
Pokyny pro vypracování

Cílem práce je prozkoumat možnosti automatického řešení dvou problémů, jejichž vyřešení by

usnadnilo identifikovat texty či jejich části, které vznikly překladem originálu dostupného na internetu.

Tyto problémy jsou:

1) Rozpoznání textu nebo jeho části, který vznikl jako překlad a nikoli jako originální autorův text.

2) Formulace dotazů pro internetové vyhledávače, které by umožnily efektivně najít (předem neznámý)

originál přeloženého textu.

Pro obě úlohy proveďte rešerši již zkoumaných řešení a případně navrhněte vlastní. Zaměřte se na

české texty, které vznikly překladem textů anglických. Vše otestujte na vhodně připraveném datasetu.

Elektronicky schválil/a Ing. Karel Klouda, Ph.D. dne 20. ledna 2021 v Praze.

Zadání bakalářské práce

Název: Automatická detekce přeložených textů

Student: Jan Peřina

Vedoucí: Ing. Karel Klouda, Ph.D.

Studijní program: Informatika

Obor / specializace: Znalostní inženýrství

Katedra: Katedra aplikované matematiky

Platnost zadání: do konce letního semestru 2021/2022

Bachelor’s thesis

Automated detection of text translations

Jan Peřina

Department of Applied Mathematics
Supervisor: Ing. Karel Klouda, Ph.D.

May 13, 2021

Acknowledgements

I would like to express my deepest gratitude to my supervisor Ing. Karel
Klouda PhD. for his guidance, advice, and support. I would also like to thank
my faculty for providing me with the computational resources necessary for
the experiments described in this thesis. To my dear friend, Radoslav Kondáč,
for his useful advice related to grammar. To Anežka Krézková for keeping me
positive even in the hard times. And least but not last to my friends and
family for their support. Thank you!

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Jan Peřina. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Peřina, Jan. Automated detection of text translations. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Tato bakalářská práce zkoumá možnosti detekce přeložených část́ı textu společně
s možnostmi dohledáńı p̊uvodu těchto text̊u na internetu. V práci je zopa-
kován experiment s vybranou metodou pro detekci strojových překlad̊u. Tuto
metodu se podařilo vylepšit pomoćı jiné podobnostńı metriky textu a lemma-
tizace. Byla ověřena jej́ı aplikovatelnost na lidský překlad. Bylo též otestováno
několik zp̊usob̊u transformace takto detekovaných část́ı textu do dotazu pro
webový vyhledávač, za účelem efektivńıho dohledáńı jejich originálu.

Kĺıčová slova detekce přeloženého textu, detekce plagiátu, zpracováńı přirozeného
jazyka, strojové učeńı, python

vii

Abstract

This bachelor thesis explores the possibilities of detecting a translated por-
tions of a text together with ways of search for the origin of such text on the
internet. In this thesis an experiment of chosen method for machine transla-
tion detection is reproduced. This method was then improved by utilization
a different text similarity metric and lemmatisation. The applicability of this
method on human produced translation was tested. And several ways of trans-
forming this way detected texts into search engine queries to effectively find
their sources on the internet.

Keywords detection of text translation, plagiarism detection, natural lan-
guage processing, machine learning, python

viii

Contents

Introduction 1
Motivation . 1
Objectives . 2

1 State-of-the-art 3
1.1 Detection of translated text . 3
1.2 Text origin search . 4

2 Translation detection using back translation 5
2.1 Method description . 5

2.1.1 BLEU score . 7
2.2 Implementation . 8

2.2.1 Translation . 8
2.2.2 Back translation function 10
2.2.3 Casefolding . 10
2.2.4 Lemmatisation . 10

2.3 Dataset creation . 11
2.4 Evaluation . 16

2.4.1 Initial evaluation . 16
2.4.2 EMEA and Alice in Wonderland 16

2.5 Undersampling methods . 18
2.5.1 Condensed Nearest Neighbours 19
2.5.2 Tomek Links . 19

2.6 Evaluation with different metrics 19
2.6.1 NIST . 19
2.6.2 GLEU . 22

2.7 Results . 23
2.8 Discussion . 26

3 Text origin search 27

ix

3.1 Method description . 27
3.2 Dataset . 28
3.3 Implementation . 28

3.3.1 Text Identity . 29
3.3.2 Automated text summarization 29
3.3.3 Keyword extraction . 29

3.4 URI matching and content mirroring 31
3.5 Experiment . 32
3.6 Results . 33

Conclusion 35

Bibliography 37

A Acronyms 41

B Text origin search data sources 43

C Contents of enclosed SD card 45

x

List of Figures

2.1 Visualisation of the BLEU scores for the smaller EMEA dataset . 12
2.2 Visualisation of the BLEU scores for the larger EMEA dataset . . 12
2.3 Filtered EMEA dataset visualisation 13
2.4 Alice’s Adventures in Wonderland dataset visualisation 15
2.5 Filtered EMEA dataset with NIST score visualisation 21
2.6 Alice’s Adventures in Wonderland dataset with NIST score visual-

isation . 22
2.7 Filtered EMEA dataset with GLEU score visualisation 23
2.8 Alice’s Adventures in Wonderland dataset with GLEU score visu-

alisation . 25

3.1 Keyword overlap between methods 30
3.2 Number of search queries resulting in less than twenty results . . . 34
3.3 Box plot of results for original paragraphs 34
3.4 Box plot of results for back translated paragraphs 34

xi

List of Tables

2.1 Results smaller EMEA dataset . 20
2.2 Results larger EMEA dataset . 20
2.3 Results of Alice’s Adventures in Wonderland classification 20
2.4 Impact of CNN on classification of EMEA larger dataset 20
2.5 Impact of Tomek Links on classification of EMEA larger dataset . 24
2.6 EMEA classification results with NIST score 24
2.7 EMEA classification results with NIST score 24
2.8 EMEA classification results with GLEU score 24
2.9 EMEA classification results with GLEU score 25
2.10 Results on models trained on EMEA dataset and with Alice’s Ad-

ventures in Wonderland as test set 26

3.1 Results for original paragraphs . 33
3.2 Results for back translated paragraphs 33

xiii

List of Code Examples

2.1 Translation function . 9
2.2 Function for dataset creation . 11
2.3 Alice in Wonderland - Scraper . 15

3.1 Google Search Egngine URI builder 29

xv

Introduction

Ever since the first Machine Translation (MT) algorithms were introduced, the
barrier between languages has become noticeably smaller. The performance
of machine translation algorithms, which has been improving rapidly over the
past years, allows to translate whole documents into a state of understandable
and grammatically correct translations which are of a quality comparable
(Popel et al. (2020)) to texts produced by professionals in the field. They
can, however, be also used for malicious purposes.

Motivation

MT algorithms are being widely used to bridge the gap between languages.
They can, for example, translate the text of a web page, so that even users
who do not speak the original language can access the information contained
in it. This concept allows people from all over the world to conveniently
access sources previously unavailable to them, whether in electronic or printed
versions. However, the new found high fidelity of translated texts also allowed
the spread of content piracy.

The traditional methods of plagiarism detection work by comparing the
examined document with several candidates from a given database, looking
for semantic, stylistic, or content similarities in both texts. This approach
has one big pitfall, the database has to be continuously updated, since new
documents are produced daily. Due to the sheer number of documents on the
internet, these candidates can be often unavailable. This problem becomes
even more tangled when more than one language is considered.

In this thesis, I examine the possibilities for building blocks of a potential
method for plagiarism detection without the need to use a database of candi-
dates, while also being able to overcome the barrier created by the translation
of text. The belief is that, since the process of plagiarism likely utilizes search
engines to obtain information sources, if it is possible to detect portions of
the text that are plagiarized, it should be possible to some extent reproduce

1

Introduction

the search query based on the information contained in them. Delegating the
lookup for the text origin to the search engine could improve both the time
needed for detection and the chance of finding the original document, since
the search engines are optimized for such tasks and index new documents and
online sources constantly.

Objectives

This thesis aims to explore the following topics:

• Automatic recognition of parts of Czech texts that have been previously
translated from English.

• Search engine query formulation from a portion of text, which would
allow to locate its origin on the internet.

In the first chapter, I will describe the state-of-the-art methods for both
the detection of translated texts and the text origin search. The next chapter
further explains how to detect translated text using back translation. The
experiments on both machine and human produced data together with im-
provements providing better results than the original method. The last chap-
ter focuses on how to transform the text to a search engine query to locate its
source.

2

Chapter 1
State-of-the-art

1.1 Detection of translated text

Since the research on the detection of machine translation is much more ad-
vanced compared to the detection of human-produced translations, the initial
thought was to explore methods for detection of machine translation and possi-
bly take inspiration from them. At the same time, it is a goal to verify whether
or not are these methods sufficient for the detection of human translated texts
as well.

I was able to find several publications about the detection of machine trans-
lation reporting great results. Kurokawa et al. (2009) presented a method for
automatic detection whether the text is translated or not, the main focus was
to detect the difference between original and translated text with reported
77% accuracy for sentence level blocks of text. However, I was having trouble
fully understanding how to properly transform the data and train the classi-
fier. Aharoni et al. (2014) presented a more straightforward method based on
the presence of each set of Part Of Speech (POS) n-grams as well as presence of
function words from proprietary collection, which is available only for English
language. Both of these methods were also evaluated for translations made
from Statistical Machine Translation (SMT) models, which are currently out-
performed by Neural Machine Translation (NMT) and thus might not provide
meaningful results. At last, I found a rather interesting method, which was
evaluated on NMT systems and reports good results. Nguyen-Son et al. (2019)
exploits the textual deformation created by the MT and report 75% accuracy
and F1-score on French-English texts. This method is practically applicable
to any arbitrary pair of languages as long as there is an access to well perform-
ing NMT models for these two languages, since this method utilizes MT for
creation of features based on which the final classification is performed. One
interesting thing is that each publication utilizes Support Vector Classifier
(SVC), however, I decided to compare several other classifiers to determine if
any of them would perform better (see Section 2.4).

3

1. State-of-the-art

1.2 Text origin search

When a document is being tested for potential plagiarism, it is compared to a
large number of other documents that are stored in a database, based on var-
ious criteria. There are several existing solutions based on this principle, e.g.
theses.cz, however they are mostly able to check the plagiarism of documents
written in the same language. Ceska et al. (2008) tried to solve the problem of
multilingual plagiarism by converting documents into a language-independent
form, which may solve the problem of multilingual plagiarism, but there is
still a need to store a large number of documents in a database.

To eliminate the need of continuous gathering new documents and cross-
analysing them with each other. Nowadays, search engines are used as an
entry to the internet, since they index a large portion of it and are able to
provide us with relevant information to our questions, sort of like an oracle.
Thus, I decided to examine the possibilities of search engines to find the origin
of a plagiarized text by mimicking users original search queries, which would
solve the need of collecting and indexing new documents daily. Such a method,
however, has not been developed yet or at least I did not manage to find any
relevant sources.

4

https://theses.cz/

Chapter 2
Translation detection using back

translation

In this chapter, I will explain what is the process of back translation, its
implementation in Python programming language, and the way I reproduced
the experiment to test whether or not it is applicable to the Czech language,
based on my observations.

2.1 Method description

The main idea behind using back translation (Nguyen-Son et al. (2019)) to
detect translated texts is to simulate the deformation produced by MT sys-
tems.

When a MT system translates a text, even if the result is grammatically
correct, it shows signs of its artificial origin. This fingerprint is highly percep-
tible on sentences produced by older machine translation systems and is being
reduced over time by the improvement of machine translation methods. After
the introduction of deep learning into the field of machine translation, NMT
took over, the quality of the produced texts has improved rapidly compared
to the previous state-of-the-the-art methods of SMT, however, they are still
not perfect.

Back translation is a process where a text is translated from the source
language into the target language and then back to the original one. Back
translating a text that has been already translated often produces less varying
output compared to the author’s own text. This can be compared to the
process of equalizing the histogram of an image. If the image was already
equalized, the difference would have been less significant than in the original
image.

The portions of the text, whether sentences or paragraphs, are translated
from a source language into an intermediate language, and then back to the

5

2. Translation detection using back translation

source language. This, during seven cycles, produces texts in the source lan-
guage against which the amount of variance is measured. The amount of vari-
ance is measured using BLEU score (see Section 2.1.1) between each sentence
and its direct back translation, this whole process is shown in Example 2.1.1.
The produced feature vectors, containing these BLEU scores, are then used
for the classification task.

Example 2.1.1 (Feature vector creation)
Fisrt iteration
Original sentence (c): Dnes je venku velice pěkné počaśı. BLEU
English translation (e0): It’s a very nice weather out there today. ≈ 0.097
Back translation (b0): Dneska je moc hezké počaśı. (c, b0)
Second iteration
Back translation (b0): Dneska je moc hezké počaśı. BLEU
English translation (e1): It’s very nice weather today. ≈ 0.127
Back translation (b1): Dneska je moc pěkné počaśı. (b0, b1)
Third iteration
Back translation (b1): Dneska je moc pěkné počaśı. BLEU
English translation (e2): It’s very nice weather today. 1.0
Back translation (b2): Dneska je moc pěkné počaśı. (b1, b2)
Fourth iteration
Back translation (b2): Dneska je moc pěkné počaśı. BLEU
English translation (e3): It’s very nice weather today. 1.0
Back translation (b3): Dneska je moc pěkné počaśı. (b2, b3)
...
Seventh iteration
Back translation (b5): Dneska je moc pěkné počaśı. BLEU
English translation (e6): It’s very nice weather today. 1.0
Back translation (b6): Dneska je moc pěkné počaśı. (b5, b6)

Score vector: (0.097, 0.127, 1.0, 1.0, 1.0, 1.0, 1.0)

In Example 2.1.1, it is shown how the feature vector for a sentence is
created. At the beginning, a Czech sentence is translated into English and
then back to Czech, the similarity between those two sentences is measured
and then the back translated sentence is used in the next iteration. After just
two iterations, the sentence is in a state when its following back translations
are the same, so the score is always 1 from this point.

The reported results for this method were 75% on both accuracy and
F1-score, which is a solid result, however, these results were measured on
French-English parallel text and it was not clear whether or not this method
will obtain at least as good results on Czech-English parallel texts as on the
original one.

6

2.1. Method description

2.1.1 BLEU score

The BLEU score was originally developed by Papineni et al. (2002) to au-
tomatically evaluate the closeness between a translation produced by a MT
system, and human translation posing as reference. It was stated that BLEU
score highly correlates1 with human judgement over the quality of machine
translated texts. It uses a modified n-gram precision which is calculated as
the number of n-grams of the translation contained in the reference, limited
by the number of occurrences of n-gram inside of the said reference, divided
by the length of the translation. First, the geometric mean of the modified
n-gram precision for n-grams pi for i = 1, 2, 3, 4 is calculated. The weights
w1, . . . , w4 by default uniformly distributed are introduced, so it is possible
to customize how much each n-grams contributes to the BLEU score. The
brevity penalty (BP)

BP =

1, if t > r
e(1− r

t), otherwise
,

is uded to penalize translations shorter than reference. The t represents the
length (number of words) of translation and r representing the length of the
reference. The BLEU score is then defined as

BLEU = BP · exp
(

N∑
i=1

wi log pi

)
.

Demonstration of the BLEU score calculation can be seen in Example 2.1.2.

1with 0.96 correlation coefficient

7

2. Translation detection using back translation

Example 2.1.2 (BLEU score calculation)
Reference: Dnes je velice pěkné počaśı.
Translation: Dnes je velice krásné počaśı.
Modified precisions

type matching pi (matching/total)
Unigrams Dnes, je, velice, počaśı (4/5)
Bigrams Dnes je, je velice (2/4)
Trigrams Dnes je velice (1/3)
Quadgrams (none) (0/2)

Brevity penalty
type length
reference 5 = r
translation 5 = t

BP = e1− r
t = e1− 5

5 = e1−1 = e0 = 1

BLEU = BP · exp
(

N∑
i=1

wi log pi

)
=

= 1 · exp
(

0.25 · log 4
5 + 0.25 · log 2

4 + 0.25 · log 1
3 + 0.25 · log 0

2

)
≈

≈ 0.427

2.2 Implementation

To verify whether this method performs well on the Czech language or not, I
had to implement a data processing pipeline that would transform the data, in
this case English sentences of various lengths and their Czech translations, into
seven-dimensional vectors containing the BLEU scores of back translations,
the same way as it was described above.

2.2.1 Translation

The first major component is the ability to translate text from the Czech
language into the English and vice versa. My initial thought was to back
translate the dataset using the Google Translate2 service and, although it
worked well when tried on a few samples, it seemed rather unpractical to do
manually. This could be of course automatized, however, I would be certainly
blocked or at least restricted after several requests to the service, since it is
against the terms of use of the service3.

2https://translate.google.com
3https://policies.google.com/terms

8

https://translate.google.com
https://policies.google.com/terms

2.2. Implementation

The next strategy was to utilize translation services, however, the leading
suppliers of such services demanded to be paid per translated character which
would be expensive in this case.

The last and final way was to obtain a set of machine translation algorithms
between Czech and English on my own. Fortunately, thanks to Tiedemann &
Thottingal (2020) I was able to obtain a pair of NMT models for translation
between the two languages. The “Transformers” module can load a pretrained
model either from a local filesystem or from a remote repository. To do so, the
user can simply enter the path or identification string of a specific model and
the module then downloads it. Thanks to this and the format of the OPUS-
MT model identification strings being ”Helsinki-NLP/opus-mt-{src}-{dest}”
with src as the short code4 for source language and dest as the short code for
the target language, I was able to obtain the two final Marian-MT (Junczys-
Dowmunt et al. (2018)) models.

To further simplify this process, I created a Python function with param-
eters src and dest with which I then formatted the identification string of the
model, downloaded the model, and returned a function which takes a string
in the source language and translates it with it. This procedure is shown in
Code 2.1.

4“cs” for Czech, “en” for English

def create_translation_function(src, dest):
model identifier
model_name = f"Helsinki-NLP/opus-mt-{src}-{dest}"

tokenizer = MarianTokenizer.from_pretrained(
model_name, cache_dir=os.environ.get("TRANSFORMERS_CACHE")

)
model = MarianMTModel.from_pretrained(

model_name, cache_dir=os.environ.get("TRANSFORMERS_CACHE")
)
nested function for the translation itself
def translate(text):

encoded_translation = model.generate(
**tokenizer.prepare_seq2seq_batch(
text, return_tensors="pt"
)

)
translations = [

tokenizer.decode(t, skip_special_tokens=True)
for t in encoded_translation

]
return " ".join(translations)

return translate

translate_to_czech = create_translation_function('en', 'cs')
translate_to_czech('Good morning.')
>> 'Dobré ráno.'

Code 2.1: Translation function factory with example

9

2. Translation detection using back translation

2.2.2 Back translation function

Following the pattern in Nguyen-Son et al. (2019), this function processes the
dataset (further described in Section 2.3) in such a way that Czech part of the
corpus is treated as the original (class 0) and the English one as the translation
(class 1). The English texts are translated into Czech language to simulate
real life scenarios, and for each entry the BLEU scores for back translations
are produced. An example of the function implemented in Python is shown
in Code 2.2.

2.2.3 Casefolding

Another step, which was also mentioned in Papineni et al. (2002), was the case
folding before the BLEU score calculation. Case-folding is a transformation of
a string either into its lowercase or uppercase form. This way, it is effortless to
match words with different casings which were produced either by capitalizing
every letter of a word, probably to highlight some important information in
the text, or just the first characters of words at the beginning of sentences.

Some case-folding algorithms, for example the one implemented in Python
strings, go further and convert some language special characters into a uni-
versal form, e.g., German “ß” is converted into “ss” as described in Python
Software Foundation (2021), however, a simple lower casing should be also
sufficient, since the occurrence of such characters in English and Czech texts
is negligible.

2.2.4 Lemmatisation

The final step in the process, which was my own idea for the improvement of
matching n-grams to further improve the quality of the BLEU metric, was the
lemmatisation of the words. Lemmatisation is a procedure in which inflected
word forms such as “running” or “ran” are converted into their base form
“run”. Lemmatisation process is crucial for texts in Czech language, since
it is morphologically richer than English, thus the reduction of the words to
the normal form is more beneficial and it is more likely to get better and
more accurate score results. For the process of lemmatisation I used Šmerk &
Rychlý (2009).

The only problem is that lemmatisation does not solve the issues with
synonyms. When comparing the sentences and translations from 2.2, it is
worth notice that Czech words “Lék”, “Př́ıpravek” and “Výrobek” represent
the same thing, but are indeed completely different words and thus cannot
be matched. Resolving this could help to produce better results, however, I
decided to use only lemmatisation on account of verifying this method in the
Czech language.

10

2.3. Dataset creation

def back_translate(text, translated, score_calculator=BLEU_score) -> dict:
translate English text into Czech if flag is True
if translated: text = en_to_cs(text)

czech = [text] # list of Czech texts

for x in range(7):
czech.append(en_to_cs(cs_to_en(czech[x]))) # back translation

score = [score_calculator(czech[x], czech[x + 1]) for x in range(7)]

return {
"y": [int(translated)],
"sentence": [text],
**{f"score_{x}": [score[x]] for x in range(7)},
**{f"translation_{x}": [czech[x]] for x in range(7)},

}
>>> back_translate('Lék je určený výhradně k vnitřnı́mu užitı́.')
{'y': [0],
'sentence': ['Lék je určený výhradně k vnitřnı́mu užitı́.'],
'score_0': [0.2626909894424158],
'score_1': [0.14535768424205484],
'score_2': [1.0],
'score_3': [1.0],
'score_4': [1.0],
'score_5': [1.0],
'score_6': [1.0],
'translation_0': ['Přı́pravek je určen výhradně k vnitřnı́mu použitı́.'],
'translation_1': ['Výrobek je určen pouze pro internı́ použitı́.'],
'translation_2': ['Výrobek je určen pouze pro internı́ použitı́.'],
'translation_3': ['Výrobek je určen pouze pro internı́ použitı́.'],
'translation_4': ['Výrobek je určen pouze pro internı́ použitı́.'],
'translation_5': ['Výrobek je určen pouze pro internı́ použitı́.'],
'translation_6': ['Výrobek je určen pouze pro internı́ použitı́.']}

Code 2.2: Function for dataset creation from Czech and English texts

2.3 Dataset creation

In the initial attempt of reproducing this experiment with the Czech language,
I used the European Medicines Agency (EMEA) parallel corpus from the
Tiedemann (2012), which was created by scraping text from documents and
website contents of the agency5. This corpus contained 322902 Czech-English
aligned documents. The content of those texts varied widely from a few words,
mostly upper case names of drugs, to several sentences in one record.

I decided to filter out records containing only a handful of words, since even
a professional human translator would have a hard time deciding whether a
short sentence, i.e., “Shake before use.”, is a machine translation or not, with-
out further context. To obtain dataset with more comprehensive texts, I kept
only records with at least forty, but also less than a hundred tokens6. This
range covers everything from longer sentences to paragraphs. From this point

5https://www.ema.europa.eu/en
6individual words or terms

11

https://www.ema.europa.eu/en

2. Translation detection using back translation

onward, I created two balanced versions of this dataset, one smaller, contain-
ing 6000 entries and the second one with around 14500 entries, both with a
balanced representation between English (class 1) texts and their translated
Czech (class 0) equivalents.

score_0 score_1 score_2 score_3 score_4 score_5 score_6
Back translation scores

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
va

lu
e

BLEU scores for back translated paragraphs from EMEA dataset
1.0
0.0

Figure 2.1: Visualisation of the BLEU scores for the smaller EMEA dataset

score_0 score_1 score_2 score_3 score_4 score_5 score_6
Back translation scores

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
va

lu
e

BLEU scores for back translated paragraphs from EMEA texts
1.0
0.0

Figure 2.2: Visualisation of the BLEU scores for the larger EMEA dataset

12

2.3. Dataset creation

In Figure 2.1 is displayed the processed EMEA dataset, respectively, the
BLEU scores for each sample, where blue lines represent the English texts
and the red lines represent the Czech translations in the form of a parallel
coordinates plot, the same representation is then used for the following vi-
sualisations as well. There is a visible trend of a thinning red area starting
between 0.01 and 0.7 for the first score and then gradually shrinking towards
a higher value for each subsequent score. In comparison, the blue lines tend
to attain a higher score from the beginning. With each following score, both
trends start to visually merge. Between consecutive scores, there is a devia-
tion of the form of a tooth, the score significantly drops in the value and then
again significantly rises in the next step.

score_0 score_1 score_2 score_3 score_4 score_5 score_6
Back translation scores

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
va

lu
e

BLEU scores for back translated paragraphs from EMEA texts (filtered)
1.0
0.0

Figure 2.3: Filtered EMEA dataset visualisation

I decided to further inspect those deviations, since they could indicate the
presence of a poorly structured text or an error from when the dataset was
scraped and created. I assumed that these deviations will be probably more
common for earlier iterations, since the translations, since the translations had
to stabilize, so I started manually analysing the scores and texts they were
produced from, starting from the last one. I found out that the majority of
the deviations are indeed insufficient texts containing patterns, e.g., contact
information, reoccurring short descriptions of medicaments or their dosage,
probably originating from tables, headers or footers from the documents from
which the original dataset was created. After discovering these patterns, I
decided to filter out these deviations using regular expressions with which I
checked for the presence of a specific substring: e. g., “Tel”, or the number of
their occurrences, for example I filtered out texts containing specific substrings

13

2. Translation detection using back translation

too many times. By doing this, I effectively filtered out the useless parts of
the dataset that could later on bias the performance of the models. The scores
for this filtered dataset can be seen in Figure 2.3.

Since it was obvious that the Czech texts were literal translations, pro-
duced probably by a MT system, I decided to enlarge the dataset collection
with a bilingual version of the book “Alice in the wonderland”, which con-
tained considerably less literall translations compared to the EMEA dataset.
These texts, however, had to be webscraped from Carroll (1865), but it was
not a complex task since the content of the website was static and I was able
to iterate over the book chapters thanks to the number of chapters being part
of the website address. The book consists of 13 chapters, each containing
multiple paragraphs.

To download the paragraphs of each chapter, I performed a Hypertext
Transport Protocol (HTTP) request via a very popular Python module called
“requests” (Foundation (2005)). This way I obtained the binary data, rep-
resenting the content of the page written in Hypertext Markup Language
(HTML), encoded as bytes. This content had to be decoded and parsed into
a data structure that would allow me to retrieve the parallel texts. For this
I used the “lxml” (lxml (2005)) Python module that can convert HTML text
into a tree structure containing the HTML tags, together with their attributes
and contents, while preserving the original hierarchy.

By further analysis of the website structure, I was able to discover that
equivalent paragraphs are encapsulated inside a HTML pair tag containing the
class “row” inside which were two paragraphs, one for the Czech language and
the second one for English. I used the tree structure representing the HTML
page and performed a recursive search for such elements using the XPath
(Clark & DeRose (1999)) query language to obtain the texts themselves and
keep only those containing exactly two paragraphs.

The majority of those paragraph pairs were, in terms of their content, sat-
isfactory. However, there were few pairs, where either both were blank, filled
with non-printable characters or their escaped form7. Such paragraphs were
filtered out either instantly, by the length condition, or after text normaliza-
tion that converted the escaped symbols into their true forms. The very last
thing that had to be done was the removal of the poem at the beginning of
the English text. Since there was no text in the equivalent Czech paragraphs,
I filtered out such pairs where at least one paragraph tag was empty, to even-
tually also remove such cases in the rest of the text. The dataset was perfectly
balanced and its visualisation of the BLEU scores in Figure 2.4.

7“\n”, “\t”, etc.

14

2.3. Dataset creation

html_parser = lxml.etree.HTMLParser()
normalize = lambda x: unicodedata.normalize('NFKD', x)
total = 0
texts = {'cs':[], 'en':[]}

for i in range(1, 13):
book_uri = f'http://bilinguis.com/book/alice/cs/en/c{i}'
response = requests.get(book_uri)

html = etree.fromstring(response.content, parser=html_parser)
paragraphs = html.xpath(".//div[@class='row']") # recursive query
ctr = 0
for div in filter(lambda x: len(x)==2, paragraphs):

cs, en = div.getchildren()
if cs is None or en is None:

continue
cs_text = normalize(' '.join(cs.itertext()))
en_text = normalize(' '.join(en.itertext()))

if not cs_text or len(cs_text) < 30
or not en_text or len(en_text) < 30:
continue

ctr += 1

texts['cs'].append(cs_text)
texts['en'].append(en_text)

total += ctr
print(f'Chapter: {i} - paragraphs: {ctr}')

print(f'Paragraphs total: {total}')

Code 2.3: Web-Scraping procedure of Alice’s Adventures in Wonderland Czech-
English bilingual book

score_0 score_1 score_2 score_3 score_4 score_5 score_6
Back translation scores

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
va

lu
e

BLEU scores for back translated paragraphs from Alice in Wonderland
1.0
0.0

Figure 2.4: Alice’s Adventures in Wonderland dataset visualisation

15

2. Translation detection using back translation

2.4 Evaluation

In this chapter, I will describe the process of dataset evaluation using machine
learning models. The main goal is to be able to classify whether the text
is original (class 1) or translated (class 0). In the first subsection, I will
describe the initial evaluation on a smaller dataset made from the EMEA
parallel corpus and in the following subsection, I will compare the results for
a larger dataset made from EMEA corpus and a dataset made from the Alice’s
Adventures in Wonderland book.

2.4.1 Initial evaluation

In the beginning, I decided to classify the datasets using several machine learn-
ing algorithms, namely, Ridge Classifier, Stochastic Gradient Descent (SGD)
Classifier, SVC, AdaBoost Classifier, and Random Forest Classifier. Each one
from the Python module named Scikit-learn (Pedregosa et al. (2011)). For
these models, I split the smaller EMEA dataset from the beginning of Sec-
tion 2.3 into two into two sets, one for the process of training and the other one
for testing. Each model was then trained on a train set to learn the relations
between the classes and features and then evaluated for accuracy, F1-score,
precision, and recall for both train and test sets. This procedure was applied
in the same manner in all other experiments. A sample record is shown in
Example 2.4.1.

After the initial evaluation on the smaller dataset, I obtained the results
shown in Table 2.1. The table contains comparisons of the metrics of binary
classification. The table contains scores for each metric as columns, grouped
for each set, represented as a percentage rounded to one decimal place. From
the contents of the table, it can also be seen that for the training set, the
dominant model in terms of the measured metrics was Random Forest Clas-
sifier, which was also prominent in the test set, however, it was outperformed
by AdaBoost Classifier, with respect to F1-score and Recall. The classifiers
altogether predicted with slightly higher precision and F1-score than was re-
ported in Nguyen-Son et al. (2019) for rich-resource languages (75.0% for
French). This may be attributed to favorable training dataset, the properties
of the Czech language, the lemmatisation, or the combination of the afore-
mentioned. However, these results are still more than satisfactory.

2.4.2 EMEA and Alice in Wonderland

To better verify the applicability of this method on Czech texts, I performed
the same measurement on the bigger EMEA dataset with the outliers filtered
out. As can be seen in Table 2.2, the Random Forest Classifier, as in the
previous experiment, adjusted itself well to the train set, however, this time it
was not able to find such success on the test set, probably due to the overfitting

16

2.4. Evaluation

Example 2.4.1 (Processed English record from EMEA dataset)

original

It is available as 5 mg, 10 mg, 15 mg and 30 mg tablets, as
10 mg, 15 mg and 30 mg orodispersible tablets (tablets that
dissolve in the mouth), as an oral solution (1 mg/ ml) and as
a solution for injection (7.5 mg/ ml).

sentence

Je dostupný ve formě 5 mg, 10 mg, 15 mg a 30 mg tablet ve
formě 10 mg, 15 mg a 30 mg tablet dispergovatelných v
ústech (tablety, které se rozpouštěj́ı v ústech), perorálńıho
roztoku (1 mg/ ml) a injekčńıho roztoku (7, 5 mg/ ml).

translation 0

Je dostupný ve formě 5 mg, 10 mg, 15 mg a 30 mg tablet ve
formě 10 mg, 15 mg a 30 mg tablet dispergovatelných v
ústech (tablety, které se rozpouštěj́ı v ústech), perorálńıho
roztoku (1 mg/ ml) a injekčńıho roztoku (7, 5 mg/ ml).

score 0 0.785391

translation 1

Je dostupný ve formě 5 mg, 10 mg, 15 mg a 30 mg tablet ve
formě 10 mg, 15 mg a 30 mg tablety dispergovatelné v
ústech, perorálńıho roztoku (1 mg/ ml) a injekčńıho roztoku
(7, 5 mg/ ml).

score 1 1.0

translation 2

Je dostupný ve formě 5 mg, 10 mg, 15 mg a 30 mg tablet ve
formě 10 mg, 15 mg a 30 mg tablety dispergovatelné v
ústech, perorálńıho roztoku (1 mg/ ml) a injekčńıho roztoku
(7, 5 mg/ ml).

score 2 1.0

translation 3

Je dostupný ve formě 5 mg, 10 mg, 15 mg a 30 mg tablet ve
formě 10 mg, 15 mg a 30 mg tablety dispergovatelné v
ústech, perorálńıho roztoku (1 mg/ ml) a injekčńıho roztoku
(7, 5 mg/ ml).

score 3 1.0

translation 4

Je dostupný ve formě 5 mg, 10 mg, 15 mg a 30 mg tablet ve
formě 10 mg, 15 mg a 30 mg tablety dispergovatelné v
ústech, perorálńıho roztoku (1 mg/ ml) a injekčńıho roztoku
(7, 5 mg/ ml).

score 4 1.0

translation 5

Je dostupný ve formě 5 mg, 10 mg, 15 mg a 30 mg tablet ve
formě 10 mg, 15 mg a 30 mg tablety dispergovatelné v
ústech, perorálńıho roztoku (1 mg/ ml) a injekčńıho roztoku
(7, 5 mg/ ml).

score 5 1.0

translation 6

Je dostupný ve formě 5 mg, 10 mg, 15 mg a 30 mg tablet ve
formě 10 mg, 15 mg a 30 mg tablety dispergovatelné v

ústech, perorálńıho roztoku (1 mg/ ml) a injekčńıho roztoku
(7, 5 mg/ ml).

score 6 1.0
class 1

17

2. Translation detection using back translation

on the train set. In terms of accuracy for the test set, the best performing
classifier proved to be the Ridge classifier with accuracy 73.8%, which also
had a good F1-score (72.5%), but was outperformed by AdaBoost classifier
with the F1-score of 72.8%. Almost all values for the test set are significantly
lower than in the smaller dataset, which could be due to the increase in the
size of both train and test sets and thus the possible introduction of more
challenging samples.

To get a more realistic idea of how the method would perform on authentic
data, I repeated the experiment on the dataset obtained from the Alice’s
Adventures in Wonderland book. The difference between the two datasets is
noticeable that EMEA dataset contain less fluent sentences compared to the
other one and the content itself is full of medical terms (see Example 2.4.2).

Example 2.4.2 (Example texts from the datasets)
EMEA: After a dosage of 2 mg kg a Tmax of 1 h (cats and dogs), a Cmax of 1464
ng ml (cats) and 615 ng ml (dogs), and an AUC of 3128 ng. h ml (cats) and 2180
ng. h ml (dogs) is obtained.

Alice’s Adventures in Wonderland: Alice was beginning to get very tired of
sitting by her sister on the bank, and of having nothing to do: once or twice she had
peeped into the book her sister was reading, but it had no pictures or conversations in
it, ’and what is the use of a book,’ thought Alice ’without pictures or conversation?’

As can be seen from the Table 2.3, the Random Forest classifier once again
performed quite well on the train set and it seems, judging by the similarly high
values in accuracy and F1-score. However, the major difference in this case
is that the gap between Random Forest classifier and other models became
significantly lower. Overall high scores were obtained also for the test set,
namely, Ridge Regression classifier and SGD classifier regarding the precision
score (100%). The best performing model on the testing set was SVC, which
obtained the best Accuracy and F1-score values. Furthermore, SVC was also
best according to Nguyen-Son et al. (2019), however, the performance was not
tested on texts such as this. Another interesting thing are exceptionally high
precision scores (100%) for Ridge classifier, Logistic Regression and SGD.

2.5 Undersampling methods

According to the results, it seems that this method is indeed performing quite
well. Nevertheless, I wanted to determine if the model performance can be
improved with data prepossessing methods. Since I possessed a big dataset
with initially balanced classes that, due to the nature of the method, were
condensed. I decided to test the effect of undersampling methods, with which
I could filter samples that cause class overlap, which could have possibly led to
better classification. I used two widely used undersampling methods, Tomek
Links and Condensed Nearest Neighbours (CNN).

18

2.6. Evaluation with different metrics

2.5.1 Condensed Nearest Neighbours

CNN (Hart (1968)) is an incremental method, in which the starting point is a
single-element set made from one sample. Next, by classifying other samples
based on the aforementioned first element, samples that were misclassified are
then added to the set and then repeated until the next incorrectly classified
element is found or until all elements from the training set are in the set. The
results of this method depend on the order of the samples in the dataset.

The impact of this method on the classification for the larger EMEA
dataset can be seen in Table 2.4. The Accuracy decreased, the F1-score has
improved for almost every model.

2.5.2 Tomek Links

Tomek Links (Tomek (1976)) is based on the CNN, and is in some way im-
provement. Compared to its predecessor CNN, Tomek Links are less prone to
the order of samples, since it only considers pairs of elements that are clos-
est to each other, yet from different classes, one of them is then removed to
strengthen the border between the two classes. It is possible to remove only
samples within a certain class, however, this is used mainly for the balancing
of the dataset and since my dataset was balanced, I simply removed samples
from both classes to further separate them.

From the results in Table 2.5 it is visible that with respect to the train
set, Tomek Links slightly improved F1-score of the Ridge classifier. On the
other hand, it seems that the performance of other models slightly decreased.
The model with the highest accuracy on test set was SGD (73.5%) and every
model improved in recall when compared to Table 2.2, but deteriorated in
precision.

2.6 Evaluation with different metrics

Since neither CNN or Tomek Links improved the classification significantly,
I decided to try this method with text similarity metrics other than BLEU
score. The considered metrics and their impact on the results are described
below. I also tested the combination of BLEU score alternatives with both
Tomek Links, CNN, and without any while focusing solely on accuracy and
F1-score.

2.6.1 NIST

The NIST score (Doddington (2002)) is a similarity metric based on the BLEU
metric, which, compared to its predecessor, calculates the information weight
of each n-gram based on the binary logarithm of the occurences of the (n-1)-
gram u1, . . . , un−1 over the number of occurences of the n-gram u1, . . . , un

19

2. Translation detection using back translation

Table 2.1: Results of smaller EMEA dataset classification

EMEA (smaller) results (%)

Classifier Train Test
Acc F1 Prec Rec Acc F1 Prec Rec

Ridge 78.2 78.6 77.2 80.1 77.9 78.6 76.4 80.9
Logistic Regression 78.3 78.5 77.8 79.1 77.8 78.2 77.1 79.4
SGD 78.0 78.9 75.8 82.2 78.0 79.3 75.4 83.5
SVC 78.6 79.0 77.4 80.6 77.8 78.5 76.4 80.8
AdaBoost 78.6 79.7 75.8 83.9 78.4 79.8 75.3 84.9
Random Forest 98.3 98.3 97.3 99.5 78.7 78.8 78.7 79.0

Table 2.2: Results of larger EMEA dataset classification

EMEA (larger) results (%)

Classifier Train Test
Acc F1 Prec Rec Acc F1 Prec Rec

Ridge 74.5 73.4 73.3 73.4 73.8 72.5 72.5 72.5
Logistic Regression 74.6 73.2 73.8 72.6 73.5 72.0 72.5 71.6
SGD 74.0 71.1 76.0 66.8 73.7 70.7 75.4 66.5
SVC 74.6 73.3 73.8 72.8 73.6 72.0 72.8 71.2
AdaBoost 74.7 74.2 72.4 76.1 73.4 72.8 71.2 74.4
Random Forest 99.1 99.1 98.6 99.6 71.9 69.8 71.5 68.1

Table 2.3: Results of Alice’s Adventures in Wonderland classification

Alice’s Adventures in Wonderland results (%)

Classifier Train Test
Acc F1 Prec Rec Acc F1 Prec Rec

Ridge 92.2 91.7 99.5 85.0 93.8 93.2 100 87.2
Logistic Regression 94.6 94.4 99.3 89.9 95.8 95.5 100 91.3
SGD 96.4 96.3 98.2 94.5 97.8 97.7 100 95.4
SVC 95.9 95.9 98.2 93.7 96.8 96.6 99.5 93.9
AdaBoost 97.4 97.5 98.1 96.8 94.8 94.6 95.8 93.4
Random Forest 99.7 99.7 99.4 100 96.0 95.9 96.9 94.9

Table 2.4: Impact of CNN on classification of EMEA larger dataset

EMEA (larger) results (%) with CNN

Classifier Train Test
Acc F1 Prec Rec Acc F1 Prec Rec

Ridge 72.6 81.7 74.9 90.0 68.2 73.1 61.3 90.6
Logistic Regression 72.8 81.8 75.2 89.8 68.5 73.2 61.6 90.2
SGD 62.0 64.9 87.6 51.6 69.8 61.0 79.5 49.5
SVC 73.1 82.2 74.9 91.2 68.1 73.2 61.1 91.2
AdaBoost 73.5 81.2 78.6 84.0 70.9 73.1 65.4 82.8
RandomForest 99.1 99.4 98.9 99.8 69.5 70.9 64.9 78.1

20

2.6. Evaluation with different metrics

itself.

Info(u1, . . . , un) = log2

(# of occurences of u1, . . . , un−1
of occurences of u1, . . . , un

)
.

This way the added information weights add more value to less frequently
occurring n-grams, which in most cases play a crucial part in determining
whether the sentence is a translation or not. The NISt score is defined as

NIST =
N∑

n=1

∑
∀ co-occuring

n-grams u1,...,un

Info(u1 . . . un)

∑
∀ n-grams v1,...,vn

in translation

1

 · exp
(

log2 [min(t
r , 1)]

2

)
.

score_0 score_1 score_2 score_3 score_4 score_5 score_6
Back translation scores

0

2

4

6

8

10

Sc
or

e
va

lu
e

NIST scores for back translated paragraphs from EMEA dataset
0.0
1.0

Figure 2.5: Filtered EMEA dataset with NIST score visualisation

When comparing the visualisation of NIST scores (Figures 2.5 and 2.6)
to the visualizations of the BLEU scores (Figures 2.3 and 2.4). It appears
that the score values are more spread for earlier iterations, and later on the
majority of the scores seem to be constant. There are again some visible
deviations, a massive one for English texts in the second iteration of the score
and a tiny one for the Czech texts in the third iteration. This could indicate
similar unusable data that have been filtered out in Section 2.3, or maybe even
some hidden relations, however it was not further analysed. The results in
the Tables 2.6 and 2.7 consist of three main column groups, the group which

21

2. Translation detection using back translation

score_0 score_1 score_2 score_3 score_4 score_5 score_6
Back translation scores

0

2

4

6

8

Sc
or

e
va

lu
e

NIST scores for back translated paragraphs from Alice in Wonderland
1.0
0.0

Figure 2.6: Alice’s Adventures in Wonderland dataset with NIST score visualisation

represents the use of no undersampling method, Tomek Links and CNN, for
each accuracy and F1-score are shown. Based on the results, it seems that this
method was able to increase both the accuracy and F1-score of almost every
model when used compared to the results of the BLEU score on the larger
EMEA dataset (Table 2.2). However, for the dataset of Alice’s Adventures
in Wonderland, the results with NIST were mostly similar to the results with
BLEU in Table 2.3.

2.6.2 GLEU

The GLEU score (Wu et al. (2016)), which was also inspired by the BLEU
score, solves some issues of its predecessor. In particular, the GLEU score is
better applicable for sentence-level comparisons, in contrast to BLEU, which
was designed for corpus level comparison.

The score is based on the precision and recall of the matched n-grams
from the reference and translation. Precision is the number of matching n-
grams over the total number of n-grams in reference and recall is computed
in the same way but with the translation instead. The final GLEU score is
the minimum of precision and recall, thus being between 0 and 1, where a
higher value indicates a stronger match. Other benefit of this metric is that
it is symmetrical.

The visualisations of the GLEU scores for EMEA dataset and Alice’s Ad-
ventures in Wonderland can be seen in Figures 2.7 and 2.8. They strongly
resemble their counterparts for the BLEU score.

22

2.7. Results

Results of the classification based on GLEU scores are presented in Ta-
bles 2.8 and 2.9. These results are by a great margin the best compared to
the previous ones. For the EMEA dataset, the most successful model was the
AdaBoost classifier with 82.9% accuracy and 81.7% F1-score and for the Al-
ice’s Adventures in Wonderland dataset (2.9) with 98.5% accuracy and 98.5%
F1-score when either Tomek Links or CNN undersampling the method was
used.

score_0 score_1 score_2 score_3 score_4 score_5 score_6
Back translation scores

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
va

lu
e

GLEU scores for back translated paragraphs from EMEA dataset
1.0
0.0

Figure 2.7: Filtered EMEA dataset with GLEU score visualisation

2.7 Results

From the results measured in the previous experiments, it is obvious that this
method indeed is suitable for the detection of machine translated texts and
works well on the Czech language. The change of the similarity metric allowed
me to push both the accuracy and F1-score further, and I believe that those
values could be improved even more with some more sophisticated metrics, or
maybe, as I mentioned in Section 2.2.4, the ability to match words with the
same meaning, for example using word clustering. The maximum accuracy
and F1-score for both EMEA and Alice’s Adventures in Wonderland datasets
were obtained with the GLEU score exceeding the results reported in Nguyen-
Son et al. (2019). However, to decide on what classifier to choose is not simple,
since there are four candidates, namely SGD, SVC, AdaBoost classifier and
Random Forest classifier, which was dominating in at least one classification
metric.

23

2. Translation detection using back translation

Table 2.5: Impact of Tomek Links on classification of EMEA larger dataset

EMEA (larger) results (%) with Tomek Links

Classifier Train Test
Acc F1 Prec Rec Acc F1 Prec Rec

Ridge 76.2 77.6 76.5 78.8 73.3 73.6 69.6 78.1
Logistic Regression 76.3 77.7 76.8 78.6 73.1 73.4 69.6 77.5
SGD 76.2 76.3 79.7 73.1 73.5 72.1 72.4 71.9
SVC 76.8 78.2 76.9 79.5 73.1 73.5 69.4 78.1
AdaBoost 77.0 78.5 77.0 80.0 72.4 72.8 68.6 77.4
Random Forest 99.1 99.1 98.7 99.5 70.9 70.8 67.9 73.9

EMEA (larger) results (%) with NIST score

Classifier No undersampl. Tomek Links CNN
Acc F1 Acc F1 Acc F1

Ridge 78.4 77.5 77.5 77.4 68.8 73.9
Logistic regression 78.5 77.1 77.6 76.9 72.0 75.6
SGD 58.8 69.2 56.1 68.0 67.6 73.3
SVC 79.4 76.5 79.3 77.2 74.5 76.8
AdaBoost 79.0 77.3 78.6 77.6 73.1 75.5
Random Forest 80.7 78.6 80.2 79.0 77.1 77.7

Table 2.6: EMEA classification results with NIST score

Alice’s Adventures in Wonderland results (%) with NIST score

Classifier No undersampl. Tomek Links CNN
Acc F1 Acc F1 Acc F1

Ridge 96.5 96.4 96.8 96.6 92.8 92.0
Logistic regression 96.8 96.7 96.8 96.6 95.5 95.3
SGD 93.1 92.3 94.0 94.1 91.6 92.0
SVC 96.5 96.4 96.3 96.1 93.5 92.9
AdaBoost 96.3 96.1 95.5 95.3 95.5 95.3
Random Forest 94.8 94.6 94.5 94.3 93.8 93.4

Table 2.7: EMEA classification results with NIST score

EMEA (larger) results (%) with GLEU score

Classifier No undersampl. Tomek Links CNN
Acc F1 Acc F1 Acc F1

Ridge 80.1 78.3 80.2 79.1 76.5 78.9
Logistic regression 80.6 79.1 80.4 79.5 77.4 79.5
SGD 80.6 79.2 79.5 80.1 79.7 80.3
SVC 82.0 80.2 82.3 81.5 76.9 79.1
AdaBoost 82.9 81.7 82.5 82.2 81.4 81.8
Random Forest 82.7 81.5 82.6 82.1 81.4 81.5

Table 2.8: EMEA classification results with GLEU score

24

2.7. Results

score_0 score_1 score_2 score_3 score_4 score_5 score_6
Back translation scores

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e
va

lu
e

GLEU scores for back translated paragraphs from Alice in Wonderland
1.0
0.0

Figure 2.8: Alice’s Adventures in Wonderland dataset with GLEU score visualisation

Table 2.9: EMEA classification results with GLEU score

Alice’s Adventures in Wonderland results (%) with GLEU score

Classifier No undersampl. Tomek Links CNN
Acc F1 Acc F1 Acc F1

Ridge 96.3 96.0 96.0 95.7 95.5 95.2
Logistic regression 97.0 96.8 96.8 96.6 88.6 86.7
SGD 98.3 98.2 98.5 98.4 98.5 98.4
SVC 98.3 98.2 97.5 97.4 95.8 95.5
AdaBoost 97.3 97.1 96.8 96.6 96.5 96.3
Random Forest 97.3 97.2 96.8 96.7 97.3 97.2

To determine this, I made one last experiment in which I trained the classi-
fiers on the EMEA dataset and then I used Alice’s Adventures in Wonderland
dataset as a test set to at least slightly simulate the real life scenarios in which
the training texts may differ from the evaluated ones. From the results in Ta-
ble 2.10, it is obvious that SGD was dominant in both accuracy and F1-score.
In addition, the undersampling method improved the prediction significantly.

Each classifier was originally trained with default hyper-parameters pre-
defined in the Scikit-learn (Pedregosa et al. (2011)) Python module. For
the SGD the Hinge loss (Gentile & Warmuth (1998)) function, L2 penalty,
α = 0.0001 regularization parameter, and maximum 1000 iterations. How-
ever, with hyperparameter tuning I achieved better results. I took a portion
of the train set and I then tuned the loss function, α regularization coeffi-

25

2. Translation detection using back translation

Table 2.10: Results on models trained on EMEA dataset and with Alice’s
Adventures in Wonderland as test set

Train EMEA, test Alice results (%)

Classifier Base Tomek Links CNN
Acc F1 Acc F1 Acc F1

Ridge 67.6 52.1 69.3 55.6 79.1 73.6
Logistic regression 68.7 54.3 71.0 59.1 79.1 73.6
SGD 69.3 55.6 75.7 67.9 82.8 79.2
SVC 63.4 42.2 66.0 48.4 78.7 73.0
AdaBoost 64.7 45.4 67.3 51.4 70.7 58.9
Random Forest 65.4 48.3 67.7 54.0 68.3 54.6

cient, the learning rate, penalty, and maximal number of iterations. With the
setup of α=0.000075, “optimal” learning rate, perceptron loss function, and
L2 penalty. For a description of the hyperparameters see SGD documentation
page. With this setup, I was able to achieve 92.6% on both the accuracy
and F1-score. This was further improved, when the training set was filtered
using Tomek Links, which filtered out roughly 700 samples from the train
set, thus improving the classification. In this case, the hyperparameter setup
was α=0.000125, “adaptive” learning rate, perceptron loss function, and L1
penalty and the achieved results were 95% on both accuracy and F1-score on
the test set.

2.8 Discussion

The main advantage of this method is that all the building blocks are easily
accessible (compared to, e.g., Aharoni et al. (2014)) which allows this method
to be widely used.

The results obtained with the method presented in Nguyen-Son et al.
(2019) indicate that it is indeed this way possible to detect originally En-
glish portions of the text that have been translated to Czech, either by human
or a MT model. I think that adding the lemmatisation and cleaning the
dataset helped the original method. Moreover, switching the BLEU score
for the GLEU score both the accuracy and F1-score improved the result sig-
nificantly, as well. I believe that introduction of a metric that could match
synonyms to solve the issues described in Section 2.2.4 would probably im-
prove this method even more. The final results of the hyper-parameter tuned
SGD are indeed interesting and I would like to further inspect the influence of
the tuned hyper-parameters on the classification as a follow-up to this thesis,
together with more advanced text similarity metric.

It is worth noting that this method could be deceived by human inter-
vention in the form of postediting the translated text, however, this was not
examined, since it is beyond the scope of this thesis.

26

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

Chapter 3
Text origin search

In this chapter, I will describe my experiments on automatic search of a text
origin, for both original and back translated texts, using a search engine, its
implementation, and results.

3.1 Method description

Ever since the search engines were introduced, the way mankind used the
internet changed drastically. With search engines, people are able to search
for information from various sources in a matter of milliseconds and with just
a simple textual representation of the topic. With just a handful of words, the
search engines are able to recommend relevant results to the query, thanks to
continuous gathering information from a significant portion of the internet.
These results are also sorted based on the relevancy to the query and overall
“popularity” of the page itself.

It is believed that nowadays the majority of topic research is made using
search engines. The main goal of this experiment is to try to find an original
source of a portion of the text that has been obtained using a search engine,
but was translated into Czech language. The idea supporting this approach is
that when a person copies a portion of a text found using a search engine, the
copied text is probably relevant to the search engine query. Thus, it should
be possible to create a search engine query that would allow to search for the
origin of the text from it, and in the ideal case the source of the original text
would appear on top of the results after performing the query.

In this method, I decided to focus on paragraph-level texts, since I cover
the detection of translated texts of the same size in the previous chapter.
However, the transformation of the text into a query is a bit more compli-
cated, since numerous methods could be applied to this job. I decided to
test three methods: text identity, keyword extraction, and automated text
summarization.

27

3. Text origin search

3.2 Dataset

To test this method, I created a dataset of ten paragraphs from different
sources, such as Wikipedia.org or Medium.com. I chose pages about Robots,
Bitcoin cryptocurrency, and ray tracing in graphics. From the Medium.com,
I chose two blogs, one tutorial about running 30 prediction models in a few
lines of code and the other one about the monetizability of data science skills.
Their original sources are recorded in Appendix B. I also added paragraphs
from some of the publications (Devlin et al. (2019), Wu et al. (2016), Dod-
dington (2002), Papineni et al. (2002) and Nguyen-Son et al. (2019)), for
which I decided not to include their abstracts, since they are usually placed
on pages indexing the publications and thus probably indexed by search en-
gines, but rather paragraphs located further lower in the document. All these
paragraphs, originally in English, were translated to simulate the process of
copying and translating the author’s work into Czech and then translated into
English to later create and execute the search query.

3.3 Implementation

For the purposes of this experiment, I decided to use Google Search Engine8

as one of the leading search engines in terms of popularity. However, similarly
to the limitations of Google Translate9 that were mentioned in Section 2.2.1 it
is against the terms of use of the Google Search Engine to programmatically
execute search queries, but compared to the MT, there is no such thing as
a “downloadable” search engine present, since it is costly to maintain such a
product in a well-performing state, only solutions were to either pay for the
search, or do them manually, which is what I did.

To minimize the amount of exhaustive manual work, I created a function
(see Code 3.1) that creates a direct link for the query, so it is not required
to manually copy the formulated queries into the Google Search. Initially,
since I was collecting 20 results, I was generating two links for each portion of
the text, since Google Search by default gives ten results per page. Later, I
found out that the number of results can be modified by introducing a HTTP
query parameter inside Google Search Uniform Resource Identifier (URI). This
helped in most cases, however, for a few of them, I still had to make a click to
another results page, since some of them contained additional content, such
as images, videos or similar search engine queries, all related to the one I
searched for.

After this point, the only thing left to do was to implement text identity,
keyword extractor and text summarization functions.

8https://www.google.com/
9https://translate.google.com/

28

3.3. Implementation

def build_uri(text, transformation=lambda x: x):
query = transformation(text)

if isinstance(query, list) or isinstance(query, tuple):
query = ' '.join(query)

query = quote(query, safe='')

return 'http://google.com/search?q={query}'

build_uri('my search engine query')
>> http://google.com/search?q=my%20search%20engine%20query%26num%3D30

Code 3.1: Google Search Egngine URI builder

3.3.1 Text Identity

This transformation was the least demanding one. I simply used the whole
paragraph as it was when formulating the query. The reason I wanted to test
this method is because when the search engine indexes the original source, it
uses the full textual content of the website, so when I use the whole paragraph,
I maximize the amount of information originating from the source that can
be then used by the search engine to more easily connect the paragraph to its
source.

3.3.2 Automated text summarization

With the use of machine learning language models, it is possible to pinpoint
important portions of the text, based on the relations obtained by training
the deep learning model. This is useful for reducing the larger original text
into a smaller one, while preserving most of the relevant information. I was
able to do this by using the pretrained Pegasus (Zhang et al. (2019)) model
for text summarization obtained from the Transformers (Wolf et al. (2020))
Python module.

3.3.3 Keyword extraction

The main purpose of keyword extraction is to even further decrease the original
text by extracting only the most significant words or phrases, for example,
by the number of occurrences in the text, their semantic relations, or other
criteria. These words are then used as the query itself.

As I mentioned, there are multiple keyword extraction algorithms, so I
decided to compare the output produced by some of them to get an idea if
they perform similarly. For this, I compared my implementation of a key-
word extractor based on word frequency, which also filters out unwanted POS
tags, to keep only verbs, adverbs, nouns, adjectives, and unclassifiable ones,
and is also able to performs either lemmatisation or stemming of the original
text. The other method examined was the keyword extractor from Gensim

29

3. Text origin search

(Řeh̊uřek & Sojka (2010)) Python module, which is based on the PageRank
(Page et al. (1999)) algorithm and supports the lemmatisation of the key-
words. The last method was KeyBERT (Grootendorst (2020)), based on the
deep learning text BERT transformer (Devlin et al. (2019)). I compared all
of them based on twenty keywords extracted from a single paragraph from
the dataset (see Section 3.2) using each method and between each pair of key-
word extractors the similarity of the produced keywords was measured using
the Jaccard similarity

Jaccard(A,B) = |A ∩B|
|A ∪B|

and visualised the results as a heatmap (see Figure 3.1). It is visible that
none of the different algorithms had high co-occurrence of the produced key-
words, but rather the opposite. The other interesting thing is the influence of
lemmatisation and stemming. For the keyword extractor based on the word
frequency, with lemmatisation, it produces almost the same result to the one
where no additional method was used. However, the use of stemming resulted
in a much different set of keywords. On the other hand, the lemmatisation
process has a much bigger impact on the keyword extractor implemented in
the Gensim module. Since the results vary significantly, I decided to use all
methods for the final evaluation.

Freq Freq+Lemma Freq+Stem Gensim Gensim+Lemma KeyBERT

Freq

Freq+Lemma

Freq+Stem

Gensim

Gensim+Lemma

KeyBERT

1 0.9 0.43 0.081 0.12 0.086

0.9 1 0.43 0.081 0.12 0.086

0.43 0.43 1 0.053 0.088 0.086

0.081 0.081 0.053 1 0.68 0.15

0.12 0.12 0.088 0.68 1 0.21

0.086 0.086 0.086 0.15 0.21 1

Keyword overlap (Jaccard Similarity)

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Keyword overlap between methods

30

3.4. URI matching and content mirroring

3.4 URI matching and content mirroring

It is worth mentioning that I encountered two problems when evaluating this
approach. The first problem was the mirroring of the document, or its content,
on either or completely different sites (see Example 3.4.1), or with a different
path (see Example 3.4.2). This lowered the final score, since these URIs were,
in fact, false negatives. I examined each of the twenty URIs found for each
method-paragraph combination and added newfound links, which represented
the document mirror, into a collection of references against which the potential
URI was compared.

Example 3.4.1
First archive: https: // dl .acm .org/ doi/ 10 .5555/ 1289189 .1289273
Mirror 1: https: // www .researchgate .net/ publication/ 234812513 ...
Mirror 2: https: // www .semanticscholar .org/ paper/ Automatic-ev ...

For the URI matching itself, I considered only pairs of URI to be matching
if they were either the same, or one was prefix of the other. However, this does
not solve the issue shown in Example 3.4.2, since the difference between the
two URIs is in the centre of the strings. I tried to solve this by thresholding
the Jaccard similarity between two sets of strings produced by splitting the
original URIs with “/” as a delimiter.

Example 3.4.2
Archive page: https: // dl .acm .org/ doi/ 10 .5555/ 1289189 .1289273
Direct link: https: // dl .acm .org/ doi/ pdf/ 10 .5555/ 1289189 .1289273

I found this to be very ineffective, since the score was influenced by the URI
sizes and thus hard to threshold, but also since it allowed pairs of URIs similar
to the one shown in Example 3.4.3 to be matched with a high score, even if
they may not be related. Therefore, I ended up using only the combination
of exact match and string prefix approach.

Example 3.4.3
1 https: // example .domain/ standardized_ path/ Publication_ A
2 https: // example .domain/ standardized_ path/ Publication_ B

31

https://dl.acm.org/doi/10.5555/1289189.1289273
https://www.researchgate.net/publication/234812513_Automatic_evaluation_of_machine_translation_quality_using_n-gram_co-occurrence_statistics
https://www.semanticscholar.org/paper/Automatic-evaluation-of-machine-translation-quality-Doddington/417f9ce1b1cb3c98e5c2a66d586c7a2eb7438a9f
https://dl.acm.org/doi/10.5555/1289189.1289273
https://dl.acm.org/doi/pdf/10.5555/1289189.1289273

3. Text origin search

3.5 Experiment

To evaluate the results, I used a simple URI relevance score, based on the
position of the original URI in the list of results obtained from the search
engine. The equation for calculating the score itself is based on the size of
results list n, which is at most twenty, and the index of URI i in it, ranging
between 1 for the highest relevancy, to 0 for not even being present:

relevancy =
{

n−i+1
n+1 , if URI is in results,

0, otherwise.

This was later enhanced to penalize the methods, for which the query did not
result in at least twenty results, which occurred multiple times as can be seen
in Figure 3.2. The final score is defined as

score = n

k
· relevancy,

where k represents the number of results wanted, which was in this case twenty.
This is shown in Example 3.5.1. Thus, in an ideal case, if the search engine is
able to find at least twenty results based on the query, the penalty vanishes
and only the relevancy score is used. This way, I was able to utilize both
the order of the results and their number. I collected the results for both the
original paragraphs and the back translated ones, to verify that it is possible
to find the source using the original text, and if the same thing is possible also
with the back translated one.

Example 3.5.1
desired number of results (k) = 20
real number of results (n) = 16
index of the origin url (i) = 3

relevancy = n− i+ 1
n+ 1 = 16− 3 + 1

16 + 1 = 14
17 ≈ 0.82

score = n

k
· relevancy = 16

20 ·
14
17 = 112

170 ≈ 0.66

From the Figure 3.2 it can be seen that the queries produced by stemming
word frequency keyword extractor together results in less than twenty results
frequently. In contrast to the automated text summarization, which produced
queries meeting the condition every time. For the rest of the methods, the
fulfilment of this condition was slightly worse, each with approximately two
queries failing this criteria.

32

3.6. Results

3.6 Results

From Table 3.1, it is noticeable that both the summarizarion and word fre-
quency with stemming did not work well. With automated text summariza-
tion as the text transformation method, the Google Search Engine was able
to locate the origin of only one of the ten paragraphs. Similarly, the word
frequency keyword extractor with stemming was able to find only one original
source, however, this time with a lower score 0.35. The best number of sources
found total was ten, which was achieved by the text identity, the next best
performing being the word frequency keyword extractor, together with Gen-
sim keyword extractor, both were able to find nine of the ten sources total.
Next in order were Genism and KeyBERT (eight), then word frequency with
lemmatisation (six).

Table 3.1: Results for original paragraphs

Identity Freq Freq+L Freq+S Gensim Gensims+L KeyBERT Summary
1.0 0.8571 0 0 0 0 0 0
1.0 1.0 0.7 0.35 0.9048 0.6533 1.0 0

0.35 0.9524 0 0 1.0 0.55 1.0 1.0
1.0 0.75 1.0 0 1.0 1.0 0.9524 0
1.0 1.0 1.0 0 1.0 1.0 1.0 0
1.0 0 0 0 1.0 1.0 0 0

0.8095 0.8571 1.0 0 0.9524 0.9524 0.954 0
0.9524 1.0 1.0 0 1.0 1.0 1.0 0

0.9 0.9048 0 0 0.9048 0.5571 0.9048 0
1.0 1.0 1.0 0 0 1.0 1.0 0

The results for multiple methods of query formulation from the original
paragraph seemed successful. The results of the back translated equivalents
(see Table 3.2), as expected, were not so great. In most cases, the search engine
was not able to find the original sources, and when the sources were found, the
score was lower on average, which was expected. The best performing methods
were in this case, Gensim keyword extractor with lemmatisation (mean 0.290),
word frequency keyword extractor (mean 0.289), and KeyBERT (mean 0.240).

Table 3.2: Results for back translated paragraphs

Identity Freq Freq+L Freq+S Gensim Gensim+L KeyBERT Summary
0 0 0 0 0 0 0 0

0.6 0 0 0 1.0 1.0 1.0 0
0 1.0 0 0 0 0 1.0 0

0.8571 0.0889 0 0 0 0 0.4 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1.0 0 0
0 0.8095 0 0 0 0 0 0.7143
0 1.0 1.0 0 1.0 0 0 0
0 0 0 0 0 0.9048 0 0
0 0 0 0 0 0 0 0

For a better visual comparison of the results, I created two box plots (see
Figures 3.3 and 3.4) from the results shown in Tables 3.1 and 3.2.

33

3. Text origin search

Freq Freq+LemmaFreq+Stem Gensim Gensim+Lemma Identity KeyBERT Summarization
method

0

1

2

3

4

5

6

nu
m

be
r o

f s
ea

rc
he

s
Number of searches with <20 results

type
original
back translated

Figure 3.2: Number of search queries resulting in less than twenty results

Identity Freq Freq+Lemma Freq+Stem Gensim Gensim+Lemma KeyBERT Summarization
method

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

Results for original texts

Figure 3.3: Box plot of results for original paragraphs

Identity Freq Freq+Lemma Freq+Stem Gensim Gensim+Lemma KeyBERT Summarization
method

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

Results for back translated texts

Figure 3.4: Box plot of results for back translated paragraphs

34

Conclusion

This thesis aimed to examine the possibilities of automatic detection of Czech
texts that were created by machine translation from the English originals, and
the utilization of search engine queries to find the origin of such texts.

Compared to other state-of-the-art methods (see Section 1.1), the Nguyen-
Son et al. (2019) had a straightforward implementation and required no pro-
prietary software or data. I was able to reproduce it, and not only verify its
applicability on machine translation, but also improve its results from 69.3%
on accuracy and 55.6% on F1-score, up to 95% on both the accuracy and
F1-score on the dataset created from Alice’s Adventures in Wonderland book
and its Czech translation through a combination of lemmatisation, manual
cleaning of the training dataset, replacement of the originally used BLEU
score (Papineni et al. (2002)) with GLEU score (Wu et al. (2016)), reducing
the amount of noisy data with under-sampling methods, and hyper-parameter
tuning of the final SGD classifier.

Utilization of the search engine with the goal of finding the original source
of the text, in this case the Google Search Engine, did not produce satisfac-
tory results. I examined the influence of using either the whole paragraph,
keywords extracted from it using multiple keyword extraction algorithms, and
the automatic text summarization, which were then used to build the search
engine query itself. By evaluating these methods using a custom score metric,
I found out that majority of the original paragraphs were found, however,
using the back translated versions of these paragraphs resulted in finding the
original source in fewer cases than expected.

In conclusion, I believe that finding a source of translated text through a
search engine can be done more effectively, but I was not able to find a right
procedure for finding the origin of translated text. Nevertheless, experiment-
ing with this method is time consuming and requires a large amount of manual
labour for both creation and validation of the dataset.

35

Bibliography

Aharoni, R., Koppel, M. & Goldberg, Y. (2014), Automatic detection of ma-
chine translated text and translation quality estimation, in ‘Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers)’, Association for Computational Linguistics, Bal-
timore, Maryland, pp. 289–295.
URL: https://www.aclweb.org/anthology/P14-2048 [Online; Accessed: 24-
April-2021]

Carroll, L. (1865), ‘Alice’s adventures in wonderland’. translator: Ćısař,
Jaroslav.
URL: http://bilinguis.com/book/alice [Online; Accessed: 13-February-
2021]

Ceska, Z., Toman, M. & Jezek, K. (2008), Multilingual plagiarism detection, in
D. Dochev, M. Pistore & P. Traverso, eds, ‘Artificial Intelligence: Method-
ology, Systems, and Applications’, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp. 83–92.

Clark, J. & DeRose, S. (1999), XML Path Language (XPath) version 1.0,
Recommendation, World Wide Web Consortium.
URL: http://www.w3.org/TR/xpath.html [Online; Accessed: 24-April-
2021]

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2019), ‘Bert: Pre-training
of deep bidirectional transformers for language understanding’.
URL: https://arxiv.org/abs/1810.04805 [Online; Accessed: 24-April-2021]

Doddington, G. (2002), Automatic evaluation of machine translation quality
using n-gram co-occurrence statistics, in ‘Proceedings of the Second Inter-
national Conference on Human Language Technology Research’, HLT ’02,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, p. 138–145.

37

Bibliography

URL: https://dl.acm.org/doi/10.5555/1289189.1289273 [Online; Ac-
cessed: 24-April-2021]

Foundation, P. S. (2005), ‘Requests: Http for humans™’.
URL: https://github.com/psf/requests [Online; Accessed: 24-April-2021]

Gentile, C. & Warmuth, M. K. (1998), Linear hinge loss and average mar-
gin, in ‘Proceedings of the 11th International Conference on Neural Infor-
mation Processing Systems’, NIPS’98, MIT Press, Cambridge, MA, USA,
p. 225–231.

Grootendorst, M. (2020), ‘Keybert: Minimal keyword extraction with bert.’.
URL: https: // doi .org/ 10 .5281/ zenodo .4461265 [Online; Accessed:
24-April-2021]

Hart, P. (1968), ‘The condensed nearest neighbor rule (corresp.)’,
IEEE Transactions on Information Theory Vol. 14(3), 515–516. doi:
10.1109/TIT.1968.1054155.
URL: https://ieeexplore.ieee.org/document/1054155 [Online; Accessed:
24-April-2021]

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield,
K., Neckermann, T., Seide, F., Germann, U., Fikri Aji, A., Bogoychev,
N., Martins, A. F. T. & Birch, A. (2018), Marian: Fast neural machine
translation in C++, in ‘Proceedings of ACL 2018, System Demonstrations’,
Association for Computational Linguistics, Melbourne, Australia, pp. 116–
121.
URL: http://www.aclweb.org/anthology/P18-4020 [Online; Accessed: 24-
April-2021]

Kurokawa, D., Goutte, C., Isabelle, P. et al. (2009), ‘Automatic detection
of translated text and its impact on machine translation’, Proceedings of
MT-Summit XII pp. 81–88.
URL: http://www.cs.cmu.edu/afs/cs/Web/People/dkurokaw/publications/MTS-
2009-Kurokawa.pdf [Online; Accessed: 24-April-2021]

lxml (2005), ‘lxml - xml and html with python’.
URL: https://lxml.de/ [Online; Accessed: 21-March-2021]

Nguyen-Son, H.-Q., Thao, T. P., Hidano, S. & Kiyomoto, S. (2019), ‘Detecting
machine-translated text using back translation’.
URL: https://arxiv.org/pdf/1910.06558.pdf [Online; Accessed: 24-April-
2021]

Page, L., Brin, S., Motwani, R. & Winograd, T. (1999), The pagerank citation
ranking: Bringing order to the web., Technical Report 1999-66, Stanford
InfoLab. Previous number = SIDL-WP-1999-0120.

38

https://doi.org/10.5281/zenodo.4461265

Bibliography

URL: http://ilpubs.stanford.edu:8090/422/ [Online; Accessed: 24-April-
2021]

Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. (2002), Bleu: a method for
automatic evaluation of machine translation, in ‘Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics’, Asso-
ciation for Computational Linguistics, Philadelphia, Pennsylvania, USA,
pp. 311–318.
URL: https://www.aclweb.org/anthology/P02-1040 [Online; Accessed: 24-
April-2021]

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay,
E. (2011), ‘Scikit-learn: Machine learning in Python’, Journal of Machine
Learning Research pp. 2825–2830.
URL: https://scikit-learn.org/stable/ [Online; Accessed: 24-April-2021]

Popel, M., Tomkova, M., Tomek, J., Kaiser, L., Uszkoreit, J., Bojar, O. &
Žabokrtský, Z. (2020), ‘Transforming machine translation: a deep learning
system reaches news translation quality comparable to human professionals’,
Nature Communications Vol. 11(1), 4381. doi: 10.1038/s41467-020-18073-
9.
URL: https://doi.org/10.1038/s41467-020-18073-9 [Online; Accessed: 13-
May-2021]

Python Software Foundation (2021), ‘Python 3 documentation - built-in
types’.
URL: https://docs.python.org/3/library/stdtypes.html#str.casefold [On-
line; Accessed: 24-March-2021]

Řeh̊uřek, R. & Sojka, P. (2010), Software Framework for Topic Modelling
with Large Corpora, in ‘Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks’, ELRA, Valletta, Malta, pp. 45–50.

Tiedemann, J. (2012), Parallel data, tools and interfaces in opus, in N. C. C.
Chair), K. Choukri, T. Declerck, M. U. Dogan, B. Maegaard, J. Mari-
ani, J. Odijk & S. Piperidis, eds, ‘Proceedings of the Eight International
Conference on Language Resources and Evaluation (LREC’12)’, European
Language Resources Association (ELRA), Istanbul, Turkey.
URL: https://www.aclweb.org/anthology/L12-1246/ [Online; Accessed:
24-April-2021]

Tiedemann, J. & Thottingal, S. (2020), OPUS-MT – building open translation
services for the world, in ‘Proceedings of the 22nd Annual Conference of the
European Association for Machine Translation’, European Association for

39

Bibliography

Machine Translation, Lisboa, Portugal, pp. 479–480.
URL: https://www.aclweb.org/anthology/2020.eamt-1.61 [Online; Ac-
cessed: 24-April-2021]

Tomek, I. (1976), ‘Two modifications of cnn’, IEEE Transactions on
Systems, Man, and Cybernetics Vol. SMC-6(11), 769–772. doi:
doi:10.1109/TSMC.1976.4309452.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac,
P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen,
P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q. & Rush, A. M. (2020), Transformers: State-of-the-art natural
language processing, in ‘Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations’, Asso-
ciation for Computational Linguistics, Online, pp. 38–45.
URL: https://www.aclweb.org/anthology/2020.emnlp-demos.6 [Online; Ac-
cessed: 24-April-2021]

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M.,
Liu, X., Kaiser, L., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K.,
Kurian, G., Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick,
A., Vinyals, O., Corrado, G., Hughes, M. & Dean, J. (2016), ‘Google’s
neural machine translation system: Bridging the gap between human and
machine translation’, CoRR .
URL: http://arxiv.org/abs/1609.08144 [Online; Accessed: 24-April-2021]

Zhang, J., Zhao, Y., Saleh, M. & Liu, P. J. (2019), ‘PEGASUS: pre-training
with extracted gap-sentences for abstractive summarization’, CoRR Vol.
abs/1912.08777.
URL: http://arxiv.org/abs/1912.08777 [Online; Accessed: 24-April-2021]

Šmerk, P. & Rychlý, P. (2009), Majka – rychlý morfologický analyzátor, Tech-
nical report, Masarykova univerzita.
URL: http://nlp.fi.muni.cz/ma/ [Online; Accessed: 2-May-2021]

40

Appendix A
Acronyms

CNN Condensed Nearest Neighbours.

EMEA European Medicines Agency.

HTML Hypertext Markup Language.

HTTP Hypertext Transport Protocol.

MT Machine Translation.

NMT Neural Machine Translation.

POS Part Of Speech.

SGD Stochastic Gradient Descent.

SMT Statistical Machine Translation.

SVC Support Vector Classifier.

URI Uniform Resource Identifier.

41

Appendix B
Text origin search data sources

Robot: https://en.wikipedia.org/w/index.php?title=Robot
Bitcoin: http://en.wikipedia.org/w/index.php?title=Bitcoin
Ray tracing: http://en.wikipedia.org/w/index.php?title=Ray%20tracing%
20(graphics)
Data Science skills: https://towardsdatascience.com/how-to-make-more-
money-as-a-data-scientist-bd6edd4fe460
30 prediction models: https://towardsdatascience.com/how-to-run-30-
machine-learning-models-with-2-lines-of-code-d0f94a537e52

43

https://en.wikipedia.org/w/index.php?title=Robot
http://en.wikipedia.org/w/index.php?title=Bitcoin
http://en.wikipedia.org/w/index.php?title=Ray%20tracing%20(graphics)
http://en.wikipedia.org/w/index.php?title=Ray%20tracing%20(graphics)
https://towardsdatascience.com/how-to-make-more-money-as-a-data-scientist-bd6edd4fe460
https://towardsdatascience.com/how-to-make-more-money-as-a-data-scientist-bd6edd4fe460
https://towardsdatascience.com/how-to-run-30-machine-learning-models-with-2-lines-of-code-d0f94a537e52
https://towardsdatascience.com/how-to-run-30-machine-learning-models-with-2-lines-of-code-d0f94a537e52

Appendix C
Contents of enclosed SD card

README.MD.................... the file with SD card contents description
data ... data directory

aligned...raw aligned data
datasets..processed datasets

files..logs, files, etc..
notebooks.................................notebooks with experiments
results.....................................pdf and csv files of results
toolkit frequently used funcionality in form of a python module
thesis.......................................LATEX codes of the thesis

thesis.pdf..thesis

45

	Introduction
	Motivation
	Objectives

	State-of-the-art
	Detection of translated text
	Text origin search

	Translation detection using back translation
	Method description
	BLEU score

	Implementation
	Translation
	Back translation function
	Casefolding
	Lemmatisation

	Dataset creation
	Evaluation
	Initial evaluation
	EMEA and Alice in Wonderland

	Undersampling methods
	Condensed Nearest Neighbours
	Tomek Links

	Evaluation with different metrics
	NIST
	GLEU

	Results
	Discussion

	Text origin search
	Method description
	Dataset
	Implementation
	Text Identity
	Automated text summarization
	Keyword extraction

	URI matching and content mirroring
	Experiment
	Results

	Conclusion
	Bibliography
	Acronyms
	Text origin search data sources
	Contents of enclosed SD card

