
Instructions

Autoregressive (AR) processes where the previous values (plus a noise term) determine the current 

output variable are omnipresent in nature and human activities. They are one of the most fundamental 

parts of many other processes like the autoregressive-moving average (ARMA) or generalized 

autoregressive conditional heteroskedasticity (GARCH) processes and their variants used, e.g., in 

econometrics, or the processes with exogenous inputs used in the control theory.

The aim of this thesis is to focus on the AR processes and their properties like the order, their stationarity 

and its testing, means for their modeling and description. In addition, the student should provide a 

convenient real-life example or a brief study of a particular AR-related problem.
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Abstrakt

Problematika streamovaných dat přitahuje v posledńı době mnoho pozornosti
v odvětv́ıch jako jsou IoT, sociálńı śıtě či elektronický obchod. Jde o data,
která jsou svými zdroji kontinuálně generovaná a je potřeba je zpracovávat v
reálném čase. Vzhledem k vysoké frekvenci jejich źıskáváńı je potřeba využ́ıvat
metody, které jsou výpočetně minimálně náročné a zároveň maj́ı minimálńı
požadavky na pamět’. Autoregresni (AR) modely jsou jedńım ze základńıch
př́ıstup̊u k modelováńı časových řad. Myšlenka autoregresńıch model̊u spoč́ıvá
v tom, že současná hodnota řady je lineárně závislá na hodnotách předchoźıch.
Dı́ky své struktuře AR modely umožňuj́ı efektivně zpracovávat streamovaná
data i v situaćıch, kdy složitěǰśı modely nemohou být kv̊uli souvisej́ıćı výpočetńı
a pamět’ové náročnosti využity. Tato práce zkoumá AR procesy a jejich vlast-
nosti, nastiňuje teorii, která za nimi stoj́ı, a uvád́ı př́ıklad AR modelováńı na
reálných datech týkaj́ıćıch se pr̊uběhu pandemie COVID-19 v České republice.

Kĺıčová slova Časová řada, Náhodný proces, Autoregrese, Autokorelace,
Autokovariance, Modelováńı
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Abstract

Streaming data has recently attracted attention in numerous fields such as
IoT, social networks, and e-Commerce. Streaming data is the data that is
continuously generated by some sources and there is a need for their real-time
processing. Given that the frequency of a stream may be very high, the meth-
ods for its processing must be computationally cheap and have low memory
requirements. Autoregressive (AR) models are one of the fundamental ap-
proaches to time series modelling. The idea behind the autoregressive models
is that the current value of the series is linearly dependent on its most recent
past values. Thanks to its structure, AR models are able to effectively process
streaming data even in situations when more complex models cannot achieve
the desired performance for their computational and memory burden. This
thesis investigates AR processes and their properties, outlines the theory be-
hind them, and provides an illustrative example of AR modelling on real data
related to the COVID-19 pandemic course in Czech Republic.

Keywords Time series, Stochastic process, Autoregression, Autocorrela-
tion, Autocovariance, Modelling
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Introduction

Streaming data – data that is continuously generated by some sources – has
recently attracted attention in numerous fields such as IoT, social networks,
e-Commerce, etc. Given that the frequency of a stream may be very high
(e.g., a click-stream on Facebook), the methods applicable must be as com-
putationally inexpensive as possible and consume a small amount of memory.

Autoregression (AR) is a common approach for time series modeling. Autore-
gressive models operate under the premise that the past values linearly affect
the current values, which makes this technique very popular. Thanks to their
structure, the AR models are able to effectively process streaming data even
in situations when more complex models cannot achieve the desired perfor-
mance. In addition, together with the moving-average (MA) model, it is a
key component of the more general autoregressive–moving-average (ARMA)
and autoregressive integrated moving average (ARIMA) time series models,
which have a more complicated structure and, thus, are more computationally
costly.

The aim of this thesis is to focus on AR processes and their properties like the
order and stationarity, describe the means for their modelling, and provide an
example of AR modelling on a real-world time series.

We expect the reader to be familiar with essential concepts of probability
theory, e.g., the probability space, random value, mean, variance, correlation,
statistical hypothesis testing, etc. Furthermore, in this thesis we will use basic
concepts from linear algebra and calculus.
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Introduction

Structure of the Thesis

This thesis is divided into three chapters. Chapter 1 introduces an AR process
and focuses on its theoretical properties with regard to the probability theory
in order to describe its fundamental characteristics and determine what affects
it. In Chapter 2, we focus on the time series modelling with AR model and go
through each step of the modelling procedure. An illustrative example of AR
modelling on real-world time series data is provided in Chapter 3. In addition,
the methods introduced in Chapter 2 are compared.
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Chapter 1
Theoretical part

This chapter is dedicated to the analysis of an AR process as a stochastic
process. We will start with defining what is a stochastic process and focus on
its main properties. Then we will move to AR processes and their description
with regard to probability theory. AR processes are an idealization of real
processes, however it constructs the basis for the AR modelling. In the last
section we will describe the behaviour of the stochastic process using spectral
analysis.

1.1 Stochastic processes

Autoregression is a common approach to time series modeling, so before we
dive into the AR processes, we must define what the time series is. We assume
discrete time instants in this thesis, hence let us introduce the set of time
indices T ⊂ Z.

Definition 1 (Time series) Let T be a set of time indices. A Time series Y
is a sequence of measurements taken at successive equally spaced points t ∈ T ,
i.e., Y = {yt | t ∈ T}.

This definition considers a time series to be a sequence of measurements,
whereas our goal is to deduce properties of an underlying random process.
Let us rewrite this definition with regard to the probability theory. Every
point Yt of a series might be considered as a realization of a random variable
from an underlying probability space (Ω,F , P ). Sequence of random variables
is called the stochastic process

3



1. Theoretical part

Definition 2 (Stochastic process) Let (Ω,F , P ) be a probability space and
T be a set of time indices. A stochastic process Y is a set {Yt | t ∈ T}, where
Yt is a random variable from (Ω,F , P ).

Figure 1.1: Time series with daily confirmed cases of COVID-19 disease.

The probabilistic structure of such a process is determined by its joint prob-
ability distribution, whose analysis is very complicated. Fortunately, much of
the information in these distributions can be described in terms of the central
and non-central moments (mean, variance, covariance, etc.) [1].

For the stochastic process Y , the mean function is defined by

µt = E[Yt], t ∈ T. (1.1)

Note that µt might be different at each time point t.

Similarly, the variance function for the stochastic process

σ2
t = var(Yt), t ∈ T. (1.2)

Since the covariance of the time series elements describes the inner structure
of a single underlying process, the covariance is usually called the autoco-
variance function (ACVF) and it is defined as follows

γt1, t2 = Cov(Yt1 , Yt2) = E[(Yt1 − µt1)(Yt2 − µt2)], t1, t2 ∈ T. (1.3)

Finally, let us define autocorrelation function (ACF), which is a normalized
autocovariance function. The autocorrelation function is defined as

ρt1, t2 = Corr(Yt1 , Yt2) = Cov(Yt1 , Yt2)
σt1σt2

, t1, t2 ∈ T. (1.4)

4



1.1. Stochastic processes

Note that the autocovariance (autocorrelation) function gives the covariance
(correlation) of the process with itself at pairs of time points. The prefix auto
is to convey the notion of self-correlation.

To describe a stochastic process and its structure from the statistical per-
spective, we usually make some assumptions about its structure. The most
important assumption about the stochastic process is stationarity. The ba-
sic idea of stationarity is that the characteristics of a process (like moments)
that affect its behavior do not change over time [1].

Definition 3 (Strict stationarity) A stochastic process Y is said to be
strictly stationary if the joint distribution of Yt1 , Yt2 , . . . , Ytn is the same as
Yt1−k, Yt2−k, . . . , Ytn−k, for all t ∈ T, k ∈ Z.

The definition expresses the idea that any shift by time k does not affect the
joint distribution of the process. It only depends on time tk ∈ T .

Note that this condition is very strict, especially for processes with large n.
Therefore, a weaker form of stationarity is preferred in many engineering disci-
plines – weak-sense stationarity (WSS). Whenever the term ”stationarity”
is used in this thesis, its weak variant is considered.

Definition 4 (Weak-sense stationarity) A stochastic process Y is said to
be weakly stationary if

1. The first moment (mean) function is constant over time.

2. γt, t−k = γ0, k for all time t ∈ T and lag k ∈ N.

If Y is a weakly stationary process then the mean µ and the variance σ2 are
time-independent, and further the ACVF function depends only on the lag
between t1 and t2 [1]. This implies that the autocovariance and autocorrela-
tion functions can be expressed as functions of a time-lag τ = t2 − t1 only.
Considering this, the autocovariance function (1.3) can be rewritten as

γ(τ) = Cov(Yt, Yt+τ ), t ∈ T, (1.5)

and, similarly, the autocorrelation function (2.9)

ρ(τ) = Corr(Yt, Yt+τ ), t ∈ T. (1.6)

5



1. Theoretical part

(a) Stationary time series

(b) Non-stationary time series

Figure 1.2: In Figure (a) we can see an example of a stationary process. Values
of the series are concentrated around zero and its mean remains the same. In
Figure (b) we can see a non-stationary process. In fact, this is an example of
a random walk.

Moreover, the weak stationarity of Y implies that ACVF and ACF are even.

γ(τ) = E[YtYt+τ ] = E[Yt+τYt] = E[YtYt−τ ] = E[YtYt+(−τ)] = γ(−τ).

It can be shown that any strictly stationary process which has a finite mean
and covariance is also WSS [2].

1.2 Autoregressive processes

The autoregressive process is a representation of a type of stochastic process.
Autoregression specifies that the output variable at time t depends linearly on
its own p most recent past values, and the noise term. The number p is called
the model order. Let us define the autoregressive process.

6



1.2. Autoregressive processes

Definition 5 (Autoregressive process of order p) The autoregressive pro-
cess of order p denoted by AR(p) is defined as

Yt = φ0 + φ1Yt−1 + . . .+ φp + εt

= φ0 +
p∑

k=1
φkYt−k + εt. (1.7)

Using the matrix notation we can rewrite it as follows

Yt =


φ0
φ1
...
φp


ᵀ 

1
Yt−1

...
Yt−p

+ εt

= φᵀξt + εt, (1.8)

where φ = [φ0, φ1, . . . , φp] is the vector of regression coefficients and εt stands
for the noise term.

We add the constant φ0 to every Yt value, so it is an intercept which shifts
the series along Y-axis. Later, we will show that when the process Y has
the coefficient φ0 = 0, the mean E[Y ] = 0. The noise term εt incorporates
everything new in the series at time t which cannot be described by the past
values [1]. However, the term must satisfy E[εt] = 0.

The assumption that the current value depends on the previous ones made
those processes very popular among different disciplines. The original work
on autoregressive processes was carried out by George Udny Yule in 1926 [3].

Figure 1.3: An example of AR(2) process with regression coefficients
φ = [0,−0.3, 0.5]ᵀ and noise variance σ2 = 1.

Theoretically, the autoregressive process could be of any order p. However,
it is reasonable to avoid high-order models, since the impact of past values

7



1. Theoretical part

is vanishing with an increase of the time lag. We will go deeper into the
subtleties of AR modelling in the next chapter.

There is another way to write AR process using backshift operator [4],
denoted B. It operates on the time index of a series and shifts it one time
unit back. Mathematically,

BYt = Yt−1.

The backshift operator can be raised to arbitrary integer powers so that

B−1Yt = Yt+1

BkYt = Yt−k.

Thanks to these properties, we can rewrite AR(p) process using the backshift
operator. Assume that E[Y ] = 0, this condition imposes the zero mean of the
process and makes the following calculations easier.

Yt =
p∑

k=1
φkYt−k + εt

εt = Yt −
p∑

k=1
φkYt−k

= Yt − φ1B
1Yt − . . .− φpBpYt

=
(
1−

p∑
k=1

φkB
k
)
Yt

= Φ(B)Yt,

where Φ(B) is known as the characteristic polynomial of the process. Its
roots determine whether the process is stationary or not. Let us introduce
stationarity condition [5].

Theorem 1 (Stationarity condition) Assume an autoregressive process Y
of order p with regression coefficients φ = [φ0, φ1, . . . , φp]ᵀ. The process Y
is said to be weakly stationary if the roots of its characteristic polynomial
Φ(B) = 1−∑p

k=1 φkB
k lie outside the unit circle1, that is for each root Bk, k ∈

p̂ : |Bk| > 1. Otherwise, the process is not stationary.

1.2.1 White noise

The simplest form of autoregressive process is AR(0). The zero-order autore-
gressive process is given by

Yt = εt. (1.9)
1The unit circle is the circle of radius 1 centered at the origin (0, 0) in the complex plane.

8



1.2. Autoregressive processes

That is, the current value is not affected by the past values. In fact, this pro-
cess is the so-called white noise process. This white noise process is defined
as a collection of independent, identically distributed (iid) random variables
εt. This implies the strict stationarity of the process, since the multivariate
distribution of iids cannot be affected by any shift. Furthermore, the indepen-
dence implies the absence of correlation, so the autocovariance function for
the white noise process is given by

γ(τ) =
{
σ2 for τ = 0,
0 for τ 6= 0.

(1.10)

Similarly, the autocorrelation function

ρ(τ) =
{

1 for τ = 0,
0 for τ 6= 0.

(1.11)

1.2.2 The First-Order autoregressive process

The first-order autoregressive process AR(1) is given by

Yt = φ0 + φ1Yt−1 + εt. (1.12)

Let us now investigate its moments, autocorrelation structure, and define when
the process is stationary. Let us designate that there is no point in deriving
non-stationary process moments, since they are not constant. Therefore, we
consider the process to be weakly stationary.

Let us start with the mean. Using Equation 1.1 we get

E[Yt] = E[φ0 + φ1Yt−1 + εt].

Using the linearity of the expectation, we can rewrite

E[Yt] = E[φ0] + E[φ1Yt−1] + E[εt]
= φ0 + φ1E[Yt−1] + 0.

With the weakly stationarity assumption, the mean is constant over time,
according to Definition 4. Thus, E[Yt] = E[Yt−1] = µ and we get

µ = φ0 + φ1µ.

Extracting µ we get a (theoretical) mean of AR(1) process

µ = φ0
1− φ1

. (1.13)

9



1. Theoretical part

Now it is clear that the process has zero mean if the coefficient φ0 = 0.

Variance of the AR(1) process is derived the same way. By independence of
the errors εt and the values Yt, we get

var(Yt) = var(φ0) + var(φ1Yt−1) + var(εt)
= φ2

1var(Yt−1) + σ2
ε .

By the stationarity assumption, var(Yt) = var(Yt−1) = σ2. So,

σ2 = φ2
1σ

2 + σ2
ε .

Solving this equation for σ2 we get the variance of AR(1) process

σ2 = σ2
ε

1− φ2
1
. (1.14)

Since the variance is non-negative moment, it follows that 1 − φ2
1 > 1 and

therefore |φ1| < 1. We will face this condition later in defining the stationarity
regions for AR(1).

Let us now derive the autocovariance function. For simplicity and without
loss of generality, let us assume φ0 = 0. The autocovariance function for a
unit time lag reads

γ1 = Cov(YtYt+1) = E[YtYt+1]
= E[Yt(φ1Yt + εt+1)]
= E[φ1Y

2
t + Ytεt+1]

= φ1E[Y 2
t ] + E[Ytεt+1].

Since Yt is independent of εt for any t, and E[Yt] = 0 we get

γ1 = φ1E[Y 2
t ] + E[Yt]E[εt+1] = φ1E[(Yt − 0)2] = φ1var(Yt). (1.15)

Using Equation 2.9 and assuming that the process is stationary, we get

ρ1 = Corr(YtYt+1) = Cov(YtYt+1)
σtσt+1

= Cov(YtYt+1)
var(Yt)

= φ1var(Yt)
var(Yt)

= φ1.

(1.16)

Note that the value of the autocorrelation function at lag 1 is equal to φ1,
which is pretty natural taking into account the definition of AR(1) model.
Furthermore, ρ1 is bounded by 〈−1, 1〉 by definition, thus φ1 is also bounded
and cannot exceed 1 in absolute value. We will describe the nature of this
constraint later.

10



1.2. Autoregressive processes

To find the autocovariance γh between the observations h time periods apart,
we multiply each side of the process for Yt by Yt−h, then take expectations.
Note that h = |t2 − t2| ≥ 0.

Yt = φ1Yt−1 + εt

Yt−hYt = φ1Yt−hYt−1 + Yt−hεt

E[Yt−hYt] = E[φ1Yt−hYt−1] + E[Yt−hεt]
γh = φ1γh−1.

We can see the recursive nature of the autocovariance function and if we start
at γ1, and move recursively forward we get

γh = φh1γ0. (1.17)

By definition γ0 = var(Yt), so this gives us

γh = φh1var(Yt). (1.18)

Since the autocorrelation function is just normalized autocovariance by vari-
ance, we get

ρh = φh1var(Yt)
var(Yt)

= φh1 . (1.19)

Figure 1.4: Examples of several autocorrelation functions generated by AR(1)
processes with different regression coefficients.

In Figure 1.4 examples of ACF for AR(1) processes with different coefficients
are displayed. First, note that for processes with 0 > φ1 > 1, all correlations
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1. Theoretical part

are positive, whereas the signs of ACF values for processes with −1 < φ1 < 0
alternate from positive to negative. In both cases, the magnitude of auto-
correlations decreases exponentially as the lag τ increases. Second, it is clear
that the magnitude of ACF values is proportional to |φ1|, that is, the higher
the value of φ1 in the absolute value, the stronger the correlation [1].

To decide whether the process is stationary or not, we use Theorem 1. The
characteristic polynomial for AR(1) process is

Φ(B) = 1− φ1B, (1.20)

the corresponding characteristic equation is

0 = 1− φ1B.

This equations has only one root

B = 1
φ1
,

which must lie outside the unit circle, so∣∣∣∣ 1
φ1

∣∣∣∣ > 1⇒ |φ1| < 1 (1.21)

Theorem 2 (Stationarity condition for AR(1)) The AR(1) process is sta-
tionary if only if |φ1| < 1 or −1 < φ1 < 1.

Recall this condition from the derivation of variance. We assumed that the
process is stationary and unintentionally got the correct stationary condition.

1.2.3 The Second-order Autoregressive Process

AR(2) process is given by

Yt = φ0 + φ1Yt−1 + φ2Yt−2 + εt (1.22)

Derivation of moments of the AR(2) process is similar, so let us concentrate
on the stationarity of the process. The characteristic equation of the AR(2)
process is given by

Φ(B) = 1− φ1B − φ2B
2. (1.23)

In order to ease the calculations, we introduce poles.

12



1.2. Autoregressive processes

(a) φ1 = −0.7

(b) φ1 = −1.1

(c) φ1 = 1

Figure 1.5: Examples of the AR(1) processes with the roots of corresponding
characteristic equations. Recall, that the roots of characteristic equation must
lie outside the unit circle (blue area) in order the process to be stationary. In
Figure (a) there is an example of a stationary process. The process in Figure
(b) is called explosive. In Figure (c) the value of the root is 1, thus the
corresponding process is not stationary.
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1. Theoretical part

Definition 6 (Zeros and Poles) A zero of a function f is a complex num-
ber z such that f(z) = 0. A pole of f is a zero of 1

f .

In this situation, use of poles is more convenient, because solving the reduced
quadratic equation (when the leading coefficient is one) is easier. According
to the Theorem 1, the roots of Φ(B) must lie outside the unit circle so that
the process is stationary, therefore, the poles must lie inside the unit circle.
So we will be looking for zeros of 1

Φ(B) = 0. In fact, the polynomial 1
Φ(B) is

usually referred as reciprocal polynomial. The reciprocal equation in this
case is following

0 = λ2 − φ1λ− φ2, (1.24)

reciprocal zeros are

λ1,2 =
φ1 ±

√
φ2

1 + 4φ2

2 . (1.25)

According to stationarity condition, the poles |λ1| ≤ 1 and |λ2| ≤ 1. This
yields

|λ1λ2| =

∣∣∣∣∣∣
φ1 +

√
φ2

1 + 4φ2

2 ·
φ1 −

√
φ2

1 + 4φ2

2

∣∣∣∣∣∣ (1.26)

=
∣∣∣∣∣φ2

1
4 −

φ2
1 + 4φ2

4

∣∣∣∣∣ = |φ2| ≤ 1, (1.27)

and

|λ1 + λ2| = |φ1| ≤ 2. (1.28)

Now let us divide proof into two cases corresponding to real and complex
roots. The roots will be real if and only if φ1 + 4φ2 ≥ 0. Consider that roots
are real. This implies

−1 ≤
φ1 −

√
φ2

1 + 4φ2

2 ≤
φ1 +

√
φ2

1 + 4φ2

2 ≤ 1 (1.29)

−2 ≤ φ1 −
√
φ2

1 + 4φ2 ≤ φ1 +
√
φ2

1 + 4φ2 ≤ 2. (1.30)

Consider the first inequality. Now −2 ≤ φ1 −
√
φ2

1 + 4φ2 if and only if√
φ2

1 + 4φ2 ≤ φ1 + 2 if and only if φ2
1 + 4φ2 ≤ φ2

1 + 4φ1 + 4. This yields

φ2 − φ1 ≤ 1. (1.31)
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1.3. AR processes in frequency domain

The second inequality is treated similarly and leads to

φ2 + φ1 ≤ 1. (1.32)

Figure 1.6: The stationarity regions for AR(2) process. For the values of φ1,2
outside this triangle AR(2) process will be explosive.

These inequalities together with φ1 + 4φ2 ≥ 0 define the region of stationarity
for the real root case.

Now consider complex roots, i.e. φ2
1+4φ2 < 0. Here λ1 and λ2 will be complex

conjugates and |λ1| = |λ2| ≤ 1 if and only if |λ2|2 ≤ 1. However,

|λ2|2 = φ2
1 − φ2

1 − 4φ2
4 = −φ2, (1.33)

so that φ2 ≥ −1. This together with the inequality φ2
1 + 4φ2 < 0 defines the

part of the stationary region for complex roots. The stationarity region for
AR(2) process is displayed in Figure 1.6.

Investigating the properties of higher-order processes is more complex and
requires deeper analysis.

1.3 AR processes in frequency domain

We can consider representing the variability in a time series in terms of har-
monic components at various frequencies. This is a natural way to look at
a time series and it is called frequency domain analysis. The aim of the
analysis is to estimate the strength of different frequency components (power

15



1. Theoretical part

spectrum) of time-domain process. For instance, a simple model for a time
series Yt exhibiting cyclic fluctuations with a known period p is [6]

Yt = α cos(ωt) + β sin(ωt) + εt,

where εt is a white noise, ω = 2π
p is the known frequency of cyclic oscillations,

and parameters α and β.

When we examine the properties of the stochastic process using autocovari-
ances, it is an analysis in the time domain, whereas examining properties by
considering the frequency components of a process is analysis in the frequency
domain. This kind of analysis could help us describe the behaviour of the
stochastic process in terms of oscillations and seasonality.

1.3.1 Spectrum

Let Yt be a stationary stochastic process with autocovariances (γk). For any
such sequence generated by a stationary process, there exists a function F
such that

γk =
∫ π

−π
eikλ dF (λ), (1.34)

where F is the unique function called spectral distribution function [6] or
spectrum on [−π, π] such that

1. F (−π) = 0

2. F is non-decreasing and right-continuous

3. For any 0 ≤ a < b ≤ π,

F (b)− F (a) = F (−a)− F (−b).

The function F has many of the properties of a probability distribution func-
tion, however F (π) = 1 is not required.

If the function F is everywhere continuous and differentiable, then

f(λ) = dF (λ)
dλ

(1.35)

is called the spectral density function and we can rewrite Equation 1.34
as

γk =
∫ π

−π
eikλf(λ) dλ (1.36)
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1.3. AR processes in frequency domain

Figure 1.7: Generated white noise with its theoretical spectrum.

If the sum ∑
|γk| is absolutely convergent, then it can be shown that f always

exists [6] and is given by

f(λ) = 1
2π

∞∑
k=−∞

γke
iλk = γ0

2π + 1
π

∞∑
k=1

γk cos(λk). (1.37)

Example: White Noise Consider the zero-order autoregressive process
Yt = εt, where εt ∼ N (0, σ2). As shown in Section 1.2.1, for the process
Yt the autocovariances are γ0 = σ2, γk = 0 for any k 6= 0. From (1.37) we
immediately get

f(λ) = σ2

2π , (1.38)

which is independent from λ.

All frequencies receive the equal weight in a spectral representation of white
noise and this explains the origin of this name. In physics, the spectrum of
white light contains components at all frequencies across the visible spectrum.

Example: AR(1) Spectral Density From (1.15) and (1.17) we know that
γ0 = σ2

1−φ2
1

and γk = φk1γ0 for k ≥ 0. Knowing that e−iλ + eiλ = 2 cos(λ), we
get

f(λ) = 1
2πγ0

∞∑
k=−∞

φ
|k|
1 eiλk

= γ0
2π + γ0

2π

∞∑
k=1

φk1e
iλk + γ0

2π

∞∑
k=1

φk1e
−iλk

= γ0
2π
(
1 + φ1e

iλ

1− φ1eiλ
+ φ1e

−iλ

1− φ1e−iλ

)
= γ0(1− φ2

1)
2π(1− 2φ1 cos(λ) + φ2

1)

= σ2

2π(1− 2φ1 cos(λ) + φ2
1) . (1.39)
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1. Theoretical part

Figure 1.8: Spectra of AR(1) processes with the positive and negative regres-
sion coefficient φ1.

In Figure 1.8 we can see, that in the case φ1 > 0 the spectral density is a
decreasing function of λ. That is, the power is concentrated at low frequen-
cies, corresponding to long-range fluctuations [6]. While in the case φ1 < 0
the spectral density increases as a function. That means, that the power is
concentrated at higher frequencies, which explains the tendency to oscillate
among AR(1) processes with negative φ.
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Chapter 2
AR Modelling

In this chapter, we will go through all steps of time series modelling using the
autoregressive model. The main goal of time series modelling is forecasting,
that is predicting the future behaviour of some variable of interest based on
past and present data. The most common approach to time series modelling
is Box-Jenkins method [5], named after after the statisticians George Box
and Gwilym Jenkins.

This approach consists of 3 main steps:

1. model specification

2. model fitting

3. model diagnostics

In the first step, different time series models are selected that may be appro-
priate for a given case. To choose one, we analyze the progress of the series,
extract different statistics from the data, and apply any domain knowledge
matter in which the data arise, such as economy, biology, or healthcare. Since
this thesis is dedicated to autoregressive models, we will skip this phase and
will not describe the techniques of choosing an appropriate model for time
series, except for one stage of this phase – stationarity testing.

Every model involves parameters whose values must be estimated from the
given time series. This step is called model fitting. In case of the autoregres-
sive model, we need to estimate the model order p and regression coefficients
φ = [φ0, φ1, . . . , φp]ᵀ. We will outline the common approaches of parameter
estimation and compare the results of individual methods in the next chapter.

19



2. AR Modelling

The last step consists of assessing the quality of the chosen model with the
estimated parameters. We make sure that the model fits the data well and that
the assumptions of the model are reasonably well satisfied. If some problems
were found, we return to the model specification and repeat the cycle. In this
way, we loop through these three steps until we find an acceptable model.

In this chapter we will use the following notation:

• Set of time indices T = N

• Observable series X = {Xt | t ∈ T}

• Sample statistics use hat-notation (i.e., sample mean µ̂ or sample
autocorrelation function ρ̂)

• Matrices will be denoted by bold variables (i.e., X or I)

2.1 Sample statistics

Now, we consider an autoregressive model that will be initially fitted to some
time series X. Thus, instead of deriving the theoretical moments of the pro-
cess, we can estimate the sample statistics, e.g, the simple mean µ̂ of the
time series X of length n is given by

µ̂ = 1
n

n∑
t=1

Xt, (2.1)

and sometimes referred as average.

The sample variance is given by

σ̂2 = 1
n− 1

n∑
t=1

(Xt − µ̂)2, (2.2)

where the term 1
n−1 is called Bessels’s correction [7].

Essential diagnostic tool for examining dependence is the sample autocor-
relation function. The natural way to compute the sample ACF is to
take the sample correlation between the pairs h units apart in time, e.g,
(X1, X1+h), (X2, X2+h)), . . . , (Xk−n, Xn), for each k. However, if we consider
the series X to be stationary, this implies a common mean and variance for
the series and we define the sample ACF at lag h as [1]

ρ̂(h) =
∑n
t=k+1 (Xt − µ̂)(Yt−k − µ̂)∑n

t=1 (Yt − µ̂)2 . (2.3)
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2.2. Stationarity Tests

Note that the denominator is a sum of n squared terms while the numerator
contains only n− k cross products. For a variety of reasons, this has become
the standard definition for the sample autocorrelation function [1].

2.2 Stationarity Tests

When we model some time-dependent process, we need to determine whether
the observed time series X is (weakly) stationary or not. It affects the choice
of the model. Now, let us show the most common approaches to determining
the stationarity of a given time series.

2.2.1 ACF method

Statistically speaking, this method is not a hypothesis test. Usually, the simple
ACF computed from a given non-stationary time series could indicate its non-
stationarity [1].

In Figure 2.1 you can see that the values of ACF of the non-stationary series
do not decrease rapidly as the lag increases. This behaviour is typical for
ACF of a non-stationary series [1]. Furthermore, the definition of the sample
autocorrelation (2.3) implicitly assumes stationarity. For instance, we use the
lagged products of deviations from the overall mean, and the denominator
assumes a constant variance over time. Thus, it is not at all clear what the
sample ACF is estimating for a non-stationary process. Thus, the general rule
is that when the values of ACF are slowly drifting either up or down, there is
a high probability of the series being non-stationary.

This method is not as accurate as the following ones, but it might give an idea
of the series’ stationarity.

Figure 2.1: Example of ACF for non-stationary (Random Walk) and station-
ary AR(1) processes.
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2. AR Modelling

2.2.2 Augmented Dickey-Fuller Test

Augmented Dickey-Fuller test (ADF) is used to determine the presence of a
unit root2 in the series. Recall the stationarity condition from the Theorem
1. It is clear that the presence of a unit root breaks the condition and implies
a non-stationarity of the underlying process.

The intuition behind test hypotheses is the following

H0 : The process Y has a unit root.
H1 : The roots of the characteristic equation lie outside the unit circle.

The testing procedure is applied to the model

∆Xt = α+ βt + γXt−1 + δ1∆Xt−1 + . . .+ δp−1∆Xt−p+1 + εt, (2.4)

where α is the constant, β the coefficient on a time trend, and ∆Xt = Xt −
Xt−1 = (1 − B)Xt. Operator ∆ is called the first-difference operator. The
order p could be determined by the techniques described in the Section 2.3,
usually the Akaike information criterion (AIC) is used (see Subsection 2.3.2).

The hypothesis of the presence of a unit root is equivalent to γ = 0, that is,
when the lagged value Xt−1 has no direct affect on increment ∆Xt. Only an
increment ∆Xt−1 has an effect on ∆Xt. Thus, the hypotheses are

H0 : γ = 0
H1 : γ < 0.

The test statistic for ADF is

DF = γ̂

SE(γ̂) , (2.5)

where γ̂ is the estimation of γ and SE(γ̂) = σγ̂√
n

is the standard error of this
estimation. If the calculated statistic DF is less than the critical value for
Dickey-Fuller t-distribution, then the null hypothesis is rejected and no unit
root is present.

The result of this test is not usually used alone. Instead, we combine the
result of ADF with the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and
then decide whether the observed series X is stationary or not.

Before describing the KPSS test, let us introduce the trend-stationary pro-
cesses.

2A stochastic process is said to have a unit root if 1 is a root of the process’s characteristic
equation.

22



2.2. Stationarity Tests

Definition 7 (Trend-stationary process) The process Y is said to be trend-
stationary if

Yt = f(t) + Zt,

where f(t) is a trend value of the process at time t and Z = {Zt | t ∈ T} is a
stationary process.

Note that the process with a trend cannot be stationary since its first moment
changes over time. Removing the trend from trend-stationary series gives us
a stationary series. There are other techniques which transform the observed
series into a stationary one. They will be described later.

2.2.3 Kwiatkowski–Phillips–Schmidt–Shin test

KPPS test is used for testing that an observable time series is stationary
around a deterministic trend. The intuition behind the test’s hypotheses is

H0 : The process Y is trend-stationary.
H1 : The process Y has a unit-root.

Note that in this test the hypotheses are inverted. Contrary to most unit root
tests, the presence of a unit root is not a null hypothesis but an alternative.

The KPSS test is based on linear regression. It breaks up a series into three
parts: a deterministic trend βt, a random walk rt, and a stationary error εt
[8]

Xt = rt + βt + εt, (2.6)

where rt = rt−1 + ut and ut is white noise with variance σ2
u.

To test if Xt is a trend stationary process, we use the following hypotheses [9]

H0 : σ2
u = 0.

H1 : σ2
u > 0.

The null hypothesis means that the intercept is a fixed element. The residuals
et for t ∈ {1, 2, . . . , n} are from the regression of X on an intercept and time
trend, so et = εt.

Let the partial sum process of et be St = ∑t
j=1 ej , and σ2

e be the long-run
variance of et [9]. Then the KPSS statistics is given by

KPSS = 1
n2σ2

e

n∑
t=1

S2
t . (2.7)
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2. AR Modelling

The p-value is computed then and compared with the significance level. If
p-value is less then the chosen significance level, then the null hypothesis is
rejected, thus the series is not stationary around the deterministic trend.

Table 2.1: Interpretation of the stationarity tests results.

ADF KPSS Result
Insignificant Insignificant The series is trend-stationary
Insignificant Significant The series is non-stationary
Significant Insignificant The series is stationary
Significant Significant The series is difference stationary

As we mentioned, ADF and KPSS tests are used together and then we decide
whether the observed series is stationary or not. Interpretation of the results
is provided in the Table 2.1.

We have mentioned the trend and difference stationary series, that is, the
series is stationary after removing the trend, respectively, after differencing.
Differencing is a common way to make non-stationary time series stationary
by computing the differences between consecutive observations [10] and can
be written as

X ′t = Xt −Xt−1. (2.8)

Note that the series X ′ will have only n − 1 values, since it is not possible
to calculate a difference X ′1 for the first observation. Differencing helps to
stabilize the mean of a time series by removing changes in the level of a time
series, thus, eliminating trend and seasonality [10].

If the differenced data do not appear to be stationary, it may be necessary to
difference the data a second time to obtain a stationary series [10].

X ′′t = X ′t −X ′t−1

= (Xt −Xt−1)− (Xt−1 −Xt−2)
= Xt − 2Xt−1 −Xt−2.

Recall that the process should have a constant mean and variance to be sta-
tionary. Differencing is a technique that helps to stabilize the mean of the
series. To stabilize the variance of the observed series, the logarithm transfor-
mation is usually applied [10].
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2.3. Model Order

2.3 Model Order

One of the parameters we want to estimate is the model order p. To do that,
we need to know how many past values affect the current one. Fortunately,
this is what ACF measures. However, we cannot use the ACF plot to detect
the model order. The autocorrelations of AR(p) model do not become zero
after a certain number of lags – they die off rather than cut off [1]. The value
Xt is affected by the Xt−1, which is affected by Xt−2. This effect propagates
to ACF values at higher lags and makes determining the model order from
the ACF plot impossible. To get rid of this influence, we introduce the partial
autocorrelation function.

2.3.1 Partial autocorrelation function

The partial autocorrelation function (PACF) at lag h measures the correlation
between Xt and Xt−h after removing the effect of the intervening variables
Xt−1, Xt−2, . . . , Xt−h+1.

Definition 8 (Partial autocorrelation function) Let X be a time series
of length n. The partial autocorrelation of lag h rh is given by

rh = Corr(Xt, Xt−h|Xt−1, Xt−2, . . . , Xt−h+1).

That is, rh is the correlation in the bivariate distribution of Xt and Xt−k
conditional on Xt−1, Xt−2, . . . , Xt−h+1.

In Figure 2.2 examples of PACF of simulated processes of 500 samples are
provided. Note that for stationary processes of order p, the values of PACF
at lags k ≤ p are close to the values of regression coefficients and cuts off after
lag p, contrary to the ACF. It is remarkable that PACF of non-stationary
random walk process is almost equal to 1 at lag 1. In fact, random walk is
nothing but AR(1) process with φ1 = 1 and PACF reflects it.

2.3.2 Akaike information criterion

Another method to determine the parameter p uses Akaike’s information cri-
terion. In this method, we fit some models of different orders, e.g., from 1 to
15, and then choose the model that minimizes

AIC = 2p− 2 ln (maximized likelihood) ≈ 2p− 2 ln(σ2
p). (2.9)

Originally, the criterion uses the maximized likelihood of the model, however
it can be estimated by σ2

p [5], where σ2
p = 1

n−1
∑n
t=1 (X̂ −X)2 is the prediction

error variance. The term 2p serves as a ”penalty function” to avoid high-order
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2. AR Modelling

Figure 2.2: Examples of Partial Autocorrelation function for simulated pro-
cesses of 500 samples.

models. In other words, AIC deals with the trade-off between the goodness of
fit of the model and the simplicity of the model.

It has been shown that for a relatively small sample size, AIC underestimates
the true order. Nonetheless, the probability of under estimation reduces as
the sample size grows [11].

2.4 Fitting AR Model

After the model order p̂ is determined, we want to estimate the regression
coefficients φ = [φ0, φ1, . . . , φp̂]ᵀ. The most common approaches to the esti-
mation of p are the ordinary least squares method and the method of moments,
which uses Yule-Walker equations. We will describe both of them and in the
following chapter will compare the results of these methods.

2.4.1 Least-Squares method

This method of parameter estimation uses least-squares minimization tech-
nique. Our goal is to find the vector of regression coefficients φ̂, such that
the values of the error sequence ε = [ε1, . . . , εn]ᵀ are as minimal as possible.
Recall, that AR(p) process is given by

Xt = φ0 +
p∑

k=1
φkXt−k + εt.
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2.4. Fitting AR Model

If we express the noise term we get

εt = Xt − φ0 −
p∑

k=1
φkXt−k. (2.10)

Let us convert this expression to matrix notation
εp+1
εp+2

...
εn

 =


Xp+1
Xp+2

...
Xn

−


1 Xp Xp−1 . . . X1
1 Xp+1 Xp . . . X2
...

...
... . . .

...
1 Xn−1 Xn−2 . . . Xn−p



φ0
φ1
...
φp

 (2.11)

ε = Y−Xφ. (2.12)

Our aim is to find the vector of regression coefficients φ̂ which minimizes the
squared error. The function we want to minimize is given by

RSS(φ̂) =
n∑

t=p+1
ε2
t = εᵀε (2.13)

= ‖ε‖2, (2.14)
= ‖Y−Xφ̂‖2. (2.15)

The optimization problem can be then expressed as

φ̂ = arg min
φ∈Φ

RSS(φ). (2.16)

The optimum regression coefficients can be obtained by applying an orthog-
onality principle [12]. Let X be an unknown random vector which is to be
estimated based on the observation vector Y . One wishes to construct a linear
estimator X̂ = MY + ε for some matrix M and vector ε. Then, the orthogo-
nality principle states that an estimator X̂ achieves the minimum mean square
error if and only if

• E[(X̂ −X)Y ᵀ] = 0

• E[X̂ −X] = 0.

Thus, to minimize MSE, we want the vector ε to be orthogonal to each ex-
planatory vector X•,k for k ∈ {1, . . . p + 1}, i.e., to each column vector in
matrix X. This yields

Xᵀε = Xᵀ(Y−Xφ) = 0 (2.17)
XᵀY−XᵀXφ = 0 (2.18)

XᵀXφ = XᵀY (2.19)
φ̂ = (XᵀX)−1XᵀY. (2.20)
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2. AR Modelling

Equation (2.20) is usually referred to as the normal equation.

Note that matrix XᵀX is not necessarily regular, thus might not be invertable.
In such cases, the Moore-Penrose inverse (XᵀX)+ is used, which is the most
common generalization of the inverse matrix [13].

Recursive least squares estimation In time series analysis, it is natural
that as time passes we get more data and need to tweak the model parameters.
We can completely recalculate the estimate, but if the number of measure-
ments becomes large, then the computational effort could become prohibitive
[14]. So, instead of recomputing, we rather adjust our model parameters to
new data. This approach is called online learning. The online learning ap-
proach applicable for this particular problem is called recursive least squares
estimation. Let us describe the algorithm of recursive estimation.

Recursive least squares estimation algorithm [14]

1. Initialize the estimator as follows:

φ̂ = E[φ]
P0 = E[(φ− φ̂0)(φ− φ̂)ᵀ],

where P0 is estimation-error covariance.

2. For k = 1, 2, . . . perform the following.

a) Obtain the measurements yk, assuming that yk is given by the
equation

yk = Xkφ+ εk,

where εk is zero-mean random vector with variance σ2
k. Further,

assume that the measurement noise at each time step k is inde-
pendent, that is, E[εiεk] = σ2

kδi,k, where δi,k is the Kronecker delta
function. This implies that the measurement noise is white.

b) Update the estimate of φ and the estimation-error covariance as
follows:

Kk = Pk−1Xᵀ
k(XkPk−1Xᵀ

k + σ2
k)−1,

φ̂k = φ̂k−1 +Kk(yk −Xkφ̂k−1),
Pk = (I−KkXk)Pk−1(I−KkXk)ᵀ +Kkσ

2
kK

ᵀ
k ,

where Kk is estimator gain matrix, term (yk − Xkφ̂k−1) is called
correction term, and I is identity matrix.
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This method allows us to adjust the previous estimation of φ̂ to the new data
as we get it. This makes this model applicable to problems with real-time
processing of streaming data.

2.4.2 Method of moments

This method uses Yule-Walker equations. These equations relate the autocor-
relation sequence for a time series to the model parameters φ [3].

Definition 9 (Yule-Walker equation) Let Yt be a stochastic process with
autocovariances (γ)τ and noise variance σ2

ε . The Yule-Walker equations are
given by

γt =
p∑

k=1
φkγm−k + σ2

εδt,0, (2.21)

where δm,0 is the Kronecker delta function.

These equations express the relationship between the autocovariance function
and model parameters. Note that these equations use the theoretical values of
ACVF, which should be replaced by estimates γ̂t during the modelling process.
The term σ2

εδt,0 is only present in equation for γ0, thus the equations for γt,
where t > 0 can be solved in matrix form

γ1
γ2
...
γp

 =


γ0 γ−1 . . . γ1−p
γ1 γ0 . . . γ2−p
...

... . . .
...

γp−1 γp−2 . . . γ0



φ1
φ2
...
φp

 (2.22)

r = Rφ. (2.23)

Recall, that γ−t = γt, which implies the symmetry of matrix R. Similarly,
multiplying expression (2.23) by R−1 gives us the estimation of the optimal
regression coefficients

φ̂ = R−1r. (2.24)

The recursive method generally used to solve the Yule-Walker equations is
called Levinson-Durbin algorithm [15]. The advantage of the recursive method
is that it produces solutions for all model orders lower than chosen p̂, thus
making the the selection of p̂ easier.

Either of the methods may be used to estimate the model parameters. There
are also other methods to extract reasonable estimates of the model param-
eters from a sequence of data, but all other methods are derived from these
two basic methods [16].
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2. AR Modelling

If the regression coefficients are constant, i.e., time-invariant, then the classical
estimation methods presented in this thesis are used. If they vary slowly
with time and their evolution model is unknown, then either the windowing
or forgetting methods are used [17]. An example of windowing method is
provided in Section 3.5. If time evolution model for parameters is known, then
the state-space methods based on Kalman filtering or H∞ filtering should be
used [15].

2.5 Forecasting

One of the main reasons of time series modelling is forecasting. We want to
predict the future development of the observed process. Forecasting using an
autoregressive model is straightforward, since the current value of the series is
a linear combination of its lagged values. After we estimate the model order
p̂ and the vector of regression coefficients φ̂, we can recursively predict the
future values applying the Definition 5 as follows

Xt+1 =
p̂∑

k=1
φ̂Xt−k+1. (2.25)

Note that after p̂ predictions, further forecasting will be based on predicted
values, not the real ones. An example of forecasting with differnced time se-
ries is shown in Figure 3.5. However, an autoregressive models are barely used
for modelling real-world processes, which usually have trend and seasonality
terms. These terms are not considered in AR models. Instead, more general
models (which contain an AR model) should be used for this kind of mod-
elling, like ARIMA (Autoregressive integrated moving average) or SARIMA
(Seasonal autoregressive integrated moving average) models.

2.6 Diagnostics

Estimation of the order p and regression coefficients is followed by model model
diagnostics. The tests are usually based on the statistical properties of the
prediction errors. The most commonly tested properties are whiteness and
normality [16]. The correlation of residuals is also computed and checked.

Let us briefly introduce the most common methods of model diagnostics

2.6.1 Q-Q plot

Normality of the residuals can be checked by plotting the quantile-quantile (Q-
Q) plot. The plot displays the quantiles of data against theoretical quantiles
of standardized normal distribution. If the data are normally distributed, the
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2.6. Diagnostics

Figure 2.3: Examples of Q-Q plots.

Q-Q plot should look like a straight line. Figure 2.3 shows the examples of
Q-Q plot for realizations of normal and exponential distribution.

2.6.2 Jarque-Bera test

Another method for testing the normality of residuals is Jarque-Bera test.
The test is based on the fact that a normal distribution has zero skewness and
zero kurtosis [1]. Test considers the following hypotheses

H0 : Data are normally distributed.
H1 : Data follow some other distribution.

Test statistic is based on the two mentioned moments and is approximately
distributed as χ2

2 distribution [1]. Test statistic is given by

JB = n

(
S2

6 + (K − 3)2

24

)
, (2.26)

where n is the number of samples, S is the sample skewness, and K is a sample
kurtosis.

2.6.3 Ljung-Box test

We want to find such a model, so the residuals produced are uncorrelated. If
the residuals turn out to be correlated, that means that the data has some
dependencies which the model does not consider, thus the predictions are not
as accurate as they could be.
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2. AR Modelling

The Ljung-Box test is commonly used to check whether any of autocorrelations
of a time series is different from zero, or

H0 : Data are independently distributed.
H1 : Data exhibit serial correlation.

The test statistic is

LB = n(n+ 2)
h∑
k=1

ρ̂k
n− k

, (2.27)

where n is the number of samples, ρ̂k is sample autocorrelation at lag k,
and h is the number of lags being tested. The statistic LB is approximately
distributed as χ2

h.

The test statistic uses sample autocorrelations. Note, that this is autocor-
relation of residuals, not the origianl data. We can plot ACF function for
residuals. In ideal case, values of ACF for lags k > 0 should be insignificant.
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Chapter 3
Application example

This chapter is dedicated to the practical application of the autoregressive
model and the comparison between the methods introduced in Chapter 2. We
are going to apply those methods to the real-world time series related to the
COVID-19 pandemic course in Czech Republic.

It should be noted that the AR model is a very simple model and we do not
expect the forecasting accuracy on the real data to be high. We conduct these
experiments not to get as accurate results as possible, but to show the usage
of the methods and compare them.

For analysis and modelling purposes, we will use Python programming lan-
guage and packages pandas, matplotlib, and statsmodels.

3.1 Data

For the application example we will use data provided by the Czech Ministry
of Health. Data are publicly available and can be obtained from [18].

In this file, there are three columns:

• datum - date when measurements were taken

• prirustkovy pocet nakazenych - new cases for this day

• kumulativni pocet nakazenych - cumulative sum of the previous col-
umn
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3. Application example

datum prirustkovy pocet nakazenych kumulativni pocet nakazenych
2020-01-27 0 0
2020-01-28 0 0

. . . . . . . . .
2021-05-04 2419 1639265
2021-05-05 1869 1641134

Table 3.1: Structure of the data.

Figure 3.1: Time series X of daily new cases of COVID-19 decease in Czech
Republic and corresponding ACF and PACF.

Some data samples are provided in Table 3.1. The column of our interest
is prirustkovy pocet nakazenych and we will use it as our time series X (see
Figure 3.1).

3.1.1 Data properties

Before the modelling process, let us explore the data and get some insight of
the underlying structure. The time series with corresponding ACF and PACF
are displayed in Figure 3.1. We can see that the observed series has evolving
mean and variance. Furthermore, the ACF function gives us an evidence of
non-stationarity, since its values do not decrease rapidly as the lag decreases
(see Section 2.2.1).

Main statistics extracted from the data are provided by pandas.DataFrame
class method summary() and are displayed in Table 3.2.
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3.2. Stationarity testing

Figure 3.2: Differenced series X ′ and corresponding ACF and PACF.

3.2 Stationarity testing

We have already mentioned that there is evidence of the series non-stationarity.
Let us apply the ADF and KPSS tests described in the Section 2.2. We will
use the tests implemented in statsmodels package. Since the series X is most
likely non-stationary, we will not only test the original series, but the differ-
enced series X ′ (see Figure 3.2) as well. The results of the tests are provided
in Table 3.3.

Let α be the significance level for the tests. Recall that the smaller the p-
value of the test is, the stronger the evidence that we should reject the null
hypothesis. In our case, let α = 0.05, thus in order to reject null hypothesis
p-value should be lower than 0.05.

For the original series X, the result of the ADF test is insignificant (0.12 > α)
and result of the KPSS test is significant (0.01 < α). According to Table
2.1, we can assume that the original series X is non-stationary. As for the
differenced series X ′, the null hypothesis of the ADF test is rejected, whereas

count 469
mean 3508.4
std 4523.1
min 0
25% 91
50% 1074
75% 5861
max 17771

Table 3.2: Statistics of the series from summary() method.
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3. Application example

the result of the KPSS test is insignificant. This implies the stationarity of
the differenced series X ′.

In this example, we have shown how to make non-stationary series stationary
by differencing. Differencing stabilizes the mean, e.g., in our case the mean
has changed drastically from 3508.04 (see Table 3.2) to 0.81. However, the
variance of X ′ does not seem to be constant over time, the differenced series
is considered stationary and may be used for AR modelling.

Time series ADF p-value KPSS p-value
X 0.120 0.010
X ′ 0.001 0.100

Table 3.3: Results of the stationarity tests.

3.3 Determining order

We are going to determine the optimal model order p for the differenced
series. For this purpose, we will use the Akaike information criterion that
was introduced in Section 2.3. In statsmodels package, there is a function
ar select order(data, maxlag, ic), which fits the models from order 1 to maxlag
and uses information criterion ic, which is AIC in our case.

Let us not use the whole series, but only the measurements taken between
01.12.2020 and 30.04.2021. Let us denote this shorter series Xshort. In this
interval the behaviour is different from the beginning of the series, and con-
sidering that AR models alone do not generalize well, we have decided to limit
to this interval.

For the series Xshort we computed AIC value for orders 1..15. The results
are shown in Figure 3.3. The optimal order estimated by AIC is p̂ = 8 with
AIC(8) = 15.07.

3.4 Fitting AR model

In this section, we will try two different methods of regression coefficients
estimation introduced in Section 2.4. The first method uses OLS estimation
and was implemented by the author of this thesis. The method of moments
uses the Levinson-Durbin algorithm. Statsmodels implementation was used.

The parameters are going to be estimated on the train set, which is the Xshort

series without the last 50 values. Then we will predict values for the last 50
days and compare the prediction errors. In addition, the estimated coefficients
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3.4. Fitting AR model

Figure 3.3: Values of AIC for different p.

will be compared. For measuring the prediction error, the RMSE criterion was
chosen. RMSE is given by

RMSE(X, X̂) =

√√√√ 1
N

N∑
i=1

(X̂i −Xi)2.

The results for both methods are following

OLS Estimation

• φ̂OLS = [−0.242,−0.393,−0.264,−0.271,−0.349,−0.166, 0.450, 0.145]ᵀ

• RMSE = 3979.84

Method of moments

• φ̂LD = [−0.218,−0.486,−0.355,−0.346,−0.418,−0.232, 0.310, 0.035]ᵀ

• RMSE = 3553.74

In Figure 3.4 the coefficients are plotted next to each other. We can see that
the coefficients estimated by OLS tend to be greater than the estimates of the
method of moments. Moreover, the coefficients estimated by the Levinson-
Durbin algorithm produced lower RMSE on testing. In Figure 3.5 predictions
of individual models are shown.
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3. Application example

Figure 3.4: Comparison between OLS and Covariance estimation methods.
Estimations of φ are plotted on the right plot. The left plot shows the predic-
tion RMSE for two methods.

Figure 3.5: Predictions of last 50 points with different estimations of φ

3.5 Windowing method forecasting

As we have seen before, autoregressive model is not well suited for forecasting
of some real-world processes. To increase the quality of the prediction, we
suggest to use a sliding-window based approach.

Let wi,l(X) be a window of length l defined as

wi,l(X) = {Xi, Xi+1, . . . , Xi+l}.

Then the forecasting procedure is following

1. Let X be observed time series of length n, l be the width of the window.
For k = 1, . . . , n− l,

a) Fit an AR model on window data wk,l(X) and get coefficients φ̂k.

b) Calculate the value X̂k+l by applying the AR model definition.
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3.5. Windowing method forecasting

Figure 3.6: Predictions of 450 points produced by sliding-window forecasting
technique.

Window Width RMSE
10 4620.52
14 2146.77
18 2063.63
21 1823.79

Table 3.4: RMSE values for different window widths.

Note that the prediction sequence X̂ will be shorter by l values.

We have implemented this approach and applied it to our original COVID-19
time series X. For each window, the order pk was selected automatically by
statsmodels function ar select order. In Table 3.4 RMSE for different window
widths are provided. The negative correlation between the window width and
RMSE is obvious. Note that this approach for wider windows outperforms
the models trained on differenced data. Predictions are plotted along with
the original time series in Figure 3.6.

In Figure 3.7 standardized residuals and their diagnostics are provided. Esti-
mated density remarkably differs from the standard normal distribution. Cor-
relogram, which is an ACF of standardized residuals, shows us some positive
correlations between the residuals. Ideally, the residuals should be indepen-
dent identically distributed. The Ljung-Box test was performed for lags 1-10
(see Table 3.5). For every lag, the p-value is lover than α, so the null hypoth-
esis about independent distribution is rejected. P-value for the Jarque-Bera
test is 2.3 · 10−153, therefore the null hypothesis that the data is normally
distributed is also rejected.

These results indicate that our model is missing some dependencies in the data.
However, the RMSE notably decreased with sliding-window approach. This
indicates that these models are best suited for fast online modelling, whether
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3. Application example

Figure 3.7: Diagnostics of residuals.

lag LB statistic LB p-value
1 94.52 2.42 · 10−22

2 102.52 5.46 · 10−23

3 106.61 5.85 · 10−23

4 106.76 3.55 · 10−22

5 107.13 1.65 · 10−21

6 160.94 3.74 · 10−32

7 346.27 7.73 · 10−71

8 400.89 1.20 · 10−81

9 400.95 8.55 · 10−81

10 404.10 1.25 · 10−80

Table 3.5: Ljung-Box test results for lags 1-10.

with RLS or sliding-window approaches. Nevertheless, AR model ability to
fit the data and produce reliable prediction sequences is low compared to
more general (S)AR(I)MA or GARCH (Generalized autoregressive conditional
heteroskedasticity) models. The AR model simplicity is its advantage, since it
can be used in real-time processing of streaming data, whereas more general
models are more computationally and memory expensive, thus, unsuitable for
this purpose.

40



Conclusion

In this thesis, we have studied autoregressive processes and models, which is
a fundamental concept in the domain of time series analysis.

In Chapter 1, we have presented the autoregressive process and studied its
characteristics with regard to the probability theory. For the processes of low
order, some key characteristics were derived. The condition of stationarity
was introduced and stationarity regions were defined for the first and second-
order autoregressive processes. Furthermore, the theoretical basis of spectral
estimation of the stationary stochastic process was outlined. The tendency to
oscillate among the first-order autoregressive processes with negative regres-
sion coefficient was explained by constructing the corresponding spectra.

Chapter 2 introduced the main techniques of time series modelling with em-
phasis on AR models. The topics such as determining model order via AIC,
regression coefficients estimation with OLS, and the method of moments, and
model diagnostics were covered. Statistical tests for determining stationarity
were described as well and interpretation of the test results was also provided.
Furthermore, we have described an approach for online learning of the AR
model (RLS). The model simplicity allows us to use and apply this approach
in real-world use cases.

In Chapter 3 an application example was provided. We have used the relevant
COVID-19 time series of daily new cases in Czech Republic. To compare the
methods of parameter estimation, we trained the model on differenced data
and compared the predictions produced by different estimations. Coefficients
estimated by the method of moments had lower RMSE. However, this is not
the real use case of AR modelling, since the data are too complex for such
a simple model. This was performed to show the difference between the two
methods, not to get as accurate predictions as possible. Finally, forecast-
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Conclusion

ing with sliding-window technique and one-step prediction was implemented.
The error sequence produced by this forecasting technique has a remarkably
lower RMSE than two previous methods. However, the residuals diagnostics
indicated the correlation between residuals.

Future work

The field of time series analysis is very large and in high demand. There is a
variety of models to be studied, such as moving-average models, which together
with AR models construct (S)AR(I)MA model family. These models are more
general and ”powerful” in terms of generalization ability and can be used in
the modelling of real-world processes. These models take into consideration
not only the most past values, but also the development of error, seasonality,
and trend.

According to Takalo, Hytti, and Ihalainen, the AR models are used for for
high-resolution spectral estimation of a short time series and is preferred
to discrete Fourier transform. In biomedical engineering, AR modelling is
used especially in the spectral analysis of heart rate variability and electroen-
cephalogram tracings [16]. Spectral estimation requires analysis in the fre-
quency domain and might be considered as an extension to this thesis.
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Appendix A
Acronyms

AR Autoregressive

ACVF Autocovariance function

ACF Autocorrelation function

WSS Wide-sense stationarity

ADF Augmented Dickey-Fuller test

KPSS Kwiatkowski–Phillips–Schmidt–Shin test

OLS Ordinary Least Squares

RLS Recursive Least Squares
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Appendix B
Contents of enclosed SD

env..............................the directory with environment configs
requiremnts.txt.................................required packages

notebooks........................the directory with Jupyter notebooks
source ................................... the directory of source codes
thesis ............................................ the thesis directory

tex src.............the directory of LATEX source codes of the thesis
thesis.pdf...........................the thesis text in PDF format

README.txt ....................... the file with SD contents description
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