
Instructions

Study the web interface of the algorithms library[1] and the algorithms library itself[2] with focus on

design and drawing of finite automata.Study the possibilities of strokes detection on touch devices.

Study the approaches of shapes detection with focus on those used in the automata drawing on iOS

platform.

Implement a prototype finite automata editor capable of finite automata recognition from strokes.

Perform usability tests of the prototype.

 

[1] Michael, Vrána. Knihovna algoritmů ALT-webové rozhraní. BS thesis. České vysoké učení technické v

Praze. Vypočetní a informační centrum., 2020.[2] Algorithms Library Toolkit: https://alt.fit.cvut.cz.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 26 January 2021 in Prague.

Assignment of bachelor’s thesis

Title: Finite automata editor on touch devices

Student: Marek Fořt

Supervisor: Ing. Jan Trávníček, Ph.D.

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2021/2022

Bachelor’s Thesis

FINITE AUTOMATA
EDITOR ON TOUCH
DEVICES

Marek Fořt

Czech Technical University, Faculty of Information Technology
Department of Theoretical Informatics
Supervisor: Ing. Jǐŕı Trávńıček, Ph.D.
May 11, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Marek Fořt.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Marek Fořt. Finite Automata Editor on Touch Devices. Bachelor’s Thesis. Czech
Technical University, Faculty of Information Technology, 2021.

Contents

Acknowledgment vi

Abstract vii

1 Introduction 1
1.1 Motivation, Focus of Thesis . 1
1.2 Thesis Goals . 1
1.3 Thesis Structure . 1

2 Theory 3
2.1 Formal Languages and Grammars . 3
2.2 Finite Automata . 5
2.3 Machine Learning . 7

3 Analysis 9
3.1 Existing Applications . 9
3.2 ALT . 12
3.3 Strokes Recognition . 13

4 Automata Editor Design 15
4.1 Touch Device . 15
4.2 Used Technologies . 15
4.3 ALT Integration . 17
4.4 User Interface . 19

5 Implementation 27
5.1 ML Model . 27
5.2 Drawing FA Elements . 29
5.3 ALT Integration . 32
5.4 App State . 34
5.5 Dragging . 36
5.6 DocumentGroup . 38

6 Testing 41
6.1 Automated Testing . 41
6.2 Usability Testing . 42

7 Conclusion 49

A Acronyms 51

B User Instructions 53

Contents of the Thesis’ Attached Medium 59

iii

List of Figures

2.1 FA graph representation . 6
2.2 FA table representation . 6

3.1 ALT web interface screenshot . 10
3.2 Statemaker screenshot . 11
3.3 TuringSim interface screenshot . 12

4.1 MVVM architecture diagram [43] . 17
4.2 Redux architecture diagram [45] . 18
4.3 Flow of recognizing FA elements from strokes . 19
4.4 Example of a state stroke (a) and how it is rendered (b) 20
4.5 (a), (b), (c) are example strokes that should be rendered as a final state (d) . . . 21
4.6 (a), (b), (c) are example strokes that should be rendered as a transition (d) . . . 21
4.7 Transitions with symbols . 22
4.8 (a), (b), (c) are example strokes that should be rendered as a a cycle (d) 22
4.9 Accepted input . 24
4.10 Rejected input . 25

5.1 Test dataset ML model prediction results in turicreate 28
5.2 Transition before using cubic spline (a) and after (b) 37
5.3 Document based app interface . 39

6.1 Task A automaton . 44
6.2 Task A modified automaton . 45
6.3 Task B automaton . 45
6.4 Task C automaton . 46
6.5 Usability testing results . 48

List of code snippets

3.1 EpsilonNFA example methods . 12
3.2 Run’s calcuteStates function . 13
5.1 Automata classifier . 28
5.2 Automata classifier . 29
5.3 Circle stroke . 30
5.4 Computation of top and bottom points, vectors 30
5.5 Cycle stroke . 31
5.6 CMake build instructions . 33

iv

List of code snippets v

5.7 XCFramework shell script . 33
5.8 NFA objc interface . 33
5.9 Transition model . 34
5.10 State model . 34
5.11 Check for initial state . 35
5.12 Effect for simulating input . 35
5.13 NFA initialization in AutomataLibrarryService 35
5.14 Creating spline points . 36
5.15 Calculation of new tipPoint . 37
5.16 DocumentGroup scene . 38
6.1 Testing creating of state . 41

Acknowledgment

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60(1) of the Act.

In Prague on 13th May 2021 .

vi

Abstract

This thesis is concerned with designing and implementing a prototype of a finite automata
editor for iPad and a subsequent usability testing of the prototype. It also contains analysis of
the Algorithms Library Toolkit library’s web interface, of the library itself, and of approaches to
recognizing strokes on touch devices.

Keywords iPad application, finite automata, interactive editor, Algorithms Library Toolkit,
Composable Architecture, Swift

Abstrakt

Tato bakalářská práce se zaob́ırá návrhem a implementaćı prototypu editoru konečných automat̊u
na iPad zař́ızeńı a následném uživatelském testováńım na vytvořeném prototypu. Také ob-
sahuje analýzu webového rozhrańı knihovny Algorithms Library Toolkit, této knihovny samotné
a př́ıstup̊u rozeznáváńı tah̊u na dotykových zař́ızeńı.

Kĺıčová slova iPad aplikace, konečné automaty, interaktivńı editor, Algorithms Library Toolkit,
Composable Architecture, Swift

vii

Chapter 1

Introduction

1.1 Motivation, Focus of Thesis
The theory of finite automata is an important part of the computer science curriculum at FIT
CTU in Prague and other universities around the world. And although there is a lot of resources
one can learn from, there is a lack of those that utilize modern tools. One of such modern tools
is the iPad (and touch devices in general). This thesis will fill in this gap as the result will be a
finite automata editor application for iPad.

Furthermore, I will expand on the recent work done at FIT CTU in Prague concerning
the development of algorithms library and, more importantly for this thesis, finite automata
algorithms including simulating input. This library is named Algorithms Library Toolkit (ALT)
[1] and it has been open sourced.

The main motivation of this thesis is to improve how students learn finite automata and
more specifically, enhance the current course BI-AAG that is taught at FIT CTU in Prague. It
is also an opportunity to use the ALT in practice and create a concrete example of how it can
be leveraged.

1.2 Thesis Goals
The main goal of this thesis is to implement a prototype of an automata editor for iPad. This
application should enable users to create and edit finite automata with emphasis on touch-based
input. I will also study the ALT’s web interface [2] [3], ALT itself focusing on design and drawing
of finite automata, the possibilities of strokes detection on touch devices, and the approaches of
shape detection, especially those used in automata drawing on iOS platform.

After the initial study of current approaches and theory, I will implement a prototype of a
finite automata editor iPad app that will be capable of recognizing finite automaton elements
from strokes and simulating input.

I will then conduct a usability testing to assess the usability and shortcomings of the proto-
type.

1.3 Thesis Structure
Let me now introduce you to the structure of the rest of the thesis:

In Chapter 2 I will go over the necessary theoretical background to properly explain terms
and concepts on which it will be built upon later.

1

https://alt.fit.cvut.cz/

2 Introduction

Chapter 3 is concerned with the analysis of already existing solutions of creating an au-
tomata editor, the existing ALT web interface and ALT itself.

Chapter 4 is about the design of the editor itself.

In Chapter 5 I will write about the implementation.

Chapter 6 will go into the specifics of usability testing and its outcomes.

Conclusion is the last chapter of this thesis where I will assess the success of fulfilling the
aforementioned goals and lay out possible future development.

Chapter 2

Theory

Firstly, I will need to define terms and formal definitions concerning mainly finite automata
theory, as that is the main subject of this thesis, and then machine learning as some of its
concepts were important during the implementation.

2.1 Formal Languages and Grammars

The following definitions are taken from Automata and Grammars by Elǐska Šestáková [4],
Introduction to Automata Theory, Languages, and Computation [5], and materials from BIE-
AAG course [6].

2.1.1 Formal Languages
I Definition 2.1. Alphabet (conventionally denoted by Σ) is a finite set whose elements are
called symbols.

Alphabets therefore can be:

Σ = {0, 1}

Σ = {a, b, c, d, e}

Σ = {one, two}

I Definition 2.2. String (word) over an alphabet is a finite sequence of symbols from that
alphabet.

ε - empty string (string with zero occurences of symbols)

Σ∗ - set of all strings over Σ

Σ+ - set of all nonempty strings over Σ

For a binary alphabet Σ = {0, 1} ε, 1001, 100, 1, 001 are all strings over the alphabet Σ.

I Definition 2.3. Formal language L over an alphabet Σ is any subset of all the strings over
Σ - i.e., L ⊆ Σ

For a binary alphabet Σ = {0, 1} a formal language over Σ is then subsets of all binary strings.
We can denote the language either by:

3

4 Theory

enumeration notation where all possible strings in the language are listed, e.g.: L1 = {ε},L2 =
{1},L3 = {0, 00, 000, 01}.

set-builder notation where the languages are described in the following way: { w | something
about w }. Examples are: L4 = {w | w ∈ 0, 1∗ ∧ |w| mod 2 = 0}, L5 = {0n1n : n ∈ N0}.

2.1.2 Grammar
Grammars are used to generate languages. You can find how they are defined below:

I Definition 2.4. Grammar is a quadruple of G = (N, Σ, P, S) where:

N is a finite non-empty set of nonterminal symbols.

Σ is a finite set of terminal symbols (Σ ∩ N = ∅). Note that N ∩ Σ = ∅.

P is a finite set of production rules, assuming the following form:

αAβ → γ (α, β, γ ∈ (N ∪ Σ)∗)

The following is an example of a grammar that describes the language L = {01n0 : n ∈ N0}:
Grammar G = ({A, S}, {0, 1}, P, S) where P:

S → 0A

A → 1A

A → 0

2.1.3 Chomsky Classification of Grammars
Grammars are divided into four classes where they differ in their production rules.

I Definition 2.5. Let G = (N, Σ, P, S). We say that G is:

1. Unrestricted grammar (type 0), if every rule is in the form of:
αAβ → γ (α, β, γ ∈ (N ∪ Σ)∗, A ∈ N)

2. Context-sensitive (type 1), if every rule is in the form of:
γAδ → γαδ (γ, δ ∈ (N ∪ Σ)∗, A ∈ N, α ∈ (N ∪ Σ)+)

or in the form of S → ε if S is not present on the right hand side of any rule of a given
grammar.

3. Context-free grammar (type 2) if every rule is in the form of:
A→ α (A ∈ N, α ∈ (N ∪ Σ)∗)

4. Regular grammar (type 3), if every rule is in the form of:
A→ a or A→ aB (a ∈ Σ,A,B ∈ N)

or in the form of S → ε if S is not present on the right hand side of any rule of a given
grammar.

Finite Automata 5

2.1.4 Classification of Languages
Classification of languages, also known as the Chomsky hierarchy, has the following definition:

I Definition 2.6. We say that language is:

1. formal if it is a formal language but is neither regular, context-free, context-sensitive, nor
recursive enumerable. These languages are not accepted by a Turing machine.

2. recursively enumerable if and only if ∃ unrestricted grammar which generates it

accepted by a Turing machine

3. context-sensitive if and only if ∃ context-sensitive grammar which generates it

recognized by a linear bounded Turing machine

4. context-free if and only if ∃ context-free grammar which generates it

recognized by a nondeterministic pushdown automaton

5. regular if and only if ∃ regular grammar that generates it

recognized by a finite automaton

For most of the thesis, only regular languages will be needed since those are recognized by
finite automata. Finite automata will be defined in the following section.

2.2 Finite Automata
The final editor app will be for finite automata, therefore they are very important for this thesis.
Informally, a finite automaton is a model for simple computation. States, that serve as memory,
and transitions together form a control unit. Along with a control unit, the finite automaton has
a read-only input tape, which is divided into individual cells, and the head that scans the input
tape as the automaton continuously reads it, cell by cell. Automaton starts in its initial state
and with a head pointing at the first cell. As the input is read, the head moves until it has read
all of the input tape. If there is a missing transition for an input, the automaton does not accept
the input. Otherwise, it accepts the input if it is in a final state at the end of the input.

Let’s define a finite automaton formally:

I Definition 2.7. Finite automaton is a quintuple M = (Q, Σ, δ, q0, F) where:

Q is a finite non-empty set of states

Σ is a finite input alphabet

δ is the transition function (the exact definition is determined by which type of a finite au-
tomaton it is - see below)

q0 ∈ Q is the initial state

F ⊆ Q is the set of initial states

Finite automaton can also be either a deterministic finite automaton or a nondeterministic
finite automaton. This dictates the exact definition of δ - transition function. For a deterministic
finite automaton (DFA) the definition of δ is:

δ is a mapping from Q × Σ to Q
δ for a nondeterministic finite automaton (NFA) is defined as:

δ is a mappping from Q × Σ into the set of all subsets Q (denoted by 2Q)
Expanding upon the difference between the definitions of the transition function:

6 Theory

q1start q2 q3

0, 1

1
0

1

Figure 2.1 FA graph representation

δNF A 0 1
→ q1 q1 q1, q2
← q2 q3

q3 q2

Figure 2.2 FA table representation

DFA can only transition from one state to another, e.g. from q2 to q3 (q2, q3 ∈ Q)

NFA can transition to a set of states, e.g. from q1 to q1, q2 (q1, q2 ∈ Q)

If we change the definition of NFA’s δ to a mapping from Q × (Σ∪{ε}) we allow, what are called,
ε-transitions that allow us to move to a different state while not reading any input from the tape.
This finite automaton is then called a nondeterministic finite automaton with ε-transitions.

2.2.1 Representation of Finite Automata
Finite automata’s transition functions δ are generally represented in the form of:

Formal notation
(NFA) δ(S, 0) = {S, A} (transition from the state S and symbol 0 to the states S and A)
(DFA) δ(A, 0) = B (transition from the state A and symbol 0 to a single state, not a set of
states, B)

Weighted directed graph (state diagram)
Automata can be represented graphically as directed weighted graphs. Each state is rep-
resented as a vertice in the graph and final states are recognized by being a double circle,
instead of a single one. Initial state is the one with an arrow that points to the state but
does not start anywhere - it is often additionaly denoted with start. The transitions are then
directed edges between states. You can see a FA represented as a weighted directed graph in
2.1.

Table
Table representation has in the first column all states where the initial state is marked with
→ while final states are marked with ←. In the first row, excluding the first column, there
are symbols of the alphabet, Σ. In the rest of the rows are states (or a set of states) that will
be transitioned to on a given input (defined in the first row). You can see an example of it
in 2.2.

In this thesis we will mostly be working with the representation in the form of a weighted directed
graph as that is what will the users edit in the app. This also concludes the theory about finite
automata and formal languages.

Machine Learning 7

2.3 Machine Learning
Machine learning does not have an exact definition but e.g. in the book Foundations of Machine
Learning it’s loosely defined as ”computational methods using experience to improve performance
or to make accurate predictions” [7]. Experience means something we know from the past that
we can leverage for making predictions in the future. Usually, this experience comes in the form
of data. The book Foundations of Machine Learning [7] and materials from BIE-VZD from FIT
CTU in Prague [8] will be used further in this section to define terms and concepts necessary for
this thesis.

2.3.1 Classification
Machine learning, in order to cluster problems that can be solved in a similar way, can be
categorized into a few learning scenarios, most notably supervised and unsupervised learning.
The learning scenario is a basic description of what type of data we have, how we receive the
data and the test data that we use to evaluate the learning algorithm.

supervised learning: Our goal is to explain variable Y given independent variables X0, X1, ...,
Xp−1. We do this by finding a ”function” for which most of its examples the following holds:

Y ≈ f (X0, X1, ..., Xp−1)

unsupervised learning: Our goal is to find structures of ”similar” data. We do not predict any
class and there is no clear way to assess the quality of an unsupervised learning algorithm
since it is not clearly defined what the end result should be.

In this thesis we will be only interested in supervised learning. We can also divide common
problems that machine learning is trying to solve by learning tasks - that includes classification,
regression, ranking, clustering, etc. Let’s look more closely at classification which will be later
used in the implementation:

Classification is a problem of assigning a category to each item.

It is also a problem solved via supervised learning. To expand on the definition of supervised
learning from above, classification is a special case where Y has only a few (countable amount)
of values. The simplest example of classification is binary classification. E.g. we want to predict
whether a patient has flu and our data - gender of a patient, whether a person can leave the bed,
etc. - can be represented in a binary format (yes/no).

Chapter 3

Analysis

In the analysis I will study the following:

existing applications that enable users to edit finite automata, including ALT web interface

ALT itself, focusing on design and drawing of finite automata

possibilities of detection of strokes on touch devices.

3.1 Existing Applications

This section will be concerned with the study of existing applications - be it applications for
mobile or web.

3.1.1 ALT Web Interface
ALT web interface has been built as a part of a bachelor’s thesis made by Michael Vrána [3]
leveraging work already done in ALT itself. ALT web interface uses Pipe-and-Filter [9] architec-
ture to easily combine input and outputs of the individual algorithms that ALT offers which can
be seen in figure 3.1. Apart from ALT algorithms it also includes a finite automata editor done
by Petr Svoboda [2].

This finite automata editor is called Statemaker and you can see a screenshot of how it looks
in figure 3.2. To summarize its capabilities, users can:

Add states.

Add transitions between states.

Edit transition string.

Mark states as initial or final.

Remove states and transitions.

Import and export automaton in supported formats.

Automatic positioning of transitions and states.

9

10 Analysis

Figure 3.1 ALT web interface screenshot

All of the above features work reliably and are done in an intuitive manner - a user can quickly
understand how to work with all the components. The sidebar includes all buttons to interact
with the interface and icons used make clear the intent of the buttons. The dragging of FA
elements works well with a mouse or a trackpad but it is not possible to use it on a touch device.

The most notable missing feature is the easy simulation of input - this can be done via the
ALT web interface but if someone is looking for only editing FAs and simulating whether the
input string is accepted, they have to transition between two interfaces. The benefit is that they
can then tap into all the other functionality that ALT offers. The author of Statemaker has
chosen React and Typescript as underlying technologies [2].

3.1.2 Other Existing Applications
As the main goal of this thesis is to write a finite automata editor for iPad, in this part I will
study existing applications mainly for touch devices.

One of such applications is TuringSim [10]. Although it is not for FAs but for a Turing
machine, it also consists of an editor where the user can add and edit states and transitions, thus
making it similar to a FA editor. You can see its interface in figure 3.3. This editor lets users
add and edit automaton’s states and transitions. Users can also simulate input on the Turing
machine’s read-and-write tape. Editing of the automaton is done only via tap gestures which
is similar to Statemaker with the difference that there are no distinct buttons for those actions.
Therefore, it does not fully utilize the potential of touch devices as the UX is very similar to
what would one experience on the web. The app on the iPad is broken at the time of writing as
it is missing a bottom toolbar for simulating input but it is functional on the iPhone.

Finite Automata [11] is another iPad app. In this app the user cannot edit automata in
their weighted graph representation but instead has to use a command line that takes individual
commands which are described in the app. This app does not utilize touch device features at all.

There are also apps available as desktop applications. One is the Finite Automaton Editor
by Jaime Rangel-Mondragon that is available as an interactive Wolfram notebook [12]. This app
allows you to edit the automaton via a transition table and does not allow to simulate any input.
Automata Editor by Max Shawabkeh [13] is another desktop application. In it users can create
and edit their automaton either via a table representation or a regular expression. There are

Existing Applications 11

Figure 3.2 Statemaker screenshot

12 Analysis

Figure 3.3 TuringSim interface screenshot

also features such as NFA determinization, simulating input, and minimizing DFA. Thus, it has
a powerful feature set but one has to be already familiar with the FA theory to be able to utilize
it fully. It should also be noted that the feature set is a subset of what the ALT web interface
offers.

3.2 ALT
I will now go over ALT and its features that can be leveraged for simulating FA input. The code
of ALT is available on GitLab [14] where there are multiple repositories in the group Algorithms
Library Toolkit (webui-client, infrastructure, etc.) - that includes a repository Algorithms Li-
brary Toolkit Core [15], a library written in C++ [16]. There we can find algorithms that can
later be used for the FA editor. The code is divided into multiple modules that are then built
and linked together using CMake [17]. The most important modules for this thesis are alib2data
and alib2algo where alib2data contains FA models and alib2algo algorithms for simulating input.

3.2.1 FA Model
Multiple FA types are supported by ALT - which includes a deterministic and a nondeterministic
finite automaton, as well as a nondeterministic finite automaton with ε-transitions. There is
also an extended NFA that has regular expressions as its transitions. These models serve as
a description of an automaton - its states, transitions, etc. To create e.g. the NFA with ε-
transitions, one can use its constructor where it is possible to specify its states and input alphabet.
For adding transitions there is a method called addTransition. Both can be seen in figure 3.1.

Code snippet 3.1 EpsilonNFA example methods

Strokes Recognition 13

// Creates a new instance of the Automaton
// with a concrete initial state.
explicit EpsilonNFA (

ext :: set < StateType > states ,
ext :: set < SymbolType > inputAlphabet ,
StateType initialState ,
ext :: set < StateType > finalStates

);
// Add a transition to the automaton .
bool addTransition (

StateType from ,
common :: symbol_or_epsilon < SymbolType > input ,
StateType to

);

3.2.2 FA Algorithms
ALT offers a multitude of algorithms that can be run on finite automata - such as minimization,
determinization, and simulating input. Simulating input can be found in Accept.h, Result.h,
Occurrences.h, and Run.h that contain classes of the same name. Accept has a method called
accept that returns a simple boolean indicating whether the input has been accepted or re-
jected. Result’s result method returns a state where the simulation ended and Occurrences’s
occurences method returns a set of indices where the automaton has passed a final state. Run’s
returned value is then a combination of Accept , Result and Occurences where it contains the
combined output of all those classes. The Run’s function calculateStates can be seen in 3.2.

Code snippet 3.2 Run’s calcuteStates function
template < class SymbolType , class StateType >
static ext :: tuple <

bool ,
ext :: set < StateType >,
ext :: set < unsigned >

> calculateStates (
const automaton :: EpsilonNFA <

SymbolType ,
StateType

> & automaton ,
const string :: LinearString < SymbolType > & string

);

3.3 Strokes Recognition
The final prototype will include recognizing automaton elements from drawing. In this section I
will go over available methods of how to achieve it.

3.3.1 Google ML Kit
Google offers a framework called ML Kit that includes what they call ”Digital Ink Recognition”.
This lets you construct a stroke from points drawn on the screen and create an Ink object from
those strokes. It also includes base models for recognizing text and even some basic shapes like

14 Analysis

arrow and rectangle. If you want to create your own model with TensorFlow Lite [18], you are
forced to use ”Image Labeling”. Since the editor should support creating cycles, it is necessary
to create a custom model because that shape is not supported by any of the base models for
Digital Ink Recognition.

3.3.2 Core ML
Apple’s CoreML framework supports a variety of use cases - analysis of images, processing text,
converting audio to text, and identifying sounds in audio [19]. It does not, however, support
anything like Digital Ink Recognition - but for the editor it is suitable to use analysis of images
because it is possible to create an image from the screen and pass that to the model. Apple also
provides some models already in CoreML format [20] but not any of them are applicable for the
FA editor’s use case. Therefore, a custom model for CoreML would be necessary as well.

Considering that CoreML is bundled in the system and Google ML Kit needs to be installed
separately, increasing the app’s size and incurring the maintenance burden, I have opted for
CoreML. This decision has also been made based on the fact that both frameworks do support
TensorFlow, although, for CoreML it needs to be first converted to its format.

3.3.3 Creating the CoreML Model
There are multiple ways how to create a CoreML model, though, they generally fall into two
categories:

ML model created by ML libraries that are not from Apple such as TensorFlow or Keras [21]
and then converted with coremltools [22] to the CoreML format.

ML model created by framework or application that outputs CoreML directly.

For creating CoreML models directly there is either Create ML [23] or turicreate [24]. Create
ML, at the time of writing, supports only image classification, whereas turicreate has built-in
support for drawing classification. Although both image classification and drawing classification
operate on images, the important distinction is that drawing classification takes 28x28 grayscale
bitmap as input. The drawing classification is also tailored for inputs created by the Apple Pencil
[25], thus I have chosen to use it instead of libraries such as TensorFlow. It should be noted,
though, that turicreate leverages TensorFlow as a lower-level framework and aims to streamline
the development of CoreML models.

Chapter 4

Automata Editor Design

In this chapter I will go over some decisions made, such as which technology I have decided to
use, and over the design of the editor - how the app will look and how users will interact with
the editor.

4.1 Touch Device
The main reason why this prototype is meant for a touch device is to simulate as much as possible
the experience of drawing FAs on regular paper. There were three main options possible:

create a touch-friendly web interface

implement an app for Android

target iPad devices

Creating a touch-friendly web interface would have the benefit of being universal and not tied to
a specific platform. But native apps offer better precision and developers can tap into OS APIs
that are tailored for touch. The choice between Android and iPad was less clear but iPad has
the benefit of the Apple Pencil [26] that offers high precision that will make the user experience
better.

4.2 Used Technologies
I will now cover which technologies are used in the app and why I have chosen them. A lot of
decisions have been influenced by focusing on the iPad and the Apple Pencil.

4.2.1 Language
Choosing a language in which one will write the application is an important first step. For iOS
applications I could have generally used:

Objective-C

Swift

cross-platform framework

15

16 Automata Editor Design

Objective-C was designed by Brad J. Cox at the start of the 1980s and was then licensed
by NeXT Software in 1988. Then in 1996 NeXT Software was acquired by Apple - along with
Objective-C. Apple has then chosen Objective-C as the main language for OS X and in 2007
for the new operating system iOS [27]. On the Apple developer website it is described as ”su-
perset of the C programming language and provides object-oriented capabilities and a dynamic
runtime” [28]. Objective-C has been thus the main programming language for years. Nowa-
days, Objective-C is not anymore that popular and ranks 23rd in the language popularity as per
TIOBE index [29]. Apple has rather shifted their focus to Swift and some of the new frameworks,
like SwiftUI [30], are only available in Swift. Swift is therefore a much better option if one is
starting a new iOS app.

Using a cross-platform framework - such as React Native [31] or Flutter [32] that are written
in Javascript and Dart, respectively - was also a possibility. But to leverage the Apple Pencil
fully it was necessary to use PencilKit [33] and for interacting with that framework one would
have to write native code. Thus, I have decided to use Swift as the main language.

4.2.2 UI Framework
At the time of writing it is possible to use two UI frameworks offered by Apple to write UI
code. Those are UIKit [34] or, already mentioned, SwiftUI [30]. SwiftUI is a newer framework
than UIKit, released in 2019 [35]. In the Thinking in SwiftUI book it is described as a ”radical
departure from UIKit, AppKit, and other object-oriented UI frameworks” [36]. SwiftUI offers a
more declarative approach, quite similar to React [37] used in the web development. Declarative
UIs have the benefit of less code since it enables the framework to do more on behalf of the
developer. This comes at a cost of lesser control. Getting back to SwiftUI, specifically, one of its
major drawbacks is that not all components, that are written in UIKit, are available in SwiftUI.
But there is very strong support for SwiftUI-UIKit interoperability [38] and thus it is always
possible to use UIKit when necessary. The fact that SwiftUI offers faster development due to
its declarative nature and SwiftUI previews [39] has made it a better candidate than UIKit,
especially for a prototype. Therefore, I have decided to use SwiftUI as the main UI framework.

4.2.3 PencilKit
I have already mentioned the PencilKit framework but it is not the only way how to let users draw
with either their finger or the Apple Pencil. One can also use CGContext which is a ”Quartz 2D
drawing environment” [40]. For drawing in CGContext it is necessary to observe user’s touches
and draw a path based on those touches. CoreGraphics framework, which CGContext is a part of,
does not bundle any component that would handle the drawing for the developer [41]. PencilKit,
however, has a component called PKCanvasView [42]. By using this component, the PencilKit
framework handles for us how to draw strokes made by the user. PKCanvasViewDelegate enables
listening to changes of the drawing. The drawing property of type PKDrawing then allows for
programmatic modifications of the drawing - which will be used to render the FA elements after
they are recognized.

For the purposes of the prototype, PencilKit is a better fit because it offers more by default
while still allowing for minor modifications. If some more custom behavior of e.g. rendering
strokes was needed, though, it would be necessary to use the CoreGraphics framework. To make
a possible migration between those frameworks as seamless as possible, the PencilKit framework
should be well-contained.

ALT Integration 17

Data Binding
and CommandsView ViewModel updates

the model

Send notifications

ViewModel

Send notifications

Model

Figure 4.1 MVVM architecture diagram [43]

4.2.4 Architecture
There is no recommended architecture by Apple for apps written on top of SwiftUI frameworks.
It is also entirely possible to create an app without adhering to any architecture. This code,
though, is then more difficult to maintain for a longer period.

One possible architecture is MVVM [43]. A diagram of this architecture can be seen in figure
4.1. It enables developers to have a clear boundary between UI code and business logic and
is a good option for either UIKit or SwiftUI applications. One of its drawbacks is that it can
sometimes lead to imperative code where developers call a function and act based on its inputs.
The alternatives are (among others) architectures inspired by Redux. A diagram of Redux is
depicted in figure 4.2. The main difference between Redux and MVVM is that MVVM is event-
driven, whereas Redux is data-driven. The data-driven approach is much more closer to the
declarative programming since the state of the application describes how it should look. Thus I
have decided that Redux-like architecture will be a better option.

One of concrete implementations of Redux architecture is the Composable Architecture by
Point-Free [44]. This architecture is based on Redux but it has some modifications such as
handling of side effects. It also makes testing more exhaustive by asserting that no action
that you do not expect is run, as well as that the state is not changed in any other way than
you describe in your test. Considering all of the above, I have chosen to use the Composable
Architecture.

4.3 ALT Integration

I have already talked about ALT in chapter 3. I have not discussed there, however, how ALT
will be integrated into the application. That is now possible as I have stated that the app will be
written in Swift. As already mentioned, ALT is a library written in C++. There exists a Swift-
C++ interoperability manifesto [46] but this manifesto only goes over what it would take to make
C++ and Swift interoperable but not even all functionalities of C++ have their discussions of how
they could be ported to Swift. However, there is well-supported interoperability between Swift
and Objective-C [47]. For Objective-C and C++, interoperability is supported via a language
iteration of Objective-C called Objective-C++. It is even e.g. possible to ”include pointers to
Objective-C objects as data members of C++ classes” [48]. I first tried to integrate ALT directly
and compile it right via Xcode. Since ALT is built via CMake [17] and does not have a simple
setup, I then resorted to pre-building the necessary modules and afterwards bundling them in
the application. I will go over the details in chapter 5.

18 Automata Editor Design

Figure 4.2 Redux architecture diagram [45]

User Interface 19

Passed toStroke

Recognizes

ML Model

Updates FA Element

Waits for

State

Figure 4.3 Flow of recognizing FA elements from strokes

4.4 User Interface
As a final section of this chapter, I will discuss the design of the UI. The design has been heavily
influenced by the fact that one of the main goals was to imitate the experience of drawing FAs
on a piece of regular paper. The app should let users to:

create FA states, transitions, and cycles.

delete and rearrange all of the above.

name states.

specify symbols for transitions.

simulate input and see whether the input was or was not accepted by the automaton.

4.4.1 Canvas
Canvas is the most important part of the editor since it is the space where users can draw FA
elements. After each stroke, a function will be run that will evaluate the stroke to determine
which FA state the user has drawn. The flow of recognizing the FA elements is graphically
represented in figure 4.3. The app first waits for the user to make a stroke, after a stroke is made
its representation is sent to the ML model which recognizes the type of FA element, a state is
updated with the new element and it is drawn on the canvas. Then the app again waits for
another stroke.

4.4.2 State
The app needs to be able to work with three FA elements - state, transitions and a cycle (a special
case of transition that starts and ends in the same state). These elements should be represented
the same way as they are in the weighted directed graph representation. That means a state will
be rendered as a circle. But it is necessary to also enable users to edit the name of the state.

20 Automata Editor Design

(a) Stroke (b) Rendered state

Figure 4.4 Example of a state stroke (a) and how it is rendered (b)

Thus, a text field in the center of the state will be shown. You can see an example of a stroke
that should be rendered as a state and how it looks after being recognized in figure 4.4. Notice
also a button at the top of the circle - this button is for dragging the state. To indicate that the
state is final, users should be able to draw another circle where the stroke contains the center of
the state that should be final. In figure 4.5 you should see examples of strokes that should be
then rendered as a final state.

4.4.3 Transition
A transition is represented as a directed edge between vertices which has a shape of an arrow.
The stroke can either be as an arrow or, more conveniently, just a straight line which is faster and
easier to draw, especially when the shape must be drawn with a single stroke. Example strokes
and a rendered transition are in figure 4.6. Note that the transition can be drawn in no matter
which direction. The transition has also a text field positioned above its middle point. Apart
from this text field where users can write symbols that the transition should occur on, there is
also a button with a plus icon. This button allows users to add multiple symbols to a single
transition. Leveraging a delimiter, such as a comma, was also considered but that could inhibit
discoverability. Users can easily remove the transition symbols by tapping a cross symbol beside
the symbol. To enable drawing a FA with ε-transitions there is also a button with ε. When it is
tapped, ε is added as another symbol for that particular transition. A transition with multiple
symbols and with an ε-transition are in figure 4.7. Similar to a state, there is a drag button to
drag the middle point of a transition. This is especially useful when having multiple states on
the same horizontal line with a transition going from the leftmost to the rightmost state.

4.4.4 Cycle
A cycle must be handled differently than a normal transition due to its shape - that means that
it must be recognized as a different class in the ML model. The business logic tied to a cycle
will not be the same, too. Alike a regular transition, it can be drawn in whichever orientation.
The ML model should also support multiple variants of a cycle shape to accommodate most of
the cycle strokes drawn by users. It should, however, have the same text field, the button for
ε-transition, and multiple transition symbols as a regular transition. The possible strokes and
how the cycle should then look like are in figure 4.8.

User Interface 21

(a) (b)

(c) (d)

Figure 4.5 (a), (b), (c) are example strokes that should be rendered as a final state (d)

(a) (b)

(c) (d)

Figure 4.6 (a), (b), (c) are example strokes that should be rendered as a transition (d)

22 Automata Editor Design

(a) Transition with multiple symbols (b) ε-transition

Figure 4.7 Transitions with symbols

(a) (b)

(c) (d)

Figure 4.8 (a), (b), (c) are example strokes that should be rendered as a a cycle (d)

User Interface 23

4.4.5 Connecting Transitions and States
So far, I have only described how transitions and states will be recognized in isolation. To create
a FA, though, it is necessary to create valid connections between transitions and states. There
are multiple cases that the app should support. Similarly to Statemaker [2], it should allow users
to create a transition between two existing states. But because the app strives to imitate the
experience of using regular paper, it should be less restrictive and enable creating a transition:

without any state

without a start state

without an end state

with both start and end states

For transitions that do not have states on both sides, it must be possible to connect a new state
to their end. E.g. if a user draws a state close to a transition’s end and it has no state there, it
should connect it and make the transition an incoming edge of that state. Note that if the user
draws a transition without a start state, it is a valid transition as it will be interpreted as the
marking of an initial state.

4.4.6 Simulating Input
The only missing functionality that I have not yet touched upon is simulating input. Considering
that a FA is drawn, the user should be able to write their desired input into a text field and see
whether the input string has or has not been accepted. That can be done via tapping a button
with the title ”Simulate”. If the FA accepts the input, the output is denoted with the checkmark
emoji (4.9) and if not, it is denoted with the cross emoji (4.10). For convenience, there is a
button to erase the last character.

As the currently edited automaton is saved into a custom model specific to the editor app, it
is also necessary to convert it to ALT’s model and then run the simulation on the ALT model.
Before doing so, checks to ensure the automaton is valid are made - such as whether it has an
initial state or if all the symbols of the input are in the FA’s alphabet. The alphabet itself is
constructed by going through the automaton’s transitions and adding their symbols. After the
conversion is done, the input is simulated on the ALT’s FA model and then it is discarded. It
is important to note that the ALT model is always recreated when the user simulates a given
input.

4.4.7 Erasing
As you might have noticed in 4.9 and 4.10 there are two buttons right of the input text field.
The left is for drawing mode and the right one lets users erase specific elements. If a user made
a stroke over an element in the eraser mode, it would be deleted. On the left side, there is a
”Clear” button that clears the whole canvas whenever it is tapped.

4.4.8 Text Fields
One thing I have purposefully omitted is how the user will interact with the app’s text fields.
There are two options:

using a keyboard

via Scribble feature

24 Automata Editor Design

Figure 4.9 Accepted input

Using a keyboard is the standard way of input for text fields. But this breaks the flow of
using the Apple Pencil and does not fulfill the goal of imitating the real life experience. However,
from iOS 14 it is possible to use the Apple Pencil for writing in text fields directly [49]. This
means that it was not necessary to use a custom ML model to achieve the same effect. It does
have a drawback and that is the Scribble feature is not available on iOS versions prior to 14.0. It
is also only available if the device’s language is in English or Traditional and Simplified Chinese.
But when the Scribble feature is not supported, users can still use the system keyboard as a
fallback.

4.4.9 Document Based Apps
Users should also be able to save their automata and even share them with other people. The
state of the editor is thus saved in a document and can be interacted with in what Apple calls
document based apps [50]. In document based apps it is also possible to save changes done by
the user as they happen, ensuring no progress is ever lost.

User Interface 25

Figure 4.10 Rejected input

Chapter 5

Implementation

I have laid out a basic overview of how the app is designed to look and work. In this chapter,
I shall go into details of how the most important parts of the app have been implemented. You
can also see the source code either in the thesis’ attachments or in the project’s repository.

5.1 ML Model

The ML model for recognizing FA elements is a core part of the app. I will go over how it has
been implemented and integrated.

5.1.1 Creating ML Model
For creating the ML model I have chosen to use turicreate [24], as discussed in chapter 3. The
user guide [25] describes how to create the ML model for drawing classification using QuickDraw
dataset [51]. This dataset has millions of drawings of various objects, shapes. The shapes do not
include, however, arrow and what would resemble a cycle. Therefore, I had to create a custom
dataset. To make the ML model as accurate as possible, I have used the same input method for
creating the dataset as will be used for drawing the elements in the prototype. For this I have
created an MNIST Maker app [52]. This app lets you draw shapes with either a finger or the
Apple Pencil, scales it down to the desired size (I have used 28x28), and converts it to grayscale
to make the image as small as possible and it is also what is used when creating the ML Model.

Once I have created a dataset, I could train the ML model. I have used the guide from
turicreate and made some modifications like working with grayscale images exclusively (originally,
the guide works with RGB images) and specifying which classes to work with. To make iterating
on the model easy and quick, I have used a Jupyter notebook [53]. The final Jupyter notebook
with the data used is available on Github. Once the ML model is trained, one can use turicreate’s
visualization to see how the ML model worked on the test dataset. In figure 5.1 you can see
the visualization. From the results it can be seen that the model did not make a mistake in
recognizing an arrow but it had mistaken a cycle for a circle and vice versa. This is due to the
fact that circles and cycles do have a similar shape.

The final product, once all the commands in the Jupyter notebook are run, is a file Automat-
aClassifier.mlmodel. The extension hints at the fact that it is a ML model that can be used by
the CoreML framework.

27

https://github.com/fortmarek/automata-editor
https://github.com/fortmarek/automata-editor-model/

28 Implementation

Figure 5.1 Test dataset ML model prediction results in turicreate

5.1.2 Integration of the ML Model
To integrate the ML model one has to simply drag and drop the file into Xcode [54], Apple’s
IDE, to create a reference in the project file. This will automatically bundle the model with the
app and synthesize Swift code that can be later leveraged to interact with the model. The code
for recognizing a stroke is located in AutomataClassifierService and the main logic is in the
code snippet 5.1.

Code snippet 5.1 Automata classifier
// Convert stroke to cgImage
// ...
let input = try AutomataClassifierInput (

drawingWith : cgImage
)
let classifier = try AutomataClassifier (

configuration : MLModelConfiguration ()
)
let prediction = try classifier . prediction (input: input)

guard

Drawing FA Elements 29

let automataShapeType = AutomatonShapeType (
rawValue : prediction .label

)
else { return promise (. failure (. shapeNotRecognized)) }

switch automataShapeType {
case .arrow:

promise (. success (. transition (stroke)))
case . circle :

promise (. success (. state(stroke)))
case .cycle:

promise (. success (. transitionCycle (stroke)))
}

5.2 Drawing FA Elements
Before FA elements can be recognized, they also must be drawn by the user, converted to a
model that can be processed by the AutomataClassifierService and then re-drawn with a
more exact shape once it is known which element the user has made.

5.2.1 Canvas
To enable drawing with the Apple Pencil, Apple offers PencilKit [33]. One of the components this
framework defines is PKCanvasView - in the documentation described as a ”view that captures
Apple Pencil input and displays the rendered results in an iOS app” [42]. To use it in SwiftUI,
View I had to wrap it into a view I called CanvasView conforming to UIViewRepresentable
since PKCanvasView is only available in UIKit. The instance of CanvasView was then added to
EditorView which is the main view of the app.

5.2.2 Strokes
When drawing in PKCanvasView the individual strokes are represented with PKStroke. It
contains all of the available information about the given stroke - such as its bounds, type
of ink (PKInt), and path (PKStrokePath). In order not to use PencilKit directly and also
to make it easier to work with, I wrapped PKStroke into a custom model Stroke that con-
tains control points (array of CGPoint) of PKStroke. I have not used PKStrokePath because
it contains infinite amount of points. To get only a subset of them one can use a method
interpolatedPoints(by: CGFloat). The most recent PKStroke is then passed to the service
called AutomataClassifierService as an image. The image is created from PKStroke as can be
seen in 5.2 where modelImage() method simply converts the image from PKDrawing to grayscale
and the desired size.

Code snippet 5.2 Automata classifier
let image = PKDrawing (strokes : [stroke . pkStroke ()])
.image(

from: stroke . pkStroke (). renderBounds ,
scale: 1.0

)
. modelImage ()

30 Implementation

5.2.3 Drawing State
If the ML classifier predicts that the stroke being analyzed is a state, it is necessary to draw it
more precisely than a user. A state is represented as a circle, so to draw it the app needs to know
its center and radius. To obtain a center, I make an average of all the points available. Once the
center is computed, radius is then calculated as an average of distances of all the points from the
center. A new stroke can then be created as shown in 5.3.

It is also necessary to connect a state to an existing transition. There is a method for
this called closestTransitionWithoutEndState that, as the name suggests, finds the closest
transition that does not have an end state. If such a transition exists, a center is moved in the
direction of the tip of the transition, so they have a single intersection point.

A final state is marked with a double circle. Therefore, if a stroke is a state, before making a
new one I check whether a center of a different state is contained in a frame of the new state. If
it is so, then the state is marked as final and a new circle around the previous one is made and
the state is denoted in the internal state as a final one.

Code snippet 5.3 Circle stroke
extension Array where Element == CGPoint {

static func circle (
center : CGPoint ,
radius : CGFloat

) -> Self {
stride (from: CGFloat (0), to: 362, by: 2). map { index in

let radians = index * CGFloat .pi / 180

return CGPoint (
x: CGFloat (center .x + radius * cos(radians)),
y: CGFloat (center .y + radius * sin(radians))

)
}

}
}

5.2.4 Transition
To draw a transition, I take its first and last point (tip point). At the tip point two additional
lines must be made, so the final shape looks like an arrow. For this I needed vectors, so it works
for whichever orientation. Vectors are not offered by any of the bundled frameworks, so I have
heavily inspired my implementation from a repository called VectorMath [55]. Once vectors were
available, I was able to compute a perpendicular vector to the line from the start point to the
tip point that has one common point with that line and that is a point on the transition’s line
in a pre-defined distance from the tip point. The bottom and top points are then on that vector
with the pre-defined distance from the line as well. To add additional points, top and bottom
vectors are created by connecting top and bottom points with the tip point as in 5.4.

Similarly to states, it is necessary to handle the case when a new transition should be con-
nected to an existing state. Firstly, the closest states to the start point and the tip point are
computed. Then the closer one is chosen as a start state or end state, respectively - if the distance
is smaller than a given threshold.

Code snippet 5.4 Computation of top and bottom points, vectors
let vector = Vector (flexPoint ?? startPoint , tipPoint)
let anchorPoint = vector .point(

Drawing FA Elements 31

distance : -arrowSpan / 3,
other: tipPoint

)
let perpendicularVector = vector . rotated (by: .pi / 2)
let topPoint = perpendicularVector .point(

distance : -arrowSpan / 2,
other: anchorPoint

)
let bottomPoint = perpendicularVector .point(

distance : arrowSpan / 2,
other: anchorPoint

)
let topVector = Vector (tipPoint , topPoint)
let bottomVector = Vector (tipPoint , bottomPoint)

5.2.5 Cycle
The last class that the ML model classifies and that has not been discussed how to draw is a
cycle. The cycle is different from a state and a transition since it can not exist without being
connected to a state. If there is no state to connect it to, the stroke is just erased. Otherwise,
once the closest state is found the cycle’s shape can be created. Its shape is more complicated
than the previous - but it is possible to use PencilKit’s behavior that smoothes out a curve based
on the points given. Thus, to recreate it I used the point at the intersection with the state and
the state’s center in 5.5.

Code snippet 5.5 Cycle stroke
extension Array where Element == CGPoint {

static func cycle(
_ point: CGPoint ,
center : CGPoint

) -> Self {
let vector = Vector (point , center)
let topPoint = vector .point(distance : -70, other: point)
let startToTopVector = Vector (point , topPoint)
let finalPoint = startToTopVector

. rotated (by: .pi * 0.4)

.point(distance : 5, other: point)
return [

point ,
startToTopVector

. rotated (by: -.pi / 3)

.point(distance : 10, other: point),
startToTopVector

. rotated (by: -.pi / 4)

.point(distance : 40, other: point),
topPoint ,
startToTopVector

. rotated (by: .pi / 4)

.point(distance : 40, other: point),
startToTopVector

. rotated (by: .pi / 3)

.point(distance : 10, other: point),

32 Implementation

] + .arrow(
startPoint : finalPoint ,
tipPoint : point ,
arrowSpan : 30

)
}

}

5.3 ALT Integration
ALT integration has been discussed both in chapter 3 and chapter 4. In this section I will go
into the implementation details.

5.3.1 Source Code
In chapter 4 I have already hinted that I had first attempted to integrate the source code directly.
Swift Package Manager is a package manager by Apple that is integrated right in Xcode [56].
Therefore, if I was able to use that for building ALT, others could benefit from this and it would
make the integration seamless. To create a package via Swift Package Manager one must create
Package.swift manifest where the products and other targets are defined. It is also possible
to define C++ headers and flags. But the headers in the ALT source code point to already
built modules by CMake. This means that when I tried to build the code, I got compiler errors
about #include directive pointing to non-existent headers. This was possible to circumvent by
modifying #include directives to point to existing locations, instead of pointing to the built
modules. But doing so would be a maintenance burden. Thus, I have decided not to integrate
the source code directly but rather use only frameworks built with CMake.

5.3.2 Headers
ALT’s current version only supports gcc compiler. But to build frameworks for iOS it is necessary
to use clang [57]. At the time of writing, ALT is not compilable with the standard library in
clang since ALT uses some C++20 features that are only implemented in gcc - for example
lexicographical_compare_three_way, among others. It is possible to point clang to headers
from gcc via -cxx-isystem flag and -stdlib=libstdc++ that instruct clang to parse the headers
as libstdc++ instead of libc++. But this is not possible to do since Xcode 10 has dropped
support for libstdc++ and all C++ projects must use libc++ standard library. In the future,
it should be feasible to use the current version of ALT with some newer version of clang as they
add support for C++20 features. ALT has only recently started using C++20 features, so to fix
this issue, a new branch libc++-17 was created by Jan Trávńıček from a commit from before
C++20 features have been introduced to the codebase.

5.3.3 CMake
There is support for building for iOS platform in CMake directly. To save some upfront work, I
have used ios-cmake toolchain file that builds on top of CMake and makes the setup easier [58].
An example of how to build a framework for OS64 (iOS) is in 5.6. The same could then be done
for a simulator by specifying SIMULATOR64. This way two different frameworks are built. For
combining multiple frameworks with different architectures there is XCFramework [59]. I have
created a small shell script in 5.7 that creates a new XCFramework from frameworks necessary
for the editor app. The built XCFrameworks could then be moved to Xcode.

ALT Integration 33

Code snippet 5.6 CMake build instructions
mkdir build
cd build
cmake .. -G Xcode \
-DCMAKE_TOOLCHAIN_FILE =../../ ios. toolchain .cmake -DPLATFORM =OS64
cmake --build . --config Debug

Code snippet 5.7 XCFramework shell script
#!/ bin/sh
modules =(

" alib2std " \
" alib2measure " \
" alib2abstraction " \
" alib2common " \
" alib2xml " \
" alib2str " \
" alib2data " \
" alib2algo " \

)
for module in "${ modules [@]}"
do

xcodebuild -create - xcframework \
-framework ../ build/ $module /Debug - iphoneos / $module . framework \
-framework \
../ simulator / $module /Debug - iphonesimulator / $module . framework \
-framework \
../ arm64/ $module /Debug - iphonesimulator / $module . framework \
-output $module . xcframework

done

5.3.4 Objective-C and Swift Wrappers
With XCFrameworks in Xcode, the next step was to write wrappers, so the C++ frameworks
could be used in Swift code. As mentioned in chapter 4, it is not possible to interact with
C++ code from Swift directly - for this Objective-C++ wrappers had to be written, exposing
only Objective-C in its interface. To better encapsulate the wrappers, I have also created a
separate module SwiftAutomataLibrary. The most important part in Objective-C is present
in NFA_objc that interacts with ALT’s EpsilonNFA class. Its interface is in 5.8. It is initialized
with all necessary data to create the underlying automaton and has one method that takes a list
of symbols for input and returns bool based on whether the input was accepted or rejected. All
necessary conversions are done in the implementation file. E.g. states are passed to NFA_objc
as NSArray * where the individual elements are NSString *. This had to be converted to
ext::set<std::string>.

Code snippet 5.8 NFA objc interface
- (instancetype)init: (NSArray *) states

inputAlphabet :(NSArray *) inputAlphabet
initialState :(NSString *) initialState

finalStates :(NSArray *) finalStates
transitions : (NSArray *) transitions ;

- (bool) simulate : (NSArray *) input;

34 Implementation

The wrapper between Swift and Objective-C was then more straightforward as conversions
between a lot of types - such as NSArray * and Array - are done automatically. It also would
be possible to use NFA_objc directly but to have better control I have created NFA as a simple
Swift struct. This is the only part that was made public in the SwiftAutomataLibrary module.

5.4 App State
I have already explained how the FA elements are recognized, rendered and how the ALT C++
code is bridged to Swift. Now I would like to explain a little bit more the internal state of the
app - of which the most substantial part is located in EditorStore.swift.

5.4.1 FA Models
There are two FA models - AutomatonTransition and AutomatonState. Notably, a cycle does
not have its separate model but is rather an AutomatonTransition. But since it is rendered dif-
ferently, it must be recognizable from a normal transition - for this there is enum TransitionType
that has two types - regular and cycle. AutomatonTransition can be seen in 5.9. The id
property is generated for each element at the moment when it is created, so it is easily distin-
guishable. The same is done for AutomatonState. Apart from what you see in the code snippet,
AutomatonTransition has a set of computed properties like stroke. Computed properties
are useful for keeping the state of the model consistent and should be used whenever a prop-
erty’s value can be safely and in a performant way derived from other properties of that model.
AutomatonState is similar to the transition with some specific properties like isFinalState
denoting whether a state is final or center used to determine a state’s center.

Code snippet 5.9 Transition model
struct AutomatonTransition : Equatable , Identifiable , Codable {

enum TransitionType : Equatable , Hashable , Codable {
case cycle(

CGPoint ,
center : CGPoint ,
radians : CGFloat

)
case regular (

startPoint : CGPoint ,
tipPoint : CGPoint ,
flexPoint : CGPoint

)
}
let id: String
var startState : AutomatonState .ID?
var endState : AutomatonState .ID?
var currentSymbol : String = ""
var symbols : [String] = []
var includesEpsilon : Bool = false
var type: TransitionType
var currentFlexPoint : CGPoint ? = nil

}

Code snippet 5.10 State model
struct AutomatonState : Equatable , Identifiable , Codable {

App State 35

let id: String
var name: String = ""
var isFinalState : Bool = false
var center : CGPoint
let radius : CGFloat
var currentDragPoint : CGPoint

}

5.4.2 Simulating Input
Simulating the automaton’s input is the main feature of the prototype. Once a user taps on
”Simulate” button, simulateInput action is triggered. There some preliminary checks are made
- such as whether the FA has an initial state (5.11. If a check failed, the app shows the user
the exact reason why it failed to make it easier to correct it. In case all preliminary checks
succeed, the action returns Effect with the result of the simulation. Effects are a mecha-
nism to interact with asynchronous functions and services in general. The initialization of the
Effect is in 5.12. You can also see that an alphabetSymbols variable is used there. Au-
tomaton’s alphabet is constructed from the symbols defined for the automaton’s transitions. In
AutomataLibraryService, simulation is run with NFA Swift wrapper that was discussed earlier.
Only the mapping of transitions property needed multiple lines of code because a name of
the state should be used instead of AutomatonState’s id for which some additional logic was
needed.

Code snippet 5.11 Check for initial state
guard

let initialState = state. initialStates .first
else {

state. outputString = "No initial state"
return .none

}

Code snippet 5.12 Effect for simulating input
env. automataLibraryService . simulateInput (

input ,
state. automatonStates ,
initialState ,
state. finalStates ,
alphabetSymbols ,
state. transitions

)

Code snippet 5.13 NFA initialization in AutomataLibrarryService

NFA(
states : states .map (\. name),
inputAlphabet : alphabet ,
initialState : initialState .name ,
finalStates : finalStates .map (\. name),
transitions : transitions

. compactMap { transition -> Transition ? in
guard

let startState = states .first(

36 Implementation

where: { $0.id == transition . startState }
),
let endState = states .first(

where: { $0.id == transition . endState }
)

else { return nil }
return Transition (

fromState : startState .name ,
toState : endState .name ,
symbols : transition . symbols

+ (
transition . currentSymbol . isEmpty ?
[] : [transition . currentSymbol]

),
isEpsilonIncluded : transition . includesEpsilon

)
}

)
. simulate (input: input)

5.5 Dragging
Dragging is an important feature that lets users rearrange the automaton’s elements. Both
states and transitions should be draggable. When a button for dragging, discussed in chapter
4, is moved by the user, an action is triggered - it can be either stateDragPointChanged or
transitionFlexPointChanged depending on the FA element.

5.5.1 Dragging Transitions
Transitions are dragged with what I have called a flexPoint. The transition is thus constructed
with three points instead of two - start point, flex point and tip point. But doing so makes the
curve of the transition sharp at the flex point. To make the change of the direction taking place
at the flex point smooth I have used a library called SwiftSplines [60]. A spline is ”a piecewise
polynomial in which the coefficients of each polynomial are fixed between ’knots’ or joints”, using
a definition from the Cubic Splines paper [61]. You can see how the transition looked like before
applying the cubic spline and after in 5.2. In 5.14 it is possible to see how it is created in code.
Note the important parameter resolution that directs how ”smooth” the curve will be where
the higher resolution will increase the number of points used for the curve.

Code snippet 5.14 Creating spline points
let points = [startPoint , flexPoint , tipPoint]. compactMap { $0 }
let spline = Spline (values : points)
let resolution = 100
let splinePoints : [CGPoint] = (

0...(points .count - 1) * resolution
)
.map { offset in

let argument = CGFloat (offset)/ CGFloat (resolution)
return spline .f(t: argument)

}

Dragging 37

(a) (b)

Figure 5.2 Transition before using cubic spline (a) and after (b)

5.5.2 Dragging States

States are dragged as a whole and thus their shape is not changed during that process - the
only variable in this process is a center of a given state. However, when a state has transitions
connected to it, these transitions have to be changed as the state is dragged. There are three types
of transitions that can be connected to a state - a transition that corresponds to an incoming or
outcoming edge and a cycle. For cycles the app stores an angle between the single point that
intersects with the state and a vector going from a center of the state and its topmost point.
When the center is moved, the intersection point is recalculated with the angle that is stored
in the app’s state. For transitions other than cycles I take advantage of the flexPoint and
recompute startPoint or endPoint (depending on the transition) as the intersection point on
the shortest path between the new center and the aforementioned flexPoint. You can see that
logic in 5.15 for transitions that are the incoming edge.

Code snippet 5.15 Calculation of new tipPoint

state. transitions
. filter {

$0. endState == automatonStateID
&& $0. endState != $0. startState

}
. forEach { transition in

guard
let flexPoint = transition .flexPoint ,
let endStateID = transition .endState ,
let endState = state. automatonStatesDict [endStateID]

else { return }
let vector = Vector (endState .center , flexPoint)
state. transitionsDict [transition .id]?. tipPoint = vector .point(

distance : endState .radius ,
other: endState . center

)
}

38 Implementation

5.6 DocumentGroup
I have already outlined the intent to use a document based app approach to enable saving the
editor’s state into a file. Leveraging the benefits of using the Composable Architecture, I was able
to save the whole app’s state as JSON. To make that happen, I first had to conform EditorState
to a FileDocument protocol. When a type conforms to this protocol it has to implement reading
a file as well as saving it. The type must also declare on which extensions it will operate. For
this app I have chosen the automaton extension. This also ensures that the user cannot open a
file that does not have that same extension (which would lead to undefined behaviour). To make
an app a document based one, it is necessary to wrap a root view into a DocumentGroup scene
[62].

DocumentGroup is initialized with two parameters. newDocument that describes what data
should a new document contain - for the FA editor it is a new editor state - and then editor
closure that has the currently opened document as an input and it should return a view for
editing the document. You can see how that is done for the automata editor here: 5.16. It
should be noted that apart from initializing a new EditorStore for a given document, as well as
modifying the file when the state changes, it is also desirable to save stores for documents that
have already been opened in the current application run. This is to ensure that a store is not
reinitialized when a state changes which would cancel all currently running effects. The stores
are saved into a dictionary stores where each store is identified by the unique state’s id. The
UI for document based app is in figure 5.3.

Code snippet 5.16 DocumentGroup scene
private final class DocumentStore {

var stores : [UUID: EditorStore] = [:]
}

@main
struct AutomataEditorApp : App {

private var documentStore = DocumentStore ()

var body: some Scene {
DocumentGroup (

newDocument : EditorState ()
) { file -> EditorView in

let store = documentStore . stores [file. document .id]
?? EditorStore (

initialState : file.document ,
reducer : editorReducer ,
environment : EditorEnvironment (...)

)
documentStore . stores [file. document .id] = store

return EditorView (
set: {

file. document = $0
},
store: store

)
}

}
}

DocumentGroup 39

Figure 5.3 Document based app interface

Chapter 6

Testing

Firstly, I will discuss how the app has been tested with automated tests. After that, I will go
into how the usability testing has been conducted and what were its results and outcomes.

6.1 Automated Testing
Automated testing is an important part of a software project to ensure everything is working
correctly and no regressions are made during the development. It also increases the confidence
of doing refactoring. The Composable Architecture unit testing is built on top of the XCTest
framework that is the bundled framework for testing Swift or Objective-C in Xcode. The goal of
the testing in the Composable Architecture was to make tests more exhaustive, ergonomic and
concise.

The main component for testing in the Composable Architecture is TestStore. This com-
ponent has a method called send that takes as an input an action and a closure in which you
describe how you expect the state to be modified. There is also a receive method that asserts
receival of a new action not triggered by the user, but rather returned from an effect. An example
showcasing both send and receive methods can be seen in 6.1 - there strokesChanged action,
that simulates a user drawing a stroke, is triggered first. When a stroke is drawn, it is sent to
AutomataLibraryService that returns Effect with the recognized element (note that in the
tests this component is mocked). When the new action automataShapeClassified is received,
I assert that it is added to the state.

It should be noted that the paradigm of this style of unit testing is focused on flows, rather
than individual functions where the test asserts output for a given input - although individual
functions can still be tested by sending a single action to the test store and asserting the state’s
changes. This is to make tests more concise and be closer to how the app will be used by the user.
It does not mean, however, that the tests can be less reliable because still a single component
is tested and all non-deterministic functionality should be in the store’s environment, which is
mocked during the testing.

Code snippet 6.1 Testing creating of state
store.send(

. strokesChanged (
currentStrokes + [

Stroke (controlPoints : [center])
]

)
)

41

42 Testing

scheduler . advance ()

store. receive (
. automataShapeClassified (

. success (
.state(

Stroke (
controlPoints : [center]

)
)

)
)

) {
$0. automatonStatesDict [id] = AutomatonState (

id: id ,
center : center ,
radius : radius

)
}

6.2 Usability Testing
Usability testing does not have a strict definition but in general, it should refer to testing that
evaluates a product or a system that is not automated. However, in the Handbook of Usability
Testing the authors have narrowed this down to ”a process that employs people as testing par-
ticipants who are representative of the target audience to evaluate the degree to which a product
meets specific usability criteria” [63]. This book has also been used further in this section to
define types of tests and their recommended techniques with which they should be conducted.

In the Handbook of Usability Testing the authors divide usability tests into four distinct cat-
egories: exploratory, assessment, validation, and comparison. Each test differs by its acceptance
criteria and in which phase of the development it should be done. As the final product of this
thesis is a prototype, the exploratory test is the most suitable one.

The primary focus of exploratory tests should be on the main functionalities of the app and
to assess answers to questions such as how intuitive the design is, how valuable the product is for
the user, which functionality will need to be documented via a tutorial or help, etc. This type
of test is also different from the others in that it is expected that the moderator conducting the
test will communicate with the user extensively - whereas the other tests should be possible to
finish without the moderator stepping in.

6.2.1 Test Plan
Before tests could take place, it was necessary to create a test plan that was to be followed in
the tests themselves. Test plans do not have to have the same components but the structure of
the test plan for the Automata Editor app consists of:

Methodology

Participant characteristics

Introduction to the session

Task list

Usability Testing 43

Final feedback

As outlined above, the test was exploratory, implicating intensive interaction between the
user and the mediator. Apart from that, it was measured how long it took for the participants
to accomplish the individual tasks .

Before each test, the participants were sent a questionnaire to assess their characteristics. It
included the following questions:

How familiar are you with finite automata? (rated 1-5 where 5 is ”expert”)

Do you have prior experience with software for creating and editing finite automata?

How familiar are you with using Apple Pencil in productivity applications - such as note-
taking, drawing, creating diagrams, etc.? (rated 1-5 where 5 is ”expert”)

Could you provide examples of software that you use with Apple Pencil?

These questions, although self-evaluated, should give a clearer picture of the user’s previous
experience with either finite automata or iPad usage.

During the introduction to the test, participants were asked to think aloud, if they were
comfortable with it. It is beneficial to know the thinking process as that can uncover more about
the prototype. Then the users were asked to do five tasks. These tasks were of two types:

Draw automaton based on a figure and test prescribed inputs.

Draw automaton based on a formal definition of a language. The user has to come with
inputs to test that it works properly.

The second type of tests (tasks D and E) is more complicated and therefore it was to be done
after the first one (tasks A-C). The tasks for each type were also randomized. Below you can
find the individual tasks:

Task A:
Create the automaton in 6.1 and test the following inputs:

AA
BA
B
AAA
ABA
A

Then modify this automaton without clearing the canvas in such a way that it represents
automaton in 6.2 and test the following inputs:

ABBA
ABAABA
AAA
BAB
BBB

Task B:
Create the automaton in 6.3 and test the following inputs:

DDE

44 Testing

Figure 6.1 Task A automaton

DEF
DE
EF
EFE
DDDDE
DDDDF

Task C:
Create the automaton in 6.4 and test the following inputs:

A
BA
AB
ABB

Task D:
Create automaton for the following language:
L = {(10)n: n ∈ N}
Simulate at least 4 inputs to test whether the automaton is behaving correctly.

Task C:
Create automaton for the following language:
L = {w: w ∈ {0, 1}∗ ∧ w starts with the string 011}
Simulate at least 4 inputs to test whether the automaton is behaving correctly.

6.2.2 Test Results
The tests have been done with a total of 8 participants. The results can be seen in 6.5. I have
not included two questions in the table. One is whether the participant has prior experience

Usability Testing 45

Figure 6.2 Task A modified automaton

Figure 6.3 Task B automaton

46 Testing

Figure 6.4 Task C automaton

with software for creating and editing finite automata - for which all answers have been ”No”.
This indicates that most (in this case all) people have always used regular paper for sketching
their automata. The second question not included is about examples of software that the par-
ticipant has used with Apple Pencil: most of it were apps for making notes such as Notability
or GoodNotes. From the time results the two fastest times are by people who rated themselves
as FA ”experts”. In contrast with that is the Apple Pencil familiarity having not a great impact
on the time results.

The following list summarizes what the participants have said they did not understand and
where the design was not intuitive enough:

Plus button for adding multiple symbols to a single transition.

When a state is deleted it’s hard to reconnect it to transitions.

Hard to understand output when it does not include any words.

ε button was often not obvious.

Clear was mistaken for back, deleting the whole automaton.

Erasing button is not intuitive.

It is hard to tell if the simulate button works if the output does not change.

Some of these points could be resolved by adding a quick tutorial and help that would introduce
users into how the app should be used, rather than expecting users to figure it out on their own.
The tutorial is also important since states and transitions are not added via a button and thus
the users need to try and see how the app responds to their drawing. This can be a daunting
first experience.

The help feature, among others, was also mentioned by the participants as one of the following
suggested improvements:

Missing switch gesture for Apple Pencil.

Back button to undo last change.

Usability Testing 47

Larger bottom control panel.

Help or quick tutorial describing how the app should be used.

Keyboard is too intrusive and often overlays text field currently being edited.

It is not possible to make a state smaller.

Make naming states not mandatory.

Step-by-step simulation would help with visualization of how the FA works.

Edit and presentation mode to hide and show buttons and text fields.

From this list, most of the items are small improvements and could be easily implemented
into the app. I would like to expand on ”step-by-step simulation”. This feature would help
with understanding better why the automaton rejected the input strings. It would also make
it a great tool for learning and understanding how the automaton works. Implementation for
DFAs should be possible as the automaton is always at one state only, making the visualization
straightforward. However, for NFAs this is not the case. Therefore, the app could either offer to
limit the automaton to a specific type or limit the visualization to only one possible path leading
to rejection or acceptance. The usability testing has also uncovered few bugs:

Input by keyboard is sometimes inadvertently triggered.

Cycle is often mistaken for a state.

Eraser sometimes does not work.

It is not possible to make a final state a non-final one without deleting it.

When a user taps on the screen in quick succession, transitions appear in the same place.

Text field for transitions does not trim newlines.

All of these bugs are tracked in the project’s repository.
Apart from things that could be improved, at the end of each test I have asked the participants

to say what they felt were good things about the app:

Eases learning of FAs.

Simulating inputs is quick.

Ability to save the FA in a file.

Saving to a file is automatic.

Making transitions with a simple line is fast.

Recognizing elements is almost instant.

Creating automata is quick once the user knows how to use the editor.

Connecting elements works well.

Interacting with elements is intuitive.

The positive comments show that the basic interactions with the elements work well and offer an
enjoyable experience for the users. And apart from the enjoyable experience it makes creating
the finite automata quick - which is important to convince people to use the app, rather than
resorting to regular paper.

https://github.com/fortmarek/automata-editor

48 Testing

Participant Total time (mm:ss) FA familiarity Apple Pencil faimiliarity
A 29:28 1 4
B 10:30 5 1
C 08:48 5 4
D 15:26 3 1
E 19:30 3 2
F 25:12 3 4
E 33:23 3 4
G 25:58 5 3

Figure 6.5 Usability testing results

Chapter 7

Conclusion

The primary goal of this thesis was to implement a prototype of an automata editor for the
iPad, built primarily for touch-based input and minimizing the need to use other UI controls
such as buttons. The final prototype has focused on the Apple Pencil that offers a high level
of precision while being easy to use. Most of the functionalities, like creating and editing FA
elements, are done with the Apple Pencil, thus accomplishing the main goal. This was made
possible by creating a custom ML model and using the CoreML framework to classify the drawn
FA elements.

The chosen Composable Architecture has proved to be beneficial for the project as it allowed
easy testing as well as a straightforward implementation of a document based app, which is an
important feature for the users that was added on top of the originally outlined goals.

For simulating the input I have successfully leveraged the ALT library, proving that it can be
integrated into a Swift-based project and used in iOS applications. This integration also opens
many possible future directions this project can take as it can tap into the functionalities the
library offers, such as export of automatons in DOT and PNG format or FA algorithms like
determinization and removal of ε-transitions.

In the conducted usability testing, which has uncovered some minor issues with the prototype,
it has also been suggested by some of the participants to add a step-by-step simulation of the
input, so the users can better visualize how the particular FA operates. This functionality would
also have to be implemented in the ALT library by e.g. returning a trace of the individual steps
taken by the FA. Another feature that has been raised during the testing was adding support
for a pushdown automaton.

One of the main motivations of this project was to help students learning FAs. To accomplish
this, the prototype needs some smaller improvements but it is planned to publish it on the App
Store before the winter semester of the 2021/2022 school year, so it can be suggested to students
taking the BI-AAG course at FIT CTU in Prague.

The feedback I have been given in the usability testing has made it clear that the prototype,
even in the current state, would be beneficial for students learning the FAs, therefore, I deem
the prototype to be successful.

49

Appendix A

Acronyms

DFA Deterministic Finite Automaton
FA Finite Automaton

NFA Nondeterministic Finite Automaton
ALT Algorithms Library Toolkit

UI User Interface
ML Machine Learning

JSON JavaScript Object Notation

51

Appendix B

User Instructions

To run the application, you will need Xcode installed. It can be installed via App Store or from
Apple’s developer website. Afterwards, open automata-editor/AutomataEditor.xcodeproj
using Xcode. To run the application on a device, you will also need to set up code signing.

53

https://developer.apple.com/downloads/
https://developer.apple.com/support/code-signing/

Bibliography

1. TRÁVNÍČEK, Jan; PECKA, Tomáš; PLACHÝ, Štěpán. Algorithms Library Toolkit [online]
[visited on 2021-04-06]. Available from: https://alt.fit.cvut.cz/.

2. SVOBODA, Petr. Webový editor konečných automat [Bachelor’s thesis]. 2019.
3. VRÁNA, Michael. Knihovna algoritm̊u ALT-webové rozhrańı [Bachelor’s thesis]. 2020.
4. ŠESTÁKOVÁ, Elǐska. Automata and Grammars: A Collection of Exercises and Solutions.

Faculty of Information Technology, Czech Technical University in Prague, 2020. isbn 978-
80-01-06462-7.

5. HOPCROFT, John E.; MOTWANI, Rajeev; ULLMAN, Jeffrey D. Introduction to Automata
Theory, Languages, and Computation. 2007. isbn 9780321455369.

6. HOLUB, Jan. BIE-AAG [online] [visited on 2021-04-09]. Available from: https://courses.
fit.cvut.cz/BIE-AAG/.

7. MOHRI, Mehryar; ROSTAMIZADEH, Afshin; TALWALKAR, Ameet. Foundations of Ma-
chine Learning. 2018. isbn 9780262039406.

8. ČEPEK, Miroslav; VAŠATA, Daniel. BIE-VZD [online] [visited on 2021-04-10]. Available
from: https://courses.fit.cvut.cz/BIE-VZD/.

9. BERGEN, Patrick van. Pipe-And-Filter [online]. 2020 [visited on 2021-04-10]. Available
from: http://www.dossier-andreas.net/software_architecture/pipe_and_filter.
html.

10. STANESCU, Cristian. TuringSim [online] [visited on 2021-04-10]. Available from: https://
homes.di.unimi.it/borghese/Teaching/AdvancedIntelligentSystems/ProjectDocuments/
Progetto1 _ Stanescu . pdf. App available at https : / / apps . apple . com / us / app /
turingsim/id563350412.

11. VILELA, Plinio. Finite Automata [online] [visited on 2021-04-10]. Available from: https:
//apps.apple.com/us/app/finite-automata/id1043670880.

12. RANGEL-MONDRAGON, Jaime. A Finite Automaton Editor [online]. 2011-03 [visited on
2021-04-13]. Available from: http://demonstrations.wolfram.com/AFiniteAutomatonEditor/.

13. SHAWABKEH, Max. Automata Editor [online] [visited on 2021-04-13]. Available from:
http://max99x.com/school/automata-editor.

14. GitLab [online] [visited on 2021-04-13]. Available from: https://about.gitlab.com/.
15. Algorithms Library Toolkit [online] [visited on 2021-04-13]. Available from: https://gitlab.

fit.cvut.cz/algorithms-library-toolkit.
16. FOUNDATION, Standard C++. C++ [online] [visited on 2021-04-16]. Available from:

https://isocpp.org/.

55

https://alt.fit.cvut.cz/
https://courses.fit.cvut.cz/BIE-AAG/
https://courses.fit.cvut.cz/BIE-AAG/
https://courses.fit.cvut.cz/BIE-VZD/
http://www.dossier-andreas.net/software_architecture/pipe_and_filter.html
http://www.dossier-andreas.net/software_architecture/pipe_and_filter.html
https://homes.di.unimi.it/borghese/Teaching/AdvancedIntelligentSystems/ProjectDocuments/Progetto1_Stanescu.pdf
https://homes.di.unimi.it/borghese/Teaching/AdvancedIntelligentSystems/ProjectDocuments/Progetto1_Stanescu.pdf
https://homes.di.unimi.it/borghese/Teaching/AdvancedIntelligentSystems/ProjectDocuments/Progetto1_Stanescu.pdf
https://apps.apple.com/us/app/turingsim/id563350412
https://apps.apple.com/us/app/turingsim/id563350412
https://apps.apple.com/us/app/finite-automata/id1043670880
https://apps.apple.com/us/app/finite-automata/id1043670880
http://demonstrations.wolfram.com/AFiniteAutomatonEditor/
http://max99x.com/school/automata-editor
https://about.gitlab.com/
https://gitlab.fit.cvut.cz/algorithms-library-toolkit
https://gitlab.fit.cvut.cz/algorithms-library-toolkit
https://isocpp.org/

56 Bibliography

17. KITWARE. CMake [online] [visited on 2021-04-13]. Available from: https://cmake.org/.
18. TensorFlow [online] [visited on 2021-04-13]. Available from: https://www.tensorflow.

org/.
19. APPLE. Core ML [online] [visited on 2021-04-13]. Available from: https://developer.

apple.com/documentation/coreml.
20. APPLE. Core ML Models [online] [visited on 2021-04-13]. Available from: https://developer.

apple.com/machine-learning/models/.
21. Keras [online] [visited on 2021-04-13]. Available from: https://keras.io/.
22. APPLE. coremltools [online] [visited on 2021-04-13]. Available from: https://coremltools.

readme.io/docs/.
23. APPLE. Create ML [online] [visited on 2021-04-13]. Available from: https://developer.

apple.com/machine-learning/create-ml/.
24. APPLE. turicreate [online] [visited on 2021-04-13]. Available from: https://github.com/

apple/turicreate/.
25. APPLE. Drawing Classification [online] [visited on 2021-04-13]. Available from: https:

//apple.github.io/turicreate/docs/userguide/drawing_classifier/.
26. APPLE. Apple Pencil [online] [visited on 2021-04-16]. Available from: https://www.apple.

com/apple-pencil/.
27. KOCHAN, Stephen G. Programming in Objective-C. 2021. isbn 9780321967602.
28. APPLE. Objective-C [online] [visited on 2021-04-16]. Available from: https://developer.

apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/
Introduction/Introduction.html/.

29. TIOBE. TIOBE Index [online] [visited on 2021-04-16]. Available from: https : / / www .
tiobe.com/tiobe-index/.

30. APPLE. SwiftUI [online] [visited on 2021-04-16]. Available from: https://developer.
apple.com/documentation/swiftui/.

31. FACEBOOK. React Native [online] [visited on 2021-04-16]. Available from: https : / /
reactnative.dev/.

32. GOOGLE. Flutter [online] [visited on 2021-04-16]. Available from: https://flutter.dev/.
33. APPLE. PencilKit [online] [visited on 2021-04-16]. Available from: https://developer.

apple.com/documentation/pencilkit/.
34. APPLE. UIKit [online] [visited on 2021-04-16]. Available from: https://developer.apple.

com/documentation/uikit/.
35. APPLE. Apple unveils groundbreaking new technologies for app development [online]. 2019-

06 [visited on 2021-04-16]. Available from: https://www.apple.com/newsroom/2019/06/
apple-unveils-groundbreaking-new-technologies-for-app-development/.

36. KUGLER, Florian; EIDHOF, Chris. Thinking in SwiftUI. 2020. isbn 9798626292411.
37. FACEBOOK. React [online] [visited on 2021-04-16]. Available from: https://reactjs.

org/.
38. APPLE. Interfacing with UIKit [online] [visited on 2021-04-16]. Available from: https:

//developer.apple.com/tutorials/swiftui/interfacing-with-uikit/.
39. APPLE. Structure your app for SwiftUI previews [online] [visited on 2021-04-16]. Available

from: https://developer.apple.com/videos/play/wwdc2020/10149/.
40. APPLE. CGContext [online] [visited on 2021-05-05]. Available from: https://developer.

apple.com/documentation/coregraphics/cgcontext.

https://cmake.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://developer.apple.com/documentation/coreml
https://developer.apple.com/documentation/coreml
https://developer.apple.com/machine-learning/models/
https://developer.apple.com/machine-learning/models/
https://keras.io/
https://coremltools.readme.io/docs/
https://coremltools.readme.io/docs/
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://github.com/apple/turicreate/
https://github.com/apple/turicreate/
https://apple.github.io/turicreate/docs/userguide/drawing_classifier/
https://apple.github.io/turicreate/docs/userguide/drawing_classifier/
https://www.apple.com/apple-pencil/
https://www.apple.com/apple-pencil/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://developer.apple.com/documentation/swiftui/
https://developer.apple.com/documentation/swiftui/
https://reactnative.dev/
https://reactnative.dev/
https://flutter.dev/
https://developer.apple.com/documentation/pencilkit/
https://developer.apple.com/documentation/pencilkit/
https://developer.apple.com/documentation/uikit/
https://developer.apple.com/documentation/uikit/
https://www.apple.com/newsroom/2019/06/apple-unveils-groundbreaking-new-technologies-for-app-development/
https://www.apple.com/newsroom/2019/06/apple-unveils-groundbreaking-new-technologies-for-app-development/
https://reactjs.org/
https://reactjs.org/
https://developer.apple.com/tutorials/swiftui/interfacing-with-uikit/
https://developer.apple.com/tutorials/swiftui/interfacing-with-uikit/
https://developer.apple.com/videos/play/wwdc2020/10149/
https://developer.apple.com/documentation/coregraphics/cgcontext
https://developer.apple.com/documentation/coregraphics/cgcontext

Bibliography 57

41. APPLE. CGContext [online] [visited on 2021-05-05]. Available from: https://developer.
apple.com/documentation/coregraphics.

42. APPLE. PKCanvasView [online] [visited on 2021-04-20]. Available from: https://developer.
apple.com/documentation/pencilkit/pkcanvasview/.

43. MICROSOFT. The Model-View-ViewModel Pattern [online] [visited on 2021-04-16]. Avail-
able from: https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-
application-patterns/mvvm/.

44. POINT-FREE. The Composable Architecture [online] [visited on 2021-04-16]. Available
from: https://github.com/pointfreeco/swift-composable-architecture/.

45. BERGH, Michael Van den. React Redux: Building Modern Web Apps with the ArcGIS JS
API [online] [visited on 2021-04-16]. Available from: https://www.esri.com/arcgis-
blog/products/js-api-arcgis/3d-gis/react-redux-building-modern-web-apps-
with-the-arcgis-js-api/.

46. Interoperability between Swift and C++ [online] [visited on 2021-04-16]. Available from:
https://github.com/apple/swift/blob/main/docs/CppInteroperabilityManifesto.
md#exceptions/.

47. APPLE. Importing Objective-C into Swift [online] [visited on 2021-04-16]. Available from:
https://developer.apple.com/documentation/swift/imported_c_and_objective-
c_apis/importing_objective-c_into_swift/.

48. APPLE. Using C++ With Objective-C [online] [visited on 2021-04-16]. Available from:
https://web.archive.org/web/20101203170217/http://developer.apple.com/
library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Articles/ocCPlusPlus.
html/.

49. APPLE. iPad User Guide [online] [visited on 2021-04-17]. Available from: https://support.
apple.com/guide/ipad/enter-text-with-scribble-ipad355ab2a7/14.0/ipados/14.
0/.

50. APPLE. Document Based Apps [online] [visited on 2021-04-17]. Available from: https:
//developer.apple.com/document-based-apps/.

51. GOOGLE. Quick Draw! The Data [online] [visited on 2021-04-20]. Available from: https:
//quickdraw.withgoogle.com/data/.

52. FOŘT, Marek. MNIST Maker [online] [visited on 2021-04-20]. Available from: https://
github.com/fortmarek/MNIST-Maker/.

53. JUPYTER, Project. Jupyter [online] [visited on 2021-04-20]. Available from: https://
jupyter.org/.

54. APPLE. Xcode [online] [visited on 2021-04-20]. Available from: https://developer.apple.
com/xcode/.

55. LOCKWOOD, Nick. VectorMath [online] [visited on 2021-04-20]. Available from: https:
//github.com/nicklockwood/VectorMath/.

56. APPLE. Swift Package Manager [online] [visited on 2021-04-20]. Available from: https:
//github.com/apple/swift-package-manager/.

57. LLVM. Clang [online] [visited on 2021-04-20]. Available from: https://clang.llvm.org/.
58. WIDERBERG, Alexander. ios-cmake [online] [visited on 2021-04-20]. Available from: https:

//github.com/leetal/ios-cmake/.
59. APPLE. Binary Frameworks in Swift [online] [visited on 2021-04-20]. Available from: https:

//developer.apple.com/videos/play/wwdc2019/416/.
60. FEILER, Konrad. SwiftSplines [online] [visited on 2021-04-23]. Available from: https://

github.com/Bersaelor/SwiftSplines/.

https://developer.apple.com/documentation/coregraphics
https://developer.apple.com/documentation/coregraphics
https://developer.apple.com/documentation/pencilkit/pkcanvasview/
https://developer.apple.com/documentation/pencilkit/pkcanvasview/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm/
https://github.com/pointfreeco/swift-composable-architecture/
https://www.esri.com/arcgis-blog/products/js-api-arcgis/3d-gis/react-redux-building-modern-web-apps-with-the-arcgis-js-api/
https://www.esri.com/arcgis-blog/products/js-api-arcgis/3d-gis/react-redux-building-modern-web-apps-with-the-arcgis-js-api/
https://www.esri.com/arcgis-blog/products/js-api-arcgis/3d-gis/react-redux-building-modern-web-apps-with-the-arcgis-js-api/
https://github.com/apple/swift/blob/main/docs/CppInteroperabilityManifesto.md#exceptions/
https://github.com/apple/swift/blob/main/docs/CppInteroperabilityManifesto.md#exceptions/
https://developer.apple.com/documentation/swift/imported_c_and_objective-c_apis/importing_objective-c_into_swift/
https://developer.apple.com/documentation/swift/imported_c_and_objective-c_apis/importing_objective-c_into_swift/
https://web.archive.org/web/20101203170217/http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Articles/ocCPlusPlus.html/
https://web.archive.org/web/20101203170217/http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Articles/ocCPlusPlus.html/
https://web.archive.org/web/20101203170217/http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Articles/ocCPlusPlus.html/
https://support.apple.com/guide/ipad/enter-text-with-scribble-ipad355ab2a7/14.0/ipados/14.0/
https://support.apple.com/guide/ipad/enter-text-with-scribble-ipad355ab2a7/14.0/ipados/14.0/
https://support.apple.com/guide/ipad/enter-text-with-scribble-ipad355ab2a7/14.0/ipados/14.0/
https://developer.apple.com/document-based-apps/
https://developer.apple.com/document-based-apps/
https://quickdraw.withgoogle.com/data/
https://quickdraw.withgoogle.com/data/
https://github.com/fortmarek/MNIST-Maker/
https://github.com/fortmarek/MNIST-Maker/
https://jupyter.org/
https://jupyter.org/
https://developer.apple.com/xcode/
https://developer.apple.com/xcode/
https://github.com/nicklockwood/VectorMath/
https://github.com/nicklockwood/VectorMath/
https://github.com/apple/swift-package-manager/
https://github.com/apple/swift-package-manager/
https://clang.llvm.org/
https://github.com/leetal/ios-cmake/
https://github.com/leetal/ios-cmake/
https://developer.apple.com/videos/play/wwdc2019/416/
https://developer.apple.com/videos/play/wwdc2019/416/
https://github.com/Bersaelor/SwiftSplines/
https://github.com/Bersaelor/SwiftSplines/

58 Bibliography

61. JAMES, Antony. Cubic Splines [online]. Stanford [visited on 2021-04-23]. Department of
Aeronautics and Astronautics, Stanford University. Available from: http://aero-comlab.
stanford.edu/Papers/splines.pdf/.

62. APPLE. DocumentGroup [online] [visited on 2021-04-27]. Available from: https://developer.
apple.com/documentation/swiftui/documentgroup/.

63. RUBIN, Jeffrey; CHISNELL, Dana. Handbook of Usability Testing. 2008. isbn 9780470386088.

http://aero-comlab.stanford.edu/Papers/splines.pdf/
http://aero-comlab.stanford.edu/Papers/splines.pdf/
https://developer.apple.com/documentation/swiftui/documentgroup/
https://developer.apple.com/documentation/swiftui/documentgroup/

Contents of the Thesis’ Attached
Medium

automata-editor .. app’s source code
thesis..thesis’ source code
thesis.pdf ... text of thesis in PDF format
readme.md..............................description of the attached medium’s contents

59

	Acknowledgment
	Abstract
	Introduction
	Motivation, Focus of Thesis
	Thesis Goals
	Thesis Structure

	Theory
	Formal Languages and Grammars
	Finite Automata
	Machine Learning

	Analysis
	Existing Applications
	ALT
	Strokes Recognition

	Automata Editor Design
	Touch Device
	Used Technologies
	ALT Integration
	User Interface

	Implementation
	ML Model
	Drawing FA Elements
	ALT Integration
	App State
	Dragging
	DocumentGroup

	Testing
	Automated Testing
	Usability Testing

	Conclusion
	Acronyms
	User Instructions
	Contents of the Thesis' Attached Medium

