
Instructions

Despite their simplicity cellular models are able to capture key phenomena of collective motion. There 

is a simple definition of decision rules for movement and interaction. The goal of the thesis is to 

improve the conflict-solution rules in the floor-field cellular model suggested in [2]. Based on 

numerical simulations, the sensitivity analysis of model parameters should be performed.

Detailed instructions:

1. Get acquainted with the concept of floor-field cellular models for pedestrian flow.

2. Perform research of conflict-solution (more agents entering one cell) in cellular models.

3. Implement the cellular model from [2] with improved rules for conflict-solution.

4. Perform a series of simulations of ...

5. Get acquainted with the principles of sensitivity analysis and appropriate software for its 

performance, e.g OptisLang [4]. 

6. Based on the simulations perform a sensitivity analysis of introduced parameters on key 

observables as total evacuation time or time spent in the room.
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Abstrakt

Agentńı celulárńı modely mohou být použity pro simulaci evakuace lid́ı z
mı́stnosti. Akce a interakce heterogenńıch agent̊u vytvář́ı skupinový pohyb a
zachycuj́ı tak komplexńı jevy v chováńı chodc̊u. V této práci je představen
multiagentńı celularńı model založený na floor-field modelu. Ten je rožš́ı̌ren o
novou strategii řešeńı konflikt̊u, kdy se jeden nebo v́ıc agent̊u snaž́ı vstoupit
na tutéž buňku. Agenti a model maji r̊uzné parametry, které ovlivňuj́ı řešeńı
konflikt̊u. Na těchto vstupńıch parametrech je provedena citlivostńı analýza,
která objasňuje vliv jednotlivých parametr̊u na rozptyl výstupńıch hodnot.

Kĺıčová slova multiagentńı systém, celulárńı model, agresivita, řešeńı kon-
flikt̊u, simulace evakuace, citlivostńı analýza
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Abstract

Agent-based cellular models can be used to simulate the process of evacuation
of people from a room. The actions and interactions of heterogeneous agents
create collective motion and capture complex phenomena of pedestrian dy-
namics. This thesis presents a multi-agent cellular model based on floor-field
model and is extended by a new strategy for solving conflicts when two or
more agents attempt to enter the same cell. The agents and the model have
various parameters that influence the conflict solution. A sensitivity analysis
on these parameters is performed that reveals the individual contribution of
variance in the results.

Keywords multi-agent system, cellular model, aggressivity, conflict solu-
tion, evacuation simulation, sensitivity analysis
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Introduction

The ability to predict and model the movement of pedestrians during evac-
uation is valuable knowledge. Understanding human behavior was always
challenging, yet even individual activities such as movement are difficult to
determine reliably. Pedestrian movement can be examined by physics, sociol-
ogy, or psychology, but these methods fall short in complicated scenarios.

Increasing demands on safety procedures in buildings or during various
events, such as evacuation, or demonstration, call for answers on pedestrian
dynamics. Some available solutions provide precise simulations on how people
move and interact, and others focus on real-time results and adaptation to a
fast-changing environment.

The environment and setting are specific for each building, location, and
various groups of people. It is essential to understand the influence of individ-
ual parameters on the process with so many possible settings. Simulating the
process on a whole parametric space is very slow and could be sped up using
only the significant parameters selected by sensitivity analysis.

This careful selection of input parameters for the evacuation model can
produce results faster and more precisely by providing insight into the impor-
tance of individual parameters. Understanding the evacuation process better,
we can overcome critical situations that might lead to the loss of lives.

An experiment of pedestrian dynamics in a room was performed at Czech
technical university in Prague. The experiment was supervised by Pavel
Hrabák, and the results were used to create a model for simulating the pedes-
trian movement. I was offered to extend the capabilities of the model, to and
perform further research to simulate the evacuations more precisely. The pre-
cision depends on key observable results, such as total evacuation time and
the flow of pedestrians through an exit.

The multi-agent model I implemented in this thesis is inspired by floor-field
cellular model. Cellular models are surprisingly capable of capturing complex
phenomena and processes with only a simple set of rules.

This thesis focuses on improving the feature of conflict solution and pro-
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Introduction

vides a new approach to the movement of agents in the model. The improve-
ments are linked to the sensitivity parameters of agents to the environment.
The final contribution of this thesis is the sensitivity analysis of input pa-
rameters to the variance in observable quantities, namely the total evacuation
time.

This thesis is organized as follows: Chapter 1 focuses on the research
of current approaches and trends used to model pedestrian dynamics. The
distinction between microscopic and macroscopic models is explained. The
inspiration for the model used in this thesis is mentioned and briefly explained,
as well as several current models for pedestrian dynamics are described.

The essential contribution of this thesis dwells in the research of sensitivity
analysis (SA). The exact form of SA used in this thesis is highlighted.

The following Chapter 2 explains the theory and the practice of the model.
The first part in Section 2.1 provides the theoretical fundamentals for the
evacuation model — the core components of the model and the mathematical
methods. Later in Section 2.2 the software tools used in this research are
mentioned . The particular implementation of components in the evacuation
model is described.

The approach to sensitivity analysis is described in Chapter 3, where nec-
essary components of the analysis are explained (input parameters, observable
quantitities, methods of SA).

The following Chapter 4 shows the results of analysis on the simulation
data. The spotlight is on global sensitivity analysis of individual input vari-
ables and their contribution to the variance of observable quantities. The
individual contributions present a better understanding of how the evacua-
tion is simulated.

In the end, new discoveries are explained and summarized. Results and
discoveries of this thesis can be further researched and analyzed.
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Goal

Goal

This thesis aims to capture phenomena of collective motion of pedestrians in
a room using a multi-agent cellular model, improve the solution of conflicts,
and analyze the impact of input parameters on the process. An inspiration
for the simulation model is the floor-field model that presents fine resolution
of individual agents that interact with each other and the environment. A
new and improved set of rules for solving conflicts is used. Rules are affected
by parameters of aggresssivity and sensitivity of agents to the environment.
A number of simulations are executed, and sensitivity analysis of input pa-
rameters is performed. The outcome of the analysis presents the influence of
individual input parameters. Key observable quantities are total evacuation
time and flow of pedestrians through main exit. Sensitivity analysis of param-
eters shows a connection between variance in input parameters and variance
in observables.
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Chapter 1
State-of-the-art

The study of pedestrian dynamics is a hot topic frequently researched through-
out the world (e.g. in Munich [3], Jülich [4], Tokyo [5], Clayton [6]). With
it’s own history dating back to 1975 [7], this field took off in the last three
decades.

1.1 Pedestrian dynamics

Nowadays there are three major approaches to modeling the evacuation pro-
cess [4]:

• Fluid-dynamics.

• Artificial intelligence.

• Agent-based models (ABM).

Fluid-dynamics In general the models using fluid-dynamics, for example
model using smoothed particle hydrodynamics (SPH) [6], focus on the macro-
scopic collective behavior such as line formation, jamming or flow oscilla-
tions. They are based on various mathematical equations — Euler equations,
Eikonal-type equations, or they use computational fluid dynamics. These
models have fast calculations and can provide real-time results with lower
precision. This is especially useful for crowd management or large simula-
tions. They show an overview of the process with low or zero resolution on
the individual pedestrians. These results, however, are suitable for civil engi-
neering, for example in urban planning. Macroscopic models are simpler than
microscopic models and produce results more quickly while retaining reason-
able predictions. They are used for modeling large crowds or general flowsa
and these models can be used for creating quick concepts where flexibility is
the key.
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1. State-of-the-art

Artificial intelligence Sometimes only one approach is not enough and
models using artificial intelligence present themselves as a viable answer.
These models can consist of different components that pull together, each
focusing on one specific area. For example, wildfire evacuation model [8], con-
sist of conceptual model, choice model and traffic model that are orchestrated
by AI algorithm. Their use is rather narrow and depends heavily on data they
operate with. The models using AI are hard to summarize because the field
of AI is very broad.

Agent-based models (ABM) Pedestrian dynamics models using agents
express the concept of artificial societies [9]. The essence of the models are
individual agents that are distinguishable and substantiate the heterogeneity
of the whole system. These agents can operate on various levels of autonomy
and mimic the behavior of people during evacuation, demonstration, shopping
or other scenarios.

With fine resolution of individual agents come the increased requirements
for computation and rather narrow use (e.g. ABM unable to demonstrate the
maneuver of first-aid person [3]). They are used mostly for research of specific
phenomena at microscopic level or for situations that rely on social interac-
tions. ABM can operate on discrete [10], continuous [11] or combined [12]
space. This space is mostly two-dimensional but there are models that can
operate with inclined planes or stairs, even elevators and public transport [13].

Microscopic model individually analyses each pedestrian (agent) in the
process. Agents create many interactions and this enables more precision at
the cost of time-consuming computation. These models are used for discover-
ing new phenomena or used as tool to better understand the processes within.

Other available solutions There are many other approaches for micro-
scopic modeling of pedestrian dynamics:

The hybrid mathematical model ODE, that is based on the Helbing social-
force discrete model, employs classical Newtonian laws of point mechanics, as
the motion of each individual is described by an ordinary differential equa-
tion (ODE) [14].

One commercially available agent-based evacuation simulator, Pathfinder,
is also a hybrid approach, that provides immense features: 3D modeling, con-
tour plots, assisted evacuations for people with special needs, Monte Carlo
simulations and many more. It was designed to accommodate tens of thou-
sands of occupants. This model employs several components (agents, artificial
intelligence and triangulated mesh) that calculate minimal-cost direction of
each pedestrian based on rules of steering technique. Extensive explanation
can be found in [12].
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1.1. Pedestrian dynamics

The open source evacuation simulator framework JuPedSim [15] utilizes
three main modules, loosely connected, that can work independently. JuPed-
Sim is an answer for research of evacuations because it provides already fin-
ished auxiliary components — visualization module and reporting module.
The simulation module can be modified, to some degree, to fit the needs of
individual research. At the moment the simulation model employs two force-
based models: the Generalized Centrifugal Force Model and the continuous
physical force Gompertz model which also uses differential equations. This
framework is still being developed. The floor-field model in this thesis relies
on different approach (conflict solution) to model the movement of agents and
the current solution implemented in JuPedSim can’t be utilized or customized.

The microscopic pedestrian and crowd dynamics can also be simulated by
Vadere, an open source framework developed by the research group of Gerta
Köster at the Department of Computer Science and Mathematics at the Mu-
nich University of Applied Sciences [3]. Compared to JuPedSim, Vadere al-
lows only two-dimensional systems. Vadere is based on Optimal Steps Model
(OSM) that utilizes several layers: locomotion, individual and interaction.
The locomotion layer uses continuous geometry and models the way in which
people move, according to the dynamic navigation field that is updated at
each time step. The OSM introduces real human step that adjusts to various
situations, e.g. the steps are shorter when pedestrian is confronted with dense
crowd and slows down. What follows is the individual layer, that describes the
characteristics of each person - space requirements, desired speed, individual
plans. . . Some of these parameters are assigned default values, which are de-
rived from studies of the pedestrian flow [16]. The last layer is the interaction
layer that models social and environment interactions.

Selvek from the Faculty of information technologies at Czech technical
university in Prague proposed algorithm LC-MAE (Local Cooperative Multi
Agent Evacuation). His algorithm assumes several types of agents with dif-
ferent levels of rationality, who move on a undirected graph from endangered
part into the safe part as quickly as possible. It is achieved by local plan-
ning of agents and their paths. Compared to solutions using network flow
and centralized planning, his solution produces results worse only by a small
factor [17].

The goal of this thesis is different from the research of Selvek, as the cellular
evacuation model in this thesis does not aim to calculate the fastest or most
optimal evacuation plan, but rather models the behavior of pedestrian during
evacuation based on input parameters.. The contribution of this thesis lies
in the study of microscopic processes within the model, and SA of individual
input parameters.
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1. State-of-the-art

1.2 Cellular automaton

A cellular automaton (CA) is a complex mathematic or computational system
with discrete elements (e.g. agents), that can be in finite number of states.
These elements are updated according to a simple set of rules, such as interact-
ing with other elements or environment (e.g. floor-field) [18]. CA needs to be
initialized, and because it abides by strict rules, it is deterministic in behavior,
when it’s not using any stochastic selection. The variance in results, due to
stochastic selection, can mimic the randomness in human behavior and can be
a desired feature of the model. The abstract system of CA can emulate very
diverse processes. CA has been used, for example, to emulate a dynamic uni-
verse in Game of life [19]. This famous example demonstrates CA’s capability
to produce highly complex behavior with very simple rules [20].

1.2.1 Floor field CA

The inspiration for model used in this thesis is the floor field cellular model
described by Katsuhiro Nishinari and Andreas Schadschneider in Article [21].
Main characteristic of this model is in the use of several floor fields — static,
dynamic, fire hazard, . . . These can be explained as two-dimensional lattices
made of discrete cells that hold some value and abide to certain rules. Pedes-
trians in the evacuation, who are agents with individual parameters, move in
the rectangular two-dimensional and interact with these lattices. Agents are
updated in synchronous intervals but thanks to their individual and hetero-
geneous period of movement, they can have different speed on the grid. ”For
the case of evacuation processes, the static floor field S describes the shortest
distance to an exit door. The field strength Sij is set inversely proportional to
the distance from the door. The dynamic floor field D is a virtual trace left by
the pedestrians similar to the pheromone in chemotaxis [22]. It has its own
dynamics, namely diffusion and decay, which leads to broadening, dilution and
finally vanishing of the trace. At t = 0 for all sites (i, j) of the lattice the dy-
namic field is zero, i.e., Dij = 0. Whenever a particle jumps from site (i, j)
to one of the neighboring cells, D at the origin cell is increased by one” [21].

The update rules of said CA are:

1. The dynamic field D is updated according to decay rules.

2. For each agent the transition probability pij (in this thesis called attrac-
tivity) for a move to neighbor cell is calculated.

3. Each agent chooses randomly a target cell based on probability pij .

4. When two or more agents attempt to enter the same cell, conflict occurs
and needs to be solved.

5. Agents move to their target cell if possible and update dynamic field D.
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1.3. Sensitivity analysis

Detailed description of the procedures and components is in the Sec-
tion 2.1. The course of the simulation is affected by a set of parameters which
are explained in said section as well. These parameters will by analyzed by
means of sensitivity analysis, described below in Section 1.3.

1.3 Sensitivity analysis

The research experience on this topic calls for a efficient computation and care-
ful selection of input parameters. The stochastic selection used in simulation
adds uncertainty to the model — the output varies for the same input param-
eters. As such, it is an expected feature because it imitates the randomness
of human behavior.

”Aleatory uncertainty, also called stochastic or variable uncertainty, refers
to uncertainty that cannot be reduced by more exhaustive measurements or a
better model. Epistemic uncertainty, or subjective uncertainty, on the other
hand, refers to uncertainty that can be reduced” [23]. Sensitivity analysis used
in this thesis analyzes the epistemic uncertainty of results that is affected by
input parameters with the OptiSLang software.

Current research of evacuation models also focuses on sensitivity analysis
of uncertain input parameters and their contribution to simulation output.
In Article [24], Köster et al. use SA to study the influence of two input
parameters, number of protesters and standard deviation of their free-flow
speed, on the length of the protest march. Their method of SA computes
Sobol’ indices with methods based on polynomial chaos expansions. Other
research was performed by Claudio Feliciani and Katsuhiro Nishinari who
present a method to quantify the amount of congestion in pedestrian crowds,
which is estimated on the velocity vector field obtained from video recordings
of moving crowds. To find the best parameter combination of the vector field,
methods of SA were utilized [25].

There are several other ways to calculate the influence of input parameters,
detailed overview can be found in Article [26].
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Chapter 2
Realisation

2.1 Model definition

Evacuation, core topic of this thesis, is the process of moving people from a
place, possibly dangerous, to somewhere safe. The evacuation model in this
thesis represents the people in evacuation as agents who move on a grid that
acts as a room or other area. The grid is two-dimensional, rectangular, and
consists of discreet cells. Cells can be occupied by agents who move from one
cell to another in 8 directions or stay in the same cell. The movement in the
model is strictly discrete due to the nature of the cellular model. Movements
are executed simultaneously, which leads to conflicts when two or more agents
attempt to enter the same cell. Only one agent can be present in a cell at a
time.

The agents are somewhat autonomous and react to the environment. They
generally move in the direction to the exit. In this paper, only grid with one
exit is considered. Because the exit is a cell, only one agent can leave the
room at every synchronous update of the simulation. There is an interaction
with agents in adjacent cells.

Figure 2.1: Example of cellular floor-field model utilizing static and dynamic
field, where agent can move to cells in Moore neighbourhood. Taken from [1].
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2. Realisation

The collective motion of agents is reproduced using various strategies:
choosing destination cell and solving conflicts, and using heterogeneity in the
parameters. The strategies are affected by parameters of aggressivity and
sensitivity of each agent and by parameter of friction. The parameter of
aggressivity plays a role in situations when two or more agents attempt to
enter the same cell.

2.1.1 Components

AGENT

Model is populated with n agents which are placed to unique positions on the
grid. Agents have specific parameters such as aggressivity γ ∈ [0, 1], inner
time period τ ∈ R and sensitivity parameters: to static potential kS ∈ R, to
occupancy kO ∈ [0, 1], to diagonal movement kD ∈ [0, 1].

There are various ways to assign aggressivity γ to agents:

• groups of agents with the same γ

• stochastically choose γ from a probability distribution

Each agent can move to 8 adjacent cells in the Moore neighborhood [28]
or decide to stay in his cell as is shown in Figure 2.2. The preference of the
destination cell is determined by the strategy for choosing the destination cell
described in Section 2.1.2.

GRID

The space in which agents move is a rectangular two-dimensional grid G ⊂ Z2

of width W and height H. Grid consists of cells, which position is (y1, y2) :
y1 ∈ {0, 1, . . . ,W − 1}, y2 ∈ {0, 1, . . . ,H − 1}. Agents cannot leave the grid
otherwise than through the exit placed on the border of grid. Corresponding
to real world the grid is not spherical and it is not possible for agents to move
from a cell on border and appear in a cell on the opposite side.

EXIT

Agents can leave the grid only through exit cell e placed on the border of the
grid. Exit has the lowest static potential S(e) = 0. In this thesis, only one
exit is considered. The moment when an agent moves to exit, he is removed
from the grid. In each time-frame, only one agent can move to exit.

12



2.1. Model definition

STEP

Evacuation is simulated in a sequence of m steps {s1, . . . , sm} executed by
model. Each step consists of several phases (see Section 2.2.2): selection of
destination cells, conflict solution, agent movement . . .In this thesis, terms
step and epoch are used interchangeably. The term step is used mostly dur-
ing theoretical explanation of the model and it’s components, while epoch is
mentioned in simulations and explanation of various phenomena during evac-
uations.

TIME FRAME

Continuous real life duration T of evacuation is divided to k time-frames
t = {t1, . . . , tk}. One step si of model takes l = [ti, ti+1] time. Time-frame ti
covers one step si of the evacuation process. Agents move in two-dimensional
grid in 8 directions. In this thesis, all agents have uniform inner time period
τ , which is the duration of nominal vertical or horizontal movement. The
movement in diagonal direction takes

√
2 times longer. To allow for more

periodic update,
√

2 is approximated by rational constant 3
2 [29] resulting in

duration of diagonal movement equal to 3
2 ·τ . Because all agents have identical

τ , one step of the model takes l = τ time. The model implementation can
assign heterogeneous τ to agents, but this would not contribute to the goal of
this thesis. Detailed description of heterogeneity in velocity of agents and the
impact on evacuation can be found in [29].

CELLS

Cell y is an element of grid G in position (y1, y2) : y1 ∈ {0, 1, . . . ,W − 1}, y2 ∈
{0, 1, . . . ,H − 1}. Each cell can be occupied at most by one agent at a given
time-frame. Agents can move in 8 directions to cells in Moore neighborhood
or decide to stay in the same cell. The choice of Von Neumann neighborhood
was rejected, because it does not allow agents to execute diagonal movement,
which is influenced by kD and thus essential. Cell y holds the value of static
potential S(y) ∈ R. For cell y and exit e in grid G is S(y) = L1(y, e) where
L1(y, e) is Manhattan distance [30] from cell y to exit e. The function of static
potential could be different, for example shortest distance to exit calculated
with Dijkstra algorithm. In this thesis rectangular room without obstacles is
considered, so L1 distance metric calculates shortest distance to exit.
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2. Realisation

Figure 2.2: Agent, white circle in the middle, can move in 8 directions ac-
cording to Moore neighborhood or decide to stay in his cell. The probability
of moving to individual cell is calculated by strategy for choosing destination
cell. Agents can’t enter cell occupied by other agent or leave the grid.

2.1.2 Methods

STRATEGY FOR CHOOSING DESTINATION CELL

In each step of the simulation, all agents calculate the attractivity of individual
cells in their neighborhood N . N is a set of adjacent cells to the cell occupied
by agent, and the occupied cell as well. Attractiveness or attractivity is used to
calculate probability P ∈ [0, 1], which is the probability of agent selecting this
cell as his preferred destination cell. The selection is executed in stochastic
manner. Value of attractiveness depends on strategy for choosing destination
cell.

In the equations below can be found following members: S(y) is a function
of static potential of cell y, where S(y) ≥ 0. Associated parameter kS is the
sensitivity of agent to the static potential of a cell. O(y) is the indicator of
occupied cell y. When y is occupied by an agent, O(y) = 1, otherwise it is
zero. Associated parameter kO is the sensitivity of agent to the occupancy
of cell. D(y) is the indicator of diagonal motion from agent’s origin cell x
to destination cell y. When y can be entered from x by diagonal motion,
D(y) = 1, otherwise it is zero. Associated parameter kD is the sensitivity of
agent to diagonal motion.
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2.1. Model definition

• Strategy A:
Strategy A was described by Pavel Hrabák and Marek Bukáček in Ar-
ticle [2]. Probability P of agent, who is in cell x, moving to adjacent
cell y ∈ N is:

P (y ← x | N) = exp(−kSS(y))(1− kOO(y))(1− kDD(y))∑
z∈N exp(−kSS(z))(1− kOO(z)(1− kDD(z)) (2.1)

The nominator is the attractivity of cell y to agent, which is normalized
with attractivites of other cells in N and thus can be used as probability.

• Strategy B:
Strategy B, introduced in this thesis, is more affected by the sensitivity
to the occupancy of cells kO. Probability P of agent moving to cell y
from cell x, is calculated from PO and PS .

P (y ← x | N) = kOPO(y) + (1− kO)PS(y) (2.2)

The term PO focuses on occupancy of cell. Notice the missing param-
eter kO in (1 − O(y)) which is different from strategy A. Term PO is
normalized across PO of neighbor cells from N .

PO(y) = exp(−kSS(y))(1−O(y))(1− kDD(y))∑
z∈N exp(−kSS(z))(1−O(z)(1− kDD(z)) (2.3)

The term PS takes into account the static potential S(y) and makes
the agent move in the correct direction to the exit, and the indicator of
diagonal motion D(y). Term PS is also normalized across neighbor cells
from N .

PS(y) = exp(−kSS(y))(1− kDD(y))∑
z∈N exp(−kSS(z))(1− kDD(z)) (2.4)

Figure 2.3 presents a situation, where agent A has blocked path to exit,
where agent B stands in the way. Cells are colored and numbered in correspon-
dence to the graph legend in Figure 2.4. Agent A calculates the probabilities
of transition to cells 0, . . . , 8 based on strategy for choosing destination cell.

Figure 2.4 shows the differences in probability distribution of moving to
cells in neighborhood N of agent A. This 100% stacked graph depends on
the parameter of sensitivity to occupancy kO on the x-axis. With lower kO,
the agent is more likely to enter an occupied cell. It can be seen, in both
strategies, that in low values, agent A is more likely to enter cell 7 (occupied
by agent B), whereas, in high values, he prefers to stay in his cell. The new
proposed strategy A in Subfigure (a) shows a more linear decomposition of
probabilities than in strategy B in Subfigure (b). With strategy B the value
of kO can be interpreted in more clear way. More figures with different values
for parameter of sensitivity to static field kS are found in Appendix B.2.
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Figure 2.3: Situation of two agents A and B. Agent B is blocking the exit for
the other agent.
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(a) New strategy B.
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(b) Old strategy A.

Figure 2.4: Comparison of strategies for choosing destination cell. Different
colors show probabilities of moving to cells in neighborhood calculated for
agent A in situation with blocked exit, see Figure 2.3. Numbering in legend
corresponds to cell numbering in Figure 2.3, Parameters: kS = 1.5, kD = 0.5.
On the left is the new strategy B, that produces more even probability distri-
bution of moving to adjacent cells. This way the impact of kO can be explained
in a more clear way.

AGGRESSIVITY

Aggressivity γ ∈ [0, 1] as agent parameter, defines the ability of agent to win
conflict. This term was introduced in research by Pavel Hrabák and Marek
Bukáček in Article [2]. Conflicts happen when two or more agents select same
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2.1. Model definition

cell as their destination cell. This thesis provides two strategies for solving
conflicts described below in Section 2.1.2.

There are various methods (see Section 2.1.1) to assign γ to n agents:

• assign aggressivity to all agents from a uniform distribution on interval
γ ∈ [x, y], x, y ∈ [0, 1] ∧ x ≤ y

• assign constant γ to disjunctive groups of agents

• combination of the previous two.

The γ values of agents are generally discretized to h : h ≤ n unique
values. When only h values are assigned to the agents, the conflicts occur more
frequently. If agents were assigned random values from continuous uniform
interval, the probability of two agents having the same γ would be zero.

BONDS

In every step si at most one agent can be present in a cell x. The principle
of bonds [29] is used in order to allow agent a1 in cell y1 to move to a cell
y2 occupied by agent a2 in following step si+1. Immediately when a2 leaves
y2 to move to other cell, a1 will enter now empty y2. This principle enables
the motion in lines within one algorithm step, which is desired phenomenon
of pedestrian flow [29].
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2. Realisation

STRATEGY FOR SOLVING CONFLICTS

Conflicts happen when two or more agents choose cell y as their destination
cell. There are two strategies for choosing winning agent.

• Strategy A:

From agents {x1, . . . , xk} an agent xj is chosen with γj = argmax1,. . . ,k
. If no other agents has same the aggressivity, agent xj wins the con-
flict immediately. If there are two or more agents with same highest
aggressivity a parameter of friction µ affects the conflict. With prob-
ability P = µ(1 − γj) none of the agents will enter the cell and they
will all remain in their positions. This event is called blocking event.
With P̄ = 1− P agent xj will enter the cell. Strategy A is explained in
detail in Article [2]. In Figure 2.5 are shown three possible outcomes of
a conflict.

Figure 2.5 shows all possible outcomes of conflict with three agents solved
by strategy A. The upper left scheme is the initial position of agents who all
attempt to enter the cell in the middle. Two agents have same γ1 and the
agent on the left has γ2. First possible solution of this situation is shown in
lower left corner when agent with γ2 > γ1 wins the solution and enters the
cell.

On the right is depicted a situation with two agents of γ2, and one with
γ1, who attempt to enter the cell in the middle. This situation, with strategy
A, can result in one of the two agents with γ2 entering the cell, as can be seen
in the bottom row on the sides. Also, all of the agents could end up staying
in their positions due to blocking occasion, as can be seen in the scheme in
the middle of the bottom row.

• Strategy B:

Strategy B is implemented to repress jamming. During the implementa-
tion and testing an unsolicited phenomena of jamming near bottleneck,
due to low aggressivity of agents, was discovered. To prevent jamming
the sensitivity parameter µ could be set to lower value but it will also
lead to lower number of desired blocking occasions in other parts of the
evacuation. When agents with low aggressivity ε � 1 get to conflict
situation, the probability of one agent winning the conflict is also very
low: P = µ ·(1−ε). This strategy selects the winning agent ai stochasti-
cally with probability Pi proportional to agent’s respective aggressivity
γi. Set of agents {a1, . . . , ak} with respective aggressivity parameters
{γ1, . . . , γk} produces for each agent ai a probability Pi = γi∑

j∈k
γj

.
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2.1. Model definition

Figure 2.5: Conflict solution for γ1 < γ2. Left: more aggressive wins the con-
flict over two less aggressive agent. Right: the conflict of two more aggressive
agents can resolve by the blocking of the movement. Taken from [2].

New proposed strategy B did not bring any new benefits as was noticed during
the testing of the model. The friction parameter µ affects the creation of
blocking occasion before the proportional probabilities of agents, based on
their aggressivity, can be taken into account. With strategy B jamming still
occurs. Because of this reason, further simulations performed on this model
use strategy A.

The goal of this thesis was to perform research on conflict-solution and im-
plement improved rules. The way in which conflicts are solved is significantly
affected by agents themselves who participate in conflicts. Which agent, and
where he gets in conflict, is hence part of the conflict solution and the new
proposed strategy A for choosing destination cell focuses on it.
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2. Realisation

2.2 Implementation

2.2.1 Tools

Python

Python is very popular programming language among data scientists [31] with
many packages that extend the functionality. The low learning curve and
intuitive approach determined Python as adequate tool for this project. Due to
popularity, practicality and frequent development of Python, implementation
of this model can be further researched, modified and extended as is the wish
of the author.

Mesa framework

Figure 2.6: Vizualisation of evacuation
in Mesa.

Agent-based modeling is a computa-
tional methodology used in social sci-
ence, biology, and other fields, which
involves simulating the behavior and
interaction of many autonomous en-
tities, or agents, over time [32].
My research of available agent-based
modeling frameworks revealed Mesa
as an up-to-date framework which is
currently used in many projects [33,
34]. This framework allows broad
customization: from discrete to con-
tinuous movement, synchronous or
asynchronous update and various
types of data collection. Data collec-
tions can be customized with popu-
lar data science packages [35]. To-
gether Mesa, Python, and other
packages (Numpy and Pandas [36],
Matplotlib [37]) create a flexible and
customizable environment that suits
the needs of this thesis.

Mesa framework allows progressing in the simulation with different speed
or by single steps, which is very helpful for examination of the course of the
simulation. Overview of the situation can also be demonstrated with real-
time graphs of data-collectors for various observed values. Figure 2.6 presents
a web interface for executing simulations in Mesa framework. This snapshot
depicts simulation with exit placed in the lower left corner and agents with
different colors and numbers. The colors represent inner state of the agent.
For example the agent, who lost conflict and remained in its position has blue
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2.2. Implementation

color. The number is the aggressivity of agent, that is also visualized by bigger
circle diameter for more aggressive agents.

2.2.2 Evacuation model

PModel

PModel is an object which executes all processes in the evacuation simulation.
PModel provides an interface for creating a model with specific parameters and
allows data exploration by accessing the data during and after the simulation.
Each model is assigned a pseudo-random number generators (PRNG) [38] ,
that are initialized with a seed. Different seeds in simulations generalize the
concept of evacuation while making it possible to replicate the results.

PAgent

PAgent represents a pedestrian agent in the simulation. Agents interact with
the environment by sensing and moving. Each agent holds his set of parame-
ters that calculate probabilities for destination cells. The strategy for selecting
destination cell in Section 2.1.2 can be selected. The processes of movement
in the model are strictly sequential. This approach allows line formation and
homogeneous movement of all agents.

The Mesa framework allows visualizing the course of the simulation. In
Figure 2.6 are displayed circles — PAgents — with a number showing the
aggressivity 100 · γ value and different colors, that represent inner state of
agents. To better understand the terms head bond, blocked agent and ex-
hausted agent, it is recommended to consult paragraph PSchedule in this
Section, where said terms are explained.

• Green is the default color.

• Red is the color of an aggressive PAgent — his γ is higher than 0.5.

• Violet, the head bond agent did not move.

• Blue is the color of blocked PAgent — blocking occasion occurred.

• Pink is the color of exhausted PAgent — out of time-frame due to
diagonal movements.

PCell

PCell is an atomic element in the grid that agent can enter. PCell determines
the selection of destination cell for agents trying to enter this cell and resolves
conflicts with stochastic probabilistic selection using PRNG G2. Strategy A
or B for solving conflicts in Section 2.1.2 can be selected. In Figure 2.6 we
can see rectangular tiles — PCells — in different shades of grey. The darker
the color, the lower the static potential S(y). Black tile is the exit.
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PSchedule

PSchedule orchestrates the sequence of steps in the simulation. Time in the
model is split into time-frames. Agents moving at different speeds (for ex-
ample because of diagonal movement) enter the sequence according to the
duration of their movement [29]. Each movement, also remaining in its po-
sition, updates the time when their movement ends according to τ . The
movement in diagonal motion takes

√
2 more time than orthogonal movement

hence the agent’s inner time period is increased by rationalized 3
2 of nomi-

nal orthogonal movement. Nominal orthogonal movement has duration of 1
time-frame, the timespan of one step in the simulation. One step can be split
into 4 phases: start, scan, solve, step. Object PSchedule executes phase start
first for a group of all PAgents and when all PAgents finished their phase, it
executes the same phase for all PCells. The remaining phases (scan, solve,
step) are executed only by PAgents. This order of execution delegates the
tasks of calculating probabilities of destination cells to PAgents and the task
of selecting destination cell and solving conflict to PCells.

A detailed description of each phase:

1. Start

• PAgent sets all his states (destination cell, color, head, tail) to
default. PAgent then calculates the attractivity of adjacents cells
based on the strategy for choosing destination cell. The destination
cell is chosen stochastically, and PAgent joins the queue of agents
attempting to enter this cell.

• PCell selects one agent from queue. If more than two agents are at-
tempting to enter this cell, a conflict occurs. PCell solves the con-
flict based on the strategy for solving conflicts described in Sec-
tion 2.1.2. PCell can create a blocking event when no agent enters
this cell. In that case, all agents are assigned the blue color. Oth-
erwise, it chooses a successful agent. That agent is then assigned
this cell as his destination cell and creates a head bond to an agent
occupying this cell if there is one. Also, the occupying agent cre-
ates a tail bond in direction to the successful agent. This is the
principle of bonds from Section 2.1.2, which allows agents to form
lines, and it is important for phase scan.

2. Scan

• If PAgent has no head bond, it means he can immediately enter his
destination cell, because it is not occupied, and he can move to this
cell. By moving to his destination cell, he left his former cell empty,
and signaled the tail bond agent attempting to enter his former cell
to move there. If the agent entering this phase has a head bond

22



2.2. Implementation

to an agent occupying his destination cell, he skips this phase and
waits for a signal from the head bond agent. PAgents that move
to an empty cell start a sequence of movements for agents in their
line by freeing their former cell.

3. Solve

• When PAgent was assigned a destination cell by PCell but head
bond agent in the destination cell did not move it is desired to
record this event for statistics. The color of PAgent is set to violet.
The time of the agent is updated. When the agent’s time after
moving is not in the interval of the next step, assign him the pink
color to display him as exhausted.

4. Step

• When a PAgent reaches exit, he is removed from the grid and
the schedule.

PGenerator

The deterministic run, useful for repeated runs, is achieved by generating the
model with same initial conditions and same probabilistic selections during
the evacuation.

Initial conditions (positions on the grid and generated parameter values
of agents) are created by deterministic PRNG G1 with seed s1. Two simula-
tions with different settings, for example different kS values, can be performed
with identical initital conditions, when using same seed s1. This way it is as-
sured, that different results of the simulation can be linked to difference in
parameters, and not accounted to the randomness in placing the agents on
the grid.

Secondary, the course of the evacuation is directly affected by the stochas-
tic selection in choosing destination cells and in solving conflicts. It needs to
be said, that it’s a desired feature, because it can model the randomness in
human behavior. To control the stochastic selection, generator G2 with seed
s2 is introduced. Generator G2 executes the stochastic selection in choosing
destination cells and in solving conflicts. G2 is isolated from generator G1,
they do not affect each other. Analysis of the model, for example SA, requires
repeated runs with same initial conditions, and with the same set of input
parameters. When a new seed s2 is assigned to G2 in each run, the outcome
of the simulation is varied, and generalizes the concepts in the model. Using
identical seed s1 for G1, the difference in results can be linked to difference in
input parameters, and not to the randomness of the model, even though the
randomness always increases variance in results.
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Chapter 3
Sensitivity analysis

This chapter presents research based on quantitative and qualitative analysis
of the input parameters. On one hand, the quantitative analysis measures the
influence of the individual input parameters on the simulation using sensitivity
analysis in OptiSLang software. On the other hand, qualitative analysis of the
model explains the observed structures, that form during the simulation, and
show how the parameters are linked together. The qualities of the model
were researched by observing running simulations and by statistical methods
of analysis.

3.1 Input parameters

The course of the simulation is affected by input parameters. Some input
parameters, such as number of agents n, size of the room W ×H, or location
of the exit, are not subject to calibration of the model as they correspond to
the real world setting and can’t be manipulated. The investigation of number
of agents n, however, can show how the model responds to the congestion
phenomenon — more agents are approaching the exit, respectively bottleneck,
than are being evacuated, respectively egressed, through the exit.

Individual agents are assigned different aggressivity parameter γ. With
higher value, the agent is more likely to win the conflict. The influence of γ
is described in Section 2.1.2.

Simulations in this thesis always assign γ to agents uniformly from the in-
terval [0, 1] with granularitym = 10, thus for all agents γi ∈ {0.0, 0.1, . . . , 0.9, 1.0}.
These values are generated by PRNG G1, initialized by seed I, which also gen-
erates the positions of the agents on the grid. All simulations and iteration
have seed I = 1245.

The sensitivity parameters (kS , kD, kO) are also input parameters. These
parameters are uniformly assigned to all agents (if not stated other), and
they affect their behavior, for example their solution of conflicts. Both the
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aggressivity γ and sensitivity parameters can be assigned uniformly to agents
in groups as can be found in simulation in Section 4.6.

The friction parameter µ is a global parameter of the model that affects
the stochastic occurrence of blocking occasions from conflicts. All simulations
in this thesis use the new strategy B for choosing destination cell, and the
unchanged strategy A for solving conflicts, because strategy B was ruled out,
as described in Section 2.1.2 and in Section 4.6.

3.1.1 Numeric intervals

In Equation (2.2) the sensitivity to occupancy kO, the sensitivity to diagonal
movement kD, and in conflict solution, the friction parameter µ, can be set to
values from interval [0, 1]. This interval can be studied using discrete values,
for example {0.0, 0.2, . . . , 1.0}, that cover the range. Contrary to this, the
sensitivity to the static field kS can be any positive real number and requires
different approach as will be described later.
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3.2 Observable quantities

Stochastic selection of destination cells and pseudo-randomness in solving con-
flicts presents a possibility to measure various values of agents and model sta-
tistically. Simulation of evacuation can be described as a sequence of epochs
(or steps, that consist of four phases) in which agents move in the room or
leave the room.

TOTAL EVACUATION TIME

Total evacuation time TTET is a time span from the start of evacuation
(epoch s1) to the moment when last agent leaves the room (epoch sk). Each
epoch takes t time [39].

TTET = k · t (3.1)

Agents start from different positions, so it is possible to measure speed vi
of agent ai:

vi = σi
∆ti

(3.2)

σi is the number of movements of ai, and ∆ti is the time span from the start
of simulation to a moment of ai leaving the room.

Average speed v̄ of all agents ai ∈ A:

v̄ =
∑
ai∈A vi

|A|
(3.3)

FLOW

Flow is the number of agents evacuating the room at a given time span. Total
flow Jtotal represents the flow of agents from the start of evacuation to the
end. Time span of Jtotal then depends on n which is the number of all agents
and T which is the duration of simulation.

Jtotal = n

T
(3.4)

The particular flow of agents with m agents that left the room in time span
from ti to tj :

∆t = tj − ti
Jij = m

∆t
(3.5)
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3.3 Methods of analysis

Sensitivity analysis of input parameters on total evacuation time is the main
contribution of this thesis. SA was performed on OptiSLang software de-
veloped by Dynardo GmbH in Germany. The graphs — 3D and COP —
exported from OptiSLang have the information of their origin in the caption.
Additional research, that started the moment when first versions of the evacu-
ation model were tested and the behavior of the model was observed, consists
of several quantitative and qualitative analyses. On one hand, quantitative
analysis presents it’s results in numbers and graphs, that root in data from
simulations. On the other hand, qualitative analysis focuses on understand-
ing the qualities of the model, on the connections between parameters and it
also focuses on explaining the preconditions that lead to specific phenomena.
Both domains, quantitative and qualitative, are aided by visuals created in
Matplotlib or in Mesa.

3.3.1 SA using MOP

To measure the contribution of individual input parameters on the variance in
TTET, OptiSLang uses Metamodel of Optimal Prognosis (MOP). The meta-
model includes Polynomial, MLS or Krigins model. At first, OptiSLang calcu-
lates the prognosis quality of each available model, (Polynomial, MLS, Krig-
ing) using Coefficient of Prognosis (COP) and then chooses the one with the
highest quality. Measuring the quality of each model takes a long time, hence
some simulations were allowed to use only polynomial and MLS model, as
these two models produce adequate results while keeping the computation
time reasonable.

As a result of the MOP, we obtain an approximation model, which includes
the important variables. Based on this meta-model, the total effect sensitiv-
ity indices, . . . , are used to quantify the variable importance. The variance
contribution of a single input variable is quantified by the product of the CoP
and the total effect sensitivity index estimated from the approximation model
[40]. COP(Xi) is variance contribution of single input variable Xi, that shows
how much Xi contributed to the approximated variance using MOP. When
MOP has COP 60%, it means that it was able to capture 60% of the vari-
ance in observed quantity. Some parameters can be related to each other and
the sum of individual parameters COP(Xi) can exceed total COP or even
100%. For example, in MOP with COP 60%, parameters X1 and X2 with
COP(X2) = 50% and COP(X2) = 20% individually contributed with 50%,
respectively with 20%, to variance in observed quantity.
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3.4 Simulations

At first, the simulations were observed on the Mesa framework web interface,
that is depicted in Figure 2.6. They were used mostly during implementation
of the model and in testing the new strategies.

Later, batch simulations on wide range of intervals were performed. All
simulations had the same model configuration of grid 15 × 15, exit placed at
border (0, 8) and same seed I = 1245 for PRNG G1, which assigns individual
values of aggressivity γ to agents and places them in the grid hence initial
conditions for all simulations and iterations were identical. Each iteration
had different seed J for PRNG G2, that solves conflicts and selects destination
cells. With different J seeds, the course of the simulation varies and can be
generalized.

The parameter kS can be any positive real number. The first simulations,
and later SA of kS on simulation S2, showed that TTET does not change sig-
nificantly for values higher than 5, hence this value was set as the upper range
of kS . The reason for setting the lower limit to 1.5 is extensively explained in
Section 4.2. The movement of agents with kS lower than 1.5 is erratic.

In the Table 3.1 are input parameters of simulations S2, S3, S4 for SA in
OptiSLang. Other analyses have configurations described in the text.

Simulation name
Parameters Step S2 S3 S4
iterations - 3 2 2
kS 0.1 [0.3, 5.0] [1.5, 4.5] {1.5, 3.0, 4.5}
kO 0.1 [0.0, 1.0] [0.0, 1.0] [0.0, 1.0]
kD 0.2 [0.0, 0.1] [0.0, 1.0] [0.0, 1.0]
µ 0.2 [0.0, 0.1] [0.0, 1.0] [0.0, 1.0]

Table 3.1: Settings for simulations in SA.

In the 3D and COP graphs exported from OptiSLang, the axes are re-
named, for clarity, with capitals S,O,D, F, T , and mean S = kS , O = kO,
D = kD, F = µ and T = TTET. 3D graphs approximate the TTET with
data from simulations and plot them on a plane. COP graphs shows how
much individual parameters S,O,D, F contribute to the variance in TTET.
The number in percent at the top of COP (for example on the right in Fig-
ure 4.2) shows how much variance in TTET was MOP able to capture.
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Chapter 4
Results

The results of SA in this chapter are explained by graphs from OptiSLang:
the 3D plot of TTET and COP of individual parameters. The discoveries of
qualitative analysis, such as linear dependency of TTET on number of agents
n, are depicted by other graphs, for example histograms or boxplots.

4.1 Number of agents n

It was expected, that the increase of total evacuation time TTET is linear
and depends on the number of agents n. Figure 4.1 demonstrates the linear
dependency of TTET on n.

The sensitivity parameters for blue boxplots are kO = 0.9, kD = 0.5, µ =
0.9 and for red boxplots kO = 0.9, kD = 0.5, µ = 0.1. Each simulation
was repeated 30 times with different seeds J for G2. Horizontal axis x is the
number of agents n in tens and vertical axis y is total evacuation time TTET.
The boxplots show the variance in TTET for each n. There are two graphs
with different kS ∈ {1.5, 3.5}.

In both figures, the simulations with higher friction µ = 0.9 show increasing
variance of TTET, because with more agents the conflicts occur more frequently
and this results in more blocking occasions. Contrary to this, the boxplots in
red, where µ is low, are rather consistent. These figures also demonstrate linear
dependency of TTET on number of agents. The slope of linear dependency is
influenced by other parameters, just as the variance in TTET.
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(a) kS = 1.5
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(b) kS = 3.5

Figure 4.1: Linear dependency of TTET on number of agents. Higher friction,
blue boxplots, increases variance of TTET. Two graphs with different kS show
linear dependency of total evacuation time on n, regardless of kS .
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4.2 Sensitivity to static field kS

The probability of choosing destination cell y is calculated from members PO
and PS in the new strategy B for choosing destination cell. Notice PS member
in Equation 2.4, which is replicated, for clarity, below:

PS(y) = exp(−kSS(y))(1− kDD(y))∑
z∈N exp(−kSS(z))(1− kDD(z))

For better demonstration, the member (1−kDD(y)) is left out from the edited
equation P̄S , where y is destination cell from neighborhood N for agent A in
cell x.

P̄S(y) = exp (−kSS(y)) · exp (kSS(x))∑
z∈N exp(−kSS(z)) · exp (kSS(x))

= exp (−kS(S(y)− S(x)))∑
z∈N exp(−kS(S(z)− S(x)))

(4.1)

The equation above leads to discovery of member P̄S being proportional to
exponential difference in static potential:

P̄S(y) ∝ exp (−kS(S(y)− S(x))) (4.2)

For cell y, which is closest to exit and has lowest S(y) from adjacent cells,
the relative attractivity (the right hand side of Equation (4.2)) grows expo-
nentially with increasing kS .

For example, Figure 2.4 shows agent A in cell y5 (cell will be noted x). A
calculates PS of cells y7 and y1, where S(y7) < S(x) < S(y1). As kS increases,
PS(y7) of cell closer to exit rapidly approaches 1. Opposite to this, PS(y1) of
cell with higher static potential decreases to zero with increasing kS .

The influence of kS can be very strong for high numbers, and marginal for
values lower than 1. It was noticed during the testing phases of the model
implementation, when the simulations with very low kS values lasted very long.
Visual examination of simulation exposed the erratic movement of agents that
did not progress to the exit.
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Figure 4.2 shows the 3D plot of approximated TTET, from simulation S2 in
Table 3.1, exported from OptiSLang. The black dots are the values of TTET
from the simulations. MLS model was selectedy by MOP. Because of long
computational time, Krigin model was not allowed. Vertical axis T is the
TTET, on horizontal axis F are values of friction µ and horizontal axis S holds
the values of sensitivity to static field kS . This graph shows very high TTET
for kS < 1.5.

In the same figure, on the right, is a graph with COP of individual parame-
ters. The COP(kS) is prevalent and other parameters have marginal values of
COP. This is because of undesired erratic movement of agents, that increases
TTET and it’s variance, when kS is lower than 1.5. In Figure 4.4 can be spotted
how TTET does not change much for values higher than 4.5. Because of these
reasons, the interval of kS was limited to [1.5, 4.5] in further simulations.

In Figure 4.2, the influence of µ on axis F might seem marginal, but, as
will be presented later, the friction parameter µ plays an important role in
the course of the evacuation.
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Figure 4.2: Left: 3D graph of total evacuation time, exported from OptiS-
Lang. Right: COP of input parameters, exported from OptiSLang. Data
from simulation S2. For kS < 1.5 the total evacuation time is erratic and
meaningless, which lead to limit of the range of kS to [1.5, 4.5].

In simulations with kS ∈ [1.5, 4.5], other parameters influence the simu-
lation more significantly, as can be seen in Figure 4.3 in COP graph on the
right. According to COP, the most significant parameter is friction µ, that
contributed with 48% to variance in observed quantity TTET. Formerly, the
most significant parameter was kS , with COP(kS) higher than 86%. Now,
COP(kS) dropped to 6%, on par with COP(kD). COP of MOP on the top of
the graph, is lower as well: was 88% and now is 67%. This can be explained
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with very high variance in TTET for kS < 1.5, which was attributed to kS . In
simulations with limited kS , the variance in TTET is lower.
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Figure 4.3: Left: 3D graph of TTET from OptiSLang. Right: COP of in-
put parameters, exported from OptiSLang. Data from simulation S3. With
limited range of kS , the COP of individual parameters, on the right, is well
distributed. Note: The angle of view is different compared to Figure 4.2, axes
F and S are switched.

SA of simulations S2 and S3 was performed using MLS model for MOP.
Krigin model was disabled because of high computational time. Further SA
on simulations S4 use Krigin model.
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4.3 Sensitivity to occupancy kO

Lower values of kO allow the agent to choose an occupied cell as his target cell.
At the start of the simulation, the agents are densely packed. The same applies
to the congestion, when more agents are approaching the exit (or bottleneck
in general), than are being egressed. In both situations, kO plays a role, as
agents near the exit, and agents on the border of the congestion cluster, can
choose empty or occupied cells.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
kS

80
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TET depends on kO and friction

kO=0.1, f=0.1, kD=0.5
kO=0.1, f=0.9, kD=0.5
kO=0.9, f=0.1, kD=0.5
kO=0.9, f=0.9, kD=0.5

Figure 4.4: Different sets of parameters kO, µ and how they affect TTET. Verti-
cal axis is averaged TTET from three simulations and horizontal axis is variable
kS . Lower kO and higher µ increase evacuation time.

The agents inside the cluster seldom move. Even if they choose an occupied
cell, when k0 6= 1, they can’t enter the cell, because in dense cluster the
occupant of said cell can’t move neither. With high kO, agents prefer to stay
in their cell, when adjacent cells are occupied. At the start of the evacuation,
with high kO, movement waves can be spotted, as is depicted in Figure B.1 in
Appendix.

Counter to this, low kO can create queue structures. Transition proba-
bilities, influenced by the strategy for choosing destination cell and low kO,
are much higher for cells closer to exit — cells with lower static field values.
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Agents are prone to ignore the empty cells on the sides of the queue and they
prefer to stay in the queue. Even though the movement inside the queue
is rather consistent, the total evacuation time increases. When a queue is
formed, two clusters are formed as well, one at both ends of the queue. This
can be noticed in Figure B.1 in Appendix. One cluster forms at the exit,
and because two or more agents attempt to enter the exit at the same time,
blocking occasions might occur and total evacuation time will be increased.
The cluster at the other end fills the queue and the agents inside it are mostly
stationary. If more agents were approaching the exit simultaneously, the total
evacuation time would be lower.

Figure 4.4 shows the characteristics of four constant parameters sets with
variable kS ∈ [1.0, 5.0] on x axis. Each set of parameters was simulated 100
times and the vertical y axis is the averaged TTET from these simulations.
Even though the lines are not very smooth, it needs to be said that the reso-
lution of TTET is high — TTET is in range from 80 to 125. All sets have the
same kD = 0.5.

The green line shows how parameters kO = 0.9, µ = 0.9 are affected by
kS . The relative position of the green line, compared to others, shows that by
allowing agents to overtake queue (high kO) and with low number of conflicts
(low µ), the evacuation times are the shortest (81 to 105 epochs). Contrary to
this, with same kO and higher µ = 0.9, the evacuations take longer (105 to 117
epochs) and the results for various kS vary a lot due to more frequent conflicts.
The remaining two sets have low k0 = 0.1, which minimizes overtaking, and
forces the agents to stay in queues.This results in longer evacuations. The
higher µ = 0.9 in the orange line is rough. It should be noticed, that with
increasing kS , the evacuations take longer than in the beginning (115 epochs
for low kS and 125 epochs for higher kS). In the end the total evacuation time
is increased with lower kO and it also increases with higher µ.

37



4. Results

4.4 Sensitivity to diagonal movement kD
Agent that moves to adjacent diagonal cells his time, when movement ends,
by 3

2 of nominal movement duration. At the start of the simulation, agents
closest to the exit have a free path, and move rapidly towards exit. Movement
in diagonal directions allows agents, that are not in a straight line from the exit,
to get there with less movements. However, they are penalized by increased
movement duration — after two diagonal movements the agents are exhausted
and do not move. Especially at the start of the simulation, with low kD, agents
can move in waves, as can be seen in Figure B.1 in Appendix B.1. Diagonal
movement is also useful when a queue or other congestion structure forms.
The agents can overtake the queue when they move diagonally.
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Figure 4.5: Left: 3D graph of TTET from OptiSLang. Right: COP of input
parameters, exported from OptiSLang. Data from simulation S4, kS = 3.0.
Compared to other parameters, influence of kD is marginal. Note: MOP
selected Krigin model.

Even though the microscopic behavior of agents can be significantly af-
fected by kD, the general effect on the TTET is marginal. Graph of COP in
Figure 4.3 shows that COP(kD) is very low (6%) with kS ∈ [1.5, 4.5] . Fig-
ure 4.5 presents 3D graph and COP, exported from OptiSLang, of simulation
S4 with fixed kS = 3.0, which is in the middle of kS interval described before.
It can be seen, that COP(kD) is low and the prevalent input parameter is
friction µ, with COP(µ) = 48%. The COP of MOP (65%) is similar to SA of
simulation S4 with other other values kS ∈ {1.5, 4.5}. The quality of approx-
imation is 65%, yet the sum of individual COP of input parameters exceeds
this value.
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4.5. Friction parameter µ
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Figure 4.6: Left: 3D graph of TTET from OptiSLang. Right: COP of input
parameters, exported from OptiSLang. Data from simulation S4, kS = 1.5.
Agents calculate transition probability to adjacent cells more evenly and are
more sensitive to input parameters. Note: MOP selected Krigin model.

4.5 Friction parameter µ

As was depicted in previous Figures 4.6 and 4.5, µ and kO have significant
contribution to variance in TTET. Friction parameter µ affects the number of
blocking occasions and that can increase the total evaction time. With higher
number of agents n, the blocking occasions occur more frequently, because
more agents create more conflicts. This results in increased variance in TTET,
as is demonstrated in Figure 4.1. The blue box-plots are simulations with
high µ = 0.9 and show increasing variance of TTET. Contrary to this, the
red box-plots, simulations with low µ = 0.1, show rather constant variance of
TTET with increasing n of agents.

For high kS = 4.5 the COP(Xi) of other parameters (kO, kD) is minimal
due to prevalent static sensitivity. However, µ has significant contribution to
variance in TTET as can be seen in Figure 4.7. When kS = 1.5, COP(µ) is
the lowest (10%) and increases with kS : for kS = 1.5, COP(µ) is 10%, then
with kS = 3.0, COP(µ) is 50%, and later, with kS = 4.5, COP(µ) is highest
at 59%. SA of input parameters on TTET for several constant values of kS
shows, that for different kS , COP(Xi) for individual input parameters are in
different order. For lower values of kS , kD and kO have higher COP than µ.
With high kS , µ has highest COP(µ) and other parameters have rather low
COP(Xi).

39



4. Results

59 % INPUT : F

14 % INPUT : O

5 % INPUT : D

Coefficients of Prognosis (using MOP)  full model: CoP = 63 %

100806040200 CoP [%] of OUTPUT : T

3
2

1
INP

UT
 pa

ram
ete

r
Figure 4.7: Left: 3D graph of TTET from OptiSLang. Right: COP of input
parameters, exported from OptiSLang. Data from simulation S4, kS = 4.5.
Friction µ has major influence while COP of kO, kD are minimized in response
to high kS . Note: MOP selected Krigin model.

4.6 Other discovery: heterogeneity in parameters

The evacuation model in this thesis can assign different parameters to in-
dividual agents from a uniform distribution, or assign different parameters
to groups of agents. Values are generated by PRNG G2 and are subject to
stochastic selection. To see how the model responds to homogeneous and het-
erogeneous parameters, simulations S6.1 and S6.2 were performed. In both
simulations grid 15 × 15 was used, with exit placed at (0, 8) and populated
with 70 agents. Simulations were repeated 1000 times,

First simulation S6.1 with set of input parameters kS = 2.0, kD = 0.5 and
low µ = 0.1. This simulation was, at first, run with homogeneous kO = 0.5 for
all agents. The blue histogram in Figure 4.8a shows distribution of TTET from
1000 iterations of this simulation. Most iterations, more than 300, resulted in
TTET ≈ 85 and all iterations had TTET ∈ [80, 96].

This simulation was then rerun, also repeated 1000 times, with heteroge-
neous distribution of kO. The 70 agents were split to two groups of 35. First
groups was assigned kO = 0.1 and second group k0 = 0.9, so the average kO
of all agents was 0.5, identical to the previous run. The orange histogram in
Figure 4.8a shows that this simulation resulted in shorter evacuations — all
iteration had TTET ∈ [80, 91].

Another simulation S6.2 was performed, this time with increased friction
µ = 0.9, other parameters remained unchanged kS = 2.0, kD = 0.5. Identical
to S6.1, simulation was repeated 1000 times — once for homogeneous and then
for heterogeneous kO of agents. Figure 4.8b shows that distribution of TTET
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for homogeneous kO, blue histogram, is similar to heterogenenous kO for two
groups of agents, orange histogram.
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(a) Simulation S6.1, low friction
µ = 0.1.
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(b) Simulation S6.2, high friction
µ = 0.9

Figure 4.8: Simulations with heterogeneous and homogeneous distribution of
parameter kO, repeated 1000 times. Blue histograms show TTET for homo-
geneous kO = 0.5. Simulations with two groups of agents with with different
kO = 0.1 and kO = 0.9 are captured in orange histograms.
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Conclusions

This thesis aimed to perform research of evacuation simulation models and
to analyze the process of conflict solution. The floor-field model, which was
an inspiration for model used in this thesis, uses two cellular fields: dynamic
and static field. The model has a set of input parameters, that influence the
behavior of agents in the model and the microscopic processes within (conflict
solution, choosing destination cell).

To perform said research on conflict solution and the influence of input
parameters, an agent based cellular evacuation model was implemented using
Mesa ABM framework for Python. Using agents, the model is able to capture
the collective motion of pedestrians during an evacuation. Individual agents
are autonomous and interact with each other. These interactions, mainly the
conflicts, are analyzed. The model consists of various components, that can
be further extended or customized.

During the implementation of the model, after observing the evacuation
process, a new strategy for choosing destination cell was proposed and imple-
mented. It affects the movement of agents and thus significantly impacts the
conflicts that emerge from these movements. Also, this strategy puts more
attention to the input parameter of sensitivity to occupation kO, which pro-
duces more evenly distributed probabilities of moving to adjacent cells and
thus kO can be interpreted more straightforwardly.

Additional outcome of the observations was a new strategy for solving
conflicts, that intended to prevent jamming occasions without lowering the
friction parameter µ. These occur when agents with identical low aggressivity
get into conflict — the probability of one of the agents winning the conflict
is low. After successful implementation and initial simulations and tests, this
strategy was abandoned as it did not bring expected results — the jamming
occasion are still present.

The model uses a stochastic selection for several processes in the simu-
lation. It is a desirable feature as it replicates the randomness in human
behavior. Due to variance in observed quantities (total evacuation time) with
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the same input parameters, it was necessary to analyze the contribution of
individual input parameters to the variance in TTET. This was achieved by
employing sensitivity analysis (SA) in OptiSLang software and by other aux-
iliary methods.

The results of SA show the contribution of individual input parameters to
the variance in total evacuation time. One concrete contribution of this thesis
is connected to sensitivity to static potential kS . SA of kS revealed, that low
values of kS < 1 produce erratic movement of agents, that degrades the course
of the simulation. On the other end, with increasing kS , for example kS > 4.5,
the influence of other sensitivity parameters kO, kD is marginalized.

Friction parameter µ showed consistent influence on the variance in TTET.
This parameter directly affects the number of blocking occasions, which in-
crease the total evacuation time.

The sensitivity to occupancy kO allows agent to choose an occupied cell as
his destination cell. The formation of certain structures (queues and conges-
tion cones) during the evacuation was linked to kO. These structures, when
present, can be connected to variance in TTET. Qualitative analysis of kO also
revealed, that parameters kO and sensitivity to diagonal motion kD affect each
other, as kD allows agents to overtake queues, which are formed with low kO.
Apart from this, SA showed, that the contribution of kD to variance in TTET
is marginal.

Other notable discoveries consist in analysis of number of agents n, and of
heterogeneity in parameters. Numerous simulations with variable n showed
that TTET is linearly dependent on n.

Other simulations examined the course of the evacuation with different
distribution of kO of agents. In simulations where all agents are uniformly
assigned one value of kO = a, total evacuation times are different than in
simulations, where two different values of kO are assigned to equally sized
groups and the average kO of agents in both groups is a. This discovery will
be further researched.
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Appendix A
Acronyms

SA Sensitivity analysis

CA Cellular automaton

ABM Agent-based model

MOP Metamodel of Optimal Prognosis

COP Coefficient of Prognosis

PRNG Pseudo-random number generator

TET Total evacuation time

MLS Method of least squares
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Appendix B
Further graphical output

B.1 Diagonal movement, waves

Frames Per Second

Current Step: 2

0 20

Figure B.1: Waves are forming at the start due
to low kD = 0 and high kO = 1. Pink agents
are penalized for repeated diagonal movement.

Mesa framework allows visu-
alization of evacuation with
individual agents, who have
color based on their situa-
tion. The grid consists of
rectangular cells, that have
darker color when closer to
the exit — according to the
L1 distance. Figure B.1
shows the formation of waves
at the start of the evacuation.
Agents are not allowed to se-
lect an occupied cell, k0 = 1,
and diagonal movement is al-
lowed, kD = 0. The first
wave of agents, closest to the
exit on the right in dark color
area, have pink color, as they
already advanced by two di-
agonal steps. Their inner
time period was increased by
2 · 3

2 = 3 in step 2 thus they
were not allowed to move in
step 3.
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B. Further graphical output

B.2 Strategies
for choosing
destination cell

In new proposed strategy B for choosing destination cell, parameter kO influ-
ences the selection of destination cell, which is more even, compared to old
strategy A. Graphs in Figure B.2 below are 100% stacked graphs of individ-
ual transition probabilities of adjacent cells in situation with blocked exit, see
Figure 2.3. The horizontal axis is variable k0 ∈ {0.0, 0.1, . . . , 1.0}. The legend
in the upper left corner assigns colors to cell numbers.
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(a) New strategy. kS = 2.5, kD = 0.5

0.0 0.2 0.4 0.6 0.8 1.0
kO values

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sit
io

n 
pr

ob
ab

ilit
y

Old strategy

0
1
2
3
4
5
6
7
8

(b) Old strategy. kS = 2.5, kD = 0.5
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(c) New strategy. kS = 3.5, kD = 0.5
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(d) Old strategy. kS = 3.5, kD = 0.5

Figure B.2: Comparison of strategies for choosing destination cell. On the
left are probabilities of adjacent cell calculated with new strategy B. On the
right are calculated using the old strategy A. The new strategy distributes the
probabilities more evenly.
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B.3. Congestion structures

B.3 Congestion structures

During the implementation of the evacuation model, certain patterns were
noticed, namely the formation of queues and cones at the exit.

In Figures B.3 and B.4 are two visuals. The heatmap on the left shows
the results from 100 iterations of simulation with grid 30×30, populated with
300 agents with exit placed at (0, 15) and homogeneous input parameters
kS = 2.5, kD = 0.5, µ = 0.7. From all iterations, the iteration M with longest
evacuation time TTET = m was selected. In epoch {1, 2, 3, . . . ,m} each cell
of the heatmap grid was assigned color based on number of iterations where
agent was present in that cell. At the start of the evacuation, epoch 1, all
iterations had agents in the same cells so they all had white color. Later
individual iterations moved agents to different places, and some cells were
occupied in more iterations than others. These frequent cells, where many
iterations placed their agents, had brighter color. Contrary to this, cells never
visited had black color. The colorbar on the right next to the heatmap shows
the resolution of agents occupancy in cells. The brighter the color of a cell,
the more agents were present in that cell in that epoch.

Frames Per Second

Current Step: 124

0 20

Figure B.3: Queue forms at the exit due to low kO.

The simulations with low kO = 0.1 produced heatmaps where kind of a
queue can be seen in Figure B.3. One concrete occasion of this phenomena is
on the right — visualization of one evacuation simulation in Mesa framework
with identical parameters to simulation mentioned before.
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B. Further graphical output

In comparison, with high kO = 0.9, the heatmap in Figure B.4 shows a
formation of a cone structure at the exit, where agents are clustered and wait
for evacuation. One the right is one instance of evacuation simulation in Mesa
framework, parameters are identical to the simulation with heatmap.

Frames Per Second

Current Step: 124

0 20

Figure B.4: Cone forms at the exit due to high kO.

B.4 Flow analysis

Three joint graphs in Figures B.5 andB.6 show the course of the evacuation.
The simulations were performed on a grid 15× 15, with exit placed at (0, 8),
with 70 agents. Input parameters kS = 2.5, kO = 0.5, kD = 0.5, µ = 0.7, 100
iterations were executed.

First two joint graphs depict the start of the simulation, up to epoch 33.
Below are two joint graphs that show the later stages of evacuation, from
epoch 62 to 95.

In the title of the graph is the current epoch of evacuation. One of three
graphs, the one in the upper left corner shows how many iterations were still
running in that exact epoch. First drop of running iterations can be seen in
the Figure B.6 on the right.

Following graphs is the heatmap of position of agents. The heatmaps are
explained in Section B.3. The brighter the color of a cell, the more iterations
placed agents in that cell.

The last graph of the three, is the average flow through the exit. The exit
can be enter by one agent at a time so the upper limit of flow is 1. As can be
seen in Figure B.5 on the left, at the start of the evacuation no agent are being
evacuated. Later, on the left in Figure B.6, is the stationary flow of agents
through the exit. This flow oscillates because in some iterations a blocking
occasion occurred at exit cell. Later can be noticed, in the same graph on the
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B.4. Flow analysis

right, how the average flow of 100 iterations decreases, when some iterations
already finished evacuation.
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Figure B.5: Start of the simulation.
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Figure B.6: Later stages of the simulation.
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Appendix C
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src...................the directory of evacuation simulator source codes
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format

59


	Introduction
	Goal

	State-of-the-art
	Pedestrian dynamics
	Cellular automaton
	Floor field CA

	Sensitivity analysis

	Realisation
	Model definition
	Components
	Methods

	Implementation
	Tools
	Evacuation model


	Sensitivity analysis
	Input parameters
	Numeric intervals

	Observable quantities
	Methods of analysis
	SA using MOP

	Simulations

	Results
	Number of agents n
	Sensitivity to static field kS
	Sensitivity to occupancy kO
	Sensitivity to diagonal movement kD
	Friction parameter 
	Other discovery: heterogeneity in parameters

	Conclusions
	Bibliography
	Acronyms
	Further graphical output
	Diagonal movement, waves
	Strategies for choosing destination cell
	Congestion structures
	Flow analysis

	Contents of enclosed CD

