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Abstract

The main purpose of this thesis is to ex-
amine the representations of the robot’s
components, how they are structured, and
for what purpose. The creation of repre-
sentation will be tried with the examined
information, which can be applied to both
simulation and real robots. The Differ-
ence between simulation and the real en-
vironment will be accessed and compared.
Implementation of state-machine to pick
an object will be tried upon created rep-
resentation of the robots.
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representation, simulation, manipulation
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Abstrakt

Hlavnim ucelem této prace je zkoumat re-
prezentace komponent robota, jak jsou
strukturovany a za jakym tucelem. Vy-
tvoreni reprezentace bude vyzkouseno se
zkoumanymi informacemi, které lze apli-
kovat jak na simulaci, tak na skutecné
roboty. Rozdil mezi simulaci a realnym
prostfedim bude zpristupnén a porovnan.
Implementace stavového stroje pro vybér
objektu bude vyzkousena na vytvorené
reprezentaci robot1.

Kli¢ova slova: robot, ROS,
statemachine, reprezentace, simulace,
anipulace

P¥eklad nazvu: Mobilni Manipulacev
Prostredi s Prekazkami
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Chapter 1

Introduction

For humans, one does not need to know or parameterize how heavy one’s
arm is, where the center of mass is, at what limit it can twist its own arm,
and what degrees of freedom the elbow has to move the one’s arm around.
Nevertheless, for computers or robots, they require all the minor details
should be presented and enlisted.

This thesis will take a closer look into how the robot’s components are
represented in a way that the robot can understand and try to implement a
state machine onto that information.

This thesis is consists of five chapters, excluding this chapter. A robot
models chapter will introduce two specific robot models used in this thesis
and explain how each component is represented in detail. The representation
elements, in general, will be examined, and how different robots or components
can be integrated will be explained within the robot models chapter.

The Setups chapter will explain the brief scenario given for the thesis, how
its environment is set for physical world and simulation, and the modifications
made from the existing representations to meet the given condition.

The visualization and simulation chapter will mainly talk about how cre-
ated robot representations are manipulated within the simulation with what
methods.



1. Introduction

In the experiments chapter, the implementation of the state machine to
pick an object will be tried and explained. Furthermore, after that, the overall
thesis will be recapitulated and discuss the possible future works.



Chapter 2

Robot Models

This chapter will introduce and briefly explain the robots simulated and
tested for the thesis. First, the way how the robots are represented in general
will be explained. Then the way how they are represented in the language
that Robot Operating System(ROS) can understand.

Initially, there was only one robot, built upon Clearpath Robotics’ Husky [ROSa]
mobile base, attached Universal Robots’ UR5[ROSd| robotic arm with Robo-
tiq’s 3-Finger Adaptive Robot Gripper[ROSb], denoted this robot as "HUR"
further on. In the meantime, another robot was introduced for the thesis
called TIAGo++ or TTAGo Dual[ROSc|, made by Pal Robotics. In the thesis,
the word "Tiago" will refer to TIAGo Dual.

In the section 2.2 Robots, representations of HUR and Tiago will be
explained in depth, and how each elements and parameters were used by the
packages.

B 2.1 Robot Representations

In order to visualize a real robot on a screen or spawn the 3D model on a
simulation, it is necessary to define the robot representations in a language
that ROS can understand. For all the robots used in this thesis are represented
in Unified Robot Description Format(URDF'), written in Extensible Markup
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2. Robot Models

Language(XML). It is possible to represent a robot in a single URDF, but
it will be hard to organize and understand URDF as the robot gets more
components and gets complicated. It is possible to visualize the structure of a
robot parts if a robot is defined in a single URDF file as shown in fig|2.1 using
urdf_to_graphiz, but since all the robots used in the thesis were divides
into parts and combined using XML Macro(Xacro)[ROSe|, which are not
possible to visualize using urdf_to_graphiz.

xyz: 20,0455 0.0214 0.036 Xyz: -0.0455 0.0214 -0.036
1py: 3.14159 -7.34641¢-06 1.57159 fpy: 3.14159 -7.34641e-06 1.57159

[xyz: 0.05 -0.028 0
y: 00-0.52

fxyz: 0.05 -0.028 0
1py:00-052

yz:0.03900
y:0-00

Figure 2.1Visualized robotiq-3f-gripper_articulated.urdf using
urdf_to_graphiz[Rob15]

Since it gets difficult to design complicated shapes with XML alone, it is
possible to use 3D modeling tools to design a model, and by using Xacro,
it allows calling similar repetitive parts easily. All the robot models used
in this thesis were based on provided mesh files in COLLAborative Design
Activity(Collada, with the extension of .dae) and stereolithography (STL)
format from the companies. Following is an example of a link representation
and import of mesh files from a husky’s decorations.urdf .xacro[CR15].

<!-- Spawn the top plate -—>

<link name="top_plate_link">

<visual>
<origin xyz="0 0 0" rpy="0 O 0" />
<geometry>

<mesh filename="package://.../large_top_plate.dae" />

</geometry>

</visual>

<collision>
<origin xyz="0 0 0" rpy="0 O 0"/>

4



2.1. Robot Representations

<geometry>
<mesh filename="package://.../
large_top_plate_collision.stl" />
</geometry>
</collision>
</1link>

As shown in Fig. When visualized, Collada and STL models of Husky
base_link seems like they are identical, yet all the companies have used
Collada to define the <visual> and STL for the <collision>. This is because
Collada can hold various information about the part, not only the shape,
while STL only contains triangle meshes. From Fig. it is possible to see
that Collada mesh has a similar color to an actual Husky’s base_link, since
it also has information about the color of the part.

Figure 2.2Visualized base_link with left) Collada; right) STL

Once the links of robot parts are defined, it is necessary to define the joints,
an element containing the coordinates and degrees of freedom of the parts
attached. Following is defined joint in between husky’s top_plate_joint

and base_1ink[CR15].

<!-- Attach top plate -—>
<joint name="top_plate_joint" type="fixed">
<parent link="base_link" />
<child link="top_plate_link"/>
<origin xyz="0.0812 0 0.225" rpy="0 0 0"/>
</joint>

In order to properly simulate the robot, information about the robot part’s
moment of inertia must be presented. In URDF, the information is defined
with a mass of the part, the center of mass, and six elements of an inertial



2. Robot Models

matrix. For example, the inertial expression of husky wheels and usage of
Xacro is provided below.

<xacro:macro name="husky_wheel"
params="wheel_prefix *joint_pose">
<link name="${wheel prefix} wheel_link">

<inertial>
<mass value="2.637" />
<origin xyz="0 0 0" />
<inertia ixx="0.02467" ixy="0" ixz="OQO"

iyy="0.04411" iyz="0" izz="0.02467" />
</inertial>

</link>
</xacro:macro>

The way how ROS is manipulating the robot is sending a commands
to a hardware and gets the changes in joint_states through the ROS
controllers| CMEM™17|. To specify the parts controlled by specific controller,
it is required to define the relationship between joint and an actuator by <
transmission> element. transmission_interface and hardware_interface
can be defined as an elements of transmission within the URDF along with
other representation elements, or define separately and combined later with
Xacro. Following is defined interface for the wheels of Husky[CR15]:

<transmission name="${wheel prefix} wheel_ trans"
type="SimpleTransmission">
<type>transmission_interface/SimpleTransmission</type>
<actuator name="${wheel prefix} wheel_motor">
<mechanicalReduction>1</mechanicalReduction>
</actuator>
<joint name="${wheel prefix}_ wheel">
<hardwareInterface>
hardware_interface/VelocityJointInterface
</hardwarelInterface>
</joint>
</transmission>

One last element expressed in URDF is <gazebo>. The gazebo element is
not essential like the others, but it helps to have a more realistic simulation.
Various parameters can differ according to the referenced part, whether a link
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2.2. Robots

or joint. For Husky wheel link, it has defined friction coefficients(mul, m2),
contact stiffness(kp), damping for rigid body contacts(kd), and direction of
friction coefficient(fdir1)[Opeb].

<gazebo reference="${wheel prefix}_ wheel link">
<mul value="1.0"/>
<mu2 value="1.0"/>
<kp value="10000000.0" />
<kd value="1.0" />
<fdirl value="1 0 0"/>
</gazebo>

. 2.2 Robots

As explained early in the chapter, there are two robots used, HUR and Tiago.
For the HUR model, there was an already built model from the preceding
study by Enzo Geromin, which was based on a different ROS version. For
Tiago, there is a package provided by Pal Robotics, which has a working
robot description for melodic development. In subsections for each robot,
their representations will be explained in detail.

B 221 HUR

Since HUR is built with three different robots made by different companies,
it is necessary to integrate them into one robot description. There was a
already built combined representation of HUR from the previous study, but
some changes were needed to used it properly and these changes made to
previous study and original definitions provided by the companies will be
discussed it setup chapter. Just like the way how different representations
were combined in previous section, it is possible to attach different robots
onto each other by using Xacro. It was required to put a prefix on some parts
because of that, some links from different robots could share the same names,
for example both Husky and UR5 had base_link.

In together with the URDF representations, to manipulate the robots,
the controller for the parts should be presented. In general, controllers are

7



2. Robot Models

organized in YAML Ain’t Markup Language(YAML) format, which can be
spawned and managed easily with the controller_manager package.

B Husky UGV

Figure 2.3: Clearpath Robotics’ Husky[ROSa]

As shown in the figure2.3, the Husky Unmanned Ground Vehicle is a non-
holonomic mobile base developed by Clearpath Inc. Its maximum speed is 1.0
m/s, weight is 50 kg with a maximum payload of 75 kg, and battery runtime
is around 3 hours. With the real robot, Husky was powered with battery and
communicated through the USB.

Clearpath provided representation of the Husky is made of three Xacro files,
husky.urdf . xacro, representing overall contruction of the robot, decorations
.urdf.xacro, describing exteriors like chassis, and wheel defining, wheel.
urdf .xacro.

husky.urdf .xacro hold not only the information about the representation
but also has various gazebo plugins like gazebo_ros_control and information
plugins needed for possible peripherals like IMU, GPS, and Intel Realsense
modules. Husky’s wheels are joined with base_link pointing parallel to the
base_link’s direction as continuous joint. Since all four wheels directions are
bound to the same direction, Husky is using diff_drive_controller, con-
troller for differential drive wheel systems, from ros_controllers package.

l UR5

Universal Robot’s URS is a robotic arm with 8 links and 7 joints in a single
chain. Fig. is not the exact URS5, but it helps to have some idea, since

8



2.2. Robots

URS5e and URS shares the same look. URbS weighs 18.4 kg with 5kg of payload
and has 6 degrees of freedom. In laboratory, UR5 was powered through AC
power plugs, and communicated through network with ethernet cable. Due
to the limited wiring, the maximum area that HUR can reach was limited.

Figure 2.4: Universal Robot’s UR5e[Robb]

While husky had three Xacros representing, footprint, exterior and wheels,
URS has all base, arm and wrist are represented in ur5.urdf.xacro and
included transmission and gazebo elements with ur.transmission.xacro
and ur.gazebo.xacro which are compatitable with other Universal Robot’s
models.

Controller for URb is also defined in YAML, JointTrajectoryController
as default. While it is relatively easy to manipulate a mobile bases like Husky,
it is hard to manipulate individual joints in chain with human intuitions. The
main task that is expected from the robot arm is sending a tool attached on
arm’s end effector to a desired coordinate. To achieve this the framework
called Moveit!|[CSCC14] is been used.

One of the first thing that Moveit requires is semantic description in
Semantic Robot Description Format(SRDF). SRDF is written in XML, it
contains information about the groups of joints and links, specified end effector
and collision checking informations. Unlike URDF representation, SRDF can
not be combined using Xacro. It is possible to make a description by hand, but
the recommanded way of making SRDF is using MoveIt Setup Assistant.

9



2. Robot Models

W Optimize Self-Collision Checking

This searches for pairs of robot links that can safely be disabled from collision
checking, decreasing motion planning time. These pairs are disabled when they
are always in collision, never in collision, in collision in the robot's default position,
or when the links are adjacent to each other on the kinematic chain. Sampling
density specifies how many random robot positions to check for self collision.

Sampling Density: Low === High 10000
Min. collisions for "always"-colliding pairs: 95% |. Generate Collision Matrix
LinkA - Link B Disabled  eason to Disab

4

S

front_bump... ur5_shoulde... Never in Col...

v ’
47 front_bump... ur5_upper_... v Never in Col... \
front_bump... user_rail_link V' Never in Col...
v
v

&)

4

@

4

o

front_left_... Ffront_right_... Never in Col...

@
S

front_left_... gripper_fing... Never in Col.

9

52 [front_left_... rear_left_ w... v Neverin Col...
53 [front_left_... rear_right_... v Neverin Col...
link name filter show enabled pairs ‘® linear view matrix view V| visual collision

Figure 2.5: GUI of Movelt Setup Assistant

When SRDF for HUR was made, most of the names were changed from
the UR5’s SRDF because of the prefixes and to avoid the interuptions, but
since URS is only part that is manipulated with Moveit, the principles were
kept from URb’s sementic description. The detail changes will be given in
Setup chapter. Following is example how the UR5 SRDF groups and end
effector was defined.

<group name="manipulator">
<chain base_link="base_link" tip_link="ee_link" />
</group>
<group name="endeffector">
<link name="ee_link" />
</group>

<end_effector name="moveit_ee" parent_link="ee_link" group="
endeffector" />

joint_limits.yaml can be generated with the Moveit Setup Assistance,
which can specify and limit the parameters like maximum velocity and
acceleration. Initially when the joint_limits.yaml is generated, it is just
copy of defined limits in URDF, but since it is overriding the URDF when
executed, user can change the limit parameters without changing the URDF.
Yet, it is possible to use Moveit without joint_limits.yaml. The way how
the joint_limit for UR5’s shoulder_pan_joint is defined in YAML:

joint_limits:
urb5_shoulder_pan_joint:
has_velocity_limits: true
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2.2. Robots

max_velocity: 3.15
has_acceleration_limits: true
max_acceleration: 3.15

In order to send a tool attached to URS’s end effector, it is needed to know
the specific joint states when the tool was sent to a designated position. For
Moveit to solve relations in kinematic chain, it is necessary to define which
method will be used with kinematics.yaml. There are various kinematic
plugins, and for the thesis Kinematics and Dynamics Library(KDL)[Smi]
was used, which is a default kinematic solver used in Moveit. In following
lines from kinematics.yaml it is possible to see that a solver defined group
name is matching wih the group defined in SRDF and the way how the plugin
was added and defined:

manipulator:
kinematics_solver: kdl_kinematics_plugin/
KDLKinematicsPlugin

kinematics_solver_search_resolution: 0.005
kinematics_solver_timeout: 0.005

At last, by running move_group node from moveit_ros_move_group, Moveit
will be initiated and able to caculate and manipulate the URb5.

B Robotiq 3-Finger Adaptive Robot Gripper

~ o g
Srosoriq

3 el
[T v

Figure 2.6: Robotiq’s 3-Finger Adaptive Robot Gripper|Robal

Robotiq 3-Finger Adaptive Robot Gripper, later denoted as Robotiq in the
thesis has three individually controlable fingers, with 30 to 70 N of grip force.

11



2. Robot Models

Like UR5, Robotiq is also connect to ROS with network through ethernet
cable.

Robotiq’s representation was described in a single Xacro file, robotiq_hand_macro
.urdf .xacro. Because it was defined as Xacro, it is not possible to visualize
the structure using urdf_to_graphiz as in Fig. 2.1l All the fingers shares
the same look and principle, except for middle figer is only allowed to rotation
in one direction, while other fingers can move in two ways.

Unlike other two robots, Robotiq was controlled with company provided
Gazebo plugin, RobotigHandPlugin which has been modified for the thesis.
About the specific plugin will be discussed later in the thesis.

B 2.2.2 Tiago Dual

Figure 2.7: PAL Robotics’ Tiago++[ROSd]

While HUR needed a entegration of different robot’s representation, the whole
Tiago itself is built by Pal Robotics, and it was possible to use provided
descriptions straight away. Tiago’s representation has different type of end
effector defined as a preset, they can be interchangable easily by changing
parameter arguments. For both left and right arms, end effector pal-gripper
shown in Fig. [2.7] are used for the thesis.

In terms of manipulation, tiago has six controllers: torso_controller
controlling one degree vertical movement, gripper_right_controller,
gripper_left_controller controlling position of the finger joints, arm_left_
controller, arm_right_controller controlling joints of each arm hav-
ing 7 degrees of freedom, mobile_base_controller which is also using
diff_drive_controller like Husky, and head_controller for moving the
Tiago’s head around z-axis of head_1_link and z-axis of head_2_link.

12



2.2. Robots

Tiago URDF decription is based on tiago_dual.urdf.xacro which calls
other parts, move base, torso, arms, end effector, head and gazebo plugins
using xacro:include. Than the links relations are also defined in tiago_dual
.urdf .xacro like how the links between Husky and UR5, UR5 and Robotiq
are defined. Elements gazebo and transmission are defined in individual
part’s URDF.

13
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Chapter 3

Setups

In this chapter, the scenario for the simulation and testing will be explained
briefly. For the Environment section, the physical installation of the testing
site will be introduced and explained. Also, the software used and their specific
versions and settings will be discussed. Also any changes or modifications
have made from the previous study and provided packages from the companies
will be given in this chapter.

. 3.1 Environments

The basic task used for both previous study and this thesis is grabbing a
plastic water bottle standing on the rectangular table when all the position
of objects and robot are known.

The whole simulation and the manipulation of the robots were done with the
Robot Operating System(ROS) Melodic distribution, upon Ubuntu 18.04.5
LTS. Unless written in another form, when the word ROS is used, it means
specifically about Melodic distribution. When this thesis was written, there
are newer distribution noetic for ROS1 and Robot Operating System?2 existed,
but not all the companies were providing updated packages. To avoid the
compatibility issues avoided those environments at the time when this thesis
was written. The main languages for ROS are C++ and Python. Python
was used as a main language for the thesis, and C++ for specific task.

15



3. Setups

ROS workspace is made of multiple packages. There are two methods to
build the ROS workspace, catkin_make, and catkin build. For the thesis,
catkin build was used whenever the workspace was required to built, rebuilt
and adding a new package. Development of catkin build was followed by
the catkin_make_isolated, which was aiming to build the workspace in
parts. With the catkin build it is possible to build individual packages and
it give flexibility in manipulating the workspace|Opel4].

Figure 3.1: VICON Vantage+|Ltd]

For the robot and objects localization in real experiments, Vicon Motion
Systems’ Vantage cameras were used. There are cameras installed on the
ceiling of the laboratory, surrounding rectangular area which has a pillar at
the center of this area. These cameras are point toward the area and tracking
the object. To track the objects or robots, attached three pearl hard markers
on them. In fact, what the VICON is tracking are the markers, not the actual
robots and objects.

The actual label and defining of the object and robot will be done via
VICON NEXUS, which is a software from the same company. Accessed
data will be transmitted and recieved with virtual reality peripheral network
client package, vrpn_client_ros, which then publish the geometry_msgs as
a topic.

. 3.2 Modifications

While combining the robot parts in HUR, prefixes were given to UR5 and Robo-
tiq in order to avoid the conflict in between them by some links sharing same
namespaces. In previous study prefixes were urb and gripper which later
change into ur5_ and gripper_. When first spawned the HUR representation
from the previous study, there was a vibration occuring at a joint in between
URS5 end effector link urb5_ee_link with gripper_robotiq_hand_joint.
This issue was solved by disabling self collision of ur5_ee_link.
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3.2. Modifications

<gazebo reference="ur5_ee_link">
<selfCollide>false</selfCollide>
</gazebo>

Because of added prefix ur5_, provided controllers were not properlly called,
because they were still defined with the joint names without the prefix, when
all the transmissions were automatically defined with the prefix by Xacro.
For that matter, added a copies of controller YAML files with prefix on the
joint names.

When tried to simulate the Robotiq in Gazebp for the first time, there were
no Moveit configurations nor controller files like other two robots of HUR.
There were example nodes worked on real robots, but they all required param-
eters that only available with real robots, like IP adress of the robot. First
tried the method used in previous study. Generate a Moveit configurations
for the Robotiq and see if Moveit is able to manipulate the Robotiq. To do
so, added hardware interface definitions to a URDF using Xacro, added new
group gripper in the SRDF, and generated controller definition in YAML for
the gripper. The idea of using Moveit to manipulate the Robotiq worked, but
it was hard to say the behaviors of simulated and the real robots are alike.
While real robot can be manipulated by sending a commands directly to the
robot, simulated one had to use Moveit instead. And manipulation through
Moveit was only able to close and open the gripper, which is limitting all the
capability of the Robotiq which allows to manipulate individual fingers, close
and open the gripper to a designated portion and use of different modes.

Later found out there was a provided gazebo plugin in one of the provided
packages robotiq_3f_gripper_articulated_gazebo_plugins. But it was
not suitable to apply directly, so created a package robotiq_gazebo_plugins
with RobotiqGazeboPlugin, which modified the RobotiqHandPlugin from
the provided package. The original plugin was assuming there were two grip-
pers, for left and right arm each. During the modification, found out that actu-
ating bars of Robotiq must be presented in order to manipulate it with the plu-
gin. For that changed used representation of Robotiq to robotiq_hand_macro
.urdf .xacro from robotiq-3f-gripper_articulated_macro.xacro which
only represented the fingers not the actuating bars.

Since new actuacing bar links were added to HUR representation, it was
necessary to define a new SRDF. Previously, There were groups defined for
all Husky, UR5, and Robotiq, but since UR5 is the only robot manipulated
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3. Setups

with Moveit, deleted groups husky but left group gripper since it need to
be represented as a end effector of URS:

<group name="gripper">
<link name="ur5_ee_link" />
</group>

Before the modification, group ur5 was defined as collection of joints from
shoulder_pan_joint to link-t00lO_fixed_joint but decided to followed
style used in original UR5’s SRDF, so changed group ur5’s name to arm and
changed its formation as a chain from base_link to ee_link just like single

URS5 is defined:

<group name="arm">
<chain base_link="ur5_base_link" tip_link="ur5_ee_link"/>
</group>

And added group states home and up for group arm as a test measure, which
are list of joints with defined state. To generate new collision information,
used Moveit Setup Assistance.

18



Chapter 4

Visualization and Simulation

This chapter will provide infomations about the ways how to simulate the
constructed robot representations and how to visualize both real robot and
the simulated robot.

To have a same scenario within the simulation, it is necessary to define the
objects for the simulation as well. For the thesis, acquired beer and table
Simulation Description|Opea] and modified them in a shape that grippers
of the robots can grab. like URDF, SDF is written in XML, containing
information of the object’s dimension, struction, material, and frictions.

For visualizing the real or simulated environment, robot models and their
properties used the software Rviz. With Rviz it is possible to visualize not only
the visible representations of the robot, but invisible quantitative properties,
for example the coordinate frames of the robot joints, robot’s goal position,
the route to the goal, and occupancy maps.

With Rwviz it is possible to visualize real robot and simulated robot, but
rviz itself can not be worked as a simulator. To simulate the generated robot
representations, used a software Gazebo. By spawning the defined robot
URDF model, it is possible to spawn and interact with the robot model
within the simulation. In the real environment, VICON is used to get the
object’s ground truth coordinate, orientation, and dimension. To have the
similar environment as in real laboratory in the simulation, used the Gazebo
plugin. GazeboRosP3D controller is one of the Gazebo provided plugins used
to publish ground truth information of the robot and objects in simulation.
To use the plugins, they need to be defined in the URDF of a subject that the
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4. Visualization and Simulation

ground truth information is wanted. For Tiago it was already implemented,
publishing its ground truth to a topic ground_truth_odom, therefore added
GazeboRosP3D plugins to HUR, beer and table representations:

<gazebo>
<plugin name="ground_truth" filename="libgazebo_ros_p3d.so
">
<frameName>map</frameName>
<bodyName>base_link</bodyName>
<topicName>base_link_ground_truth</topicName>
<xyz0ffsets>0 0 0</xyz0ffsets>
<rpyO0ffsets>0 0 0</rpyOffsets>
</plugin>
</gazebo>

As explained in Chapter 3.2, the control of Robotiq in simulation is also
done with the modified Gazebo plugin, RobotigGazeboPlugin. The way how
the plugin is presented is similar to GazeboRosP3D:

<gazebo>
<plugin name="robotiq_gazebo_plugin" filename="
1libRobotigGazeboPlugin.so">
<kp_position>1.0</kp_position>
<kd_position>1.0</kd_position>
<prefix>gripper_</prefix>
</plugin>
</gazebo>

The PID values of RobotiqGazeboPlugin are not optimized, but it generally
works fine.

Whether it is real environment with VICON, or simulated environment
with GazeboRosP3D, the topic what both of them are publishing are not
sufficient to describe the relations in between robot and objects. Whatever
the joint or object it is, each individual parts have their own coordinate frames
and these relationships between the frames is done with transform library(tf)
package[Fool3]. What topics published by VICON and GazeboRosP3D have
in common are Pose and twist. To express the robot and objects as a child
frame of a fixed map, generated node, model_tf_broadcaster.
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4. Visualization and Simulation

model_tf_broadcaster will subscribe all the ground truthes of robot and
objects and reform them into transformStamed message and broadcast them
using tf package.
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Chapter 5

Experiments

In this chapter, the procedure of the experiment will be introduced, and the
how to implement a state machine for specific given task.

. 5.1 Procedure

One of the basic tasks for the thesis is to implement a high-level control to
pick an object at a known location with limited obstacles at known locations.
For this specific task, set up a plastic water bottle standing upon a rectangular
table where all the dimensions and locations are known.

Figure 5.1: Simulated scenario for HUR and Tiago

By high-level control, instead of design the whole manipulation of the robot
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5. Experiments

in a finer level language where its only understandable by the robot but in a
instinctively understandable commands|SKS16].

The previous study’s HUR behavior is not defined as a state machine, but
it was following certain state orders:

® Send Husky to a calculated point, parallel to the closest table edge from
the bottle.

® move Husky along the parallel axis to the point where Husky and the
bottle are the closest or axis between them is perpendicular to the edge
axis.

® sends URbS’s end effector to bottle.
® Initiate the Robotiq to grab the bottle.

® Move away from the table following the parallel path continuing from
the approaching path.

Husky

Figure 5.2: Diagram of the path, Enzo Geromin

Fig. [5.2 shows the how the path of the HUR was defined in previous study
and it was planned in a certain numerical order.

Base on the work from the previous study, tried to implement state machine
on Tiago. There are ROS packages used to state machinize the procedure
like SMACH and SMACC. The developer of SMACC clames it has a better
agility because it is C++ oriented, but due to personal lack of knowledge in
C++, choose SMACH[BC10] which is Python oriented.
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5.1. Procedure

SMACH is initialized by stating the possible outcomes of the state machine
itself, and than each states in the state machines with its possible outcomes
and transitions are enlisted:

self.sm = smach.StateMachine (outcomes=[’succeeded’,
’failed’])

smach.StateMachine.add (’HEAD_DOWN’, HeadDown(),
transitions={’succeeded’:’MOVE_TO_BOTTLE’,
’aborted’:’failed’})

smach.StateMachine.add (’GRIPPER_OPEN’, gripperOpen(),
transitions={’succeeded’:’ARM_BOTTLE’,
’aborted’:’failed’})

Each states are defined as a class, and defined as:

class HeadDown(smach.State):
def __init__(self):
smach.State. _init__(self,
outcomes=[’succeeded’,
>aborted’])

def execute(self, userdata):

return ’succeeded’

Each state will be executed and return its outcome, and will execute
the following state according to defined transission followed by the specific
outcome.
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Chapter 6

Conclusions

Through the thesis, it showed how HUR and Tiago are represented, and
possible ways how to manipulate them through different packages like con-
trollers package, Moveit, and Gazebo plugins. And it was able to state how
environments were set up, for both in the physical world and simulated world.

Unfortunately, due to the current pandemic situation, the thesis was more
simulation-oriented than expected, in the future the methods used in the
thesis can be tested on real robots to see the compatibility of them.

There are uncleared and unfinished points for the thesis, like object recog-
nition and 3D mapping, they can be tried later on if the methods are valid.

One of the points not mentioned in the thesis is moveit_servo, the package
also provided by Moveit, it was possible to generate extra joint_group_
position_controller to manipulate the UR5 and Tiago arm using moveit_
servo package, but unable to solve unexpected behavioral problems and was
not able to use as the primary controller. If further studies were made it
could be possible to have a quick actuator response than Moveit.
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Chapter 7

Source Code

This chapter explains about the attached source codes of the thesis.

In the attachement, it holds ROS packages divided into two groups: HUR
and Tiago.

For HUR the integration of statemachine node and robot initialization
nodes was not implemented yet. It is required to roslaunch the launch file
using command:

roslaunch husky_ur5_gripper_demos pick_the_bottle.launch

and ros run the following command:

rosrun husky_urb5_gripper_demos pick_the_bottle.py

For Tiago by launching manipulator.launch in tiago_dual_demos pack-
age it is possible to initiate the robot and the state machine. This launch
file also has arguments like moveit_servo which turns of the original left
arm controller and starts the controller for the moveit_servo and arguments
rviz and gazebo which can turn on or off the GUIs.
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7. Source Code

For both robots, the compatibility with real robots were not tested prop-
erly.

30



Appendix A

Bibliography

[BC10] Jonathan Bohren and Steve Cousins, The smach high-level executive
[ros news/, IEEE Robotics Automation Magazine 17 (2010), no. 4,
18-20.

[CMEM™17] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay
Pradeep, Adolfo Rodriguez Tsouroukdissian, Jonathan Bohren, David
Coleman, Bence Magyar, Gennaro Raiola, Mathias Liidtke, and
Enrique Ferndndez Perdomo, ros control: A generic and simple
control framework for ros, The Journal of Open Source Software
(2017).

[CR15] Inc. Clearpath Robotics, husky description, Source code, 2015,
https://github.com/husky/husky/tree/melodic-devel/husky_|

description

[CSCC14] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll,
Reducing the barrier to entry of complex robotic software: a moveit!
case study, 2014.

[Fool3] Tully Foote, tf: The transform library, Technologies for Practical
Robot Applications (TePRA), 2013 IEEE International Conference
on, Open-Source Software workshop, April 2013, pp. 1-6.

[Ltd]  Vicon Motion Systems Ltd, Vicon, Website, https://www.vicon,

[Opea] Open Source Robotics Foundation, Inc, gazebo models, Website,
https://github.com/osrf/gazebo_models|

31


https://github.com/husky/husky/tree/melodic-devel/husky_description
https://github.com/husky/husky/tree/melodic-devel/husky_description
https://www.vicon.com/
https://www.vicon.com/
https://github.com/osrf/gazebo_models

A. Bibliography

[Opeb] Open Source Robotics Foundation, Inc., Tutorial: Using a urdf
in gazebo, Website, http://gazebosim.org/tutorials/7tut=ros_|
urdfl

[Opeld] Open Source Robotics Foundation, Inc., Migrating from
catkin_make, important distinctions between catkin__make and catkin
build, Website, 2014, https://catkin-tools.readthedocs.io/en/
[latest/migration.html|

[Roba] Robotiq, 3-Finger Adaptive Robot Gripper, Website,
robotiq.com/products/3-finger-adaptive-robot-gripper}

[Robb] Universal Robots, UNIVERSAL ROBOT UR&e, Website,

//www.universal-robots.com/products/urb-robot/|

[Rob15] Robotiq, robotiq_3f gripper_wvisualization, Source  code,
2015, https://github.com/ros-industrial/robotiq/blob/
kinetic-devel/robotiq_3f_gripper_visualization|

[ROSa] ROS.org, Husky, Website, https://wiki.ros.org/Robots/Huskyl

[ROSb] ROS.org, robotiq, Website, https://wiki.ros.org/robotiql

[ROSc] ROS.org, TIAGo++, Website, http://wiki.ros.org/Robots/

[ROSd] ROS.org, wuniversal _robots, Website, https://wiki.ros.org/
juniversal_robots,

[ROSe] ROS.org, zacro, Website, http://wiki.ros.org/xacrol

[SKS16] Philipp Schillinger, Stefan Kohlbrecher, and Oskar Von Stryk,
Human-robot collaborative high-level control with application to res-

cue robotics, 2016 IEEE International Conference on Robotics and
Automation (ICRA) (2016).

[Smi] R. Smits, KDL: Kinematics and Dynamics Library,
lorocos.org/kdl.

32


http://gazebosim.org/tutorials/?tut=ros_urdf
http://gazebosim.org/tutorials/?tut=ros_urdf
https://catkin-tools.readthedocs.io/en/latest/migration.html
https://catkin-tools.readthedocs.io/en/latest/migration.html
https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/products/ur5-robot/
https://github.com/ros-industrial/robotiq/blob/kinetic-devel/robotiq_3f_gripper_visualization
https://github.com/ros-industrial/robotiq/blob/kinetic-devel/robotiq_3f_gripper_visualization
https://wiki.ros.org/Robots/Husky
https://wiki.ros.org/robotiq
http://wiki.ros.org/Robots/TIAGo%2B%2B
http://wiki.ros.org/Robots/TIAGo%2B%2B
https://wiki.ros.org/universal_robots
https://wiki.ros.org/universal_robots
http://wiki.ros.org/xacro
http://www.orocos.org/kdl
http://www.orocos.org/kdl

Appendix B

Nomenclature

‘Word Meaning

HUR A robot model built upon Clearpath’s Husky base with
Universal Robot’s UR5 arm and Robotiq’s 3-finger gripper.

Tiago In general, it means a PAL Robotic’s one-armed robot TIAGo,
but on this thesis, it is refered to TIAGo++.

SMACH Statemachine modular Python library
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Appendix C

Abbreviations and Acronyms

Abbr. Meaning

ROS Robot Operating System

URDF Unified Robot Description Format
XML Extensible Markup Language

Xacro XML Macros

SRDF Semantic Robot Description Format
SDF Simulation Description Format

COLLADA COLLAborative Design Activity. Its file extension is .dae
STL Stereolithography
YAML YAML Ain’t Markup Language
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