
CENTER FOR
MACHINE PERCEPTION

CZECH TECHNICAL
UNIVERSITY

R
E

P
R

IN
T

Adaptive Parameter
Optimization for Real-time

Tracking
Karel Zimmermann1, Tomáš Svoboda2, Jiřı́ Matas1

1: Center for Machine Perception
2: Center for Applied Cybernetics

Czech Technical University,
Prague, Czech Republic

zimmerk@cmp.felk.cvut.cz

Karel Zimmermann, Tomáš Svoboda and Jiřı́ Matas, Adaptive Parameter
Optimization for Real-time Tracking, Proceedings of International Confer-
ence on Computer Vision, workshop on Non-rigid Registration and Track-
ing through Learning, Brazil, 2007

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/zimmerk/zimmerk-nrtl07.pdf

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz

Adaptive Parameter Optimization for Real-time Tracking

Karel Zimmermann1, Tomáš Svoboda2 and Jiřı́ Matas1

1: Center for Machine Perception 2: Center for Applied Cybernetics
Czech Technical University,Prague, Czech Republic

zimmerk@cmp.felk.cvut.cz

Abstract

Adaptation of a tracking procedure combined in a com-
mon way with a Kalman filter is formulated as an con-
strained optimization problem, where a trade-off between
precision and loss-of-lock probability is explicitly taken into
account. While the tracker is learned in order to mini-
mize computational complexity during a learning stage, in
a tracking stage the precision is maximized online under
a constraint imposed by the loss-of-lock probability result-
ing in an optimal setting of the tracking procedure. We ex-
perimentally show that the proposed method converges to
a steady solution in all variables. In contrast to a com-
mon Kalman filter based tracking, we achieve a significantly
lower state covariance matrix. We also show, that if the
covariance matrix is continuously updated, the method is
able to adapt to a different situations. If a dynamic model
is precise enough the tracker is allowed to spend a longer
time with a fine motion estimation, however, if the motion
gets saccadic, i.e. unpredictable by the dynamic model,
the method automatically gives up the precision in order
to avoid loss-of-lock.

1. Introduction
Visual tracking comprises motion prediction from object

dynamics followed by a measurement update step based
on image data. The most common update method is the
Lucas-Kanade tracker [5] which estimates object pose from
a predicted pose x by the steepest gradient method. If
x is the only input parameter then the number of itera-
tions computed during ΦLK(x) evaluation is determined
automatically by detection of convergence. Optionally, the
number of iteration is given by the maximum allowable
time t for motion estimation, then the update function is
Φ′LK(x; t). We adopt to define a measurement update func-
tion Φ(x; t, r) [6] estimating a motion of the object given a
range r determining an initial error which can be handled
by the update function. Φ(x; t, r) is learned to compute the
LSQ estimate of an arbitrary motion within range r com-
puting as long as is allowed by the time t. Unlike Lucas

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

t

tr
ac

e
R

(t
),

 tr
ac

e
Q

(t
)

trace R(t)
trace Q(t)

Figure 1. Covariance of the update function and linear dynamic
model prediction errors. We clarify how to obtain these graphs
from real data in Section 6.

and Kanade, our update function exploits the knowledge of
the expected initial error resulting in more precise motion
estimation for closer predictions.

In the paper, we formulate the tracker design as an op-
timization task where the time and range of Φ(x; t, r) are
optimized in order to maximize the tracker precision given
a loss-of-lock probability constraint. In each frame the time
t minimizing the error in the following frame is estimated.
Initial ranges are selected in order to satify a predefined
bound on an approximated loss-of-lock probability.

For this tracking procedure, the measurement update
function estimating the motion with the lowest compu-
tational complexity 1 with a given accuracy, is required.
Hence, the computational complexity of the proposed up-
date function is explicitly minimized given its desired range
and precision during a learning stage.

Let us suppose that a function R(t), determining the co-
variance matrix of the measurement update error after time

1computational complexity directly corresponds to the computational
time on a specific machine

1

t spent on motion estimation, is available. Since the longer
time spent the better the update, the update error character-
istic function Ψ(t) = tr (R(t)) is bijection, see Figure 1.

Given an expected initial error ε, the output error is
χ(ε, t) = Ψ(Ψ−1(ε) + t). In current frame, the output error
χ(ε, t) decreases with the time allowing us to achieve an ar-
bitrary precision, which is limited only by image resolution
and nature of object texture. However, the longer the time
spent on motion estimation the worse the prediction from
the object dynamics, see Figure 1. Both the current output
error χ(ε, t) and dynamic prediction error characterised by
tr (Q(t)) significantly influence the resulting precision.

We experimentally show the improvement to a common
tracking approaches [7, 9, 10], where dynamics and mea-
surement updates are combined by the Kalman filtering [4].
If the characteristic tr (Q(t)) is updated online, the system is
demonstrated to automatically give up the precision when
the motion gets saccadic and vice versa.

In Section 2 we formulate estimation of the time and ini-
tial range as an constrained optimization task. In Section 3
the problem is solved and incorporated into Kalman filter.
The proposed algorithm is summarized in Section 4. Learn-
ing of the update method is described in Section 5. Sec-
tion 6 demonstrates experiments and Section 7 summarizes
the results.

2. Problem Definition
Let us suppose, we are able to express the probability

distribution Fk(ε; tk−1, rk−1) of the prediction error ε in
frame k for values of time and range (tk−1, rk−1) used in
a previous frame. Then, the probability of loss-of-lock ini-
tilizing the update function Φ(x; t, r) at range r for previ-
ously used values (t∗k−1, r

∗
k−1) is

Ploss-of-lock(r) = 1−
∫ r

−r

Fk(ε; t∗k−1, r
∗
k−1)dε, (1)

see for example Figure 2.
We measure the motion estimation error by covari-

ance of the error distribution in the following frame
tr (covε (Fk+1(t, r))). This measure comprises contribu-
tions of tracking precision in the recent frame and the ne-
cessity of the range increases in the next frame. The task is
to estimate parameters (t∗k, r∗k) which minimize error in the
following frame and satisfy constraint that Ploss-of-lock(r) <
ε, which leads to the following constrained optimization
problem:

(t∗k, r∗k) = arg min
t,r

{tr (covε (Fk+1(ε; t, r)))} (2)

subj. to:1−
∫ r

−r

Fk(ε; t∗k−1, r
∗
k−1) dε < δ)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

F
(t* k−

1,u
)

u

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������

−r +r

Figure 2. distribution of motion estimation error.

The smaller is the range r∗k, the smaller area has to be
searched through and the more accurate is the prediction
at the same time, but the higher is Ploss-of-lock(r∗k). There-
fore tr (covε (Fk+1(ε; t, r))) is nondecreasing function of r
and we set up r∗k as tight as possible to its upper bound
Ploss-of-lock(r∗k) = δ. In consequence, problem (3) is decom-
posed to two separated tasks:

1. Find the smallest r satisfying the loss-of-lock con-
straint

r∗k = arg min
r

{
r|

∫ r

−r

Fk(ε; t∗k−1, r
∗
k−1) dε > 1− δ)

}
(3)

2. Find the time t minimizing error in the next frame for
the fixed r∗k

t∗k = arg min
t

{tr (covε (Fk+1(ε; t, r∗k)))} , (4)

3. Estimation of the Probability Distribution
Function Fk+1(t, r) using Kalman filter

In this section, we derive covariance of probability distri-
bution Fk adopting the Kalman filter principle. As we have
shown, problem (2) can be decomposed into two indepen-
dent optimization problems (3, 4). Because of simplicity
we start with (4) and fix range rk = r∗k. In the end the
computation of r∗k is explained.

We address the general problem of an object state x ∈
Rn estimation of a discrete process expressed by the linear
stochastic difference equation

xk = Axk−1 + qk−1 (5)

with a measurement

zk = Hxk + rk−1, (6)

where random variables qk ∼ N (0, Q(t)), rk ∼ N (0, R(t))
represent the process and measurement noise. In contrast
to Kalman filter, in our approach both covariance matrices
are functions of the time spent on motion estimation in a
particular frame. We further follow the idea of tracking by
Kalman filter [2, 8]. Motion of an object in frame k is first
approximated by a linear dynamic model

xk|k−1 = Axk−1|k−1 (7)

from a previous state xk−1|k−1, where A is an n×n matrix.
Measurement zk is estimated by a tracker Φ initialized at
the position xk|k−1.

zk(t) = Φ(xk|k−1; t, r), (8)

The state xk is approximated by

xk|k(t) = xk|k−1 + K(zk(t)− Hxk|k−1), (9)

where K weights contributions of prediction by the dynamic
model (7) and by the tracker (8). The error of approxima-
tions (7) has a Gaussian distribution with covariance matri-
ces Q(t), R(t). While tr (R(t)) is a decreasing function of
time, because the longer time we spend the better is the pre-
diction, tr (Q(t)) is increasing, because the longer time we
spend, the smaller is the frame-rate and the harder is to pre-
dict the motion by a linear dynamic model, see Figure 1.

Covariance of a state estimation error in frame k based
on measurements in frame k is

Pk|k(t) = E
{
(xk − xk|k)(xk − xk|k)T

}
. (10)

For the sake of simplicity, we utilize the following results
of common Kalman filter derivation [4] without any further
explanation:

• Kalman gain Kk(t) minimizing tr
(
Pk|k(t)

)
in frame k

for an arbitrary t, r is

Kk(t) = Pk|k−1H
T (HPk|k−1(t)HT + R(t))−1. (11)

• Covariance of the state estimation error in frame k is

Pk|k(t) = (I− Kk(t)H)Pk|k−1(t). (12)

• Approximation of the covariance of the state estima-
tion error in frame k + 1 is

Pk+1|k(t) = APk|k(t)AT + Q(t). (13)

Since we measure the precision by covariance matrix of
the state estimation error, problem (4) is therefore replaced
by

t∗k = arg min
t

{
tr

(
Pk+1|k(t)

)}
. (14)

In order to find a global minimum of tr
(
Pk+1|k(t)

)
, we

express Pk+1|k(t) as a function independent of Kk(t). Sub-
stituting to Equation (13) for Pk|k(t) from Equation (12)
and substituting for Kk(t) from Equation (11) we obtain

Pk+1|k(t) = (15)

A
(
I− (Pk|k−1H

T (HPk|k−1(t)HT + R(t))−1)H)Pk|k−1(t)
)
AT +Q(t)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

200

t

tr
ac

e
P

k+
1|

k(t
)

Figure 3. State covariance in the next frame tr
`
Pk+1|k(t)

´
as a

function of t.
Trace of this function, see for example Figure 3, has

usually one minimum determining the time t∗ we are al-
lowed to spend. As a side product, Pk+1|k(t∗) is also deliv-
ered, which allows estimation of an initial range r∗k+1 of the
tracker in the following frame. Hence, Equation (3) simpli-
fies to

r∗k+1 = arg min
r

{(∫ r

−r

N (u,0, Pk+1|k(t∗k)) du− 1 + ε

)2
}

(16)
In order to avoid time consuming integration over at

least 2-dimensional space, one could simply set r∗k+1 ≈
q.tr

(
Pk+1|k(t∗k)

)
, which for example in 1D space for q = 3

results in ε ≈ 0.2%.
Starting the tracking procedure in the following frame

at a smaller range causes smaller state covariance allowing
to estimate the motion more accurately, which again leads
to decreases of the following state covariance. This pro-
cess leads to a steady solution of limk→∞(Kk, tk, rk, Pk|k)
which is later experimentally shown in experiments.

4. Algorithm

The tracker Φ and dynamic model A, H, Q(t), R(t) are de-
termined during a learning stage described in Sections 5, 6.
Tracking consists of two stages:

t*k

t*kP
k+1|k

()

rkr*

t*k

k+1r *

t*kP
k+1|k

()

k+1r *

Figure 4. Visualization of Algorithm 1. Upper-left: tr (R(t)) as a function of t, Upper-right: tr (Q(t)) as a function of t, Lower-left:
tr

`
Pk+1|k(t)

´
as a function of t and its minimum, Lower-right: tr

`
Pk|k(t∗k)

´
as a function of k. Initial range r is denoted by green color,

final time t is denoted by red color.

• Time update, where state xk|k−1 and covariance
Pk|k−1 are predicted from the motion dynamics and
time t∗k minimizing covariance Pk+1|k in the next
frame is computed.

• Measurement update, where motion is estimated by
the tracker Φ(xk|k−1; t∗k, r∗k). The final state approxi-
mation xk|k is refined from both predictions.

The method is summarized by Algorithm 1, see also Fig-
ure 4 where the first 4 steps of the proposed algorithm
are visualized. In each step functions tr (R(t)), tr (Q(t)),
tr

(
Pk+1|k(t)

)
and tr

(
Pk|k(t∗k)

)
are drawn. Initial range is

depicted by the green color and the final time by the red
color.

5. Learning of the tracker

In the previous sections, we have derived a tracking al-
gorithm dealing with an arbitrary tracker Φ(x; t, r), in this
section we propose a tracker with clearly defined parame-
ters range r and time t. Learning procedure which mini-
mizes its computational complexity is also described.

The proposed tracker estimates the motion of the object
from a subset of its pixels. The subset of the pixels is called
support set X = {x1, . . . ,xc} The intensities observed on
the support set X are collected in the observation vector
l(X). Since different support sets of the same size provide
different prediction errors, a subset with the smallest predic-
tions error should be selected. Unfortunately, this problem
is NP-hard. Although we have experimented with different

1. Estimate set of border predictors ω+ = {ϕ+(c, r) | c ∈ C, r ∈ R}.

2. Construct graph G = (V ≡ R,E ⊆ R×R,α : E → C):

• for r ∈ R,

• for c ∈ C,
a) v∗ = arg minv∈R v |λ(c, r) < v
b) E = E ∪ (r, v∗) and α(r, v∗) = c

• end
• end

3. Dijkstra(G, rmax) ⇒ cheapest path to each range r ∈ R.

4. Denote ρ(r) complexity of the cheapest path to range r, then
ϕ+

t (ct, rt) = arg minϕ+(c,r)∈ωT
ρ(r) + c is the last predictor.

5. An optimal sequential predictor is created from the sequence of pre-
dictors associated with the edges of the cheapest path to rt and the
last predictor ϕ+

t (ct, rt).

range

co
m

p
le

xi
ty

0 5 10 15 20 25

50

100

150

200

250

300 5

10

15

20

25

30

35

7
r r6 r5 r

4
r
3

r
2

r=
1 maxr

320

220

80

320

220

80

(a) Algorithm 2 - Estimation of the optimal sequence (b) Construction of a graph G

Figure 5. Construction of a graph G from a set of predictors ω. Edges from range rmax are depicted by black arrows.

1. Initialize covariance P0|0, learn a tracker Φ and dy-
namic model A, H, Q(t), R(t). Let k = 1

2. Get frame k

3. Time update equations:

• xk|k−1 = Axk−1|k−1

• t∗k = arg mint∈R
{

tr
(
Pk+1|k

)
(t)

}
• Pk|k−1(t∗k) = APk−1|k−1(t∗k)AT + Q(t∗k)

4. Measurement update:

• Kk(t∗k) = Pk|k−1H
T (HPk|k−1(t∗k)HT + R(t∗k))−1

• zk(t∗k) = Φ(xk|k−1; t∗k, r∗k)

• xk|k = xk|k−1 + K(t∗k)(zk(t∗k)− Hxk|k−1)

• Pk|k(t∗k) = I− Kk(t∗k)H)Pk|k−1(t∗k)

• r∗k+1 = q.tr
(
Pk+1|k(t∗k)

)
, where q is a parame-

ter.

5. k = k + 1 repeat from 2.
Algorithm 1 - the proposed method of tracking.

algorithms for the support set selection, let us assume, that
the support set has been selected for example randomly.

Let (p ◦ X) denotes the support set transformed by a
motion with parameters p. For example, if the considered
motion is a 2D translation t, then (p ◦ X) = (X + t) =
{(x1 + t), . . . , (xc + t)}. There is a mapping (rendering)
from parameters p to observations l(p ◦ X), which is not
usually uniquely invertible. Nevertheless, we search for a

linear mapping
ϕ̂ = Hl, (17)

approximating the inverse relation l−1. This mapping as-
signs a p-vector of motion parameters to a c-vector of ob-
servation. All the regressors ϕ̂ are characterized by the fol-
lowing parameters:

Definition: Complexity c is the size of a support set,
which is directly proportional to the time t.

Definition: Range Rϕ̂(r) of the regressor ϕ̂ is a a circu-
lar region with radius r of motion parameters within which
the regression is defined.

Definition: Uncertainty region of the regressor ϕ̂ is cir-
cle

Λϕ̂(λ) =
{

∆p | ∆p = ‖p− ϕ̂
(
l(p ◦X)

)
‖2 < λ, ∀p ∈ Rϕ̂

}
.

(18)
In the other words, the uncertainty region is the smallest
circle within which all the predictions from the range Rϕ̂

lie.
Definition: Predictor is an ordered pair ϕ(c, r, λ) =

(ϕ̂, X) which satisfies the following requirements:

• ∀p ∈ Rϕ̂(r) : p− ϕ̂
(
l(p ◦X)

)
∈ Λϕ̂(λ)

• |X| = c

Let us suppose we are given a training set: the set of syn-
thesized examples of observed intensities li and motions ti

around a reference point. These examples are column-wise
formed into matrices L and T. Size of li corresponds to a
desired complexity c of ϕ̂. Range of generated motions cor-
responds to a desired range r. Given the training set (L, T),

range

co
m

pl
ex

ity

5 10 15 20

0

50

100

150

200

2

4

6

8

10

12

14

16

18

20

22

0 1 2 3 4 5 6
0

5

10

15

20

25

iter

un
ce

rt
ai

nt
y

ar
ea

 s
iz

e

(a) path with the lowest complexity (b) iterations
Figure 6. (a) Size of uncertainty regions (coded by colors) as a function of complexity c (vertical direction) and range r (horizontal
direction) and the optimal path from the initial rmax] to a predictor with sufficiently small uncertainty region (red circles). (b) size of
uncertainty region after each iteration (iter = 0 corresponds to the range rmax = 25).

we estimate coefficients H of the linear regressor (17) as fol-
lows

H = TL+ = TL>(LL>)−1. (19)

The higher is the complexity the better is the prediction.
However, as the complexity increases towards the complete
whole template the improvement steps become less and less
significant. In general, for large ranges it is very difficult to
achieve a good prediction with reasonable complexity. In
order to overcome this limitation we develop a sequential
predictor Φ = (ϕ1 . . . ϕm), which is such a concatenation
of predictors, which yields lower complexity for a higher
precision. The vector of motion parameter p is predicted in
m iterations as follows:

p1 = ϕ̂1

(
l(X1)

)
,

p2 = ϕ̂2

(
l(p1 ◦X2)

)
,

p3 = ϕ̂3

(
l(p2 ◦ p1 ◦X3)

)
,

... (20)

pm = ϕ̂m

(
l
(
(
h−1

©
i=1

pi) ◦Xm

))
,

p =
h

©
i=1

pi,

While the first vector of motion parameters p1 is directly
predicted from the intensities observed in the support set
X1, the following predictors refine on the preceding predic-
tions. The advantage is that each predictor in a sequence is
more and more specific, using range corresponding to the
accuracy of the preceding predictor.

Obviously, we consider only those sequential predictors
which satisfy ri+1 ≥ λi, i = 1 . . .m−1. It means that, the

range of each particular predictor must at least accommo-
date the uncertainty region of its predecessor. Uncertainty
region of the sequential predictor is understood as the uncer-
tainty region of the last predictor and its range as the range
of the first predictor.

Definition: Sequential predictor is an m-tuple
Φ(x; t, r) = (ϕ1(c1, r1, λ1), . . . , ϕm(cm, rm, λm)) of
predictors ϕi ∈ ω such that ∀ri+1 ≥ λi, i = 1 . . .m − 1.
Uncertainty region of the sequential predictor is λm and its
range is r = r1. Time t is implementation and machine
specific value which is directly proportional to

∑
ci.

We are looking for a sequential predictor

Φ∗(x; t, r) = arg min
Φ∈Ω

m∑
i=1

ci. (21)

where Ω is the set of sequential linear predictors with re-
gressors learned by Equation (5).

Let ω denote a set of linear predictors ϕ(c, r) with re-
gressors learned by LSQ method2, Equation , for some dis-
cretized values of complexities c ∈ C and ranges r ∈ R.
Figure 6a shows sizes λ(c, r) (coded by colors) of their un-
certainty regions as a function of complexity c ∈ C (vertical
direction) and range r ∈ R (horizontal direction). Given the
set ω, desired range rmax and uncertainty region λmin, we
search for an ordered subset of ω that constitutes sequential
predictor Φ∗, Equation (21). Since the range of the sequen-
tial predictor corresponds to the range r1 = rmax of the first
predictor in the sequence, the first predictor must lie in the
corresponding (usually the most right) column. Complex-
ity c1 of the first predictor is unknown. Color at the place

2Since the learning method uniquely determines the uncertainty region,
λ will not be further involved among parameters.

(c1, r1) in Figure 6a corresponds to the size of uncertainty
region λ1. If a complexity c1 is chosen the current predictor
ϕ+(c1, r1) is determined and the following predictor can be
selected from those with the range greater than the achieved
uncertainty region. We consider only the predictor with
the smallest range because higher ranges cannot provide
smaller complexities. In such a way, a sequence with the
last predictor with the size of uncertainty region λm smaller
than λmin is constructed. Furthermore, we search for a se-
quence consisting of such predictors which converges to the
sufficiently small uncertainty regions with the lowest com-
plexity.

We formulate the previous problem as a searching of the
cheapest path in graph G = (V ≡ R,E ⊆ R × R,α :
E → C), where R is the set of considered ranges and C
is the set of considered complexities and α assigns cost to
each edge, see Figure 5. In each range (vertex), a set of
edges with different complexities starts. Edges correspond
to the predictors learned for the same range but with differ-
ent complexities. The higher is the complexity the smaller
is the achieved uncertainty region and the smaller is its tar-
get range. Dijkstra algorithm estimates the cheapest path
in the graph, as a result the cheapest path to each range is
found. Some of these ranges include a target predictors, i.e.
those with ωT = {ϕ(c, r) | λ(c, r) < λmin} (depicted by
red circles in Figure 6b. The one which creates the cheap-
est path in conjunction with the path to the corresponding
range is added to the path. The predictors corresponding
to the edges of the resulting path create sequential predic-
tor (21). The method is summarized in Algorithm 3.

6. Experiments
In our implementation, the tracker is an optimal sequen-

tial predictor [6], which is a sequence of linear predictors
estimated during a learning stage in an optimal way. In-
stead, you can imagine any other tracker, e.g. the Lucas-
Kanade tracker [5, 1] or Meanshift [3] initialized at a certain
position covering a range r and using number of iterations
corresponding to time t.

Experiment in Section 6.1 shows some results achieved
by Algorithm 1 on the tracking of a planar patch shown
in Figure 7a. Section 6.2 shows results on a different se-
quence Figure 7b, achieved with an extension of the pro-
posed method, where state covariance matrix was updated.

6.1. Verification and implementation
We verify our method on a sequence with length of

m = 300 frames. Tracked object is a planar 50× 50-pixels
patch, see Figure 7a. We learned an optimal linear sequen-
tial predictor estimating its 2D translation in a range of 25
pixels.

Considering state vector x =
[

px py vx vy

]T
,

where px, py are positions and vx, vy are velocities, lin-

4

(a) (b)
Figure 7. Tracked patch in (a) the first and (b) second experiment.

ear dynamic model is estimated from a training sequence
x1, . . .xm as follows:

A = [x1,x2 . . .xm] [0,x1 . . .xm−1]
+

,

where + denotes pseudo-inverse operation and 0 is vector
of zeros. Also R(t) and Q(t) for some discretized values
t ∈ T ⊂ R are computed for a training sequence.

We conclude that the proposed method converges to a
steady solution with tr

(
Pk|k

)
almost 2× smaller than a

common Kalman tracking approaches, see Figure 8. Note
that, the visualization (Figure 4) of the first 4 steps of the Al-
gorithm 1 was obtained during this experiment. The reader
is also encouraged to watch attached videos.

0 5 10 15
10

20

30

40

50

60

70

tr
ac

e
P

k|
k

k

Kalman
Our method

Figure 8. Convergence of tr
`
Pk|k

´
to a steady solution.

6.2. Online Q(t) updating

Covariance matrix of dynamic model prediction error
Q(t) characterizes an ability of the Equation (7) to predict
the motion of target. Consequently, the value of tr (Q(t))
significantly influences precision of tracking: If the linear
model is precise the algorithm is allowed to spend longer
time with fine motion estimation, however, if the linear
model fails, for example because of saccadic motion of
the target, the method automatically gives up the precision
in order to avoid loss-of-lock. We therefore extend Algo-
rithm 1 to the method which automatically updates Q(t).
The results on a testing sequence with 1323 frames, where

the first 400 are well predictable by Equation (7) and in the
rest saccadic unpredictable motions are present, are shown
in Figure 9, where position px is depicted as a function of
frames, the sizes of blue circles correspond to tr

(
Pk|k

)
.

We also conclude that an unpredictable motion causes
an increase in frame-rate and inevitably a decrease in preci-
sion. Frame-rate and tr

(
Pk|k

)
are visualized in Figure 10.

0 200 400 600 800 1000 1200 1400
−100

−50

0

50

100

150

frame

tra
ns

la
tio

n
X

Lineary predictable
motionInitialization Saccadic unpredictable motion

Figure 9. If the linear model fails, for example because of sac-
cadic motion of the target, the method automatically gives up the
precision in order to avoid loss-of-lock. Size of blue markers is
proportional to tr

`
Pk|k(t∗k)

´
.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80

90

100

frame

fra
m

e−
ra

te
/tr

ac
e

P k|
k

frame−rate
trace P

k|k

Lineary predictable motion

Saccadic unpredictable motion

Figure 10. Covariance and frame-rate as a function of time.

7. Conclusions
We have shown an adaptive extension to a common

Kalman tracking approach, where time spent with motion
estimation and initial range of the tracker are optimized.
The task is formulated as a maximization of tracking preci-
sion given a bound on loss-of-lock probability. We showed,
that as well as the common approach, the proposed pro-
cess leads to the steady solution of all variables, however,

significantly smaller steady solution of a state covariance
matrix is achieved. We also proposed learnable updating
method, where computational complexity is minimized dur-
ing a learning stage resulting in a fast update function suit-
able for real-time applications.

Acknowledgement
K. Zimmermann was supported by The Czech Academy
of Sciences project 1ET101210407. T. Svoboda was sup-
ported by the EC project FP6-IST-027787 DIRAC. J. Matas
was supported by The Grant Agency of Czech Republic un-
der project 102/07/1317.

References
[1] S. Baker and I. Matthews. Lucas-Kanade 20 years on:

A unifying framework. International Journal of Com-
puter Vision, 56(3):221–255, 2004. 7

[2] A. Blake and M. Isard. Active Contours. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1998. 3

[3] D. Comaniciu and P. Meer. Mean shift: A ro-
bust approach toward feature space analysis. PAMI,
24(5):603–619, 2002. 7

[4] R. E. Kalman. A new approach to linear filtering and
prediction problems. Transaction of the ASME - Jour-
nal of Basic Engineering, 82(D):35-45, 1960. 2, 3

[5] B. D. Lucas and T. Kanade. An iterative image regis-
tration technique with an application to stereo vision.
In International Joint Conference on Artificial Intelli-
gence, pages 674–679, 1981. 1, 7

[6] J. Matas, K. Zimmermann, T. Svoboda, and A. Hilton.
Learning efficient linear predictors for motion esti-
mation. In Indian Conference on Computer Vision,
Graphics and Image Processing, LNCS4338, pages
445–456. Springer-Verlag, 2006. 1, 7

[7] Y. Satoh, T. Okatani, and K. Deguchi. A color-based
tracking by kalman particle filter. In International
Conference on Pattern Recognition, volume 3, pages
502–505, Washington, DC, USA, 2004. IEEE Com-
puter Society. 2

[8] G. Welch and G. Bishop. An introduction to the
kalman filter. In Special Interest Group for Computer
Graphics, 2001. 3

[9] J. Zhong and S. Sclaroff. Segmenting foreground ob-
jects from a dynamic textured background via a robust
kalman filter. In International Conference on Com-
puter Vision, volume 1, pages 44–52, 2003. 2

[10] Z. Zhu, Q. Ji, and K. Fujimura. Combining kalman
filtering and mean shift for real time eye tracking un-
der active ir illumination. volume 4, pages 318–321,
2002. 2

