Master Thesis

Czech

Technical
University
in Prague

F4 Faculty of Nuclear Sciences and Physical Engineering
Department of Physics

Identifying Heavy-Flavor Jets Using Vectors
of Locally Aggregated Descriptors

Bc. Georgij Ponimatkin

Supervisor: RNDr. Jana Bielc¢ikova, Ph.D.
Supervisor—specialist: Dr. Ing. Josef Sivic
May 2021



ii



CESKE VYSOKE UCENITECHNICKE VPRAZE |
FAKULTA JADERNA A FYZIKALNE INZENYRSKA A%\
PRAHA 1 - STARE MESTO, BREHOVA 7 - PSC 115 19 Vo

Katedra: fyziky Akademicky rok: 2020/2021

ZADANI DIPLOMOVE PRACE

Student: Bc. Georgij Ponimatkin

Studijni program:  Aplikace ptirodnich véd

Obor: Experimentalni jadernd a ¢asticova fyzika

Nazev prace: Identifikace jetl obsahujicich tézky kvark pomoci vektora lokdlnich
(Cesky) agregovanych deskriptorti

Nazev prace: Identifying Heavy-Flavor Jets Using Vectors of Locally Aggregated
(anglicky) Descriptors

Pokyny pro vypracovani:

1. Uvod do problematiky studia jetii obsahujicich t&7ké kvarky.
2. Uvod do strojového uéeni a poéitadového vidéni.
3. Pfehled aktuélnich vysledkl v tagovani po algoritmické strance.

resp. s termalnim pozadim.

5. Diskuse ziskanych vysledkii.

Prace bude vypracovana v anglickém jazyce.



Doporucena literatura:

[1] A. Zhang, Z. C. Lipton, M. Li, A. Smola, Dive into Deep Learning, 2020
interaktivni open source ucebnice: https://d2l.ai.

[2] R. Arandjelovié, P. Gronat, A. Torii, T. Pajdla, J. Sivic, NetVLAD: CNN architecture
for weakly supervised place recognition, arXiV: 1511.07247.

[3] L. Cunqueiro, M. Ploskon, Searching for the dead cone effects with iterative
declustering of heavy-flavor jets, Phys. Rev. D 99 (2019) 074027.

[4] I. Goodfellow et al., Deep Learning, MIT Press, 2016.

[5] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2011.

[6] D. Guest et al., Jet Flavor Classification in High-Energy Physics with Deep Neural
Networks. Phys. Rev. D 94 (2016) 112002.

Jméno a pracoviste vedouciho diplomové prdce:

RNDr. Jana Bielcikova, Ph.D.
FIJFI CVUT v Praze a Ustav jaderné fyziky AV CR, v.v.i.

odborny konzultant: Dr. Ing. Josef Sivic, CIIRC, CVUT v Praze

Datum zadani diplomové prdce: 23.10.2020
Termin odevzdani diplomové prace: 03.05.2021

Doba platnosti zadani je dva roky od data zadani.

vedouci katedry dékan

V Praze dne 23.10.2020



Acknowledgements

First, I would like to thank Jana
Bielcikova for her thoughtful advising and
for allowing me to have a freedom to pur-
sue the research that I like this early. I
also would like to thank Josef Sivic for his
advising through machine learning and
computer vision related topics and for fu-
eling my further interest in the computer
vision research. I would like to acknowl-
edge Raghav Kunnawalkam Elayavalli
and Jorn Putschke for teaching me many
experimental aspects of jet physics and
Monte-Carlo simulations. The research
process would not have been fun with-
out my colleagues at NPI and IMPACT
CIIRC CTU, so I also owe them a big
thanks for countless coffee breaks. One
separate big thank belongs to Jan Kreps
and the whole CIIRC IT department for
their flawless operation of the CIIRC com-
putational cluster. Finally, I would like
to thank my family for their continuous
support during my studies.

Declaration

Prohlasuji, ze jsem svou diplomovou praci
vypracoval samostatné a pouzil jsem
pouze podklady (literaturu, projekty, SW
atd.) uvedené v prilozeném seznamu.

Nemam zavazny duvod proti pouziti to-
hoto skolniho dila ve smyslu § 60 Zakona
¢. 121/2000 Sb., o pravu autorském, o
pravech souvisejicich s pravem autorskym
a o zméné nékterych zdkonu (autorsky
zékon).

V Praze dne .......cccveeieeinnnnnnn.
Georgij Ponimatkin



Abstract

Identification of heavy flavor jets with
high statistical precision is a crucial task
needed for many physics analyses rang-
ing from heavy-ion physics to new physics
searches. Such precision can be achieved
by using machine learning based tagging
methods. For this purpose in this work a
set based tagging model called JetVLAD
is introduced. The performance of this
model is evaluated using simulated p+p
data at RHIC energies of /s = 200 GeV.
At last, the effects of tracking efficiency,
pileup and thermal background on model
performance are studied. The resulting
model achieves good performance across
large jet transverse momentum (pr) range
from 5 to 40 GeV /¢ with minor perfor-
mance degradation caused by the effects
of tracking efficiency and pileup. The
JetVLAD model opens up the possibil-
ity of high precision heavy flavor mea-
surements with lower dataset size require-
ments in comparison with standard meth-
ods.
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machine learning, dead cone effect
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Abstrakt

Identifikace jetd pochéazejicich z rozpadu
tézkych kvarki s vysokou statistickou
presnosti je klicovou soucasti mnoha fy-
zikalnich analyz, od fyziky tézkych ionta
po hledani nové fyziky. Takova pTresnost
muze byt dosazena s pouzitim metodik
strojového uceni. Za timto ucelem je v
této praci predstaven taggovaci model Je-
tVLAD, ktery je zaloZen na principu kla-
sifikace mnozin. Vykon modelu je vyhod-
nocen na rekonstrukci jett obsahujicich
tézky kvark v simulovanych p+p srazkach
pii energii /s = 200 GeV dosazitelné na
urychlova¢i RHIC. Nakonec jsou studo-
vany efekty tucinnosti trackingu, pileupu
a termdalniho pozadi na vykon modelu.
Vysledny model dosahuje dobrého klasifi-
kac¢niho vykonu v ramci Sirokého intervalu
priénych hybnosti (pr) jetu od 5 do 40
GeV/c s malou degradaci vykonu v du-
sledku efektd ucinnosti trackingu a pile-
upu. Model JetVLAD umoznuje provadét
vysoce presnd méfeni méfeni jetit obsahu-
jicich tézky kvark s mensimi pozadavky
na velikost namérenych dat oproti béznym
metodam.

Klicova slova: jetova fyzika, tagovani
jett, strojové uceni, dead cone efekt

Pteklad nazvu: Identifikace jetu
obsahujicich tézky kvark pomoci vektoru
lokalnich agregovanych deskriptori
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Introduction

Accurate measurement of jets containing a heavy quark (c or b), commonly
referred as to heavy flavor jets, is a fundamental task that is required for a
multitude of physics measurements - from Higgs boson decays in H — bb
channel, the search for new physics and last, but not least, precise studies of
the quantum chromodynamics properties. In all cases, one needs to properly
identify the heavy flavor jet. Most of the time, this is done by reconstructing a
heavy flavor meson or hadron within the jet. More advanced techniques utilize
statistical templates or primitive machine learning algorithms to mitigate the
need for manual reconstruction.

With the recent dynamic development in the field of machine learning,
the question arises - to what extent can those modern techniques be applied
in the task of heavy flavor jet identification? Most of the current machine
learning models for heavy flavor jet identification are built upon two ideas.
The first is that it takes a fixed number of input features, thus potentially
limiting the classification power of the algorithm [1]. Another approach tries
to treat jets as a sequence of transverse momentum (pr) or vertex ordered
particles [1], [2]. While being more powerful than the previous class, those
models introduce a nonphysical ordering of particles. To solve this issue, we
introduce the Jet VLAD model [3], a novel set-based tagging algorithm that
allows to mitigate the drawbacks of both previous model classes.

This work is organized as follows: the first chapter deals with motivation
for heavy flavor jet studies at medium energies. The second chapter briefly
introduces basics of computer vision and machine learning. The third chapter
reviews recent results on heavy flavor jet tagging with machine learning
methods. The fourth, last chapter, is dedicated to author’s contribution to
the development of the JetVLAD tagging model and its applications.






Chapter 1

Heavy Flavor Jets

Every time we wish to measure a quark or gluon in a final state of some
scattering process, we have to experimentally reconstruct and measure jets -
which manifest themselves as a collimated shower of highly energetic particles.
Because of that, jets and their properties are one of the most important
observables in many subareas of particle and nuclear physics - be it energy
loss mechanisms in heavy-ion collisions or searches for new physics. In
this chapter, the basics of jet physics will be introduced, with a focus on
heavy-flavor jets, since they play an important part in the development of
the JetVLAD model, especially in the context of current and future high-
precision measurements of heavy quark production in hot and dense QCD
matter created in heavy-ion collisions at large accelerator facilities such as
RHIC at Brookhaven National Laboratory or the LHC at CERN.

B 1.1 Basics of Jet Physics

One of the most important predictions of Quantum Chromodynamics (QCD)
is the existence of jets - highly energetic, collimated showers of particles
that are created in high-Q? processes, where Q? is the square of the four-
momentum transfer. In those processes, the final state quarks and gluons
have a large virtuality, which later on leads to the extensive partonic radiation.
This radiation sheds off virtuality from the outgoing partons up to the values
of Q% ~ AéCD, where the parameter Agcp describes the scale at which
non-perturbative transition from partons to hadrons happens, with current
estimated value being Agcp ~ 220 MeV [4]. The resulting hadronic cascade
is then manifested as a jet within the detector.

To calculate cross-section of perturbative processes in proton-proton (p+p)
collisions, the QCD factorization theorem [5] can be used and the cross section
is then commonly expressed in the form

N
1Y A
77N, > Foion (@0 Q%) @ fsp (¥, Q%) @ Gapsea @ D(c — h) @ D(d — h).
Z (1.1)

Here z,, z;, denote shared momentum fraction of the parton in the incoming
process, f,. /p; (7;, Q%) are parton distribution functions for quark flavor i
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1. Heavy Flavor Jets

in proton j that encode density of the partons within the incoming proton,
Oab—scd 18 parton level cross-section for 2 — 2 process obtained by the means
of perturbation theory calculation, and D is a fragmentation function, which
encodes the probability that the outgoing parton will transfer into hadron h
after hard scattering. This function serves as a "black-box" approximation
for the hadronization process, which is still not understood due to its non-
perturbative nature.

The values of f and D used in this formula are fixed for each value of the
Q? scale. To change the scale (and hence the behavior of these functions) one
can use the DGLAP evolution equations [6]—[8], given for quark distributions
by

0. _0i@) [y
z Y

[fqi(yan)Pqﬁqg <z) +9(y, Q*)Pygq (;j)} ;

oln(Q?) 27
(1.2)
and for gluon distributions by
Og(x, Q%) _ as(@®) [Mdy [~ ’ z : z
om(Q?) 2n /x N L;f‘“(y’Q WFasas (y) 90, Q) Py (y)
(1.3)

Here f,, (7, Q?) denotes the parton distribution function for a quark of flavor
i and g(x, Q?) is a gluon distribution function. The P, is QCD splitting
function that describes the probability of parton radiation with certain
momentum fraction and aS(Q2) is a strong coupling constant at scale QZ,
which value is given by

127

(33 — 2N;) In (AZQZ’) .

QCD

as(Q?) = (1.4)

Here the Ny is a number of quark flavors available at current scale.

The splitting functions play an important role within the parton-shower
description of a jet evolution, which is a semiclassical approximation of the
real jet evolution. In the leading order (LO) perturbative QCD expansion
[6]-[8] they are given as

22
Pyogg(z) =Cr (11+— 2 ) , (1.5)
+
Pprge(z) = CFH(Z_Z)Q, (1.6)
Pyogg(z) =Tr (22 +(1-2)), (1.7)
1 1—-2
Prog() =204 (qogm v +:0-9). (9

with z being the shared momentum fraction during splitting process, and
Cr =4/3 and C4 = 3 being colour factors, needed to take into account the
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1.2. Experimental Reconstruction of Jets

colour charge structure of QCD. This framework allows one to describe the
jet evolution at the parton level, starting from the highly virtual parton and
producing a cascade of emissions up to the Q% ~ Aéc p level.

B2 Experimental Reconstruction of Jets

The experimental reconstruction of jets relies on the jet clustering algorithms.
Of those, the most prominent role is played by the sequential recombination
algorithms [9]-[12]. To be well behaved, the jet clustering algorithm is required
to have the following properties:

8 Collinear Safety - in the case of collinear parton splitting during
evolution, the algorithm of interest should produce the same jet.

® Infra-Red Safety - addition of particles with small py should produce
the same number of jets as without them.

8 Process Independence - jet algorithm should be independent of any
underlying physical process as well as the level of description (partonic vs.
hadronic level). The latter means that the reconstructed parton-level jet
and its corresponding particle-level jet should have the same properties.

B 1.2.1 Fk; Algorithm Family

The most widely used jet algorithms nowadays are those of the kr family,
implemented within FastJet package [13], |[14] and represented by the kp [15],
anti-kp [16] and C/A algorithms [17], [18]. Those algorithms operate in the
(n, ¢, pr) space (with n being pseudorapidity, ¢ being azimuthal angle and
pr being particle transverse momentum). Bellow we describe the individual
steps of these types of jet algorithms:

1. For all particles distance d? = p%kz is calculated.

} (ni—n;)2+(pi—p;)?
R2

2. For each pair of particles 4, j the distance d;; = min{pQT]fi,p%’fj
is calculated.

3. Minimum distance dyin = min{d;, d;;} is obtained.

4. If dyin = d;j then the particles ¢ and j are merged into one and the
procedures goes back to step 1. Otherwise, if dyi, = d;, the obtained
object is a jet.

Here, R is a jet resolution parameter that controls the size of a reconstructed
jet.

By varying the value of the k parameter, we obtain the following algorithms:

® For k = 1 we obtain the k7 algorithm [15], which reconstructs jets with

a pr-ordered substructure. Jets found by the kr algorithm are biased

towards soft particles, have irregular shapes, and are generally used to
estimate background effects on jets.

5



1. Heavy Flavor Jets

® For k = 0 we obtain the Cambridge-Aachen algorithm (C/A) [17], [1§].
This algorithm results in jets having angular-ordered substructure, which
is natural to QCD. The algorithm is the best candidate for reconstruction
of jets for substructure studies.

® For k = —1 we obtain the anti-kr algorithm [16]. This algorithm is
biased towards hard particles and leads to jets with circular shapes. Its
substructure is nonphysical, due to the clustering around the hard core
particle. Nonetheless, this algorithm is most often used for the recon-
struction of jets in the experiment where knowledge of the substructure
is not needed (for example, inclusive jet spectra analysis).

. 1.3 Lund Plane

In the last few years, the Lund plane formalism [19] became a prime candidate
for measuring jet radiation patterns both in p+p as well as heavy ion collisions
[20]. The whole approach assumes that the jet of interest is reconstructed with
the C/A algorithm and hence is reconstructed with respect to angular ordering,
which is natural to QCD. Then the clustering history of the reconstructed jet
is traversed back to the hardest branch. Assuming we have two branches a
and b with their corresponding transverse momenta pr, and pr;, such that
PT,a > Pr,p, We can construct a set of observables

A=/ —m)? + (D0 — )2, (1.9)

kr = prpla, (1.10)

;=T (1.11)
PT,a +pT,b

where 7); is the pseudorapidity coordinate of the subjet ¢ and ¢; is the
azimuthal coordinate of the subjet i. Adding a cut on the z value as

P1p

By = —————
g DT.a +DPTh

> 0.1, (1.12)
we can introduce the SoftDrop technique |21] which looks for a split, that
satisfies the condition shown above. If such split is found, the jet is accepted,
otherwise it is discarded. This greatly reduces the soft wide angle radiation
within the jet and brings the substructure observables closer to the parton
level.

By recording the full jet clustering history over many jets, we can arrive
to an average Lund plane, which can be expressed in the double-differential
form as

1 dN
Njets dlog(kr)dlog(1/A)

Here Njets is a number of jets used to construct the emission diagram and
Tloglhr) c]l\{og(l 7Y is a number of jets with particular distance between subjets

oA, kr) = (1.13)

log(1/A) and emission strength log(kr). This distribution can be expressed

6



1.4. Dead Cone Effect and Lund Plane

at the leading order of perturbative QCD in the collinear approximation
(A1) as

0skr)OF 2 (p () 1 Pl —2)), 2= T (114)

p ~
™ prjetd’

with ag(kr) being the strong coupling constant dependent on k7 and Cp = %
being the colour factor. We can see that the Lund plane diagram is directly
connected to the framework of parton shower evolution and splitting functions
and thus is able to directly quantify the mechanisms behind it as well as the
possible effect of QGP medium on the energy loss within jets. Examples of
different Lund plane regions and their explanation can be seen on Fig. [1.1l.
Examples of Lund plane generated by Pythia8 model [22], [23] (p+p collision),
JEWEL model [24]-[26] (Pb+PDb collisions) and the difference between them
can be seen on Fig. [1.2l The Pythia8 is a LO Monte-Carlo generator for
p+p collisions which incorporates Lund fragmentation model and pr ordered
parton showers. The JEWEL generator is a modification of the Pythia6 Monte-
Carlo model, which incorporates jet quenching effects due to the propagation
in quark-gluon plasma. The difference between simulated p+p and Pb+Pb
collisions, shown in the rightmost plot in Fig. [1.2| shows modification of jet
emission due to the dense nuclear medium.

|
Ilijze In 260 ; 3

InR

soft, large-angle radiation
NS
&
Q)
S
»
&

<

Inl/R In 1/9 Inl/R 1111/9

Figure 1.1: Lund plane regions and their relations to the jet evolution.
Physical interpretation of different Lund plane regions (left). An example of
simple shower mapping procedure in the Lund plane (right). Taken from [20].

. 1.4 Dead Cone Effect and Lund Plane

The gluon radiation spectrum in the medium can be written in the form of a
modified Bethe-Heitler spectrum [27] as

d s
W_a CF,/%, w < wy = gL (1.15)

dw Tw

Here § is QGP transport coefficient and L is a path traversed by parton in the
medium. This spectrum describes energy distribution of gluons emitted by

7



1. Heavy Flavor Jets

PYTHIA 8 [ JEWEL wirecoil
P, > 200 GeVic, antik; R =04

Cambridge-Aachen Declustering

[ Pre” 130 GeV/c, anti-k; R = 0.4
L Cé\mbvidge-Aachen Declustering

-1 -10 - -10 " -
0 05 1 15 2 25 3 35 4 45 0 05 1 15 2 25 3 35 4 45 5
In(1/6) In(1/6)

0/ 0
0 05 1 15 2 25 3 35 4 45 5
In(1/6)

Figure 1.2: Lund plane comparisons for p+p and Pb+Pb collisions.
Lund plane generated by Pythia8 model (left), JEWEL model (middle) and
difference between quenched JEWEL jet and vacuum JEWEL jet (right). Taken
from [20].

the massless quark in the medium. If one were to consider heavy-quarks (i.e.
those such that mg > A?QC p the Bethe-Heitler spectrum has to be modified

to the form

dW  a,Crp [w 1
Ao WwF\/%[l LGB (%)]2/3' (1.16)

The addition of the later factor leads to the presence of so-called dead cone
effect, which results in the suppression of the small angle radiation by heavy
quarks. As a consequence of that, the energy loss of heavy quarks in the
medium should be smaller than for lighter quarks. For a long time, the dead
cone effect was evading experimental observations, most probably due to the
fact that "standard" observables are not sensitive enough to observe it. One
such observable is a nuclear modification factor R44, given by

1 dNﬁfj/dedy
Ncoll) ng;t/dedy .

Raa(pr) = < (1.17)

Here (Ncqll) is an average number of binary nucleon-nucleon collisions, the
term dN ﬁﬁfi /dppdy is a jet yield in A+A collision and ng;t /dprdy is a jet
yield in p+p collisions. For R44 < 1 we say that we observe the suppression,
for Ra4 > 1 we say that we observe an enhancement. As an example, Fig.
shows measurements of charmed meson R 44 factors both at RHIC and LHC
energies and their comparison with inclusive hadron R44 measurements.
Notice, the small differences between the R4 for D° meson and inclusive
hadrons.

Recent research shows that Lund plane could be a tool that will finally
allow to access the experimental signatures of the dead cone effect and
thus answer if it exists. The predicted ratios of hadron level jet emission
angles dependent on the radiator energy for charmed hadrons to inclusive
hadrons and bottom hadrons to inclusive hadrons can be seen on Fig. [1.4.
Indeed, the direct measurement of Lund planes both for light and heavy-flavor
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1517 @ Au+Au |s,, = 200 GeV 0-10%

[ ™ DALICE 2.76 TeV

T T T T T T T
(b) O 1 0-12% STAR 200 GeV
O  h*0-5% ALICE 2.76 TeV

Figure 1.3: Rs, factors for charmed mesons and inclusive hadrons.
Taken from .

jets will provide an unprecedented constraint for theory models that will
hopefully allow us to more deeply understand the inner workings of the strong
interaction.
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Figure 1.4: Flavor dependence of jet emissions. Ratio of charmed to light
(left) and bottom to light (right) hadron level jet emission. The y axis shows the
opening angle of the emission, while the x axis shows the energy of the radiator
particle. Taken from .

B 1.5 Recent Results of Heavy Flavor Jet
Measurements in p+p Collisions

In this section, we will briefly review the recent experimental results on
heavy-flavor jet measurements in p+p collisions.

The measurements from the ALICE experiment explore properties of c-jets,
which are built upon D meson reconstruction within a charged-particle jet,

9



1. Heavy Flavor Jets

i.e. the jet reconstructed solely from charged-particle tracks. The transverse
momentum of D° meson tagged jets in p+p collisions at /s = 7 TeV [30]
and its comparison with Monte-Carlo models can be seen in Fig. 1.5l Notice
that basic Monte Carlo models (Pythia6 [22], Pythia8 [23] and Herwig?
[31], [32], which is a LO Monte-Carlo generator for p+p collisions that uses
the clustering hadronization mechanism) are overestimating the resulting
distribution. This could point to the fact that higher order effects become
important for heavy flavor jets and a simple LO description, which is provided
by most Monte Carlo generators is insufficient. This is confirmed in the
right part of Fig. |1.5, where addition of next-to-leading order (NLO) effects
within POWHEG [33]-[35] model improves the description. The POWHEG is a
computational framework for implementation of NLO calculations for further
use in Monte-Carlo generators.

e Data
----PYTHIA 6 Perugia 2011
- PYTHIA 8 Monash 2013
----Herwig 7 MEPP2QQ
Herwig 7 MEMinBias

— 107" e B e L o e s | — 107 T 7T 7T 1
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g ith D%, p__ >3 GeV/ 7 g ® ith D%, p._ >3 Gev/

E B le ! pT,D evic 3 = wi y pT‘D eV/c
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i

1S}
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H
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MC / Data
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Figure 1.5: Differential cross section of D" tagged jets in p+p collisions
at /s = 7 TeV measured by the ALICE experiment. (left) The plot
shows comparison of the experimental data with LO Monte Carlo generators.
(right) The comparison of the experimental data with NLO effects. Notice how
theoretical description improves in this case, which points at importance of
higher order effects. Taken from [30].

Next set of c-jet measurements are those of the differential jet substructure
of D° tagged jets [36] in p-+p collisions, which can be seen on Fig. 1.6l Left
figure shows the measurement of a jet splitting function, which tells us that
the DY tagged jets have more asymmetric splitting than inclusive jets, which
is an effect of a large mass of a ¢ quark. The right plot shows the distribution
of log(1/6) (logarithm of inverse of opening angle) for ratio of D° tagged
jets to inclusive jets. The fact that the ratio is smaller than 1 is a possible
experimental hint that is pointing to the existence of dead cone effect.

The available results from the CMS experiment are centered around studies
of b-jet properties. First we discuss b-jet shapes [37], which measure track
dispersion within the jet. The results are shown in Fig. [1.7. It can be
concluded, that b-jets are much wider than the inclusive jets, which is a
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Figure 1.6: Substructure observables of D° tagged jets in p4p collisions
at /s =7 TeV measured by the ALICE experiment. (left) Groomed jet
substructure of inclusive and D° tagged jets. (right) Ratio of D° tagged jets to
inclusive jets logarithm of inverse of opening angle. Taken from .

consequence of high b quark mass.
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Figure 1.7: Jet shapes in p+p collisions at /s = 5.02 TeV measured by
the CMS experiment. (left) Jet shapes for inclusive jets. (middle) Jet shapes
for b-jets. (left) Ratio of b-jet shapes to inclusive jet shapes. Taken from .

The second result from CMS which we discuss here is related to the dijet
imbalance for inclusive jets and b-jets. The dijet imbalance is expressed
by

_ PT,sub

TJ 5
PT,lead

(1.18)

with p7ieqq being the largest transverse momentum of a jet in the event and
PTsup being the second largest transverse momentum of a jet in the event.
The results can be seen on Fig. The identical momentum imbalance of
b-jets and inclusive jets signifies flavor independence of the outgoing parton
kinematics in p+p collisions.
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Figure 1.8: Dijet transverse momentum imbalance at /s = 5.02 TeV
the CMS experiment. (left) Jet shapes for inclusive jets. (right) Jet shapes
for b-jets. Taken from [38].

B 16 Jetsin Heavy-lon Collisions

Quark-Gluon Plasma (QGP), is a new state of matter that is believed to
have existed in the first few microseconds after the Big Bang. Despite being
an active area of research, still a lot is unknown about this state of matter
and thus a lot of questions remain unanswered. Of particular interest is the
question about the energy loss mechanisms of partons in this medium. This
can be experimentally quantified, for example, via R 44 nuclear modification
factor, shown in Eq. [1.17. Another way to compare suppresion is via Rop
factor, which is defined as

(N ANaene/dprdy

coll

RCP = cen e
<Ncollt> dN}zeﬁ/dedy

(1.19)

Here (N297) is an average number of binary nucleon-nucleon collisions in
peripheral collisions, (N¢9*) is an average number of binary nucleon-nucleon

collisions in central collisions, and terms dN’ /dppdy, ANt Jdprdy are jet
yields in central and peripheral collisions, respectively. Rcp factor is an
analogue of the R44 factor with the main difference being that instead of
the p+p collision reference it uses the peripheral collisions, since we expect
them to be close to the p+p collisions. One can observe, that there is a
significant suppression happening at both energies, and despite ~ 10 times
higher energy, the LHC measurements manifest a similar level of suppression
as measurements at RHIC.

Another series of LHC measurements by CMS [40] and ATLAS [41] ex-
periments deal with the large R jet measurements which allow to answer
the question about the QGP medium effects on the jet broadening. The
results by the CMS collaboration can be seen in Fig. [1.10. The data show
a strong suppression for high-pr jets in the most central collisions even for
jets reconstructed with large R. This implies that a significant amount of jet
energy is scattered to large angles.

We hope that this chapter provides a sufficient motivation that heavy-flavor
jets are one of the keys to understanding parton energy loss mechanisms in
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Figure 1.9: Rcp factors for charged jets and inclusive hadrons at RHIC
and LHC energies. Taken from .
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Figure 1.10: Large R measurements of the jet R44 in Pb+Pb collisions
at /Syy =5.02 TeV by CMS experiment. Taken from .

Quark-Gluon Plasma. Even in the inclusive case, experimental measurements
of those effects require a lot of data, with heavy-flavor measurements requiring
even more data due to the smaller cross-sections of heavy quark production.
Thus, a standard experimental method for heavy-flavor jet identification, such
as charmed/bottom-hadron reconstruction within jet, could be the limiting
factor in the precision of the experimental results and the new approach to
measurements is needed.
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Chapter 2

Computer Vision and Machine Learning

Machine learning is a subfield of computer science that deals with algorithms
that are able to learn from the data. These methods have a plethora of
applications in many areas of science and engineering, including physics. In
general, it is hard to introduce machine learning in one chapter, so we refer
the reader to f for a more thorough introduction.

Computer vision [45] is a subfield of computer science that often utilizes
machine learning to solve problems related to visual interpretation of the
real world. Real-world applications include, for example, classification and
detection of objects in pictures, reconstruction of 3D shapes from monocular
inputs, and video analysis. Recent surge of deep learning methods led to
fast-paced development of novel computer vision methods, which achieved
significant performance compared to "classical" methods.

B 21 Supervised Machine Learning

In this section, the basic notions of supervised machine learning will be
introduced. While there are other types of machine learning (unsupervised,
self-supervised etc.), the JetVLAD model , which is the foundation of this
thesis, is a fully supervised model. Given two sets X and )/, where & is a set
of inputs and ) is a set of labels that can be summarized as a set {(x;, y;)} Y1,
our goal is to find a map f from this dataset such that

x Ly (2.1)

If the output is set ) C R™ we call our task regression, if our output set
Y C {0,1,...,n} we call the task classification. There are many ways to
construct this mapping, with the most popular approach using parametric
models. In this approach, we construct a mapping f such that

y = f(z:6), (2.2)

here @ is a vector of parameters, which serve as degrees of freedom. Those
degrees of freedom can be used in conjunction with the available dataset to
learn our desired map. To do so, one has to select a loss function L, which

15



2. Computer Vision and Machine Learning

measures error between predicted value § and ground-truth value y, i.e., in
our notation

L= L(f(;0),y) = L(7,y). (2.3)

Our optimal parametrization 8* is then given as
0" = arg melnE[L(f(mv 0)7 y)]? (24)

where the expectation is taken over the whole dataset, which we assume is
i.i.d. - independent and identically distributed. In practical terms, this means
that we use an empirical distribution and our optimal parametrization is then
given as

1
0" = argmelnﬁgL(f(zci;O),yi). (2.5)
There are a multitude of ways to find the optimal parametrization of a given
model, with the most popular being gradient descent [46], which is first-order
iterative method. Its update rule is given by

o+t — k) _ vy — ZL (4, 0), yi). (2.6)

Unfortunately, for large datasets this approach breaks down, since the memory
requirements can rise drastically. Because of that, another modification, called
stochastic gradient descent (SGD) [47], [48] is used. In SGD, instead of the
whole dataset, we randomly sample so-called batches of size M < N and
hence {(x;,v:)}M, C {(x4,v:)};. This leads to the update rule of the form

0(k+1) — g(k) — T]Vg* Z L mi; 9), yi), (27)
=1

which symbolically is identical to the one in gradient descent, but leads
to approximate gradients instead of the true gradients. Fortunately, this
property is useful, since it leads to models that generalize better.

B 2.1.1 Overfitting, Underfitting, and Regularization

An important topic in machine learning is that of generalization. General-
ization capabilities directly correlate with model performance on the unseen
data. As a simple toy model, consider the dataset generated by the following
equation

y=2°+e¢, (2.8)

where ¢ is a Gaussian noise term. Fig. 2.1 shows results of fitting different
polynomials to the observed dataset. On the left, one can see the fit of the
first order polynomial (i.e., linear model) of the form

y =ax +b. (2.9)
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e Dataset e Dataset e Dataset

Figure 2.1: Effects of underfitting and overfitting. Different polynomial
models fitted to data generated by 22 + ¢ process. (left) Underfitting by the
linear model. (middle) Optimal model description of the data. (right) Overfitting
phenomenon by the high-degree polynomial model.

As we can see, this model is incapable of fitting the observed data. In machine
learning, this effect is called underfitting and it means that the model capacity
(i.e. capability of the model to explain the data) is too low and thus out-of-
sample performance will be bad. In the middle of Fig. [2.1| we can see a fit of
a quadratic polynomial of the form

= ax® +bx +c. (2.10)

We can see that the obtained fit nicely aligns with the true function value.
This means that the chosen model has an optimal capacity and in this case
we can expect good performance on unseen samples. Lastly, on the Fig. [2.1
to the right we can see fit to the data using a polynomial of 18th degree, i.e.,
our model is given by

18
Y= Zaixi. (2.11)
i=0

We can see that this model tries to fit all points, which leads to overfitting.
This means that the model tries to memorize every data point. Generalization
of this model to the out-of-sample data will be bad. Of course, in the real
world, it is not so straightforward to select a model with optimal capacity.
One of the easiest ways to overcome overfitting is by adding the loss penalty
term, for example, L? norm, to the model weights. In this case, the total loss
will be

1 N
L= N ZLmodel(f(mi; 0),y2) + CXHOH%, (212)
i=1

and will lead to reduced overfitting due to the penalty on weights, which will
constrain their value.

How does one spot the overfitting? For training purposes, it is beneficial to
split the dataset into three parts - training, validation, and testing datasets.
As its name suggests, one should optimize the model weights on the training
dataset. Validation dataset is useful to check the model performance during
the training. In case of overfitting, model performance on the training dataset
will be much better than on the validation dataset. Finally, after the training
finishes, one should obtain the final model performance using the testing
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dataset that was unseen by the model in any way (even indirectly as the
validation dataset).

. 2.2 Evaluation Metrics

An important part of machine learning model development is that of model
performance evaluation. In classification settings, the basic metrics are recall

(efficiency)

TP

Here TP is a number of correctly identified positive samples and P is a total
number of positive samples. Thus, this metric shows probability that the
retrieved sample is positive.
Next metric, called false-positive rate (misidentification probability) is
given by
FP

FPR = —. 2.14
. (2.14)

The FP is a number of negative samples that were identified as a positive
sample and N is a total number of negative samples. False-positive rate shows
the probability that a positive sample is in reality negative.

In physics false-positive rates are often very low, so the alternative metric,
called rejection is used, which is given by

1
REJ = ——. 2.15
FPR ( )
This metric tells us how many negative samples are rejected per one false-
positive sample accepted.

The last metric, called precision (purity), which is defined as

TP
PREC = ——— 2.1
REC TP + FP’ (2.16)
shows how much of false-positive contamination there is in the retrieved
sample.

. 2.3 Neural Networks

In this subsection, we will take a look at one specific type of parametric
models, called neural networks, which today serve as a basis for many advanced
applications. Fundamental building block of a neural network is a layer, which
is represented by a linear operation (affine transformation or convolution [49],
[50]) which is then followed by the activation function. The neural network
then is a composition of N layers, i.e.

F(x;W,b) = fu(h,—1; Wy, by) o0 fi(x; Wy, by), (2.17)
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Figure 2.2: Graphical representation of the residual block. Taken from
[53].

Here f; is a layer, W; is layer weight and b; is layer bias. x denotes input to
the network and h; are hidden representations that are obtained after each
layer. Let us take a look at how each of the network layers looks explicitly. For
an affine transformation network (more generally known as dense network),
the layer is given by

y=f(Wzx+b). (2.18)

For the convolution layer, the general equation will look like

y=f(WxX)=f (ZZX(i+m,j+n)W(m,n)>. (2.19)

The function f can take many forms, but nowadays the most common choice
is a ReLU(xz) function [51]

ReLU(z) = max(z,0), (2.20)

but of course there are other activation functions available [52].

In the last years, neural networks became a de facto standard backbone
for many machine learning tasks, thanks to the advancement in GPU com-
puting as well as better theoretical understanding of them. One of those is
the invention of residual blocks and ResNet [53] architectures that play an
important role in the construction of the JetVLAD model. The general idea
of residual block is that instead of learning a direct mapping, one can try to
learn the output mapping in the form

y=F(x,W,b) +x, (2.21)
i.e., one tries to learn deviation from the identity, which leads to much simpler
model training. The graphical representation of a residual block can be seen

in Fig. 2.2,
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. 2.4 Computer Vision, Descriptors and NetVLAD
Layer

Computer vision is a field of computer science and engineering that deals
with algorithms whose goal is the analysis and interpretation of visual data.
Such algorithms have very wide applications, for example, in autonomous
driving, place recognition, 3D object reconstruction. There is an intriguing
correspondence between particle physics and computer vision. Indeed, most
of the particle physics detectors can be thought of as a large, ultra fast camera
that records particle tracks. Thus, it is an interesting topic to investigate to
what extent computer vision algorithms can be applied to physical data.

The JetVLAD model, which is the basis of this thesis, is one such example.
The full details of this algorithm will be explored in the later chapter, but at
this stage it is important to investigate the fundamental building block of
the JetVLAD algorithm, the NetVLAD layer [54]. Originally created for the
task of weakly supervised place recognition, the NetVLAD is an intelligent
aggregation layer that allows to gather a set of descriptors obtained from the
convnet backbone and produce a fixed-size vector, that characterizes this set.
In the computer vision context, a descriptor is a feature vector that encodes
presence of object in a certain region.

Given a set of n descriptors, each being a d-dimensional vector, the
NetVLAD layer assumes presence of k clusters in the input space, where each
cluster is parametrized by vectors wy, ¢ and scalar by, that are learned from
the data. The NetVLAD layer then produces a d x k matrix V', which is
given by

n ewfxi +bk

V]’k B ; Zk’ ew{,xﬂrbk/
Here x; ; is a j-th element of the i-th particle descriptor and ¢ ; is the j-th
element of the k-th cluster center vector. This matrix is then L? normalized
column-wise, transformed into a vector and then again L? normalized to
obtain the final set feature vector. Thus, NetVLAD is an effective way to
work with an unordered set of inputs, which makes it an ideal candidate for
the classification of heavy-flavor jets if we are able to find a good descriptor
representation.

(Xi,j — Ckﬂ‘). (222)
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Chapter 3

Overview of the Recent Results in Machine
Learning Based Heavy-Flavor Jet Tagging

The recent advances in deep learning techniques do not go unnoticed in
high energy physics. Indeed, a lot of analyses, especially those requiring
reconstruction of heavy flavor jets, were already utilizing machine learning
techniques, such as Boosted Decision Trees , . The possibility to obtain
much better performance, and thus more efficiently utilize the available data
led to a large surge of deep learning based techniques, which are going to
be reviewed in this chapter. Here, we are not going to review papers by
experimental collaborations, since those papers go beyond the algorithmic
side, which is the main focus of this work.

One of the first papers that dealt with the task of deep learning based
heavy-flavor jet tagging was [1]. In this paper, the authors explored 3 different
neural architectures applied towards the identification of light flavor, gluon
and heavy (c and b) jets. The first architecture is based upon feed-forward
neural network, which uses the top 15 impact parameter ordered tracks and
their input features to solve the problem with a variable number of tracks in
input. The corresponding architecture can be seen in Fig.

Input Hidden Hidden Hidden
layer layer 1 layer 2 layer N

{Q
Track 1 \

Output

Shared
weights

Figure 3.1: Feed forward architecture explored in .
The second architectures that are explored are utilizing recursive archi-
tectures, which are specially built to work with sequence based inputs. The

advantage of this model is that it is able to deal with variable-length sequences
by their nature, and thus does not require careful selection of the input feature
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size, as in the previous model. On the other hand, this model still requires an
ordering, which was again selected to be according to the impact parameter.
The graphical representation of those architectures can be seen on Fig.

Output
Output NN generates the final predictions

MLP

LSTM Concatenate vectors l Optional: further operations on the pair structures
States
Apply NN to each pair i
(NN has shared weights for each pair)

Forming all possible pairs ‘3
(input vectors are concatenated)

Input values
(variable size set)

Input
Sequence

Figure 3.2: Recursive architectures explored in [1]. (left) LSTM-based
architecture. (right) Outer recursive architecture.

Later on, the authors explored the effects of input feature selection, where
they considered 3 groups - low level tracking information, intermediate level
information taken from the vertexing algorithm, and at last, hand-crafted
high level features. It is shown that generally the mixture of all input features
achieves the best performance while just tracking information is providing the
lowest performance. The rejection vs efficiency graphs for different flavors and
different input feature combinations can be seen in Fig. The disadvantage
of this publication is the absence of efficiency vs. purity plots, which is
a crucial information needed for a complete understanding of the model
performance.
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Figure 3.3: Rejection vs. efficiency graphs for different jet flavors. (left)
Light quark rejection vs bottom quark efficiency graph with respect to different
input feature combinations. (right) Charm quark rejection vs bottom quark
efficiency graph with respect to different input feature combinations. Taken from

1]

The most recent paper related to heavy-flavor jet tagging moves the idea
of tagging based on the uncurated information even further. In this paper,
the authors introduce the DeeplJet architecture , whose primary goal is
to mitigate the need for manual feature selection by considering a large
set of input features. The architecture takes as input approximately 650

22



3. Overview of the Recent Results in Machine Learning Based Heavy-Flavor Jet Tagging

features per jet - event level features, features related to charged and neutral
particles, and secondary vertex information. The architecture itself combines
one dimensional convolution layers with recurrent layers, which are then fed
into the dense network. While the authors claim that this model should not
discriminate against ordering, the model is not fully permutationally invariant,
since the presence of RNN cells assumes that the sequence is ordered. The
graphical representation of the model can be seen on Fig. 3.4l

|Charged (16 features) x25/- 1x1 conv. 64/32/32/8/— RNN 150 b
bb
| Neutral (6 features) x25|—| 1x1 conv. 32/1 6/4H RNN 50 '— Dense lepb
200 nodes x1, (] c
|Secondary Vix (12 features) x4{- 1x1 conv. 64/32/32/8|— RNN_50{— 100 nodes x7 | | |
|Global variables (6 features) l g

Figure 3.4: DeepJet architecutre schematics. Taken from [2].

The resulting model performance can be seen in Fig. [3.5l Here, the
performance is compared for different physics classification tasks (b vs. ¢, b vs.
light flavor quarks and gluons) as well as different model architectures (DeepJet
vs. DeepCSV). DeepCSV is an old, experiment-specific deep architecture,
developed by the CMS collaboration [57]. As in the previous case, the authors
do not show efficiency vs purity plots, which makes the full performance
evaluation of the classifier hard to achieve.

2 7 8 ! B
© ttievents SeEE // © Htevents o ;,
B e
2 AKdjets (p. 330 GeV) e // 3 AKdjets (p, >.90.GeV) S /I
— - s — - /(
E  [|—DeepJet sy / E  [|— DeepJet . /
-1 L 2l -1
10 F— DeepCSV 10 H— DeepCSV /
[ = 7 /.
H—b vs udsg - H—b vs udsg At P /
l---bvsc SO l--bvsc . ol
102 & 1072
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Figure 3.5: Performance of the DeepJet tagger for different classes (b
vs ¢, b vs udsg) as well as for different model architectures (DeepJet
vs. DeepCSV). (left) Model performance for jets with pr > 30 GeV/c. (right)
Model performance for jets with pr > 60 GeV/c. Taken from [2].

23



3. Overview of the Recent Results in Machine Learning Based Heavy-Flavor Jet Tagging

Unfortunately, most of the developed architectures are experiment-specific
and depend on the exact detector configuration and the information provided
by it. Moreover, to the best of our knowledge, none of the models are
truly permutation invariant to the input. We believe that having a general
approach towards heavy-flavor jet tagging that will be independent of detector
specifics and permutation invariant is beneficial and timely, considering the
rising interest in the measurements of heavy-flavor jet emission diagrams,
searches for new physics etc. To solve those issues, in the next chapter we
will introduce the JetVLAD model, which tries to overcome all those issues
at the same time.
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Chapter 4
The JetVLAD Model

The focus of this chapter is an introduction to the JetVLAD model, which is
the main contribution of this thesis and also of the paper "lIdentifying Heavy-
Flavor Jets Using Vectors of Locally Aggregated Descriptors”, published in
JINST, of which the author of this thesis is a principal author. First, the
model architecture is discussed with the main motivations that were driving
its development. Then the data modeling process is described. The last
part of this chapter deals with the experimental evaluation and study of
the JetVLAD model in application to heavy-flavor jet identification in p+p
collisions at RHIC energy of /s = 200 GeV.

. 4.1 Formal Statement

In this section, we will formalize the problem that we wish to solve. Each
p+p collision, which we refer to as an event, is assumed to be a set of the
form

&= {rl.. (4.1)

where N is the number of particles in the event and r; is a particle state
vector. The particle state vector is constructed using all possible information
related to the particle i, i.e.,

Ty = (pT,i7 iy Pi, d:ty,i7 dz,ia T )) (42)

where pr; is a transverse momentum of particle ¢, 7; is a pseudorapidity
of particle ¢, ¢; is a radial angle of particle ¢ and dy ;,d.; are distances of
closest approach to primary vertex in z — y and z plane for particle 7. In
this context, each jet is a subset of the event £, that was identified by the jet
clustering algorithm

T = {relp, (4.3)

where Neopnst 18 the number of particle constituents in a jet. We can treat
the jet as an unordered subset if we assume that it was clustered using the
anti-kp algorithm, since the hard core clustering strategy leads to unphysical
ordering. After this, we wish to construct a model f(-) such that

f(T) = {bc,udsg}, (4.4)
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4. The JetVLAD Model

i.e., given a jet J we ask what is the flavor of that particular jet. As a next
step, we need to construct an appropriate particle descriptors. However, in
physical measurements, compared to computer vision, all measurements are
already high level and represent the highest possible information content
available. Hence, we can consider particle state vectors as descriptors, which
we call a particle descriptors. With that in mind, we can continue with
constructing the JetVLAD architecture.

B 4.2 JetVLAD Architecture

The JetVLAD architecture was built specifically for the task of heavy-flavor
jet identification, with the following goals in mind:

1. The model should utilize a set of particles as an input.
2. Simple architecture to minimize possiblity of overfitting.
3. Minimal use of high-level input features.

4. Largely independent of low-level Monte-Carlo generator implementation
details.

The NetVLAD layer introduced in Chapter 2 was chosen as a basis for this
model, since it allows to solve the first goal. To solve the second requirement,
we consider a simple multilayer perceptron architecture with residual skip
connections that mimic those in the ResNet [53] architecture, which was
experimentally shown to significantly simplify the optimization procedure
when training the JetVLAD model. Despite being simple, this architecture
can potentially still overfit the training data. To reduce such possibility, we
also add the DropOut layer [58] with a probability of p = 0.5. The last two
goals can be solved by a careful construction of the training dataset, that
is as close to the real data as possible, a process which is described in the
following section.

In total, the model formula for the JetVLAD model can be written as

JetVLAD = NetVLAD(N.) — D X [ResidualBlock] — Softmax. (4.5)

The parameters N, and D represent the model hyperparameters, whose
optimal values are selected further on. The JetVLAD model is trained using
stochastic gradient descent with cosine annealing and warm restart [59], which
varies the optimization intensity using cosine function, which was shown to
produce a better and more robust models. This combination performed
the best based upon the experiments, with the optimal learning rate value
17 = 0.013, and cosine anneling parameters being Ty = 1 (initial amplitude
length in epoch) and Tyt = 3 (amplitude extension length).

Technical details. The model is trained on one Tesla V100 GPU for approx-
imately 2 hours. For each dataset we train 3 models whose predictions are
then averaged into one, to estimate the effects of random weight initialization
on model performance.
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4.3. Dataset

Pt [GeV/d]

pr" [GeV/ (]

PR [GeV/c]| R [

5-10 3 12 0.4
10-15 8 17 0.4
15-20 13 22 0.4
20-25 18 27 0.4
25-40 23 42 0.4

Table 4.1: Kinematic ranges used for dataset generation within Pythia8 model.

. 4.3 Dataset

In this work, the simulated Monte-Carlo data were used for the purposes
of model development. The simulations were made with the Pythia8.235
[60] Monte-Carlo model that was adjusted to the particle level data by
means of a fast simulator approach. This allows one to create datasets that
resemble experimentally measured data without the need to do a full detector
simulation. Of course, such simulation is not the best description of the
experimental data, but for the purposes of tagging model development, such
an approach is sufficient.

Model configuration. The model was run in p + p collisions at /s = 200
GeV mode to generate two dataset samples - one, labeled as HardQCD, which
is supposed to describe the real world distribution of jet flavors and Balanced,
which is specially constructed such that the ratio of udsg : ¢ : b jets is
50%:25%:25%. This dataset serves as an idealized benchmark case for the
tagger performance. Tab. [4.1] shows the kinematic configurations that were
used in the simulations. The particle decays are set to be limited to a cylinder
with a diameter of 600 mm and a length of 4000 mm, which mimics the
typical dimensions of a time projection chamber used by the STAR experiment
at RHIC for detection of charged particles created in the collision. In the
simulations, we consider only charged particles with pp € [0.2,30] GeV/c,
ydz| < 60 mm and \me| < 20 mm, where pr denotes the particle momentum
that was smeared by means of the fast simulation and |d,,|/|d.| denote the
particle x — y and z vertex distances that were also smeared by the fast
simulation approach, which is described below. The primary vertex of all
collisions is fixed to (0, 0, 0) to simplify the calculations, although modifications
to the random primary vertex location can be easily incorporated within such
framework.

Fast simulator. The fast simulator approach is based on the multiple ob-
servable smearing by means of Gaussian distribution sampling which aims
to reproduce a typical collider experiment, such as STAR, which has a time
projection chamber with full azimuthal coverage and pseudorapidity accep-
tance of |n| < 1 embedded within a magnetic field that allows to measure
track momenta via their curvature and a tracker. The second important
part is a precise silicon tracker placed close to the interaction vertex, which
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4. The JetVLAD Model

allows precise identification of particle secondary vertex, that is of the most
importance for the heavy flavor analyses. In the STAR experiment, for this
purpose the Heavy Flavor Tracker (HFT) has been used [61], [62]. Although
not ideal, this fast simulator approach can serve as a good approximation for
the particle level to detector level smearing process.

The first part of the fast simulation process is dealing with simulating the
time projection chamber and magnetic field effects on the created particle,
since it is the combination of a finite resolution of the TPC detector with
magnetic field that smears the information about the particle in question.
The first effect that one needs to capture is that of reduced tracking efficiency.
This can be easily captured by sampling the rejection factor ¢ ~ U([0,1]).
If t > tinresn Where typresn is some threshold, then the particle is rejected,
generally with 1 — ¢;,,es;, probability. In this work, ti,,.esn = 0.8 was chosen,
which corresponds to 80% tracking efficiency. The second effect is that of a
change in a momentum resolution. It was shown in [63] that this effect can
be simply captured by the Gaussian process of the form

pr ~ N(pr,o(pr)), (4.6)

with o(pr) being the empirical smearing function obtained by the fit and pp
being the transverse momentum of the input particle. The chosen form of

o(pr) was
o(pr) = 0.003 - p7, (4.7)

and corresponds to the STAR experiment at RHIC [39].

The second part of the fast simulator deals with the simulation of tracker
finite resolution. For this purpose, the parametrization [28] of STAR [61],
[62] tracker was used. For x — y plane, the fitted resolution is given by

0.03

m + 0.006} + 1[2.5,00) - 0.02. (4.8)

ouy(P) = )9 2.5 {
Here p is a particle momentum vector and 1 are indicator functions. Analo-
gously, we obtain the following functional form by the fit to the z resolution:

0.03
p—0.02

This class of fits gives a good approximation to the detector resolution, albeit
their main disadvantage is the incorrect treatment of the long tails related to
the particles with very high momentum. Nonetheless, empirically those give
good results and therefore they were chosen as a final form. The smearing
for each particle is then conducted by sampling the smeared vertex distances
from Gaussian distribution, i.e.

dfy ~ N(da:ya Uzy(p))a (4.10)
d ~ N (d,0.(p)). (4.11)

Here p is a momentum of the input particle, d, and d,, are the secondary
vertex distances of the input to the primary vertex.
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Pileup simulations. Experimental measurements are often influenced by
presence of the so-called pileup effects. Pileup effects could be caused by a
multiple collisions within the detector at the same time. To estimate the effect
of pileup on the classification performance, we simulate the pileup effects in
one of the samples. To achieve those results, we overlay SoftQCD event with
primary vertex located at (0,0, z) with z ~ U([—60, 60]) mm. The two events
are then merged into one and processed as is described below. This approach
is an effective way of simulating pileup effect at energies of /s = 200 GeV.

Thermal background simulation. We also ask question related to the effects
of thermal heavy-ion like background on model performance. For this we
sample N = 100 particles with pp sampled from thermal distribution with 1" =
230 MeV and ¢, ) sampled from [@je; —0.4, @jer+0.4] and [njer — 0.4, 1jec+0.4].
We chose this form of noise instead of event level noise addition since it
allows us to represent extreme cases, which give an upper bound on a model
performance in the studied region.

Data analysis. The simulated events are then clustered by the anti-kp
algorithm with resolution parameter of R = 0.4. The resulting jets are then
assigned a flavor according to the following procedure:

1. All outgoing hard scattered partons (denoted by 75) in event are consid-
ered.

2. For each jet we find parton ¢ such that

i =arg mi7151 ARNjet, Piet, N> 0), mi > m¥j € P, (4.12)
j€

i.e. we seek the closest parton in n — ¢ space that has the highest mass.
3. The jet is then assigned the flavor of parton i.

The resulting jets are deconstructed into separate particle constituents which
are later on used as an input to the tagging algorithm. The Tab. 4.2 summa-
rizes the input variables that are used as an input features by the model.

Statistics. In this work, we generated 2 datasets, each with kinematic
configurations given in Tab. |4.1. Since our center of mass energy is /s = 200
GeV, we merge c and b jets into one class, which we call HF-jets. The first
dataset is using Pythia8 HardQCD process to simulate a realistic sample of
charged udsg, ¢ and b jets. The second one is constructed such that the ratio
of light to heavy-flavor charged jets is 50% : 50%. Examples of input feature
distributions for each separate class can be seen on Fig. [4.1]

B aa Hyperparameter Optimization

Input feature selection. As a first step, we find the optimal hyperparameters
for our model. Recall that JetVLAD has 2 hyperparameters V., number of
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Variable ‘ Definition
pr pr = /D3 + D3
n Pseudorapidity
© Azimuthal angle ‘
z Shared momentum fraction z = pr/pj’
AR AR = Ve = @jet)? + (1 — 1jer)?
m | (r/pr") - (V= ¢jet)* + (1 = njer)?)
day Aoy = \/(dg —vz)? + (dy — vy)?
d. d, = d° — v,

Table 4.2: Model input variables per track. Here p; denotes momentum vector
components of a particle, d7 are secondary vertex coordinates of a particle and
v; are primary vertex coordinates.

T Pythia8.235 Pythia8.235
] Vs =200 GeV, anti-kr jets R = 0.4 Vs =200 GeV, anti-kr jets R = 0.4
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Figure 4.1: Example of some feature distributions. udsg (light) jets are
represented by the green color, ¢ (charm) jets are represented by the red color
and b (beauty) jets are represented by the blue color.

clusters in the NetVLAD layer and D, the number of residual blocks (model
depth). For input features, introduced in Tab. we also have to select their
optimal combination. To find it, we train the model on multiple jet pr bin
datasets, to asses model performance with each input feature combination
across different jet pr ranges. The resulting purity vs. efficiency and rejection
vs. efficiency plots across different jet pr bins in HardQCD dataset can be
seen on Fig. and for Balanced dataset can be seen on Fig. From
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this, we can see that the optimal combination is made of tracking (pr, 7,
¢) and vertexing (dg,, d.) features. Interestingly, just vertexing (dgy, d.)
information alone is a good enough descriptor of jet flavor. Nonetheless,
tracking (pr, 1, ¢) information is straightforward to add and the benefit
of improved performance is worth of a slight increase in an input feature
complexity. Because of that, we select the combination of tracking (pr,
1, ¢) and vertexing (duy, d») as a final combination which will be used in
studies further on. As expected, tracking (pr, 1, ) information alone is
insufficient for high purity measurements. Combination of tracking (pr, 7, ¢)
and fragmentation (z, AR, m) information is slightly increasing the purity,
but it is still less than 10% and in real life scenarios we can expect it to
be even smaller. Interestingly, for the Balanced dataset this combination
provides a decent performance. Hence, if one is able to construct a trigger
that will yield an approximately balanced jet flavor dataset, it is possible to
identify such jets without the need for expensive tracking hardware.

Optimal hyperparameter selection. The next step consists of an optimal
hyperparameter selection. The best performance is achieved via random
grid search, which consists of a random sampling step followed by the model
training. The resulting graphs for integrated efficiency and purity vs hy-
perparameter value can be seen in Fig. |4.4. From this, we can see that
N, =33 and D = 4 (resulting in D = 2 for the residual block) are the optimal
hyperparameter values.

B 4.5 Model Performance with Full Dataset and
Background Effects

In this section, we will evaluate the JetVLAD model performance on the full
HardQCD dataset introduced in Sec. 4.3l We omit Balanced dataset since it
does not represent a realistic cross-section distribution that one can expect in
the real data. Fig. 4.5/ shows main results for the tracking+vertexing version
of the JetVLAD model across different jet pr ranges. The numerical results
for different operating points are summarized in Tab. [4.3l We can see that
the model achieves excellent performance down to the lowest jet pr bin. On
average, the tagger achieves universally ~ 80% purity, ~ 80% efficiency and
rejection factor of ~ 200 across whole jet pr range.

As a next step, we consider three important aspects of p+p and A+A colli-
sion - changes in tracking efficiency, the presence of pileup, and the presence
of a thermal background and their influence on the model performance.

Tracking efficiency. First, we explore how changes in tracking efficiency
affect model performance. This is done by varying the tracking efficiency
resolution during the data generation process. To assess the full effect in
an unbiased way, we do not retrain the model to account for new tracking
efficiencies. The results are displayed in Fig. |4.6. As can be seen, the model
performance is not affected by the changes in the tracking efficiency.
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Jet pr [GeV/(] ‘ Efficiency ‘ Purity ‘ Rejection

5-10 80% 83% 223
50% 88% 540
10-15 80% 85% 223
50% 88% 476
15-20 80% 85% 259
50% 88% 506
20 - 25 80% 85% 310
50% 88% 624
25 - 40 80% 81% 322
50% 85% 677

Table 4.3: Purity and rejection values for different jet pr bins at fixed efficiency
operating points of 50% and 80%.

Pileup. Next, we explore the effects of the pileup on the model performance
on the dataset that was described in Sec. |4.3 The resulting performance
curves are shown in Fig. 4.7, As expected, the model performance has reduced,
but not significantly, which shows the strength of the NetVLAD layer and its
resistance to noise.

Thermal background. As a last step, we explore the effects of thermal
background on the model performance. We model this process with N = 100
particles per jet, which represents an extreme case that is unlikely to be
present at RHIC energies. The resulting model performance is shown in
Fig. 4.8l As we can see, adding the effects of extreme thermal background
leads to a significant decrease in model performance. Yet, retraining the
model from scratch on a new data restores the good model performance. This
could be explained by the fact that the general pattern of thermal particles
is easy to separate in this model. Indeed, as shown in Fig. |4.2| the model gets
most of its discriminative power from the secondary vertex position. Most of
the thermal particles are produced near the primary vertex and thus they
can be easily separated just based on this variable alone.

Effects of model performance on measurements. To practically illustrate,
how different tagger performance affects measurements, assume that we are
interested in measuring an unspecified observable and we have a dataset
of 500000 udsg-jets and 20000 HF-jets, which roughly corresponds to the
realistic cross-section ratio expected from the theory. The quality of the
reconstructed sample is measured via significance value, which is given by

S
VS + B ( )
where S is a number of signal jets and B is a number of background jets in
sample. Let us consider two taggers, one of which has efficiency of 80% and
purity of 80%, corresponding to the JetVLAD model and a less performant

tagger, that has for simplicity 30% efficiency and 30% purity.
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The signal is obtained via
S =eyrNur, (4.14)

where e is a tagger efficiency and Ngp is a number of HF jets in the
sample. The background is obtained from the definition of purity. Since the

purity is given by
S

~S+B
we can find by the means of simple algebra that

PHF (4.15)

B=(,-1)s (4.16)

Y2

Putting it all together in the definition of significance yields us

N,
o= EHFIVHF ) (417)

\/5HFNHF +eugrNuF (ﬁ - 1)

Plugging in all the values we get that the significance of 80%/80% tagger is
o= 1131, (4.18)

while the 30%/30% tagger gets
o = 42.4. (4.19)

Thus, usage of the JetVLAD model can get ~ 3 times better statistical
precision, or alternatively, require ~ 3 times less data for the same statistical
precision as can be achieved with less performant tagger.
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Figure 4.2: Selection of input feature combinations - HardQCD dataset.
(left) Efficiency vs. purity for different input feature combinations. (right)
Efficiency vs. rejection for different input feature combinations. Each row shows
different jet pr ranges that were used to train the model.
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Figure 4.3: Selection of input feature combinations - Balanced dataset.
(left) Efficiency vs. purity for different input feature combinations. (right)
Efficiency vs. rejection for different input feature combinations. Each row shows
different jet pr ranges that were used to train the model.
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Figure 4.5: JetVLAD model performance across different jet pr ranges.
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4.5. Model Performance with Full Dataset and Background Effects
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Figure 4.6: Effects of tracking efficiency on the JetVLAD model per-
formance. (left) Purity vs. efficiency for different tracking efficiency values.

(right) Rejection vs. efficiency for different tracking efficiency values. Colors
represent tracking efficiency values.
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Chapter 5

Conclusion

In this work, a novel machine learning based jet tagging architecture was
introduced. In Chapter 1, the basics of jet physics were introduced, including
jet substructure measurements and dead cone effect. We also reviewed some
recent experimental results related to the area of heavy flavor jet substruc-
ture. In Chapter 2, the basics of machine learning and computer vision were
introduced. Chapter 3 reviews the recent results on experiment independent
machine learning based heavy flavor jet tagging methods. Chapter 4 intro-
duces the main contribution of this work, the JetVLAD tagging model.

The JetVLAD model achieves an excellent performance in p+p collisions
at /s = 200 GeV across wide jet pr range from 5 to 40 GeV/¢, where it
generally achieves an efficiency of ~ 80%, purity of ~ 80% and rejection
factor of 200. Such performance opens a wide range of possibilities for flavor
tagged jet substructure studies at STAR and new sPHENIX experiments at
RHIC. Our experiments with enhanced background as presented in Figs. [4.7]
4.8 show that the resulting model should be resistant to pileup and back-
ground fluctuations, which makes possible application to real data much easier.

There are few technical details that one needs to take care of before ap-
plying the JetVLAD model to the real data. First, one needs to do a full
detector simulation representing the detector of interest to include fine-grained
detector smearing effects in the data. The second part is concerned with
Monte Carlo simulations. To mitigate the possibility of indirectly induced
Monte Carlo model-dependent bias in the resulting model, one needs to
consider a training data made of the mixture of Monte Carlo models, which
in principle should mitigate the effects coming from the underlying physics
descriptions of each model. At last, one needs to consider a realistic back-
ground in the training sample, preferably taken from the real data via an
embedding procedure.

Despite great performance of the JetVLAD model, the results that will be
obtained in real data need to be scrutinized, due to the black-box nature
of the deep neural networks. The model can be validated by comparing
the JetVLAD results with the results that are obtained with the classical
transparent method within multiple processes. In case of validity, on average,
the results should be close to each other within statistical errors.
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1 Introduction

Jets arise from hard scattering of quarks/gluons in high energy collisions resulting in a collection
of collimated particles in the detector. Jets are multi-scale objects that are sensitive to pertur-
bative physics, such as in their production and in their parton shower or evolution [1-7] and
non-perturbative effects such as in hadronization [8—10]. Recent theoretical advancements have
extended quantum chromo-dynamics (QCD) calculations of the jet production cross-sections to
beyond leading-order [11] and leading-log [12—-14] and their resummations results in predictions
that reproduce trends in data over several orders of magnitude for different collision energies. In
addition to being useful in extracting the strong coupling constant (ag) [15], jets have irreversibly
established themselves as key probes of QCD, searches of beyond the standard model particles and
in explorations of the quark-gluon plasma (QGP) produced in relativistic heavy ion collisions. Jets
produced in heavy ion collisions undergo a phenomenon called jet quenching, which manifests as
energy-loss and modifications to the jet structure due to interactions with the QGP medium. Jet
quenching is an important signature of the QGP and we can extract the medium transport properties
by comparing data with theoretical calculations of energy loss [16, 17]. For more details regarding
jets in heavy ion collisions, we refer the reader to these review articles from experiment [18] and
theory [19, 20]. Thus, in both these seemingly orthogonal areas of jet physics, the ability to identify
and characterize a jet based on fundamental properties in relation to its progenitor parton such as
its energy, momentum and flavor are desired.

In this paper we focus on the topic of identifying or tagging a jet based on the flavor of the
hard scattered parton. In the case of jet quenching studies, knowing the jet flavor presents an
opportunity to systematically study the mass dependence of parton energy loss in the QGP. When



only considering QCD radiations, the mass of the radiating particle effectively controls the phase
space of the radiation as prescribed in the dead-cone effect [21]. The dead-cone effect has been
measured and studied in electron-positron collisions [22] and recently explored in pp collisions
at the Large Hadron Collider (LHC) [23-25]. In heavy ion collisions, the mass dependence of
energy loss is still an open question with measurements at the LHC [26, 27] showing no significant
differences between jets identified as heavy-flavor jets originating from a b/c-quark to light-flavor
(gluons and u, d, s-quarks). It is possible that jets at the LHC (momenta O (100 — 1000) GeV) are
in high energy domain where the originating parton mass does not play a significant role in its
interactions with the medium. Therefore such studies are especially important at the Relativistic
Heavy Ion Collider (RHIC), where the smaller center of mass energy (/s = 200 GeV) produces
jets with momenta O(10) GeV which are expected to a greater extent to undergo interaction with
medium and thus have enhanced sensitivity to parton flavor and mass [28, 29]. The smaller collision
energy however makes the measurement challenging due to the significantly smaller jet production
cross-section which in turn introduces a dependence on available statistics.

We present a machine learning (ML) model which utilizes experimental information based
on jet and its constituents and we identify and tag populations of light- and heavy-flavor jets with
increased efficiency and purity as compared to current state of the art classifications algorithms. In
contrast to light quarks, the heavy-flavor quarks are produced early in the hard scattering due to their
large mass and travel a significant distance in the detector before they decay. Upon jet evolution
involving fragmentation and hadronization, these massive quarks leave a characteristic experimental
signature of charged particle tracks pointing back to a displaced (secondary) vertex, as opposed to
the primary vertex which corresponds to the hard scattering point of interaction. These vertices can
be measured by high-resolution tracking detectors. Since these displaced vertices are an important
feature of heavy-flavor jets, classification algorithms predominantly take into consideration some
experimental quantity related to the displaced vertex such as the distance of closest approach (DCA),
or the secondary vertex mass amongst others [30, 31]. At LHC energies, it is important to note
that highly-virtual gluons originating from the hard scattering could produce jets that mimic heavy-
flavor jets [32, 33]. This process is often treated as a part of the background since the gluon can
split to a pair of heavy-flavor quarks during its evolution which could behave as a heavy-flavor jet.
At the center of mass energies available at RHIC [34], this gluon splitting process is significantly
suppressed due to the jet kinematics and the steeply falling parton momentum spectra.

There are two general categories of measurements involving identifying heavy-flavor jets i.e,
ensemble based approaches and jet-by-jet approaches. Extracting the heavy-flavor jet fraction from
an inclusive jet sample is typically done via template fits to utilizing distributions of signal and back-
ground. The latter approach of identifying jets individually by associating a light- or heavy-flavor
probability is more adaptable to ML approaches. The early examples of such taggers employed
boosted-decision trees (BDT) and shallow neural networks (NN) to train on a sample of signal and
background jets which were subsequently applied on data after correcting for the differences between
data and the simulations [30, 31, 35]. Current state of the art studies and measurements at the LHC
have expanded to include deep, convolutional and recurrent networks [36—39]. The classification
procedure where the networks were trained on MC with associated signal/background labels is com-
monly known as supervised training and is dependent to an extent on the MC accurately representing
data. Since jets are essentially collections of objects (tracks/towers in experiment and particles in



MC), a majority of the high performing heavy-flavor classification models currently used in experi-
ment utilize information contained within these jet constituents. Experiments with charged particle
and vertex tracking detectors with high pointing resolution, O(10-100pm), can associate tracks
originating from different vertices. Providing the jet constituents (4—momenta and vertex informa-
tion) to a sufficiently complicated model should effectively include all available physics required to
distinguish between heavy- and light-flavor jets. We introduce a model that utilizes these jet con-
stituents and study the performance in detail for jets of varying momenta and for varying categories
of inputs. The rest of the paper is organized as follows. The MC samples are outlined in section 2
along with a discussion of the different inputs types to the classification model. The JetVLAD model
architecture is presented in section 3 and we present a discussion of performance metrics that are
studied in this paper in section 4. We discuss the results for RHIC energies in section 6 and conclude
our study with an outlook focusing on applicability in current and future experiments in section 7.

2 Datasets and inputs

We use PYTHIA 8.235 [40] to generate di-jet events in proton-proton (pp) collisions at /s =
200 GeV. In order to maximize the classification performance, we name two classes of jets as light
(originating from gluon, u, d, s quarks) and heavy-flavor (c, b quarks). Flavor labelling is done
by a requiring the initiating parton to be contained with the jet radius. Recently, the heavy flavor
tagging community has started to look at jet-flavor association by utilizing reconstructed mesons
from heavy flavor quark such as Dy [41]. We will explore this style of identification/tagging in an
upcoming publication but for the purposes of this paper, we utilize the hard-scattered quark to jet
matching for defining our jet classes. To compare the effect of the production cross-section, we
produce two sets of samples which are labeled as follows:

* Cross-section weighted
* Balanced — 50% light, 25% c-jet and 25% b-jet.

Particle decays in PYTHIA along x — y and z are limited to maximum distances to 2000 mm and
600 mm, respectively. For each dataset, we generate both light- and heavy-flavor di-jet events with
the invariant p’r corresponding to [3 —12], [8 = 17], [13 -22], [18 —27] and [23 —42] GeV/c. The
overlap in the upper and lower limits is to maximize statistics when combining the datasets together. !
The datasets are split into 80 : 10 : 10 for training, testing and validation covering a total of 2 million
events for the balanced sample and 4 million events for the cross-section weighted sample.

In order to simulate particle interaction with the detector, we apply a fast simulation (Fast-
Sim) of the STAR detector [42]. The Fast-Sim framework includes a parametrization of charged
particle tracking efficiency, momentum resolution smearing and secondary vertex DCA smearing
according to the STAR Time Projection Chamber (TPC) [43] and Heavy-Flavor Tracker (HFT) [44],
respectively. The Fast-Sim procedure is outlined in greater detail in appendix A. Post smearing, we
reconstruct jets from all smeared charged particles using the anti—k, reconstruction algorithm [45]
as implemented in FastJet [46] with a jet resolution parameter R = 0.4. The charged particles which

IThe samples used in this study are made available along with all the necessary software tool-kits for processing and
training/testing upon publication.
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Figure 1. Distributions of a subset of input variables DCA,, (top left), DCA; (top right), z (bottom left)
and AR (bottom right) for light (black), c (red) and b-jets (blue) as generated in PYTHIA. (COLOR ONLINE).

are associated to the jet are then further considered for classification procedure. These jets are often
referred to as charged-jets and future extensions of this study will consider both charged and neutral
components of a jet, taking into account the energy depositions recorded by both electromagnetic
and hadronic calorimeters.

We separate the inputs into three different types including: tracking, fragmentation and sec-
ondary vertices as shown and defined in table 1. For each of these classes, the inputs correspond to
the values mentioned for each track in the jet. We do not take into account the particle ID or mass
which are left for future studies. In addition to track kinematic variables, we also include one high
level observable related to jet fragmentation such as the zAR?, a quantity related to the jet mass
when summed over all particles [47]. Furthermore, by comparing the performance of the model
with tracking and vertexing or tracking and fragmentation as inputs, one can estimate the impact
such information will have on the tagging of heavy-flavor jets. This can help to clarify detector
performance needed in future experiments or in upgrading current experiments.

The input distributions for 20 < pr < 25 GeV/c jets are shown in figure 1, DCAy, (top left),
DCA; (top right), z (bottom left) and AR (bottom right) for light jets in the green solid lines and
heavy-flavor separated into b and c—jets in the blue dashed and red dot-dashed lines, respectively.



Table 1. Input variables and their types and definitions utilized in the classification.

Type Inputs Definition
Tracking pr Transverse momentum in the x — y plane

n pseudorapidity

azimuthal angle

Fragmentation Z momentum fraction pt;rj—c,:k
AR distance between track and jet axiTs \/m
zAR? higher level feature
Secondary Vertex | DCA,y Distance of closest approach in x — y

DCA, | Distance between primary and secondary vertex in the z axis

As the mass of the originating parton increases, we find jets to have a larger width in the secondary
vertex and distinctive shifts in the opening angles and fragmentation. For the purposes of the
training, we combine both b and c—jets into a single class called heavy-flavor jets.

The MC sample utilized for training including the Fast-Sim procedure, has been shown to
be comparable to the STAR detector performance in previous publications [48, 49]. Since the
training sample is at the detector-level (i.e after Fast-Sim), any unfolding corrections for detector
effects/uncertainties are expected to be done post classification. Given that the tracking efficiency
within STAR is +4% [49], we find no significant difference to the jet energy scale/resolution in the
light- and heavy-flavor jet samples. As such, in the rest of the paper we will discuss jets (and their
momenta) at the detector-level.

Before we train our model, variables are normalized to their mean to ensure uniformity amongst
datasets, which is a necessary step in ML often referred to as pre-processing.

3 JetVLAD-model

There are several different ways of representing jets for machine learning tasks [50]. Two of these
are the graph-based or the set-based approach. The former comes from the fact that we can traverse
back through the jet clustering history to recreate in some metric, the original parton shower.
While such a graphical representation might be considered a bonus for jet flavor tagging, it has
disadvantages, namely that such ordering is clearly dependent on the underlying model of parton
shower evolution and also factors in the specific algorithm utilized for the de-clustering. This might
lead to a wider domain gap between simulated jets from MC which are used for the training of a
machine learning algorithm and experimentally reconstructed jets in data.

The set based approach utilizes a simpler view, where we can consider a jet as a set or collection
of particles. Such approaches could also be dependent on the type of algorithm used for jet finding
but those effects are typically small. As an appreciable consequence, this approach has a smaller
domain gap due to an easier theoretical description of jets at this level and it has less model
dependence than the graph based description. Another benefit of this approach is that primary jet



finding is predominantly done using anti-k; jet clustering algorithm and such jets do not have a
physical clustering tree (in comparison to the k; [51] and C/A [52] algorithms).

We begin description of our model by formalizing the dataset notation. We are given a jet J°
composed of a set of particles which are created by an action of the anti-k, jet clustering algorithm,
Le.

j = {(pT,i9 ni, ¢i’ .. ')}:'1:1 ’ (31)

where n corresponds to the total number of jet constituents. In recent publications, set represented
jets were classified using Recurrent Neural Network (RNN) models [53], where an artificial ordering
in pr or vertex distance was introduced. To overcome such an arbitrary ordering, one might use
an aggregation method, that will allow us to characterize a set of inputs into a fixed-length feature
vector. An analogous situation is found in computer vision with respect to the procedure of place
recognition, where one wants to recognize a landmark (say the Eiffel tower). In this case we often
deal with a variable size set of feature descriptors extracted from the image. For example, depending
on the place where the photo was taken, we might have variable amount of trees, cars and other
background objects.

The NetVLAD is an adaptive pooling layer that takes a set of feature descriptors as an input and
returns a fixed-length feature vector that characterizes each set [54, 55]. While in computer vision
one needs a feature extractor that yields meaningful descriptors, in physics, observables already
hold rich information regarding the jet shower. Thus we can omit the feature extractor stage and
use tracks belonging to a jet which we call henceforth as particle descriptors. The ordering of the
particle descriptors in the input was varied in a randomized fashion with no particular ordering
having an impact on the classification performance.

Given ajet J with n tracks, each of which is represented by a d-dimensional particle descriptor,
as described in equation (3.1), we define k clusters in the input space of the model, where each
cluster is represented by parameter vectors Wy, ¢, and scalar by that are learnt from data. The
output of NetVLAD layer is a d X k-dimensional matrix, whose elements are given by

n W{ X;+by

e
Vj,k = Z —Tx,--i-bkz(xi’j — ck,j)- (32)

ol L er

Here x; ; is a j-th element of the i-th particle descriptor and ¢ ; is the j-th element of the k-th
cluster center vector. This matrix is then L? normalized column-wise, transformed into a vector
and then again L? normalized. NetVLAD hence summarizes a set of particle descriptors into one
fixed-length feature vector, that is then fed into the standard feed-forward neural network. Please
note that the vectors wg, ¢k and scalar by for each of cluster are parameters of this NetVLAD layer
and learnt from data (together with other parameters of the model) in a discriminating manner using
back-propagation as described below.

We chose our network architecture to mimic the ResNet model family [56], by utilizing residual
blocks witch batch normalization, in order to simplify the learning problem. Width of our model
was chosen to be the same as the output of NetVLAD layer. We also utilize DropOut method [57] in
order to increase generalization of our chosen model. Our total architecture thus can be written as

JetVLAD = NetVLAD(N,.) — D X [ResidualBlock] — Softmax, 3.3)



where N, is the number of clusters and D is the depth. We train our model using momentum
stochastic gradient descent (SGD) [58] with cosine annealing and a warm restart. We chose
learning rate of 0.013, and annealing parameters 7p = 1 and Ty = 3 by utilizing random grid
search. The model was trained for maximum of 2000 epochs, with early stopping criterion of 10
epochs used. We also found that number of clusters N. = 33 and depth D = 4 were good set of
hyper-parameters.

4 Classification performance metrics

In order to evaluate performance of the model one has to choose a meaningful set of metrics that
will quantify key aspects of model performance. The first metric is called efficiency, in physics or
true positive rate (TPR), in machine learning/computer vision and it is defined as

TPR = %. .1

Here TP is a number of positively identified heavy-flavor jets and P is a total number of heavy-flavor
jets in the testing sample. Hence, this metric tells us the fraction of the signal that the model will
extract from the sample.

Next metric that is closely related to the efficiency is mis-identification probability, in physics
or false positive rate (FPR), in machine learning/computer vision,

FP
FPR = —. 4.2)
N

Here FP is a number of false-positive samples identified in the testing sample and N is a total number
of background objects in the testing sample. This metric quantifies the amount of background that
still persists in the signal post classification. Another related metric is background rejection (REJ),
which has no analogies in machine learning literature, and is given by

1
REJ = —. 4.3
FPR 4.3)
This determines how much of the true background will be rejected per one false-positive detection.
It is a useful quantity particularly for heavy-flavor jet classification where the signal is two orders
of magnitude smaller than the background due to the difference in the production cross-sections.

Last relevant metric is purity, in physics or precision, in machine learning and it is given by

TP
TP + FP’

PREC = (4.4)
where TP is a number of true positive objects found in the testing sample and FP is a number of
false positive objects found in the testing sample. As its name suggests, this metric tells us the
extent of contamination in the signal with false-positive objects. Summary of all the metrics and
their definitions are given in table 2.



Table 2. Classification metrics used in physics and machine learning.

Physics Machine Learning Definition

Tagging Efficiency True Positive Rate (TPR)/Recall TPR = %

Misidentification Prob. False Positive Rate (FPR) FPR = £
. . _ 1
Background Rejection REJ = 7r
. . P _ TP
Signal Purity Precision PREC = w575
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Figure 2. Hyper-parameter scans for NetVLAD layer showing the performance for heavy-flavor identification
purity as we vary the number of clusters (left) and the model depth (right).

5 Sensitivity to hyper-parameters and model uncertainties

In order to study the dynamics of our model, we run a study to quantify effects of hyper-parameter
change on the model performance. In each run, we fixed one of the parameters (for example,
number of clusters) and varied the other one (model depth). Results for cluster scan, during which
we fixed depth of the model D = 4, and varied the number of clusters can be seen in the left panel of
figure 2. The area under the purity curve is used as a metric of performance and we see no significant
improvement beyond a total of 33 clusters. Similarly, the depth hyper-parameter sensitivity study
shown in the right panel figure 2 during which we fixed N. = 33.

Estimating systematic uncertainties of a deep neural networks is a rather recent development
with different ideas [59-61]. Given that the model hyper-parameters were fixed for optimal per-
formance, modifying those is not an appropriate way to truly estimate the uncertainties inherent in
the model. Given a fixed representation of JetVLAD used in this study, we find a total of 111608
trainable parameters. Each of these parameters or weights are initially randomized and are later
fixed during the training. We further randomize these input weights with three iterations of the
model training and the different results are taken as a systematic variation of the classification and
show in the corresponding shaded regions with their average taken as the central value.
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Figure 3. Background rejection vs efficiency curves shown for different inputs in the lines (described in the
text) for balanced samples. The left and right panels show jets with 10 < pr < 15 and 25 < pr < 40GeV/c.

6 Heavy-flavor jet tagging at RHIC energies

Each sample of heavy-flavor jets, cross-section weighted and balanced, is trained and validated in
parallel. The cross-section weighting is included in the datasets and is not considered explicitly
in the training procedure. Once trained, we have two sets of model weights corresponding to
the different datasets, which we can then use to further test the performance of JetVLAD on the
respective samples. The background rejection vs efficiency curves for the balanced dataset are
shown in figure 3, where the left and right panels represent R = 0.4 jets with 10 < pr < 15GeV/c
and 20 < pr < 40 GeV/c, respectively.

Each curve in the plot represents different inputs to the model such as vertexing (dotted yellow),
tracking (dot-dashed green), tracking + vertexing (solid red) and tracking + fragmentation (dashed
blue).
For both weighted and balanced datasets, we find the secondary vertex information provides the
maximal impact on tagging heavy-flavor jets. The inclusion of tracking information in the input

Similarly the performance for the cross-section weighted sample is shown in figure 4.

shows improved background rejection at large efficiencies while models trained with fragmentation
information show a slight improvement on top of tracking at small efficiencies but do not significantly
improve the performance at large efficiencies.

We also study the purity vs efficiency for the different inputs and weighted samples in figure 5.
In contrast to the background rejection that did not show a large effect when considering the cross-
section weighting, the purity on the other hand shows a distinct improvement for balanced samples.
The purity for balanced dataset being close to 100% can be understood due to the unrealistic yield
of heavy-flavor jets in the sample. A more realistic performance, comparable to experimental data
is shown for the cross-section weighted sample where for 80% efficiency, we have close to 80%
purity and a background rejection of 236. In both studies, we find the tracking + vertexing still has
the largest purity at given efficiency.

The purity (left) and background rejection (right) as a function of jet momenta for the tracking +
vertexing input are shown in figure 6. We find a consistent trend of increasing background rejections
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Figure 4. Background rejection vs efficiency curves shown for different inputs for cross-section weighted
samples. The left and right panels show jets with 10 < pr < 15 and 25 < pr < 40GeV/c.

at given efficiencies with increasing jet pr. At fixed purity of 70%, we also find a similar trend as
before with increasing efficiency. At signal purity closer to 80%, we find an interesting trend for the
highest momenta jets where the efficiency drops significantly indicating a kinematic effect of the
jets and their substructure. We understand the drop in purity for the highest jet momenta to partly
be due to the overlap in a high-level feature space between the light- and heavy-flavor samples and
a further exploration of this behavior is reserved for an upcoming publication.

We choose two working points based on efficiencies of 81% and 50% for which the correspond-
ing purity and background rejections in cross-section weighted and balanced datasets are shown in
table 3. As we increase the jet pr, we generally find that the signal purity is relatively consistent
for both working points with a notable exception at the lowest and highest jet momenta. The
background rejection increases in a non-linear fashion as jet momenta increase with the working
point at 50% efficiency having a rejection similar to the difference in the cross-sections. Extending
the tagging to the lowest jet energies we see a drop in the purity at higher efficiencies due to the
overlap between the jet topologies for light- and heavy-flavor jets where the reduced boost resulting
in a smaller overall DCA.

In our study, we applied a fast simulation of the STAR detector to compare the performance
at the detector-level. In order for such a network to be fully applicable on data, one needs to also
include additional effects such as out-of-time pileup for example. As the luminosity of the beams
increases, the probability to have particles in your jet that arise from pileup vertices increases and
these additional particles can affect the performance (since they tend to have very large D C A values).
The impact of out-of-time pile-up contribution to jets were studied by embedding minimum-bias
PYTHIA events along with our hard-scattered event. The extent of pile-up contribution is dependent
on the beam luminosities and data-taking rate and since they are relatively small at RHIC compared
to the LHC, we run two scenarios of including 1 pile-up vertex, which is randomly placed along the
z-direction of STAR’s acceptance. We see an overall degradation of ~ 2 — 3% in the tagging purity
at fixed efficiency (80%). As the classification performances are non-monotonic to input variation,
we recommend retraining the weights with an accurate simulation of pileup contribution to negate
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Figure 5. Purity vs efficiency curves shown for different inputs in the colored lines and for cross-section
weighted (left) and balanced (right) samples. The top and bottom panels show jets with 10 < pr < 15 and
25 < pr <40GeV/c.

some of these degradation effects. In an upcoming publication we will focus more on the impact of
in-time pileup such as the underlying event of heavy ion collisions and also increased pileup similar
to what is observed at the LHC in order to stress-test the performance of the JetVLAD tagger.

7 Conclusions and outlook

We focused on identifying jets originating from heavy quarks such as b and ¢, as opposed to
those that originate from lighter quarks and gluons. We introduced the JetVLAD model which
takes charged jet constituents with varying quantities as input and aggregates to a descriptor vector
which can then be used to compare different jet populations. We trained the model on light- and
heavy-flavor jets in PYTHIA and compared the classification performance for different varieties of
track inputs based on metrics such as purity and background rejection at various signal efficiencies.
In our studies we identified a combination of track inputs such as the secondary vertex (DCA, y,
DCA;) and the kinematics of the tracks (p7, 17, ¢) performed optimally leading to a signal purity
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Figure 6. Purity (left) and background rejection (right) vs efficiency for tracking + vertexing input. Each
curve corresponds to a different jet pr selections.

Table 3. JetVLAD classification performance in purity and rejection for different jet pr ranges for the
cross-section weighted (balanced) datasets with two working points based on efficiencies of 81% and 50%,
respectively. Note: the balanced samples include unrealistic production cross-section for heavy flavor jets

which results in artificially increased classification performance.

Range in jet | Tagging Signal Background
p1 [GeV/c] | Efficiency Purity Rejection
[5-10] 80% 83% (99%) | 223 (268)
50% 88% (99%) | 540 (579)
[10 - 15] 80% 85% (99%) | 223 (230)
50% 88% (99%) | 476 (449)
[15 - 20] 80% 85% (99%) | 259 (259)
50% 88% (99%) | 506 (476)
[20 - 25] 80% 85% (99%) | 310 (336)
50% 88% (99%) | 624 (740)
[25 - 40] 80% 81% (99%) | 322 (366)
50% 85% (99%) | 677 (740)

of 85% for an efficiency of 81% when we consider the cross-section weighted sample. We also
studied the effect of the jet momenta and found that with increasing jet momenta, we increased the
background rejection while the signal purity was relatively consistent at a given efficiency which can
be utilized as an experimental working point. Our studies highlight the importance of a precision
vertex detector for heavy flavor studies.

We demonstrated for the first time at RHIC energies the use of particle descriptors for iden-
tifying jet flavor. These low momenta jets at RHIC are particular important for studies of the
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QGP transport properties since they are the ones that are expected to have the largest interactions
with the medium. Aggregated particle descriptors offer a feature space where the inherent differ-
ences between light- and heavy-flavor jets are highlighted leading to significant improvements in
classification performance.

Future explorations of this model include studying the effects of the heavy ion underlying event
and also its extension to jet production at the LHC where one can explore BSM searches. While
we have utilized the detector smearing based on the STAR Heavy-Flavor Tracker detector, this
technique can be utilized to create a standard performance toolkit at SPHENIX [62] and in guiding
detector design at the recently approved Electron Ion Collider (EIC). Studies at sSPHENIX, whose
vertex detector is designed for a high density heavy ion environment, are of immediate benefit for
our model. Conversely, detectors at the EIC are more tuned towards precision measurements in
a low density environment where one could take advantage of the JetVlad model architecture
that effectively reduces the dimensionality of inputs to an aggregated vector, leading to variety of
applications. In principle such a model can be utilized for studies related to particle flow, taking
into account both charged and neutral candidates in experiment and also for mapping detector
performance.
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A Fast simulation

Here we describe the fast simulation framework that was used in order to simulate detector response.
Since a full detector simulation via GEANT is time consuming, one can capture major effects via
parametrizing the response. To account for the tracking efficiency at STAR in proton-proton
collisions, each charged and final state track is dropped with probability of 20% [63]. The TPC also
produces a momentum smearing [63], which is modeled by

pr = N(pr,0.003- p7). (A.1)
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Regarding the finite vertex resolution, we apply a parametrization of the STAR heavy-flavor

Tracker [65], by fitting the resolutions of DCAy, and DCA_, dependent on the track momentum p

DCAyy = N(DCAy, 0y (D)), (A2)
DCA, = N(DCA,, o, (p)). (A3)

Post smearing, we apply selection criteria on the tracks similar to an experimental analysis
¢ Minimal smeared transverse momentum of the track is p7 > 0.2 GeV/c.
* |[IDCA;| < 60 mm and |[DCAy,| < 20 mm

As mentioned before, this particular parametrization is based upon the existing STAR experi-

ment. The upcoming SPHENIX experiment is designed for better tracking efficiency and includes

specific detector prioritizing secondary vertex resolution such as the MVTX [64] which will further

increase the classification performance.
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INTRODUCTION

The heavy-flavor jets which arise from hard scat-
tered heavy quarks play an important role in many
physics processes at collider experiments. Thus, the
ability to identify such jets with high precision is cru-
cial to many measurements, for example in studies of
boosted objects at the LHC or studies of mass depe-
dence of energy loss. At RHIC energies successful iden-
tification of heavy-flavor jets down to the low trans-
verse momentum (pr) can help with searches for the
dead-cone effect [1] via Lund plane formalism [2, 3]
and its modification via quark-gluon plasma medium
[4] created in heavy-ion collisions.

Machine learning is an established way for solving
such classification problems. The previous research on
jet flavor identification utilized jet images [5] (for W/Z
boson initiated jets) or pr/DCA (distance of closest
approach to the primary vertex) ordered sequences of
particles [6] (for heavy flavor jet identification). The
pr/DCA ordering of particles in a jet is not physi-
cal and hence other methods are needed. One such
method, called NetVLAD [7] is an efficient way for
solving computer vision tasks that are using sets of
vectors as an input.

TRAINING DATASET

Training data for pp collisions at /s = 200 GeV
is simulated with the PYTHIA8 [8, 9] event generator
at the center of mass energy /s = 200 GeV. We
generate 2 datasets that contain light jets (those ini-
tialized by uds-quarks and gluons) and heavy-flavor
jets (those coming from the fragmentation of ¢ and b
quarks). First dataset respects the realistic jet cross-
section ratios and the second one with balanced num-
ber of jets represents an idealized benchmark case.
In order to bring in the effects of the finite detec-
tor resolution, the transverse momentum and vertex-
ing information of the particles are smeared using a
Gaussian distribution via pr = N(pr,o(pr)) [10],
where o(pr) and DCA = N(DCA,c(p)) [11] with
o(pr) being the transverse momentum resolution and
o(p) is vertex tracker resolution. After smearing, only
the charged particles (protons, pions and kaons) with
0.2 < pr < 30 GeV/c and pseudorapidity |n| < 1.0 are
accepted, since only charged particles leave hits in the
vertex tracker.

JETVLAD MODEL AND ITS PERFOR-
MANCE

We introduce the JetVLAD model, which takes a
set of tracks, that are produced by the anti-kp [14]
jet reconstruction algorithm within the FastJet pack-
age [12, 13] and predicts if the jet originates from
a light or heavy-flavor parton. Initially 4 combina-
tions of the input variables were considered - track-

ing (pr,n, @), vertexing (DCA,,, DCA,), tracking and
vertexing (pr,n, ¢, DCAyy, DCA,) and finally track-
ing and fragmentation (pr,7, ¢, 2, AR, 2(AR)?). Here
¢ represent azimuthal angle of the track, DC' A, and
DCA, are zy and z projections of the DCA, AR is
the distance between track and jet axis and z is a total
jet momentum fraction carried away by the track.

The tracking and vertexing inputs were chosen to
yield optimal classification performance. The resulting
model possesses 111608 of free parameters and only
two hyper-parameters (number of layers in the model
and number of clusters in the NetVLAD layer), which
makes running this model computationally very effi-
cient. The evaluation is done using standard metrics,
namely the efficiency:

Bff = — (1)

i.e. ratio of true-positives (correctly identified heavy-
flavor jets) over positives (total number of heavy-flavor
jets in the testing sample). This metric shows percent-
age of heavy-flavor jets algorithm can retrieve from the
sample. Next metric is purity, given by
TP

Pur= 35 v @
i.e. it is ratio of true-postivies over true-positives and
false-positives (light flavor jets that were identified as
heavy-flavor) in the accepted sample. As the name sug-
gest, this metric shows the background contamination
in the selected sample. The last metric is rejection

. N

Rej = . (3)
where N is a total number of negatives in the sample
(i.e light flavor jets) and FP is a number of false pos-
itive jets. This metric tells how many background jets
are rejected per one false positive jet accepted. The re-
sults for selected working points and jet ppr ranges can
be seen in the Table . Efficiency and rejection plots
that were used for optimal input combination can be
seen on Figure 1. The efficiency and purity plots for
jets across different pr ranges can be seen on Figure 2.

TAB. 1. JetVLAD classification performance in purity and
rejection for different jet pr ranges for the cross-section
weighted (balanced) datasets with two working points
based on efficiencies of 80% and 50%, respectively.

Range in jet | Tagging Signal Background
pr [GeV/c] | Efficiency Purity Rejection
[5 - 10] 80% 83% (99%) 223 (268)
50% 88% (99%) 540 (579)
[25 - 40] 80% 81% (99%) | 322 (366)
50% 85% (99%) | 677 (740)

Figure 1 shows the background rejection as a func-
tion of the classification efficiency for different inputs.
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JetVLAD, Pythia8.235, Cross-section weighted
Vs =200 GeV, anti-kt jets R = 0.4

20 < pr,jet <25 GeV/c, |njet| < 0.6
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Fig. 1. Rejection vs efficiency plots for different input
variables. The combination of tracking and vertexing
information provides the best performance.
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Fig. 2. Purity vs efficiency plots for different jet pr ranges.

One can see that tracking and vertexing provides the
best performance.

It is interesting to note, that vertexing alone pro-
vides a good model performance, but adding track-
ing information increases overall performance. Figure
2 shows that the model performance is changing slowly
for different py ranges. The drop in the purity for the
highest momentum range is due to the difference in jet
kinematics, since at those momenta heavy-flavor jets
are starting to resemble light jets.

CONCLUSIONS

We propose a novel jet tagging method suitable for
RHIC energies which utilizes a set of tracks as an input
making this tagger directly applicable to experiments
for existing vertexing detectors and jet algorithms.
The resulting method is computationally efficient
and has a small number of hyper-parameters. The
proposed method achieves 83% purity, background
rejection rate of more than 200 and efficiency of 80%
at lowest jet momenta. Such a performance enables

indentation of heavy-flavor jets at RHIC energies
and provides the opportunity for new flavor tagged
measurements.
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