals or probability of
mutation is set as a hyperparameter.

A simple example of mutation on a binary vector would be a bit-flip of a
bit at a randomly selected position, see Figure 1.4. [4]

1

00 1 0 1 1 0 1 11 0 1

00 1 0 1 1 0 01 0 1

Figure 1.4: Bit-flip mutation: second to last bit in the vector was randomly
selected and changed from 1 to 0. The grey color only signals the gene that
was mutated.

1.1.2.6 Replacement

Replacement decides which individuals will advance to the next generation.
There are also many ways to do this, the simplest being Generational replace-
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1.2. Memetic Algorithms

ment, which discards the entire old population and replaces it with the new
one. There is a potential problem with this since it does not necessarily keep
the best individual in the population.

The notion of keeping the best individual in the population for the next
generation is called Elitism. A replacement method is elitist if it keeps the
best individual in the population. Elitist strategies may significantly speed
up the performance, especially in functions like convex functions, however in
more difficult state spaces of, for example, multi-modal functions, non-elitist
strategies can prove advantageous. [4]

1.1.3 Niching

Niching is a process in which the locality of a genotype in the search space
is taken into account. It helps preserve the diversity of individuals in the
population. [6] In niching, if two individuals have similar genotypes according
to some relevant distance measure, they are less likely to both advance to the
next generation. Niching can be done in many ways, for example, by fitness
sharing, mentioned in Section 1.1.2.3. In this thesis, niching was implemented
in the replacement operator.

1.1.4 Covariance Matrix Adaptation (CMA-ES)

As the name suggests, the CMA-ES is an Evolution Strategy that uses a mul-
tivariate normal distribution, defined by mean vector and covariance matrix.
The algorithm keeps only the mean vector and covariance matrix, but each
generation, µ individuals are sampled from the mutation distribution. The in-
dividuals are evaluated, and the mutation distribution is then adapted based
on their fitness. [8]

Akimoto [9] shows that CMA-ES can be considered equivalent to a method
that uses natural gradient. Thus it makes sense to use the CMA-ES to opti-
mize weights of a Neural Network while not diverging from gradient descent.
The use of CMA-ES for ANN optimization has been done before, for example,
in online scheduling problems by Branke [10].

1.2 Memetic Algorithms

The term Memetic Algorithm was invented by Moscato, who defined it as
”a marriage between a population based global search and the heuristic local
search made by each of the individuals”. [11]

He argued that while Genetic Algorithms use the analogy of genetic in-
formation and genes are not the only determining factor of an individual’s
quality, an extension of GAs is required to achieve a more accurate simulation
of what happens in nature. The memes, from which the Memetic Algorithms
got their name, can be loosely explained as experiences, knowledge, or skill

9



1. Theoretical Background

achieved by a person in their life. Moscato uses an analogy with martial arts.
No one is born a kung-fu master. It is not in their genetic information, yet it
helps the individual in the evolution process. [11]

Generally speaking, MAs are an extension of GAs that at a certain point in
evolution use local search methods to improve the individuals. It can happen
right after initialization, so the EA starts from a pre-optimized position, or
during the evolution in every generation (or both). Then it is done typically
before replacement so that every individual goes through the local search last.
[12]

Cotta states in his book that the field of MA is very active, generating over
300 articles per year on average. Although the algorithms used nowadays are
more complex than the basic MAs described here, some of them implementing
self-adaptation, the concept of combining GAs with local optimizers works
well. [12]

1.3 Genetic Neural Networks

Genetic Neural Network is a term used for an ANN that utilizes an EA to
train its weights. Sometimes, a mix of evolution and gradient descent is used.
[13] Typically, evolution is used at first to find a globally good solution in
the search space, followed by short gradient descent to sharpen the result.
Since Stochastic Gradient Descent (SGD) is a local search method, GNN
optimization can be considered a Memetic Algorithm.

This approach to optimizing ANNs is motivated by one of their main
problems, overfitting. This problem of getting into a local optimum can be
addressed using a global optimization algorithm, such as GA. [14, 15] The
use of GAs instead of gradient descent with backpropagation to train ANNs
has been thoroughly studied since the 1990s. It has been shown that GA
can outperform these methods in some cases. [16, 15] Porto and Fogel showed
that gradient descent leads to sub-optimal solutions more often than stochastic
optimization techniques, GA being one of the tested examples of a stochastic
optimizer. [16]

1.3.1 Evolutionary operators

To implement a GNN, we need to specify the genotype of an ANN and some
evolutionary operators that depend on it. Namely crossover and mutation
operators.

The genotype can be represented as a list of real values which enables
standard n-point crossover and a simple mutation, for example, by adding
gaussian noise to the list or only to a few selected elements. [14]

Montana and Davis presented more potential operators, for example, mu-
tating weights belonging to specific nodes or a crossover that swaps all weights
of randomly chosen nodes instead of just some random weights. [14]
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1.4. Maze Solving

Interesting mutation and crossover operators do not consider only the
structure of a genotype. They function in an informed way, augmenting the
randomness. For example, Mutate-weakest nodes operator, presented by Mon-
tana and Davis, finds nodes with less significant influence on the result. These
nodes are considered weak. Such a node can be found by executing the net-
work on the same input with and without the node in the network. [14]

1.3.2 Use of CMA-ES

Even though the name Genetic Neural Networks suggests the use of GAs, we
can utilize a different method of evolutionary computation, such as CMA-ES.
Since the CMA-ES is equivalent to a method using natural gradient [9], its
use in GNN is logical.

1.4 Maze Solving

Maze solving is a common task presented to computer agents [17] and bio-
logical organisms [18] alike. It is very suitable for studying the generalization
capabilities of a given problem solver.

1.4.1 Common techniques

Firstly, let’s look at common techniques used by maze solvers. In Graph the-
ory, there are standard algorithms like Breadth- or Depth-first search, used for
finding a path in a graph (maze). They, however, have non-constant memory
requirements. A standard maze solving algorithm that is stateless is a Wall
follower algorithm. [19]

Wall Follower (WF) is, as the name suggests, an agent that tracks either
left- or right-hand wall. It is best described by a decision diagram, see Fig-
ure 1.5. A downside of the algorithm is that if there is no connecting wall
from start to goal, the algorithm will never stop and never find the path. [20]

Start

Move forward

YES

NO

Wall on the right?

YES

NO

Wall in front?

NO

YES

Wall on the left?

Turn right Turn left

YES

NO

Goal reached?

End

Turn around

Figure 1.5: WF algorithm diagram: the right-hand version of the algorithm.
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1. Theoretical Background

Nevertheless, it is a classical algorithm, sophisticated enough to make it a
valuable baseline for intelligent behavior. In this thesis, only mazes solvable
with WF algorithm are used. Regardless of which side the agent follows.

1.4.2 Use of Evolutionary algorithms

Nature, with its properties and processes, is often the initiator of scientific
discovery. Evolution, being one of the greatest natural processes in the uni-
verse, is viewed as having great potential in achieving a level of AI equivalent
to that of humans. [17]

Shorten and Nitschke have used Neuro-Evolution for this task. Neuro-
Evolution is an extension of GNNs, where the architecture of a GNN is also
optimized using an evolutionary algorithm. It is closer to what happens in a
real brain than a basic ANN. [17]

Similarly, in this thesis, EAs were used to train Neural Networks to study
generalization capabilities. However, the structure of a GNN is rigid, and only
the weights are optimized. Their definitions of agent and maze vary signif-
icantly from those in this thesis. The agent has different inputs, mazes are
vaster, and there are usually fewer of them in the evolution. The fitness func-
tion is also different, making the experiments of this thesis hardly comparable
to the work of Shorten and Nitschke [17].
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Chapter 2
Implementation

In this chapter, the specific implementation will be described. That is the
specification of the task itself, the implementation of the maze solving problem,
Graphical User Interface (GUI), the GNN models, and the EA methods used
to optimize them. All of which were used to generate the results discussed in
Chapter 3.

2.1 Task

The overall task to solve a maze sounds simple, but to be thorough, it is
necessary to specify all components. There is a maze — an environment, if
you will — and an agent.

2.1.1 Maze

For the purpose of this thesis, a maze is a rectangular two-dimensional grid
made of tiles. Every tile (except bordering tiles) has four neighboring tiles.
Some bordering tiles are separated by a wall. Connected tiles can be repre-
sented as a tree, meaning that each tile is connected to every other tile in the
maze by exactly one path. It has finite width and height. For training —
unless specified otherwise — mazes of size 10 by 10 tiles were used. There
is always a starting tile and a goal tile, both chosen randomly from the four
corners of the maze.

Maze generation

There are many maze-generating algorithms. Practically every algorithm con-
structing a minimum spanning tree — or a tree traversing algorithm — on a
fully connected grid graph creates a maze that complies with the definition
provided above. The only thing required is to introduce randomness to it, and
a random maze generator is created.
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2. Implementation

Figure 2.1: Maze comparison: on the left, there is a maze created with DFS;
on the right, a maze created with Kruskal’s algorithm. Even though DFS
maze might look more difficult at first, notice that along the path, there are
not as many points where the agent can make a wrong turn.

In this thesis, two maze-generating algorithms were implemented:

• Kruskal’s algorithm starts with all walls in place and randomly selects
two neighboring tiles that are not connected together (there is not any
connecting path). It removes the wall in-between them and continues
by selecting another pair of such tiles until all tiles are connected. It
creates very good mazes, see the comparison in Figure 2.1.

• Depth-First Search (DFS) algorithm uses DFS to traverse the fully con-
nected grid from a starting tile until all tiles are visited exactly once. In
each step, a random neighboring unvisited tile is selected to ensure the
creation of random mazes. All unused edges of the fully connected graph
become walls. The shortest path is around twice as long compared to
the Kruskal generated mazes, but in experiments, DFS mazes proved to
be also significantly easier to solve.

2.1.2 Agent

The agent has some observations of its surroundings and actions used to move
through the environment. The agent also has a direction it is facing, so all
observations change not only with the change of the agent’s position but also
with the change of the agent’s direction. The agent starts on the starting tile
facing upwards.
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The possible observations of the agent’s surrounding environment are:

• Relative Angle from the direction of the agent to the direction towards
the goal tile. This has values in the interval (−180, 180], 0 being the
direction forward. Negative values mean that the goal tile is to the left.

• Distance to the closest wall in all four directions relative to the way the
agent is facing.

• Number of visits the agent has made to each of the four neighboring
tiles. This information is used only if the model has no internal state to
remember this information.

And the possible actions of the agent are:

• Turn right. The agent stays at the same position but rotates clockwise.

• Turn left. The agent stays at the same position but rotates counter-
clockwise.

• Move one tile forward. If the agent is facing a wall, the action is con-
sumed, and the agent stays at the same position, facing in the same
direction.

2.2 Graphical User Interface

For the implementation of GUI, a simple to use, minimalist library was sought.
Ideally with a canvas to visualize a maze and basic form input elements to
enable configuration within the application.

After attempts to work with Tkinter, PyQt, and PySimpleGUI, the deci-
sion was to go with Kivy [21], as it had the most intuitive structure, enabled
division of logic and visual layout definition with special configuration files,
and had a fresh look.

2.2.1 Maze page

The main thing to view is the maze. That is why all interaction was imple-
mented into a small side panel to the right from the canvas on which the maze
is shown. The layout can be seen in Figure 2.2.

There are two tabs: one handles mazes, their creation, saving, and loading,
and the other handles execution. That means loading learned models and
simulating their attempts at solving the maze.

In the maze tab’s interface, two sliders determine the width and height of
a generated maze. The generation process can be animated using a checkbox.
This process needs to run in a separate thread. Otherwise, the library cannot
reload the GUI while the walls are being removed from the maze.
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2. Implementation

Figure 2.2: GUI maze layout, with one of the training mazes loaded

The generated maze can be saved into a pre-defined folder, from which it
can also be retrieved using the load selection tool. This way, the user can save
specific mazes for later evolution.

2.2.2 Visualization of attempts

For the visualization of the agent’s attempts at solving the maze, another
tab was implemented, see Figure 2.3, where it is possible to choose a neural
network, step through or animate its behavior, or test the maze solving skills
of the user with a simple manual operation.

If the manual operation is enabled using the topmost checkbox, the user
can navigate the maze using arrows. Arrow up is a forward signal for the
agent. Arrows left and right control the turning of the agent.

2.3 Neural Networks

In this thesis, only the weight optimization of ANN was explored and not
the evolution of the neural architecture itself. That is why four different
neural network structures were used. Two of which are standard feed-forward
networks, other two are recurrent. They were designed as comparable as
possible. That is why two are small, with 55 parameters and two are bigger,
with around 90 parameters (89 parameters in the feed-forward net, 91 in the
recurrent).
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Figure 2.3: GUI execution layout; the agent is shown as an arrow on the
starting tile.

Both architectures are implemented using only NumPy [22]. A specialized
library, such as TensorFlow or PyTorch is not used since the gradient com-
putation was not needed, except for Memetic Algorithm, as will be discussed
further in Section 2.5.

For all hidden layers, ReLU was used as an activation function. Softmax
was used for the output layer, as is a standard in classification (the problem
can be viewed as a classification of possible situations).

2.3.1 Feed-Forward

For feed-forward architectures, 9 input neurons must be considered instead of
5 because of the information about visits to neighboring tiles. Thus the small
version has 4 hidden neurons in one layer, and the bigger one has 5 in the first
hidden layer and 4 in the second layer.

2.3.2 Recurrent

Recurrent architecture has fewer input neurons (5), but parameters concerning
the recurrence of layers in the equation must be considered, so one hidden
layer of 4 neurons creates the small architecture, and two layers of 4 neurons
compose the bigger one. The computation of one hidden layer can be described
by the equation

scurr = φ(vin ·Win + sprev ·Wstate + b)
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where φ is an activation function, vin is a row vector of input to the layer,
sprev is a row vector of the output of this layer in the previous time step, Win

and Wstate are weight matrices of appropriate dimensions, for input and state
vector respectively, and b is a bias vector. In the next time step, sprev will
have the value of scurr in this time step. The output layer does not have a
state and is computed in the same way as in feed-forward ANN. The initial
state vector is equal to a zero vector. It is reset to zero vector before every
new maze simulation.

The recurrent architecture was encountering problems with the state vari-
ables exploding towards infinity, so in later tests, an attempt was made to
mitigate this using hyperbolic tangent as the activation function. However, it
did not have a significant influence on the performance of Recurrent Neural
Networks (RNNs).

2.3.3 Normalization

Based on a few initial tests, the normalization of the input values was im-
plemented since the angle was spanning from −180 to 180 while other inputs
barely exceeded the value 5. Furthermore, it was unclear how to set a value
representing that on some neighboring tile, the number of visits is impossible
to know since there is a wall separating the agent from it.

Angle was rescaled linearly — dividing by 180 — to the range (−1, 1].
Distances from a wall are mapped into the [0, 1) interval using a function

transform wall distance(k) = 1− 0.5k

which for k = (0, 1, 2, . . .) generates a sequence (0, 0.5, 0.75, 0.85, 0.9375, . . .).
Numbers of visits are mapped into the [0, 1] interval using a function

transform visits(k) = 1− 0.6k

which for k = (0, 1, 2, . . .) generates a sequence (0, 0.4, 0.64, 0.784, 0.8704, . . .)
that has a limit 1 for k → +∞ which makes a good upper bound to the case
of unknown value when the knowledge is obstructed by a wall.

The reason for a different constant in the cases of wall distance and number
of visits is that the difference between 3 or 4 visits is important to be noticeable
since the agent can get to the same spot 3 or 4 times. However, in the case
of wall distance, the difference between 3 and 4 is almost irrelevant. There,
the difference between 0 and 1 is extremely important since it is the basis of
understanding whether there is space to go.

2.4 Evolutionary Algorithm

The main EA have been implemented from scratch because it enabled the
most modifiability. The code is not optimized for speed but rather for clarity.
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All source codes are provided on an enclosed medium. Like Neural Networks,
it uses NumPy library [22] for mathematical operations. In code listings, it
is assumed to be imported as np as is common for the library. A common
parameter in all Listings is rng. It is a random number generator, created by
a function np.random.default_rng.

The whole implementation is object-oriented. Every operator implements
a pre-defined method that the main algorithm calls. This enables modularity
since, to implement a new operator, only the defined method needs to be
implemented. As can be seen in Listing 2.1 of helper method to the mutation
process, the instance of a class Evolution has a mutation operator it was
given in the constructor. It only requires the mutate method. This logic is
implemented similarly for all evolutionary operators.

1 def mutate(self, children):
2 for c in children.get_nets():
3 if self.rng.uniform(0, 1) <= self.mutation_prob:
4 # mutation is in-place
5 self.mutation.mutate(c, self.rng)
6 return children

Listing 2.1: Evolutionary algorithm core: Mutation helper method

2.4.1 Population

Population class contains basic logic concerning the population of individuals.
It stores the networks, their fitness value, their distance used for niching, which
will be discussed further in Section 2.4.7.1. The index of the best performing
individual is remembered since it is often required for comparisons.

2.4.2 Initialization

Initialization operator class takes the number of hidden neurons in layers de-
scribed as a list. A list [6,4] translates to 2 hidden layers, first with 6
neurons and second with 4 neurons. The final architecture then depends on
the second argument, the type of the network. This argument can be either of
"recurrent" or "basic" meaning recurrent or feed-forward architecture re-
spectively. It also determines the number of neurons in the input layer. That
is 9 or 5 respectively, as explained in Section 2.3. The output layer always
consists of 3 neurons.

The neural nets are then randomly generated, their default weights and
biases are sampled from a multivariate normal distribution. The parameters
of this distribution were found using the weight distribution of resulting nets
from a few initial tests. The parameters are shown in Table 2.1.
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Table 2.1: Parameters of normal distribution used to initialize the network
architectures.

mean value standard deviation
Recurrent 0 5

Feed-forward 0.5 1

The modularity of the implementation was useful when an initialization
using precomputed nets was required in the MA discussed further in Section
2.5.

2.4.3 Fitness Evaluation

As a fitness function, a simulation of an attempt to solve a maze was selected.
In experiments, evaluation on the same set of mazes and evaluation on a
different set in each generation was tested. The changing maze sets generate
issues in comparability, require multiple evaluations for each individual, and
lead to non-monotone convergence to an optimum. The fact that it converges
nonetheless shows an interesting property of EAs and will be discussed in the
Experimental part of this thesis.

The Evaluator class takes following parameters:

• n_mazes sets the number of mazes an individual will be evaluated on;

• max_actions sets the maximum allowed actions, the maximal amount
of time steps;

• w and h are integers, defining the width and height of the mazes in case
mazes are to be generated;

• generator is one of "kruskal", "DFS" or "random", it sets the generator
in case the mazes are to be generated or makes a random choice for every
maze;

• normalize is a boolean value, signaling if the input values should be
normalized or not;

• folder is a string with a path used to load a specific set of mazes stored
in a folder defined by the path. There should be no other files, else the
program crashes.

The choice of evaluating only based on success or failure is too simplistic
and needs a lot of mazes for evaluation to get some variability in the results.
Thus in this thesis, a more delicate measure of success was used. It can be
described using the following equation:

f(i) =
∑
m∈M dm(i) + tm(i)/t totm(i)

|M |
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1 def evaluate(self, net, rng, generate_mazes=False):
2 if generate_mazes:
3 self.generate_new_mazes(rng)
4 strat = NNStrat(net, self.normalize)
5 results = []
6 for maze in self.mazes:
7 maze.refresh_maze()
8 strat.restart()
9 agent = Agent(maze)

10 shortest_dist = maze.distance_from(agent.pos)
11 shortest_i = 0
12 last_pos = agent.pos
13 stuck_t = 0
14 tot_actions = self.max_actions
15 for i in range(self.max_actions):
16 next_action = strat.next_action(agent)
17 agent.apply_action(next_action)
18 if next_action == Action.GO:
19 d = maze.distance_from(agent.pos)
20 if d < shortest_dist:
21 shortest_dist = d
22 shortest_i = i
23 if d == 0:
24 break
25 if agent.pos != last_pos:
26 last_pos = agent.pos
27 stuck_t = 0
28 else:
29 stuck_t += 1
30 if stuck_t > 4:
31 tot_actions = i+1
32 break
33 results.append(shortest_dist + (shortest_i / tot_actions))
34 return sum(results) / len(self.mazes)

Listing 2.2: Fitness evaluation method

where M is a set of all mazes to simulate on, dm(i) is the closest distance from
the goal tile reached by individual i in maze m, defined as the number of tiles
between the agent and the goal. tm(i) is the time step at which the closest
tile was reached, and t totm(i) is the number of time steps executed.

This computation is implemented in a method evaluate shown in Listing
2.2. The first thing to notice is a strat variable on line 4. It is an instance of a
class NNStrat. It handles the neural network, normalizes inputs if applicable,
and translates the results of a forward pass through ANN into a respective
Action.
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On line 6 the loop over all mazes is defined. Each iteration, the maze is
reset, which is important for feed-forward architecture when the maze remem-
bers the number of visits to tiles. Then the strategy is reset. This is where
RNN resets its state to 0. An agent gets created on line 9.

Variables shortest_dist and shortest_i contain values described in the
mathematical equation as dm(i) and tm(i) respectively. Variable tot_actions
is t totm(i). It is changed only when the execution is prematurely finished,
thanks to a simple stuck state detection. It does not change if the agent
reached the end because the time when the goal was reached is also a measure
worth optimizing.

The stuck state detection is rather basic. It detects if the agent has not
moved for 5 time steps. In that case, the execution finishes with a lower than
the maximal amount of time steps because higher fitness values are considered
worse. And getting stuck is clearly worse than moving constantly. The posi-
tion is checked even if the action was to move forward since the agent might
walk into a wall. In that case, its position stays the same.

The feed-forward ANNs cannot get out of the stuck state because in every
position, there are only 4 possible configurations of inputs, and they do not
change. For RNN however, this does not hold because their inner state changes
each time step and depends on the previous one. That is why the limit was
set at a conservative 5 time steps. From initial testing was deduced that this
stuck state detection influenced only the runtime speed and not the quality of
solutions.

The results on mazes are stored in a list results and in the return state-
ment, their average is computed exactly as in the mathematical statement.

2.4.4 Selection

Multiple selection operators were implemented but based on previous experi-
ence, only the Stochastic Universal Sampling was used as a well-performing
selection operator.

Its implementation, seen in Listing 2.3, takes as arguments a list of fitness
values and a number of individuals to select. It returns indices from the list
of fitness values that were selected.

The select method contains 3 main blocks. In the first block (lines 3-7),
the fitness values are transformed using a function

transform fitness(f) = 1.1 · fmax − f

where fmax is a maximal value of f in the population. It reverses the order
of the fitness values since the lowest original value should take most of the
circle’s circumference. The maximal value is increased by a tenth else the
worst solution would have no chance of being selected. After that, the values
are rescaled to sum up to 1.
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1 class StochasticUniversalSampling:
2 def select(self, fitness, result_n, rng):
3 # reverse the fitness values (lower fitness is better)
4 max_f = np.max(fitness)
5 f_rev = -fitness + (max_f*1.1)
6 sum_f = np.sum(f_rev)
7 elem_angles = f_rev / sum_f
8

9 angle_d = 1/result_n
10 angle = rng.random() * angle_d
11

12 chosen_indices = []
13 i = 0
14 elem_angle = 0
15 for _ in range(result_n):
16 # find appropriate individual to select
17 while elem_angle+elem_angles[i] < angle:
18 elem_angle += elem_angles[i]
19 i += 1
20

21 chosen_indices.append(i)
22 angle += angle_d
23 return np.array(chosen_indices)

Listing 2.3: Stochastic Universal Sampling implementation

In the second block (lines 9-10), a starting angle is sampled from a uniform
random distribution, and an angle delta is computed as 1/n where n is the
number of indices to select.

In the last block (lines 12-22), the angles are iterated over by adding the
angle delta to the starting angle. For each angle, the index of the appropriate
fitness corresponding to that angle is added to the list. This is done with
parallel iteration over the rescaled fitness values, normalized, to sum up to 1,
just like the maximal angle iterated in the for loop.

2.4.5 Crossover

The expected crossover operator has a method crossover which takes 2 par-
ents and returns 2 offspring as a tuple. It must not change the parents, as
they are expected to be intact.

Two crossover operators were implemented. LayerCrossover takes a ran-
dom layer and swaps all weights and biases of that layer. The exact imple-
mentation is shown in Listing 2.4. NeuronCrossover, as the name suggests,
takes a random neuron out of all neurons and swaps its input weights and
bias. The implementation is very similar to that of LayerCrossover.
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1 def crossover(self, p1, p2, rng):
2 c1, c2 = deepcopy(p1), deepcopy(p2)
3

4 layer_i = rng.integers(p1.layers)
5 c1.w[layer_i], c2.w[layer_i] = c2.w[layer_i], c1.w[layer_i]
6 c1.b[layer_i], c2.b[layer_i] = c2.b[layer_i], c1.b[layer_i]
7 if c1.nn_type == "recurrent" and layer_i != p1.layers-1:
8 c1.sw[layer_i], c2.sw[layer_i] = c2.sw[layer_i], c1.sw[layer_i]
9

10 return c1, c2

Listing 2.4: Layer crossover implementation

2.4.6 Mutation

A mutation operator has to contain a method mutate that takes one network
as a parameter. Unlike crossover, a mutation operator is made to mutate the
network instance itself and does not return any value.

There are 3 implemented and tested mutation operators. The smallest
changes are done by the OneNeuronMutation, the biggest LayerMutation
and as a compromise between them is MultiNeuronMutation. A common
parameter of all of them is the standard deviation (sd), which sets the scale
of the normal distribution that is sampled and added to the mutated weights.

The first two mutation operators are simple. A node or a layer is randomly
selected, and then a vector or matrix sampled from the defined multivariate
normal distribution is added to it.

The MultiNeuronMutation has an extra parameter, proportion. It is a
decimal number between 0 and 1. It sets the proportion of all neurons that
are to be mutated. The exact number of nodes to mutate is determined by
the equation

nselect = bnneurons · proportionc

where nneurons is the total number of hidden and output neurons (all modifi-
able neurons). The exact implementation is shown in Listing 2.5.

In mutate method, on lines 7 to 10, all neurons’ coordinates — index of
layer and index of the neuron in that layer — are gathered into a list. It is
then shuffled, and a proportion of them is selected for mutation. The number
of nodes to mutate is computed, as specified above, on line 13.

The __mutate_one method is implemented in the same way as mutate
method of OneNodeMutation, but the coordinates are given as parameters,
instead of being randomly selected.
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1 class MultiNeuronMutation():
2 def __init__(self, proportion, sd):
3 self.sd = sd
4 self.proportion = proportion
5

6 def mutate(self, net, rng):
7 all_coords = []
8 for l in range(net.layers):
9 for n in range(net.b[l].shape[0]):

10 all_coords.append((l, n))
11

12 rng.shuffle(all_coords)
13 select_n = int(len(all_coords) * self.proportion)
14 picked = all_coords[:select_n]
15 for l, n in picked:
16 self.__mutate_one(net, l, n, rng)
17

18 def __mutate_one(self, net, layer_i, neuron_i, rng):
19 net.w[layer_i][:, neuron_i] += rng.normal(scale=self.sd,
20 size=net.w[layer_i][:, neuron_i].shape)
21 net.b[layer_i][neuron_i] += rng.normal(scale=self.sd)
22 # if the network is recurrent and selected layer is not output layer
23 if net.nn_type == "recurrent" and layer_i != net.layers-1:
24 net.sw[layer_i][:, neuron_i] += rng.normal(scale=self.sd,
25 size=net.sw[layer_i][:, neuron_i].shape)

Listing 2.5: Multi neuron mutation operator implementation

2.4.7 Replacement

Replacement operators require a method select which takes two populations,
old and new one, and returns a population of the same size as the old one,
created by selecting some individuals from both of them.

Multiple replacement operators were implemented, but two were mainly
used. A simple elitist replacement operator, BestOfAll which combines both
populations and takes the best individuals and a modified version with niching,
named BestNiche explained in next Section 2.4.7.1.

The BestOfAll operator is implemented by first concatenating the lists
of individuals, then an np.argsort function is called in the list of fitness
values. This function returns a list of indices sorted by their fitness values in
ascending order. Then the individuals at indices are taken from the start of
the array (low fitness is better) until there are as many individuals as in the
old population.
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2.4.7.1 Niching

BestNiche operator is based on the BestOfAll replacement operator. But
when an individual is added to the final population, only a few similar individ-
uals within a distance delimited by a parameter radius are also added. These
individuals are called leaders. Their number is parametrized by leader_count
and is expected to be very low. Experiments used leader_count 1 or 2. Other
close individuals are flagged as followers and taken out of the process. This
repeats until every individual in the combined population is flagged. If there
are not enough leaders o fill the resulting population, the rest is selected based
on fitness from the followers.

This process needs a distance metric for individuals, more specifically for
their genotypes. In this implementation, a mean of Manhattan distances
between layers is used. The exact formula is

dist(net1, net2) = 1
N

N−1∑
i=0
‖layer(net1, i)− layer(net2, i)‖1

where N is the number of layers, function layer(net, i) returns a vector of
all weights and biases from a layer i in a neural network net. This metric
considers a difference in a small layer more significant than the same difference
in a bigger layer.

The implementation is shown in Listing 2.6. Lines 2-6 are the same as in
the BestOfAll operator, the populations are combined, and a sorted array of
indices is constructed. Then, a distance matrix is computed, arrays of leaders
and followers are initialized with a flagging array assigned signaling if the
individual is assigned to either followers or leaders.

The main loop starts on line 11. The unassigned individual is added to the
list of leaders as a tuple of fitness value and an index. The reason for that is
the possibility to sort the values by the fitness value. Then, on line 16, indices
of individuals with distance smaller than radius are retrieved into a variable
niche_indices.

These indices are then cycled through from the most distant to the closest.
If there are any unassigned, they are assigned to leaders if they are not identical
and if leaders for this niche radius are still accepted. That is if their number
is lower than leader_count. Otherwise, they are added to the followers.

After the loop, individuals of the resulting population are selected. First
from the leaders, and after that from the followers, in both cases ordered by
fitness values. The approved_nets with their respective fitness values are
then put into a population, and a resulting population is returned.

2.5 Memetic algorithm

The implementation of MA requires a combination of evolution and local
search. This version of MA uses a population initialized by local search and

26



2.5. Memetic algorithm

1 def select(self, old, new, rng):
2 # create an empty population with the same properties
3 total = old.empty_new()
4 nets = np.append(old.get_nets(), new.get_nets(), axis=0)
5 total.set_nets(nets) # assign the nets (individuals) to the population
6 fitness = np.append(old.fitness, new.fitness, axis=0)
7 indices = np.argsort(fitness)
8
9 dists = total.get_distances() # shape [n, n], where n = len(nets)

10 assigned = np.full(fitness.shape, False)
11 leaders, followers = [], []
12 for i in indices:
13 if not assigned[i]:
14 assigned[i] = True
15 leaders.append((fitness[i], i))
16 niche_leaders = 1
17 [niche_indices] = np.where(dists[i] < self.radius)
18 # the farthest are assigned as leaders first
19 for rel_i in np.argsort(-dists[i, niche_indices]):
20 j = niche_indices[rel_i]
21 if not assigned[j]:
22 if dists[i][j] == 0 \
23 or niche_leaders >= self.leader_count:
24 followers.append((fitness[j], j))
25 else:
26 niche_leaders += 1
27 leaders.append((fitness[j], j))
28 assigned[j] = True
29
30 goal_size = int(indices.size // 2)
31 approved = 0
32 approved_nets = np.empty_like(old.get_nets())
33 approved_fitness = np.empty_like(old.fitness)
34
35 for _, i in sorted(leaders):
36 approved_nets[approved] = nets[i]
37 approved_fitness[approved] = fitness[i]
38 approved += 1
39 if approved >= goal_size:
40 break
41
42 for _, i in sorted(followers):
43 if approved >= goal_size:
44 break
45 approved_nets[approved] = nets[i]
46 approved_fitness[approved] = fitness[i]
47 approved += 1
48
49 res = old.empty_new()
50 res.set_nets(approved_nets)
51 res.fitness = approved_fitness
52 res.best_i = np.argmin(approved_fitness)
53 return res

Listing 2.6: Replacement with niching: BestNiche method implementation
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2. Implementation

follows with evolution. For neural networks, a standard method of local search
is SGD, which was used in this thesis.

Backpropagation that was not implemented is required for SGD. Thus
the PyTorch library was used by modifying a simple demo [23] to fit the
problem. The trained neural network is then transformed to the pure NumPy
implementation, and evolution is run as described earlier on a population filled
with the pre-trained networks.

2.5.1 Data sampling

To gather labeled data for the training and validation, a special Simulator
class was created. It is implemented similarly to the fitness evaluation. There
are mazes and an agent that is trying to solve them. Each time step, the agent
receives input and takes an action. The input is stored. Based on the position
and orientation of the agent, the algorithm determines the correct action (the
one in direction to the goal) and stores it as a label to the input. If the best
action is to turn back, both left and turn are equally good actions to take.
The implementation prefers right turns every time.

This process ran on 100 10x10 mazes, with 15 neural networks of the 10
best configurations found so far. That totals 150 different neural networks
running for a maximum of 200 time steps on 100 different mazes. This simu-
lation generated 1 565 056 labeled rows of data, 166 618 of which were unique.

2.6 CMA-ES

The CMA-ES is has many implementations, the chosen implementation is li-
brary cmaes [24] which is the most lightweight implementation available. It
uses an ”ask and tell” interface to guide the optimization and contains a func-
tion for a warm start to the evolution. This warm start function takes several
vectors and their fitness values, and based on their values and position in the
n-dimensional space, estimates the distribution parameters. That helps us
set the initial multivariate normal distribution in an informed way, hopefully
leading to better results.

Since ESs are used for real value optimization, all weights and biases of
the network had to be flattened and concatenated into a n-dimensional vector
of real numbers.

The usage of this library is quite different from the GA implementation
because it does not use crossover, mutation, selection, or replacement oper-
ators. The only element of the implemented GA used by CMA-ES is fitness
evaluation. The library even has a heuristic estimating the appropriate size
of a population (number of vectors sampled from the distribution in each
generation) given the dimensionality of the search space.
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Chapter 3
Experiments

The most important part of this thesis is the experiments. They consisted of
over 100 tests. The volume of gathered data is above the limit of reason, so
only a few selected notable results are compared.

All presented tests ran 15 times to ensure statistical reliability. They were
typically evaluated on 10x10 mazes, with 200 maximal time steps, with a
population of 100, and for 100 000 fitness function evaluations. For all tests
(where relevant) SUS was used as a selection operator. All test configura-
tions, even those not presented here, are specified in the appended files, in
src/test_definitions.ods.

To compare the performance of various configurations and algorithms, 3
main methods were used.

Evolution process is visualized using a plot of the fitness value of the best so
far (BSF) solution. The x-axis of this type of plot uses the number of maze run
simulations as a metric since the simulation of a maze solving attempt is the
most time-consuming part of the algorithm. Another option was the number
of generations or fitness evaluations. But the time complexity of those values
depends on the population size or the number of mazes used in the evaluation,
respectively.

The performance of the best solution, typically the best individual in the
final population, is visualized using two kinds of plots.

One is the shortest distance from the goal tile reached within the assigned
maximal time steps, averaged over all mazes. This plot typically uses only
mazes generated by Kruskal’s algorithm (Kruskal mazes), as they are more
complex and the maximal distance value is more consistent. It is a box-plot
containing the data from all — typically 15 — iterations of a given configu-
ration.

The second plot is a similar box-plot, but the plotted values are number
of mazes solved by the given iteration. In this plot, both Kruskal and DFS
mazes are usually used to give a better sense of the performance of the given
configuration.
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3. Experiments

Figure 3.1: Static mazes used in the experiments: 3 on the top were generated
by DFS and 3 on the bottom were generated by Kruskal’s algorithm.

For most runs, a set of six 10x10 mazes was generated. Three were gen-
erated with Kruskal’s algorithm, and three with DFS algorithm. These static
mazes are preset and do not change throughout the evolution. They are shown
in Figure 3.1. Many tests used only the 3 Kruskal-generated mazes. It is im-
portant to note that this is significantly less than in Shorten’s experiments
where the individuals in the evolution process were evaluated on 100 mazes
[17].

3.1 Neural Architectures

The first comparison is of the different Neural Architectures. The evaluation
was done on all 6 of the static mazes discussed earlier. All parameters, except
the size and the architecture of the neural nets, were the same. The differences
in architectures are described in Section 2.3.

As can be seen in the comparison of convergence progress in Figure 3.2,
the convergence speed of RNNs is hardly comparable to that of feed-forward
ANNs. From the comparison of best solutions in Figure 3.3, the feed-forward
ANNs also dominate the RNNs in both distance reached and mazes solved,
where RNNs perform around the level of a randomized agent.
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3.1. Neural Architectures
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Figure 3.2: Neural Architectures convergence comparison. Feed-forward ANNs
have a significantly better convergence rate. RNNs stagnate at almost initial
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Figure 3.3: Neural Architectures performance comparison. Feed-forward
ANNs generalize significantly better. RNNs have the performance compa-
rable to a random action picker.
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3. Experiments

These disappointing results of RNNs are the reason that the rest of the
experiments presented here focus mainly on the Feed-forward architecture.
That does not mean that RNNs were not tested further. The best performing
RNN — found using CMA-ES — is presented at the end of this chapter.

3.2 Different maze generators

As was already mentioned, two maze generators were implemented. The effect
of evaluation performed on only one type of mazes is noticeable and was
significant in the testing process. For this comparison, Layer crossover was
used for big ANNs and Neuron crossover for small ANNs. Other than that, the
same parameters were used. Except, of course, whether they were evaluated
on DFS or Kruskal mazes only.

In these runs, the mazes were regenerated at the start of each generation.
This caused the fitness value of a BSF solution to fluctuate throughout the
evolution. That is why floating average was used to flatten the curve in the
convergence plot, see Figure 3.4.
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Figure 3.4: Evaluators on different mazes convergence comparison. Clearly
visible is a better starting point for those evaluated on Kruskal mazes, as they
typically have shorter distances from start to goal. However, they are harder
to solve, which is noticeable from the fact that DFS evaluated individuals
outperform those evaluated on Kruskal.
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3.2. Different maze generators
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Figure 3.5: Evaluators on different mazes performance comparison. Compar-
ison was done on 20x20 mazes to reflect generalizing properties of the imple-
mentations. While individuals evaluated on mazes of either generator perform
better on that kind of mazes, the Kruskal evaluated individuals are more ver-
satile, reaching lower, but not abysmal performance on DFS mazes. DFS
evaluated individuals, on the other hand, have significantly greater difficulties
in solving Kruskal generated mazes.
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3. Experiments

3.3 Regenerated mazes

In the previous section, individuals evaluated on regenerated mazes were
discussed. This was an alternative approach, where mazes were not static
throughout the evolution but were regenerated each generation. This meant
that all individuals in the old population had to be reevaluated every gener-
ation to make them comparable to the offspring. The individual’s fitness is
not constant, and thus the plot of BSF solution fitness in the evolution pro-
cess does not decrease monotonously. To better visualize the convergence, a
floating average is used.

It is an interesting property of the EA that the individuals converge
nonetheless to a value close to 0, meaning that the individuals optimize a
behavior that is able to solve or almost solve any random maze. To enable
stability of the evaluation, 3 mazes are generated each generation and used in
the evaluator. All mazes in these experiments use the Kruskal generator. To
compare the capabilities of evolving on regenerated and static mazes, two con-
figurations, one small and one big feed-forward architecture were used. They
were being evaluated on 3 regenerated mazes, on 3 static Kruskal mazes (from
the pre-defined 6), and lastly on 10 static Kruskal mazes, not shown here.
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Figure 3.6: Regenerated and static mazes convergence comparison. The slow
convergence on 10 mazes is due to longer generations with respect to maze
run simulations. The floating average of fitness oscillates around 2, eventually
being surpassed by both static evaluated configurations.
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3.3. Regenerated mazes

Since all runs were calibrated for the total of 300 000 maze run simulations,
it meant less than a third of generations for the runs evaluated on 10 Kruskal
mazes in comparison to the runs on 3 static mazes. This is the reason for
the slower convergence seen in Figure 3.6. An interesting result to note is
the comparability of the performance of the individuals evaluated on only 10
mazes compared to those evaluated on a couple of hundred mazes (though not
every generation).
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Figure 3.7: Regenerated and static mazes performance comparison also on
20x20 mazes since the regenerated evaluation could have used some of the
10x10 mazes in the comparison.
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3. Experiments

3.4 Niching

After a couple of initial tests, a closer look at the final populations lead to a
discovery that up to 90% of the individuals were precisely the same. This was
a major issue, as the population is very unlikely to progress if crossover has
no effect.

A replacement operator with niching was implemented, and multiple com-
binations of niching parameters were tested until the most effective were found.
These are niche_radius=0.5 and leader_count=2.
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Figure 3.8: Niching convergence comparison. Niching prolongs the conver-
gence, but the final value is lower than without niching.

Niching was tested on recurrent mazes too. However, a significant effect
on the convergence rate was not found.
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Figure 3.9: Niching performance comparison. The most improvement is visible
in the overall shortest distance that the niched individuals can reach. However,
some increase in solving capabilities is also noticeable.
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3. Experiments

3.5 Population size

Generally, an important hyperparameter in EA is population size. In most
tests, a population size of 100 was used. However this comparison, see Figures
3.10 and 3.11, of 6 configuration different only in architecture and population
size shows, that in some cases lower population size can be better.

It is important to mention that all these configurations used niching. If
not, the results on lower population size would stagnate easier and probably
not reach the results they did here.
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Figure 3.10: Population size convergence comparison. This shows well that
even though all configurations converge to a similar value, the smaller mazes
with a lower population converge faster.
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Figure 3.11: Population size performance comparison. While population size
100 is best for the small architecture, one could argue that population size 50
is better for the big architecture, based on the results in the number of solved
mazes.
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3. Experiments

3.6 CMA-ES

CMA-ES was one of the main approaches tested in this thesis. As was men-
tioned earlier, it was the most successful in optimizing the RNN architec-
tures. But here are the best results on feed-forward architecture achieved by
CMA-ES and implemented GA. Both were tested extensively, and the best
performing was chosen for this comparison.
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Figure 3.12: CMA-ES convergence comparison. The CMA-ES has an amazing
speed of convergence. The volume of available maze run simulations was not
required. A seemingly late start is created by the warmup phase before the
CMA-ES. In this configuration, the algorithm samples 5 000 individuals to
estimate the distribution. That equals 15 000 maze run simulations before
the CMA-ES even starts.
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Figure 3.13: CMA-ES performance comparison on static mazes. The CMA-ES
has superior performance in optimizing on static mazes.
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Figure 3.14: CMA-ES performance comparison on regenerating mazes. CMA-
ES seems to have difficulties — especially compared to its performance on
static mazes — to optimize the weights on an unstable state space created by
constantly regenerating mazes.
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3. Experiments

3.7 Memetic algorithm

The implementation of a Memetic Algorithm required pre-optimized individ-
uals. These were generated using standard SGD and backpropagation. 15
such individuals were trained on all 1.5 million rows (divided into training
and validation dataset) and another 15 individuals on the unique rows (there
were around 160 000 of those). Combined, they generated 30 individuals of
small architecture and 30 individuals of big architecture. Their performance
is visualized in Figure 3.15.
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Figure 3.15: Performance of individuals generated by SGD and backpropaga-
tion. The staggering incapability of the individuals trained on unique data
was unexpected. On the other hand, on all data, similar performance to that
of the best obtained recurrent networks can be seen.

To make a good comparison with the results of MA, two exactly the same
configurations were used. They all use niching and have a lower standard de-
viation on the mutation operator because smaller modifications were expected
to be required. The only difference is in the initial population. Both have size
30, but one is made up of pre-optimized individuals as seen in Figure 3.15 and
the other population was initialized randomly as with a generic GA.

The results, see Figures 3.16 and 3.17, were not too impressive, so CMA-ES
was tested with warm starting the distribution on the 30 pre-trained mazes.
However, this did not lead to any performance boost, rather the opposite.
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3.7. Memetic algorithm
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Figure 3.16: MA and GA convergence comparison. The MA have a significant
advantage in the starting fitness value of BSF solution. The big architecture
seems to improve even in the last third of the evolution, which is not common
in these experiments.
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Figure 3.17: MA and GA performance comparison. Similarly to the conver-
gence plot, the big architecture seems to favor the MA. It also reflects the
relatively good quality of the SGD results on big mazes.
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3. Experiments

3.8 Final Comparison

In this final section, the best results of various configurations and approaches
are compared. Two feed-forward networks, one trained on 10 static and the
other on 3 regenerated Kruskal mazes. Both architectures are small and use
niching. Then there is the best achieved RNN, using CMA-ES warm started
on 5000 individuals, evaluated on 3 regenerated Kruskal mazes. The RNN
was run for fewer maze run simulations because the CMA-ES proved to have
faster convergence. This change had no negative impact on the solutions.
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Figure 3.18: Best configurations performance comparison. Except for RNN,
the results are comparable, showing around 40-50% chance of solving a previ-
ously unseen maze of 4 times the size.
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3.8. Final Comparison

The last approach compared here used Decision Trees and was created
by the author in a separate work. The crossover and mutation operators
were different, but SUS and a simple elitist replacement strategy — like the
BestOfAll — were used. It was also evaluated on 3 regenerating mazes and
for the same amount of maze simulations. The specific configuration of pa-
rameters is not discussed here since it was a part of a different assignment. It
is, however, the best found configuration among those tested.

3.8.1 Comparison to Wall Follower

Wall Follower (WF) is a common strategy used to navigate mazes. An inter-
esting property to look for in a maze solver is its effectiveness compared to
the WF algorithm.

The best performing configurations were thus tested to see if they solve
mazes faster or slower than WF. Since all mazes generated by the implemented
generators are solvable by WF, the number of actions it takes a right-hand
wall follower was taken as a threshold. Then those iterations that succeed in
solving the maze with fewer actions are flagged as better than a WF on the
given maze. Finally, by seeing if more iterations succeed in beating the WF or
not, the configuration is considered faster or slower than WF. By aggregation
over multiple mazes, data in Table 3.1 were collected. The table is sorted by
success in beating the WF. The mazes in question are 10x10 Kruskal mazes
since they were the baseline mazes.

Table 3.1: Comparison to right-hand Wall Follower (WF). A major portion
of the lower performance results were individuals unable to solve the maze.
In attempts when the maze was solved, the dominance of an evolved agent
compared to WF was evident.

Number of mazes, where WF was Slower Same Quicker
Best ANN - regenerated 34 0 66

Best Decision Tree 29 7 64
Best ANN - static 29 1 70

Best RNN - regenerated 12 1 87
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Conclusion

The aim of the thesis was the exploration of evolutionary methods and their ca-
pabilities in their use with GNNs. More specifically, the generalization of maze
solving behavior of an agent was pursued. This task consisted of exploring
the theoretical background, implementing a visualization program with some
evolutionary methods, and finally testing multiple evolutionary approaches
and comparing their properties.

All objectives were successfully completed, starting with a revision of the
theory behind EAs, MAs and GNNs. This included a simple glossary with
the most important terms used in this thesis. On top of that, a description
of various evolutionary operators with examples, including some special oper-
ators for GNNs. Maze solving problem and commonly used techniques were
also discussed.

In Chapter 2, the implementation was described in detail for environment
definition, maze generation, GUI layout, and various used evolutionary oper-
ators, which were necessary for extensive testing in the next chapter.

The experiments compared multiple different evolutionary approaches to
the optimization of a maze solver using neural architectures. Although the
experiments did not achieve as significant results as the author hoped they
would, the GNN approach proved to work better than the decision tree ap-
proach. A wide range of configurations was tested, compared and the benefits
of some configurations were outlined. Over the weeks of CPU time that the
tests took, hundreds of megabytes of resulting neural nets were generated and
are freely accessible on the attached medium.

The resulting generalization properties were quite significant, considering
the performance of individuals evolving in mere 10 mazes when encountering
a wast space of unseen, bigger, and harder mazes.

The results of this thesis can prove to be a useful starting point in the
search for an appropriate evolutionary algorithm since the spread of tested
approaches is very wide. There are many things that could be tested further.
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Conclusion

Further Improvements

One potential focus would be the RNNs since the results of those were very
poor. Based on prior research, it is likely that RNNs, without additional
information about the number of visits to neighboring tiles, should give better
results than those achieved in this thesis. An increase in size and depth of the
network might help since additional information needs to be remembered.

Another direction that would be interesting to explore is a more sophis-
ticated testing of the MA approach. The extent to which this approach was
explored in this thesis does not do justice to the potential the field of MA
presents. Specifically, in this case, more effort would require to be put into
the pre-training phase, or a more hybrid approach with one epoch of learning
in every generation might be a good approach to try.

A questionable decision was to test the configurations on only 3 static
mazes. The results clearly show that the fitness value converges quickly to
the optimal value at around 0, while the overall capabilities stay mediocre at
best. This hyperparameter was set too low, and its increase would be a great
direction to take in exploring the subject further.
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Appendix A
Acronyms

AI Artificial Intelligence. 1, 12
ANN Artificial Neural Network. 1, 3, 9, 10, 12, 16, 18, 21, 32, 33, 49

BSF best so far. 31, 33, 36, 46

CMA-ES Covariance Matrix Adaptation – Evolution Strategy. 3, 9, 11, 29,
33, 43–45, 47

DFS Depth-First Search. 14, 31–35

EA Evolutionary Algorithm. 1–4, 10, 12, 13, 19, 20, 36, 41, 51
EP Evolutionary Programming. 3
ES Evolution Strategy. 3, 29

GA Genetic Algorithm. 3, 9–11, 29, 43, 45, 46
GNN Genetic Neural Network. 1, 10–13, 51
GP Genetic Programming. 3
GUI Graphical User Interface. 13, 15, 16

MA Memetic Algorithm. 3, 10, 20, 27, 45, 46, 51, 52

RNN Recurrent Neural Network. 18, 21, 32–34, 43, 47–49, 52

SGD Stochastic Gradient Descent. 10, 27, 45, 46
SUS Stochastic Universal Sampling. 5, 31, 47

WF Wall Follower. 11, 12, 49
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Appendix B
Contents of enclosed medium

README.md............................the file with directory description
src.......................................the directory of source codes

app.py.........................................the main run script
comparator.ipynb...........the Jupyter notebook with comparisons
requirements.txt...................the required libraries definition
test definitions.ods.........the file with configuraions of all tests
mazes.....................the saved static mazes used in evaluations
nets.................................the optimized nets, test results
plots.................the plots generated by the comparator.ipynb
supervised data..........the labeled data used for backpropagation

thesis..................................the directory of the thesis text
acronyms.tex ...............................the glossary definition
BachelorsThesis.pdf ................ the thesis text in PDF format
BachelorsThesis.tex ............. the thesis source in LATEX format
FITthesis.cls.............the slightly modified FIT TEX theme file
iso690.bst....................the BibTeX formatting definition file
ref.bib..................................the BibTeX references file
chapters ...................... the chapters sources in LATEX format
include..............................the graphics used in the thesis
sources.........the PDFs of some cited (and other relevant) sources
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