FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Assignment of bachelor’s thesis

Title: Machine-learning prediction of terpene biosynthesis
Student: Roman Bushuiev

Supervisor: Tomas Pluskal, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering
Department: Department of Applied Mathematics
Validity: until the end of summer semester 2021/2022

Instructions

Plant specialized metabolites are an essential source of chemical scaffolds for the development of
new medicines. With tens of thousands of unique structures discovered to date, the largest and the
most diverse class of plant specialized metabolites are terpenoids. Terpenoids are produced by
terpene synthases, which cyclize isoprenoid diphosphate substrates into specific scaffolds. However,
only a tiny fraction of known terpene synthase enzymes have been characterized in detail. The
objective of the thesis is to develop machine learning models that can predict the chemical structure
of a terpene scaffold produced by a terpene synthase enzyme from the amino acid sequence of the
enzyme. These models will utilize previously characterized terpene synthase reactions for training.

Electronically approved by Ing. Karel Klouda, Ph.D. on 13 October 2020 in Prague.






FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Machine-learning prediction of terpene
biosynthesis

Roman Bushuiev

Department of Applied Mathematics

Supervisor: Mgr. Tomas Pluskal, Ph.D.

May 12, 2021






Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. Tom4as
Pluskal for providing an opportunity to work on such an exciting project. I
cannot imagine better supervision and I am happy to be growing under his
guidance. I also want to heartily thank Dr. Josef Sivic for the invaluable
pieces of advice and feedback regarding my thesis. I would like to express my
gratitude to Raman Samusevich for the regular, unforgettable conversations
about machine learning and the continuous feedback regarding my project.
Lastly, I want to thank Adéla Tajovska for the creation of the terpene synthase
database, which is fundamental for my thesis, and Joshua Smith for the great
help with English and writing.






Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No.121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 12, 2021



Czech Technical University in Prague
Faculty of Information Technology
© 2021 Roman Bushuiev. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Bushuiev, Roman. Machine-learning prediction of terpene biosynthesis. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.



Abstrakt

Biosyntéza v zivych organismech se sklddd z komplexnich transformaci mole-
kul katalyzovanych enzymy. Ackoli porozuméni témto biochemickym reakcim
je zasadni pro moderni medicinu a strojové uceni jiz prokdzalo svou té¢innost
pro rozlusténi velmi slozitych problému, predikce biosyntéz dosud nebyla stu-
dovana. Dokonce i pro dobre definované reakce, jako je biosyntéza terpent,
velmi malé mnozstvi dosud charakterizovanych reakci a komplikovanost je-
jich slozek délaji problém zdanlivé nefesitelnym. V této praci se zaméruji na
predikci biosyntézy seskviterpenti a navrhuji feSeni nejprve snizenim slozitosti
pomoci modelt strojového uceni predtrénovanych na rozsahlych databézich, a
nasledovné vyuzitim naucenych vlastnosti na feseni primarniho tikolu. Vysledky
ukazuji, ze tento pristup umoznuje pomérné dobrou predikci reakci biosyntézy
seskviterpenti s pouzitim jen 315 trénovacich vzorki, a predstavuje tedy slibny
smér pro dalsi vyzkum.

Klicova slova biochemie, terpen, biosyntéza, strojové uceni, Transformer,
Variational Autoencoder
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Abstract

Biosynthesis in living organisms consists of complex molecular transformations
catalyzed by enzymes. Even though deep understanding of such biochemical
reactions is essential for modern medicine and machine learning has already
proven its efficiency in unraveling complex tasks, the prediction of biosyn-
thesis has not been studied yet. Even for highly conserved reactions, such
as terpene biosynthesis, the relatively small amount of reactions character-
ized to date and the complexity of their components make the problem seem
infeasible. In the present work, I focus on the prediction of sesquiterpene
biosynthesis and propose a solution by first reducing the problem complex-
ity with machine learning models pre-trained on large databases and then
transferring the learned features to the primary task. Results show that the
introduced approach allows for reasonable prediction of sesquiterpene biosyn-
thetic reactions using only 315 training samples, which makes it remarkably
interesting for further study.

Keywords biochemistry, terpene, biosynthesis, machine learning, Trans-
former, Variational Autoencoder
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Introduction

Plant specialized metabolites are molecules, which are produced to increase
their survivability and fecundity. These compounds are an essential source of
chemical scaffolds for the development of new medicines. About 25% of cur-
rently produced drugs are directly derived from plants [I]. In the near future,
the most sustainable way to produce such molecules will be through biosyn-
thesis in engineered microorganisms. However, this approach demands a com-
prehensive understanding of the biosynthetic process of the target molecules,
which is a challenging task. Terpenes are the largest class of specialized
metabolites [2], therefore the ability to predict terpene biosynthesis would
be a step towards a new era of drug design. During terpene biosynthesis, ter-
pene synthase enzymes transform substrate molecules into more complex ones
— terpenes. The aim of my thesis is to predict a terpene molecule knowing
only the substrate and the enzyme. Terpene biosynthesis reactions are rela-
tively simple and conserved compared to other known biosynthetic pathways,
which allows studying them with computer science tools. However, the bio-
logical complexity and diversity of their components with the low amount of
up-to-date characterized reactions make solving the problem extremely hard.
Intricacy of enzymes and terpenes is overwhelming even for the traditional
computer science approaches.

Machine learning has been rapidly developing for the last decades and has
proven its efficiency in various challenging tasks. Nevertheless, even for the
machine-learning models, the problems may seem intractable as they require
large amounts of training data. Unfortunately, the number of characterized
terpene syntheses is less than one thousand leading to an extremely limited
set of training data. In this thesis I focus on the biosynthesis of sesquiterpenes
(terpenes containing 15 carbons), which constitute the majority of character-
ized reactions, and keep in mind further generalization to the whole class of
terpenes. To overcome the extreme lack of training data I simultaneously uti-



INTRODUCTION

lize two different unsupervised pre-trained machine learning models: one for
enzymes and one for sesquiterpenes. These models learn patterns and gen-
eral structures of complex objects by solving synthetic tasks such as guessing
masked parts of the input or learning optimal compression and decompres-
sion functions utilizing millions of data samples during the training. It allows
breaking down the overwhelming complexity and to operate on learned contin-
uous vectors instead of intricate objects. In the present work, I show that this
approach leads to promising results and despite the low amount of training
data it is able to capture biosynthesis reactions, which makes it very interest-
ing for further study.

Thesis structure

The thesis starts with introducing some basic biochemistry terms
and selected machine-learning models that are essential for my thesis. In
I outline the current state of the intersection between biochemistry
and machine learning and briefly describe several state-of-the-art approaches.
Next, I define the problem of terpene biosynthesis prediction by discussing
terpene biosynthesis, available data, and the objective of the work .
In the following, I present the methods I use for solving the problem
and in the subsequent I report the obtained results. Finally, in

I discuss plans for future work.

Mathematical notation

For convenience, I treat bit vectors in as sets, where each element
of the set represents bit index and it’s value. For example, the vector 101 can
be represented as the set of ordered pairs {(0,1), (1,0),(2,1)}. Then for such
set A, Ay is a subset containing only positive bits ({(0,1),(1,0),(2,1)}+ =
{(0,1),(2,1)}). T additionally define |A|, := [Ay| and |A], | = % for the
simplicity. Also, I use operator A for the symmetric difference of two sets
satisfying AAB = (A\ B) U (B \ A) and the operator x for the Cartesian
product, defined as A x B ={(a,b) |[a€ A N b€ B}.

Workflow

I have chosen Python 3 as a programming language, as it has a rich ecosystem
for the machine-learning and data processing. The main libraries I use are:
pandas [3] (data processing), NumPy (arrays numerical computations), scikit-
learn [4] (data analysis tools and machine-learning models), Matplotlib [5]
(visualizations), Keras [6] (neural networks), RDKit [7] (chemoinformatics),
Beautiful Soup [8] (web-scraping).



CHAPTER

Background

1.1 Biochemistry essentials

In this section, I would like to introduce some key biochemistry terms that
I will refer to in the following chapters, which are essential for the discussed
problematics. Biochemistry is a complicated science, so I will not be explaining
concepts in extraneous detail, but rather cover their understanding from the
perspective of the computer science domain.

1.1.1 Small molecules

A molecule is a compound made up of two or more atoms that are chemically
bonded together, while an atom is the smallest particle forming a chemical
element. All chemical elements have different properties that are often sum-
marized in the periodic table. The structure of a particular molecule can be
characterized by its atoms and bonds between them. It leads to the conclu-
sion that any molecule can be represented as a labeled graph, where atoms
and bonds are represented as nodes and edges, respectively, and additional
labeling mappings are defined for nodes and vertices to take atoms and bonds
nature into consideration. Such a representation is usually called structural

formula (Figure 1.1al). The figure shows a spatial graph representing (4R)-
limonene - a molecule belonging to the class of terpenes (Section 3.1)), it

commonly occurs in lemons and has a myriad of pharmacological activities,
including apoptosis of breast cancer cells [9]. Grey and white vertices corre-
spond to carbon and hydrogen atoms, and double edges correspond to double
bonds between atoms.

Molecules containing carbon-hydrogen bonds are named organic com-
pounds. Since they constitute the majority of known chemicals, it is conve-
nient to use a skeletal formula — a simplified planar graph representation
(Figure 1.1b)), where nodes implicitly constitute carbon atoms, but hydrogen

3



1. BACKGROUND

(a) Ball-and-stick represen- (b) Skeletal formula
tation

[H] [C@]1 (CCC (C)=CC1l)C (C)=C
(c) SMILES string representation

Figure 1.1: Different representations of the same molecule (4R)-limonene.

atoms are omitted. This adaptation does not affect the representation’s ex-
pressivity because hydrogens can be unambiguously filled based on common
chemical rules. A spatial arrangement of atoms, stereochemistry, is en-
coded in special types of bonds visualized as either dashed or solid triangles,
as is shown in These two types of bonds express opposite spa-
tial directions. In general, different types of bonds are of great importance
regarding the properties of a molecule.

A chemical formula of (4R)-limonene is CigH;4, which means that it
consists of 10 atoms of carbon and 16 atoms of hydrogen. This description
of a molecule is compact but far from complete, because plenty of molecules
have the same chemical formulas but different structures. Such molecules are
referred to as isomers. Moreover, isomers do not necessarily share similar
chemical or physical properties. Otherwise, this representation is useful for
providing the elemental composition of the molecule in a compact way.

Another widely used way to represent a molecule is a SMILES (Sim-
plified molecular-input line-entry system) string In terms of a
formal language theory, SMILES strings form a context-free language with
a generating grammar designed to uniquely encode molecules’ structures. It
has an easy syntax for both human and machine and is compact, which makes
this system suitable for storing large amounts of molecules and using them in
various applications.

4



1.1. Biochemistry essentials

1.1.2 Proteins

Proteins are large size molecules (macromolecules), formed of repeating struc-
tural units called amino acids There are 20 different amino acids
appearing in proteins, arranged in long sequences typically hundreds of units
long. These sequences fold into distinct 3D forms, determining their activity.
Proteins are present in all living organisms and are required for the structure,
function, and regulation of the cells, tissues, and organs, for which they are
usually called the building blocks of life.

For the majority of computer science applications, proteins are represented
as strings of characters, where each character corresponds to a particular
amino acid (for example, S — Serine, H — Histidine, M — Methionine, and
SO on; . Usually, proteins are visualized as 3D constructions ac-
cording to the geometry of their substructures as shown in

/Me

S H C M L
Serine  Histidine Cysteine Methionine Leucine

Figure 1.2: Amino acid sequence (single amino acids are highlighted in different
colors).

1.1.3 Enzymes

Enzymes are complex proteins catalyzing chemical reactions, during which
molecules (substrates) are being transformed to different molecules (products).
Such reactions are referred to as biosyntheses. It is important to mention
that some enzymes could act on different substrates or mediate in the creation
of different products.

As already mentioned, the topology of a protein determines its function.
In the case of enzymes, particular folding of an amino acid sequence enables
the enzyme to dock a substrate. Thus, it determines which substrates can be
accepted by an enzyme and how a catalyzing reaction will occur.
shows the formed connection between the particular amino acids of the en-
zyme (Glucosidase) and the substrate (sugar maltose) at the so-called active
(amino acid) residues. During the reaction catalyzed by Glucosidase enzyme,

5
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P
Proline

A
Alanine

G
Glycine

(c)
MGVRHPPCSHRLLAVCALVSLATAALLGHILLHDFLLVPRELSGSSPVLEETHPAHQQGA
SRPGPRDAQAHPGRPRAVPTQCDVPPNSRFDCAPDKAITQEQCEARGCCYIPAKQGLQOGA
OMGQPWCFFPPSYPSYKLENLSSSEMGYTATLTRTTPTFFPKDILTLRLDVMMETENRLH
FTIKDPANRRYEVPLETPHVHSRAPSPLYSVEFSEEPFGVIVRRQLDGRVLLNTTVAPLF
FADQFLQLSTSLPSQYITGLAEHLSPLMLSTSWTRITLWNRDLAPTPGANLYGSHPFYLA
LEDGGSAHGVFLLNSNAMDVVLQPSPALSWRSTGGILDVYIFLGPEPKSVVQQYLDVVGY
PFMPPYWGLGFHLCRWGYSSTAITRQVVENMTRAHFPLDVQWNDLDYMDSRRDFTEFNKDG
FRDFPAMVQELHQGGRRYMMIVDPAISSSGPAGSYRPYDEGLRRGVEFITNETGQPLIGKV
WPGSTAFPDFTNPTALAWWEDMVAEFHDQVPEFDGMWIDMNEPSNFIRGSEDGCPNNELEN
PPYVPGVVGGTLQAATICASSHQFLSTHYNLHNLYGLTEAIASHRALVKARGTRPFVISR
STFAGHGRYAGHWTGDVWSSWEQLASSVPEILQFNLLGVPLVGADVCGFLGNTSEELCVR
WTQLGAFYPFMRNHNSLLSLPQEPYSFSEPAQQAMRKALTLRYALLPHLYTLFHQAHVAG
ETVARPLFLEFPKDSSTWIVDHQLLWGEALLITPVLOAGKAEVTGYFPLGTWYDLQTVPV
EALGSLPPPPAAPREPATHSEGOQWVTLPAPLDTINVHLRAGYIIPLQGPGLTTTESRQQP
MALAVALTKGGEARGELFWDDGESLEVLERGAYTQVIFLARNNT IVNELVRVTSEGAGLQ
LOKVTVLGVATAPQQVLSNGVPVSNEFTYSPDTKVLDICVSLLMGEQFLVSWC

(d)

Figure 1.3: Different representations of the same protein Lysosomal alpha-
glucosidase. (a) Visualization based on the geometry of local substructures (sec-
ondary structures), color fades along with the sequence of amino acids; (b) ball-
and-stick visualization showing single atoms, colors display different amino acids; (c)
zoomed visualization (b) revealing three particular amino acids; (d) amino acid se-
quence string representation, where each character corresponds to a particular amino
acid. Source - UniProt [10]: https://www.uniprot.org/uniprot/P10253.

6
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Maltose substrate

r ¥

Glucose products

Figure 1.4: The enzyme Glucosidase converts the sugar maltose into two glucose
sugars. Active site residues are in red, maltose substrate is in black, and NAD cofactor
is in yellow. Reproduced from Wikipedia.

the substrate is divided into two discrete products. As seen in[Figure T.4]some-
times, enzymes additionally require helping molecules to be able to catalyze
reactions. Such molecules are termed cofactors. Intermediate products
are molecules produced during the conversion of substrates to products.

1.2 Selected machine learning models

As described in the previous section, biosyntheses are complex transforma-
tions driven by small intricate molecules and complex enzymes. Traditional
biochemistry computational approaches usually include large database screen-
ing or brute-force alike searches in molecular spaces, which are often time-
consuming and extremely limited. At its core, machine learning models typi-
cally extract significant features from objects having a large amount of training
data, which reduces their complexity and focuses only on desired properties.
I assume that the reader is familiar with basic concepts of machine learning.
In this section, I directly introduce two types of models, which are essential
for my work and allow me to significantly reduce the complexity of terpene
synthases and terpenes.

1.2.1 Transformer

Real world data is full of sequences. For example natural language can be
represented in a form of word sequences, in addition to, all the terms figuring

Yhttps://en.wikipedia.org/wiki/Enzyme
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Output
Probabilities

Linear

(. )
Add & Norm
Feed
Forward
4 | \ | Add & Norm z
AN N Mult-Head
Feed Attention
Forward ) Nx
— |
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f->l Add & Norm | Masked
Multi-Head Multi-Head
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— J \ — )
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Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1.5: The Transformer — model architecture. Reproduced from [IT].

in the central dogma of molecular biologyE] (DNA, RNA and protein) are
also sequences. Natural language processing is one of the foremost fields of
machine learning, because such tasks as translation or text summarization
occur every day. Rapid development of this field has led to the emergence of
Transformers [I1], models currently achieving state-of-the-art performance in
various applications on sequences.

Similar to the best earlier sequence to sequence models, the Transformer
consists of two main parts: encoder and decoder. However, Transformer does
not contain any recurrent layers, which permit recurrent neural networks to
process sequences item by item. Instead, they are replaced with attention
layers, which among other benefits, allow parallelizing of the model in a much

'“DNA makes RNA, and RNA makes protein” (https://en.wikipedia.org/wiki/
Central_dogma_of_molecular_biology)
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faster training process. shows the architecture of the Transformer.

At first, a sequence item passes through embedding layers (Input Embed-
ding), where it is being converted to a vector of real numbers, for example,
with the use of word2vec [12]. The model does not have recurrent layers, but
there is a need to provide information about input sequence order. Therefore,
the vector is summed up with another vector of the same length, thus en-
coding the relative position of the item within the whole sequence (Positional
Encoding). There are different possible choices of this vector, and it can be
either fixed or learned, but in the original paper [I1], the authors propose
to construct a fixed vector by utilizing trigonometric functions. There are
sinusoids with different frequencies assigned for all the vector dimensions, and
the positional encoding vector is obtained by passing the item’s position as
an argument to each sinusoid. This approach allows expressing the relative
position independent of the vector length, differentiating relative positions by
comparing sinusoids’ values at certain positions. It was shown that this en-
coding is easy for the model to learn. Processed by these two operations, the
vector is ready to proceed to the encoder. The encoder consists of N (6 in
the original paper) consequently connected identical blocks, each containing
a multi-head attention mechanism (Multi-Head Attention) and a regu-
lar feed-forward neural network (Feed Forward). Attention is a key feature
of the Transformers. It allows considering the relation between words within
sentences or contacts between amino acids within proteins. All the vectors
corresponding to the items of the input sequence can be packed together as
rows of some matrix X. Then the scaled dot-product attention can be formally
defined in terms of three matrices Q = XW9, K = XWX and V = XWV |
where W®, W and WV are being learned during the training:

Attention(Q, K, V') = softmax( QKT)V (1.1)
, K TV .

Rows of the @, K, and V are referred to as query, key, and value vectors, and
dj, is the length of key vectors. Matrix QK7 contains dot products of every
query vector with all the key vectors in its rows, which can also be interpreted
as attention measures between all pairs of items. Notice that, despite the dot
product being symmetric, the attention measure is not symmetric regarding
the original embedding vectors due to the distinct W® and WX matrices.
Additionally, all the values are divided by 1/dj to avoid extremely low gra-
dients after applying softmax functionﬂ on every row, which normalizes the
values, making them positive and sum up to 1. Finally, V' is multiplied by

the softmax(Q—KT), which means that the output matrix of the attention func-

Vi
tion contains sums of value vectors weighted by the obtained attention scores

2The softmax function o : R" — [0, 1]" is defined by the formula

o(2)i ::Wforiz1,..47nandz:(z1,...,zn)GR"

j=1
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in its rows. It is important to mention that this mechanism allows for cap-
turing long-range interactions between sequence items as easy as short-range
ones. This is a problem for the classical recurrent neural networks because
long-range information simply vanishes during the backpropagation pass.

Multi-head attention is a combination of several scaled dot-product atten-
tions, where each one is computed in parallel. All the output matrices are
concatenated together and multiplied by another learned matrix:

MultiHead(Q, K, V) = Concat(heady, ..., head;) W (1.2)
where head; = Attention(QWiQ, KwWE vw}). (1.3)

h is a number of attention heads, Concat is a matrix concatenation, and
WO is learned during the training. As is seen in both multi-
head attention and feed-forward stacks are followed by the residual connection
[13] and normalization [14] (Add & Norm) and are provided to simplify the
optimization problem and to decrease the training time. The decoder part
of the transformer is very similar to the encoder but has some significant
changes. The decoder subsequently constructs the output sequence by having
so-far decoded sequence on the input and utilizing the encoder output to
create query and key vectors in the additional multi-head attention block.
Also, the first attention layer masks undecoded positions of the sequence and
considers only the decoded part. In each step, after the decoded vector is
calculated, there is a need to get the desired output from the obtained vectors
(for example, a word or an amino acid). Thus, for each item, the linear layer
(Linear) predicts a vector of all possible outputs’ scores, and the following
softmax layer (Softmax) converts them to probabilities. Then the item with
the highest probability is chosen as the final output of the decoder.

There are many different ways to train the Transformer end-to-end, but I
would like to emphasize self-supervision, where some random items of the
input sequence are masked, and the model learns to predict these items. This
process allows producing a great deal of training data without having any
labels. During the training process, the model extracts patterns and features
of the sequences so that such a pre-trained model can be further used in various
applications. Notice, two facts that encourage this type of training: (i) the
Transformer’s capacity is extremely high as it is a deep and complex model,
which means it is designed to be trained on vast datasets, (i7) the Transformer
is optimized to perform relatively fast training.

1.2.2 Variational autoencoder

Autoencoder is a fully-connected neural network of a symmetric bottleneck
diagram that has a dimensionality of a middle hidden layer lower than the

10
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Encoder Decoder

Figure 1.6: Variational autoencoder — example of the architecture with five-
dimensional input and two-dimensional code.

input dimensiorﬂ This type of models is trained on the data x in an unsuper-
vised manner by encoding the data to the lower dimensionality z = f(x) and
subsequently decoding it back to the original one & = g(z), where f and g are
encoder and decoder respectively. The loss function, L(z,#) = L(z, g(f(x))),
is simply a measure of the difference between the original data samples and
their decoded versions. In the typical application, one is not interested in
the restored input Z, but in the learned low-dimensional representations z
(latent vectors or code), as to compress and decompress the data, autoen-
coder should learn significant data features stored in the code. It makes the
models efficient for such tasks as dimensionality reduction or feature extrac-
tion. However, a space of all latent vectors (latent space) is usually formed
from separated sparse clusters containing similar input objects, which is nat-
ural because such distribution facilitates minimizing the loss function. But
suppose that the learned space is represented as a single pre-defined manifold,
such that each vector from this manifold can be decoded back to the mean-
ingful object of the original dimensionality. For example, a manifold of small
molecules would allow discovering novel compounds by performing simple op-
erations on its vectors. Variational autoencoders [16] (VAE) perform this
by learning a latent space in a probabilistic manner and thus are known as
efficient generative models.

Instead of directly learning latent vectors, VAEs learn parameters of the
normal distribution A (u,0?) corresponding to each element, and elements of

3Such autoencoders are referred to as Undercomplete autoencoders. Sometimes autoen-
coders’ code has higher or equal length than the input, but such variants are not important
regarding this section. For more details about autoencoders, see for example [I5, Chapter
14]
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1. BACKGROUND

the latent vectors are being sampled from these distributions .
It forces the learned space to be a continuous manifold, as even the same
data sample can be encoded to different vectors, which are bounded by o
distances from the p values vector. However, this improvement itself is not
enough to obtain a manifold with good properties, because the model can
learn different mean values and close-to-zero variances, which would make
it similar to the classic autoencoder. To avoid this problem, one can force
the model to learn, for example, standard normal distributions N (0, 1) which
can be formally expressed in terms of the Kullback-Leibler divergence (KL
divergence) regularization added to the loss function

Lz, &)+ Y Dxu(pi(zlz) || N(0,1)), (1.4)

ie{1,...,n}

where n is a length of the latent vector, p;(z|x) is a probability density of
the learned distribution corresponding to the ith element of the latent vector
and KL divergence for two continuous probabilities P and () is defined as

Dk (P || Q) = [25 p(x)log (%) dz. Such restriction also forces the training
latent vectors to have low norms, so they all are localized near the center of the
space. Lastly, sampling from the learned distributions makes the backward
pass during the training impossible. Thus, a so-called reparameterization trick
is employed, which still consists of learning u; and o; parameters, but obtaining

2; as z; = p; + 0;€;, where ¢; is sampled from the AV'(0,1) and 7 € {1,...,n}.
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CHAPTER 2

Related work

Despite the fact that biochemistry arose in the 19th century [17] and machine
learning is being actively developed for the last decades, the application of
machine learning in biochemistry is still immature. Present work is centered
around the machine-learning prediction of biosynthesis, which has not been
studied yet. However, in this section, I will discuss works that employ similar
methods or data that I use to describe the current state of the intersection
between two disciplines.

On the 30th November 2020, DeepMind posted a blogﬁ called ”AlphaFold:
a solution to a 50-year-old grand challenge in biology”, which states that the
machine learning model learned to predict 3D structures of proteins from the
amino acid sequence with a high level of accuracy . Biologists
can employ the model as a core tool in their scientific research. This break-
through proves that the employment of machine learning for biochemistry
tasks is timely and worth studying. The described work is highly relevant for
my thesis, as the enzyme 3D structure determines its activity and strongly
affects the product of a biosynthesis reaction. Although the AlphaFold is
not published yet, there are other works studying protein properties from the
amino acid sequences. They usually employ machine-learning on models self-
supervised pre-trainied from vast databases (millions of sequences) and trans-
ferring them to a downstream task. For example, study of Strodthoff et al.
[18] shows high performance level of the pre-trained Long short-term memory-
based [19] model on the three prototypical classification tasks: enzyme class
predictiorﬂ remote homologyﬁ detection and gene ontology prediction [20].
Another study by Rivese et al. [21] shows the ability of the pre-trained Trans-

“https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-
grand-challenge-in-biology

https://science.umd.edu/classroom/bsci424/BSCI223WebSiteFiles/
ClassesofEnzymes.htm

5Shared ancestry in the evolutionary history of life
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2. RELATED WORK

T1037 / 6vr4 T1049 / 6yaf

90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

® Experimental result

® Computational prediction

Figure 2.1: AlphaFold predicts highly accurate structures measured against exper-
imental result. Reproduced from the DeepMind blog.

former [I1] to learn the information about organizing principles and intrinsic
biological properties of the proteins. Machine learning also shows promising
results in protein redesign, which involves the development of new proteins
with improved properties. Such mutations result in many changes in the pro-
tein amino acid sequence that are sometimes difficult to characterize. The
number of possible changes is astronomical, so it is challenging to find the
functionally interesting mutations. Study of Xu et al. [22] proposes a convo-
lutional neural network that can assist in this task by searching for proteins
with specific properties.

Terpenes are small molecules and are not represented as sequences of re-
peating fragments like proteins. Although the prediction of their biosyntheses
has not been studied yet, there are other researches involving applications of
machine learning on small molecules. For example, the work of Stokes et al.
[23] shows a novel machine learning method for the discovery of new antibi-
otics. They utilized a recently developed Graph convolution neural network
(GCN) and trained it to predict whether a given molecule inhibits the growth
of E.coli bacteria. Subsequently, databases of molecules were screened, and
the best candidate was tested in vivo on mice. Experiments showed that the
molecule is effective not only against FE.coli but can be considered as a broad-
spectrum antibiotic (it was named halicin). The work of Gomez-Bombarelli
et al. [24] describes the Variational Autoencoder (VAE) that learned a con-
tinuous space containing vector representations of molecules by encoding and
decoding millions of synthetic compounds from the large ZINC database [25]
. It allowed to automatically generate novel chemical structures
by performing simple operations in the learned space, such as decoding ran-
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Figure 2.2: (a) A diagram of the Variational autoencoder for molecular design,
including the joint property prediction model. Starting from a discrete molecular
representation, such as a SMILES string, the encoder network converts each molecule
into a vector in the latent space, which is effectively a continuous molecular repre-
sentation. Given a point in the latent space, the decoder network produces a corre-
sponding SMILES string. Another network estimates the value of target properties
associated with each molecule. (b) Gradient-based optimization in continuous latent
space. After training a surrogate model f(z) to predict the properties of molecules
based on their latent representation z, we can optimize f(z) with respect to z to find
new latent representations expected to have high values of desired properties. These
new latent representations can then be decoded into SMILES strings, at which point
their properties can be tested empirically. Reproduced from [24].

dom vectors, perturbing known chemical structures, or interpolating between
molecules. The learned space of VAE can also be used to measure a molecular
similarity, which is a core problem of chemoinformatics [26]. Finally, I want
to emphasize the work of Eguchi et al. [27] as it utilizes an approximately
equal number of training data as I have used in my thesis. Furthermore, they
utilized alkaloids, which are similar to terpenes. Authors trained a GCN to
classify alkaloids by the starting substances of their biosynthetic pathways and
the model achieved an accuracy of 97.5%. The classification task is much eas-
ier than generation of molecules, but still, the work has many similar aspects
to the present one.
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CHAPTER 3

Problem definition and dataset

In this chapter, I define the problem studied in this thesis. First, I discuss
terpenes and their biosynthesis. Second, I analyze a dataset of characterized
terpene biosyntheses, which forms a base for me to expand on. Finally, I
formulate an objective of the present work.

3.1 Terpene biosynthesis

Terpenes are a diverse and significant class of organic compounds from
plants. They are volatile and produce odors that discourage herbivores or
insects from attacking the plant and in general, are unappealing to their
predators. The essential oils of many plants, flowers, and trees, are made
up of terpenes and their related compounds [2§].

Terpenes are simple molecules made up only of carbon and hydrogen atoms
and derived from isoprene units forming chains, branches, or cycles. Depend-
ing on the number of isoprene units, terpenes are classified into distinct cate-
gories. Most common are monoterpenes (2 isoprene units), sesquiterpenes
(3 isoprene units), diterpenes (4 isoprene units) and triterpenes (6 isoprene
units). Terpenes satisfy the chemical formula (CsHg),, where C5Hg is a chem-
ical formula of an isoprene unit and n corresponds to the number of units.
shows structural formulas of isoprene and some particular terpenes
belonging to different classes. When terpenes are modified, such as by at-
tachment of an oxygen or rearrangement of the carbon atoms, the resulting
compounds are generally referred to as terpenoids. Despite the chemical dif-
ference between compounds, these terms are sometimes used interchangeably.

Terpenes have various medical uses. shows different types of
terpenes along with some examples of their usage in medicine. Antimicrobial
properties or the ability to kill or stop the growth of a microorganism has
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3. PROBLEM DEFINITION AND DATASET

S

isoprene fenchane O-guaiene
(monoterpene) (sesquiterpene)
H
H
kaurane gammacerane
(diterpene) (triterpene)

Figure 3.1: Skeletal formulas of isoprene (the bulding block of terpenes) and selected
terpenes belonging to different classes.

Classification Carbon Species Medicinal uses References
atoms produced

from

Monoterpenes  Cy Quercus Fragrances, repellent Loreto et al.
ilex [29]

Sesquiterpenes  Cyj Helianthus  Treat malaria, treat bacterial Chadwick et
annuus infections, and migraines al. [30]

Diterpenes Cyo Euphorbia,  Anti-inflammatory, cardiovas- Vasas and
salvia cular diseases Hohmann [31],
miltiorrhiza Zhang et al.

52

Triterpenes Csp Centella Wound healing, increases cir- James and Du-

asiatica culation bery [33]

Table 3.1: Different types of terpenes and their pharmaceutical properties. Repro-
duced from [34].

been seen in these compounds. Also, they are commonly used in traditional
and modern medicine [35]. Terpenes are widely acclaimed for their anticancer
activity. An early 1997 study concluded that a combination of monoterpenes,
diterpenes, and sesquiterpenes can effectively be used to treat cancers that
occur in the colon, brain, prostate gland, and bones [34]. Researches also
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3.1. Terpene biosynthesis

CH3 HsCyy,,.
o
X X X Oo.o CHs
Hi CHs
Farnesyl SvS-A2 Spiroviolene
pyrophosphate (enzyme) (sesquiterpene)

(substrate)

Figure 3.2: Biosynthesis of the sesquiterpene spiroviolene. Enzyme structure is
reproduced from [3§].

show that some terpenes possess antiviral activities |36, [37].

Terpene biosynthesis is the key subject of this work. Compared to other
enzymatic synthesis, these reactions are relatively strict and defined, which
motivates studying them with machine learning methods. In general, they
are derived from simple substrates, formed as plain carbon sequences with a
pyrophosphate at the end (for example, geranyl pyrophosphate or farnesyl py-
rophosphate@. During the synthesis, the pyrophosphate is being detached and
the rest of the substrate is being cycled to a more complex terpene molecule
. Typically, these reactions are not straightforward and clear,
because terpene biosynthesis usually consists of multiple steps and may have
several exceptions. The majority of terpenes share the same substrates among
their types. For example, almost all the sesquiterpenes are derived from the
farnesyl diphosphate, but some enzymes can produce sesquiterpenes from other
substrates. Although the terpene chemical formula is strictly defined, some
enzymes require additional HyO cofactors in order to catalyze a reaction, re-
sulting in the additional oxygen atoms in the productﬂ Further, some terpene
synthases can produce multiple of different compounds, but others — only a
single one. Such compounds usually differ in the types of bonds or the number
of bonds and atoms present, the number depending on the compared reaction.

Regarding my task, I focus on three main components of a terpene biosyn-
thesis: substrate, enzyme, and product (terpene). While substrates can be
distinguished as just categories — because they strongly correlate with prod-
uct terpene types and their exact molecular structures are relatively simple
— terpene synthases and product terpenes are extremely complicated objects.
Terpene synthases are sequences typically consisting of 400 to 800 amino acids
and the whole sequences do not possess any simply interpretable semantics,
which means that their complexity cannot be easily reduced. Terpenes are

"See, for example Figure 2.
8See, for example, https://www.uniprot.org/uniprot/AOA1DEEFTS!
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3. PROBLEM DEFINITION AND DATASET

represented as intricate skeletal structure graphs on tens of vertices or com-
plex SMILES strings encoding their structural features in tens of characters.
Biosynthesis prediction implies a generation of such graphs or SMILES strings
from a substrate and an amino acid sequence on the input. The number of
possible amino acid sequences of length 600 is equal to 20%°° and according to
the MOLGEN [39] software estimation only the number of sesquiterpenes is
larger than 61,101,340 (number of possible C;5H,, isomers). This means that
the core problem is to find a mapping between two immense spaces.

3.2 Terpene synthases database

The basis of the work is a comprehensive database of exhaustively manually
collected characterized terpene syntheses referred to as the TPS database.
All the belonging terpene synthases were manually collected from the UniProt
[10] database and the products were referenced in ChEBI [40] and PubChem
[41] databases. Training data is a cornerstone of machine learning; however,
the database contains only 750 entries. Therefore, I would like to describe it
more in detail to form a better understanding of the problem. Each entry of
the dataset corresponds to a particular biosynthesis reaction and has 13 string
features that are explained in the following list with examples in brackets:

Uniprot ID Terpene synthase Uniprot database ID (B5HD.J6)

Name Terpene synthase name (Selina-4(15),7(11)-diene syn-
thase)

Amino acid Terpene synthase amino acid sequence (MEPELTVP

sequence PLFSPIRQAIHP...)

Species Latin name of a species, in which biosynthesis passes

(Streptomyces pristinaespiralis)

Kingdom Kingdom which a species belongs to (Bacteria)

Type Product terpene type (mono-, di-, sesquiterpene...)
(sesq)

Substrate Biosynthesis substrate shortened IUPAC name ((2E,6E)-
FPP)

Cofactors Cofactors required for the enzyme’s activity (H20)

Name of Name of intermediate product of a synthesis ((+)-

intermediate copalyl diphosphate)
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3.2. Terpene synthases database

SMILES of SMILES string of intermediate product (/H//C@@]1(CC
intermediate C(C)=CC1)C(=C)ccec=C(C)0)

Name of product Names of product terpenes separated with semicolon
and sorted by the natural abundance rate (7-epi-ent-
eudesmane-5,11-diol)

Chemical formula  Chemical formula of product terpene
of product (C15H24)

SMILES of product SMILES strings of product terpenes separated with
semicolon and sorted by the natural abundance rate

([c@aj12([c@aj(CCC/CaaH]1C)(CC/CaH](C2)C
(0)(C)C)C)O)

Such features as Name, Species, Name of intermediate and Name of product
are valuable for a human but do not provide useful information for a machine
learning algorithm. Thus, I do not use them in my work. Feature Kingdom
can be helpful for some applications, but it is not relevant for my task. There
are three features that reflect the specificity of a reaction and are present in
only a portion of the entries: Cofactors, Name of intermediate and SMILES
of intermediate. Since they represent some special cases and they are not
of much importance for the present problem, I ignore them. As well as the
Chemical formula of product, because it can be programmatically derived from
the SMILES of product. Uniprot ID is a handy feature for my experiments,
as long as it can provide an easy identification of a synthase. Although the
dataset consists of 13 features, only 3 of them are significant one that I will
use: Substrate, Amino acid sequence and SMILES of product.

includes the following quantitative characteristics of each fea-

ture: count of present values (Count), number of unique values (Unique),

Feature name Count Unique Top value Top frequency
Uniprot ID 750 714 H8ZMT70 3
Name 750 414 Terpene synthase 26
Amino acid sequence 750 704 MATLRISSALIYQNTLTHHFR... 4
Species 750 281 Arabidopsis thaliana 36
Kingdom 750 7 Plants 594
Type 748 8 sesq 411
Substrate 750 30 (2E,6E)-FPP 403
Cofactors 11 3 H20 9
Name of intermediate 40 8 ent-copalyl diphosphate 17
SMILES of intermediate 40 9 [C@@H]1(CC/C(/C)=C/CO... 17
Name of product 750 336 ent-kaurene 23
Chemical formula of pr... 750 31 C15H24 344
SMILES of product 750 334 [H][C@]12CC[C@Q]34C|C... 24

Table 3.2: Quantitative characteristics of the TPS database features
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Figure 3.3: TPS database histograms, blue — whole database, green — sesquiter-
penes only. (a) Terpene types; (b) substrates; (¢) number of possible products; (d)
chemical formulas of products.

mostly occurring value ( Top value), and the frequency of its occurrences (Top
frequency). It can be seen that all the features except for enzyme-related ones
(Uniprot ID and Amino acid sequence) repeat through the dataset, and only a
small fraction of synthases require cofactors or produce intermediate products.
The most valuable observation from the table is that although there are eight
different terpene types present in the TPS dataset, sesquiterpene biosynthesis
form the largest part of the reactions (]m depicts a histogram cor-
responding to all the eight types). [Figure 3.3b| [Figure 3.3 and [Figure 3.3d|
additionally show distributions of sesquiterpene biosynthesis substrates, num-
bers of possible products and chemical formulas respectively. This implies
that the synthases producing single possible sesquiterpene from the
(2E,6E)-FPP substrate constitute the majority of terpene synthases
characterized to date.
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3.3. Objective of the thesis

3.3 Objective of the thesis

The thesis aims to study the capability of machine learning regarding the
prediction of products related to terpene biosynthesis. My objective can be
formulated in terms of a question to the machine learning model — provid-
ing a substrate and enzyme as the input, what are the products
of the output? Considering the facts that the type of biosynthesis can be
determined from the synthase sequence (Section 4.3.1) and that sesquiter-
pene syntheses constitute the majority of characterized reactions, I focus on
the prediction of sesquiterpene biosynthesis as a proof of concept with aims
to illustrate that any terpene biosynthesis can be predicted. An accurate
prediction of sesquiterpenes would indicate that the prediction of terpenes,
in general, can be achieved by applying analogous approaches for all types
independently. Notice, that the problem is not of a classification but of a
generative character. This means that the part of the objective is to develop
a method allowing to precisely compare specific molecules in order to assess
the performance of machine learning models.
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CHAPTER 4

Methods and experimental
setup

In this chapter I describe the methods I employ and the experiments I conduct
for the machine-learning prediction of sesquiterpene biosynthesis. I start with
a general motivation and intuition behind the proposed solution and then
subsequently describe all the components.

Considering only sesquiterpenes, the problem reduces to the prediction
of a biosynthesis product based on a synthase, as almost all sesquiterpenes
share the same substrate. The input is an enzyme represented as a long se-
quence of characters over the dictionary of 20 amino acids and the output is a
sesquiterpene represented as a SMILES string. Machine learning models often
operate only on continuous vectors; however, my 318 training samples from
the TPS database are evidently not enough to obtain meaningful numerical
reproductions (embeddings) from the before-mentioned sophisticated repre-
sentations. I propose to solve this problem by employing pre-trained machine
learning models on vast databases for both input enzyme sequences and out-
put sesquiterpenes’ SMILES strings. Pre-training usually implies extracting
general features from the large amounts of similar objects in an unsuper-
vised or self-supervised manner. There are millions of publically available
proteins and small molecules, which can be used for such pre-training. It
means that sesquiterpene synthases and sesquiterpenes can be converted into
vectors encoding their significant properties. Therefore, I can solve the prob-
lem of sesquiterpene prediction in a transfer-learning fashion by fine-tuning
the models for the sesquiterpene prediction task and operating between the
corresponding vector spaces. The full proposed solution is depicted in
and explained in the next paragraph, while all three components are
described more in detail in the
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1. Transformer 2. Multilayer 3. VAE
Pre-trained on perceptron Pre-trained on millions
millions of proteins of small molecules

. 1Dﬂ

Sesquiterpene synthase Sesquiterpene

.. .AIHPKHADIDVQTAAWAETFRI. ..

Figure 4.1: Pipeline of the proposed machine learning solution for the sesquiter-
pene biosynthesis prediction. First, the Transformer (1) is pre-trained on millions
of proteins, and the Variational Autoencoder (VAE) (3) is pre-trained on millions of
small molecules. In order to predict the sesquiterpene, Multilayer perceptron (2) is
trained on the TPS database to produce a latent vector of the VAE having synthase
embedding on the input. Finally, the predicted molecule is obtained by decoding the
latent vector of VAE.

Despite the protein complexity, obtaining enzymes’ embeddings is rela-
tively straightforward, as it requires only meaningful encoding, which is a
common practice in modern applications of machine learning. Transformers
have already proven their efficiency in such tasks and are being actively stud-
ied for applications on protein sequences. Thus, I can apply a pre-trained
Transformer to encode synthases (1). However, it is challenging to create
a vector space of small molecules, which would allow me to predict vectors
corresponding to sesquiterpenes and decode them back to an interpretable
form. A model not only needs to associate meaningful continuous represen-
tations with the molecules, but also return them back to the original repre-
sentations. Variational Autoencoders (VAEs) are powerful models for such a
purpose and showed a high level of performance in numerous applications in-
cluding molecule generation. It means that I can use a latent space produced
by pre-trained VAE to operate on small molecules (3). Having sesquiterpene
synthases’ embeddings and learned latent space of VAE, the task is to find
a mapping between two vector spaces, which is a typical task for the classic
Multilayer perceptrorﬂ(Z).

9From here on out I use the Multilayer perceptron as a synonym for the Artificial feed-
forward neural network.
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4.1. Data preparation

4.1 Data preparation

The TPS database is the foundation of this work. In order to employ it for
the training of machine learning models and to perform their assessment, I
needed to rationally split a total of 745 valid samples into folds. First of all, 86
of them were manually selected as a hidden test fold, which is interesting from
the biology perspective and reasonable for the final testing reactions. This
fold will be used to test the model efficiency only after achieving high pre-
diction accuracy on the rest of the dataset. The remaining 659 samples were
divided into 10 folds of approximately equal size (9 folds of 66 samples and
1 fold of 65 samples). One of them constitutes the test fold, and the rest are
employed for the k-Fold Cross-Validation, where k = 9. This method is a con-
ventional approach for the model training and validation on a small dataset,
as each sample affects the validation accuracy exactly once. Additionally, all
the sesquiterpenes were evenly distributed across the folds (34 to 37 molecules
in each fold), which allows me to utilize them in sesquiterpene-specific tasks.

The TPS dataset contains only terpenes for which the biosyntheses are
characterized, however there are many more terpenes and similar compounds
in public databases. For example, ChEBI database provides ChEBI Ontology,
which is a structured classification of the moleculedV contained within the
whole database. It can be perceived as a directed tree graph, where each
node corresponds to a particular molecule and edges directed from leaves
to root express the is relation. For example, limonene (CHEBI:15384) is a
monoterpene (CHEBI:35187) and monoterpene (CHEBI:35187) is a terpene
(CHEBI:35186). I web-scraped all the molecules recursively starting from the
terpene node, which resulted in a dataset of 3637 molecules. In other words, all

#h O W AR

TPS database sesquiterpenes

L ) O

Selected ChEBI and PubChem molecules

Figure 4.2: Examples of the molecules belonging to the SesqSim dataset.

10Here and further by the molecule I mean a corresponding SMILES string.
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4. METHODS AND EXPERIMENTAL SETUP

the collected molecules are transitively terpenes. Additionally, I downloaded
400,000 PubChem molecules containing exactly 13, 14, 15 and 16 carbon atoms
(100,000 each) to have more compounds similar to sesquiterpenes.

Based on the sesquiterpenes of the TPS database and the downloaded
ChEBI terpenes, I created a dataset containing compounds the most simi-
lar to sesquiterpenes. 1 filtered these datasets by putting the following con-
straints on their entries: (7) molecule contains only carbons, hydrogens, and
oxygens; (i7) number of carbons is greater than 13 and less than 17; (i)
number of oxygens is less than 3; (iii) molecule represents a connected graph
(SMILES string does not contain . symbol). Since the obtained dataset con-
tained only 725 molecules, I additionally added PubChem molecules with 14,
15 and 16 carbons while also satisfying the other previously mentioned con-
straints. It resulted in a dataset of 16,311 molecules, which I will refer to as a
SesqSim dataset. provides examples of the molecules belonging to
the SesqSim dataset. Furthermore, I will refer to SmallSesqSim as a subset
of SesqSim with a reduced number of molecules containing 14 and 16 carbons
to have a smaller dataset with the most similar compounds. Additionally, I
will refer to SesqSim13 as a SesqSim dataset without molecules containing
14 and 16 carbons, but comprising additional compounds with 13 carbons.
This dataset generally has smaller, similar to sesquiterpenes, molecules than
SesqSim and SmallSesqSim.

4.2 FEvaluation metric selection

Since this work is about the prediction of particular molecules, I need to be
able to determine the similarity between predicted and actual compounds.
In other words, I need to define an evaluation metric for machine learning
models. Measuring similarity between molecules is an essential problem of
biochemistry. It commonly occurs in such applications as predicting the prop-
erties of chemical compounds or discovering new antibiotics by screening large
databases. Such researches is based on the principle that structurally simi-
lar compounds are more likely to have similar properties [42]. In gen-
eral, any similarity score is subjective and depends on a purpose, especially for
such abstract objects as graphs. However, graphs of chemical structures are
strongly constrained by chemical rules, and despite the molecular diversity,
different compounds contain identical substructures.

A molecular fingerprint of a molecule is the fixed-length bit vector,
where in the simplest case each bit indicates the presence or absence of a par-
ticular substructure of the molecule. This approach enables the comparison of
compounds by juxtaposing corresponding bit vectors. This way of encoding
molecules is a golden standard in various applications, because it is a rela-
tively simple general framework that produces vectors, interpretable by both
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Figure 4.3: Visual explanation of the molecular fingerprint. True bits correspond
to the present substructures.

human and machine. However, it has several weaknesses, which are revealed
in The bit vector does not contain information about the number
of present fragments, consider the topology of the molecule, and takes into
account only specific substructures.

Molecular fingerprints are widely used, and there are many publications
proving their efficiency. There exist different types of fingerprints varying in
the determination of molecular substructures. The following list enumerates
the three most popular types with a short informal algorithm description in
brackets:

o MACCS key (determines the presence or absence of 166 predefined frag-
ments and produces a bit vector with each bit corresponding to a par-
ticular fragment)

o Circular fingerprint (determines all subgraphs induced by the neighbor-
hoods of each heavy{l|atom up to the given radius and hashes them into
a bit vector of fixed length)

o Path-based fingerprint (similar to the circular fingerprint, but deter-
mines all possible paths up to the given length instead of neighborhoods)

Molecular fingerprints is an active area of research and more sophisticated
types of algorithms are being actively developed. For example, the study [43]
proposes a 71,375 bits-long fingerprint formed as a concatenation of 24 differ-
ent fingerprints, including ones enumerated above. It is designed specifically
for deep learning models to provide them as much information about molecules
as possible and to let them extract task-specific features in deep stacks of lay-
ers. Another example is described in the work by Seo et al. [44], where authors

1 Any atom that is not hydrogen
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designed a fingerprint that is more appropriate for natural compounds then
the regular ones. It mainly contains information about substructures such
as complex fused rings{ﬂ or fragments with a large number of oxygen atoms,
which typicaly occure in nature.

Molecular fingerprint selection

Since I will use fingerprints only to compare model performances, I need to
choose a relatively simple and well-recognized fingerprint independent of the
models used in the primary experiments. The similarity is supposed to be mea-
sured on sesquiterpenes and molecules similar to them, therefore a fingerprint
will be selected reflecting features specific for this class of compounds. Thus,
I conducted a brief survey on the most common types of fingerprints in order
to determine which one is the most sensitive to sesquiterpenes. Sensitivity
is defined as high values for the three factors calculated on the set contain-
ing fingerprints of all the unique sesquiterpenes from the TPS database (410
molecules) and additional 410 hydrocarbons from the SesqSim dataset. The
factors being: (i) fraction of different bits within all fingerprints, (i) mean
fraction of different bits between all pairs of sesquiterpenes and all the selected
SesqSim molecules, (7i7) mean fraction of positive bits within all fingerprints.
These factors can be formally defined using a set bit-vectors notation described
in the [Mathematical notation| as following:

g(A)=1- 1 () F|, where F| € A, (4.1)
|1 FeA
1 |F1AF2|
I(A,S) = > (4.2)
|A X S| (F1,Fy)e AxS |F1 UF2|
1
p(A4) = Al SR, (4.3)
Al iz

where A is a set of all fingerprints and S C A is a subset of the TPS database
sesquiterpenes fingerprints. Notice that g(A) can be perceived as a global
measurement of present sesquiterpene information, since the
shows how many bits differ within all the fingerprints. However, a fingerprint
leading to the g(A) equal to 0.5 is not automatically better than the one
leading to 0.2, because there is a chance that in the first case the majority of
bits corresponding to the 0.5 fraction are equal within almost all the vectors
with some rare exceptions. In the second case the bits from the 0.2 fraction
could frequently change within the vectors. Hence (A, S) factor is required,

2https://www.qmul.ac.uk/sbcs/iupac/fusedring/FR1.html
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Figure 4.4: Distribution of the evaluation metric on all pairs of selected sesquiter-
penes and similar compounds(330,229 pairs): (a) empirical density function, red line
depicts mean value; (b) empirical cumulative distribution function, red lines depict
percentiles.

which in some sense shows the local difference as it expresses a mean number
of different bits within pairs of vectors. I compute [(A, S), but not [(A, A), as
one of the arguments of the evaluation metric may always be a TPS database
sesquiterpene fingerprint. It is important to mention that the [(A,S) is not
enough by itself since, as a worst scenario, all the different bits could share the
same positions between pairs. That is why both (A, S) and g(A) are needed
to assess the fingerprint. Additionally, p(A) is considered to avoid bit vectors’
sparsity, which is important for further fingerprint comparison as discussed
in the next paragraph. To combine three factors into a single real number, I
compute their harmonic mean, which defined as h(z1, z2, z3) = 32,2203

. r1T2+T1T3+T2T3
for three numbers =1, x2 and x3, because the ranges of possible values are not

independent. contains calculated values for the tested fingerprints.
The 1800 bits long Path-based fingerprint with the maximum path length
equal to 18 has the maximum harmonic mean of the three factors, making it
the best fingerprint for the evaluation metric on machine learning models.

Fingerprints metric selection

After the type of fingerprint is determined, there is a need to choose a metric
on bit vectors to have a real number expressing a measure of similarity between
molecules. In the same manner, as I have chosen a simple and widely used
fingerprint, I am going to use a Tanimoto similarity coefficient, which is defined
as

_ AN By |

T(AvB) - |A+UB+|’

(4.4)
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Name Total g 1 o) Harmonic
number mean
of bits

MACCSKeys 167 0.473 0.108 0.140 0.162

Path-based 14 1800 1.000 0.435 0.616 0.609

Path-based 18 1500 1.000 0.413 0.664 0.609

Path-based 18 1800 1.000 0.433 0.626 0.611

Path-based 18 2100 1.000 0.446 0.587 0.607

Path-based 22 1800 1.000 0.433 0.626 0.611

Circular 4 1000 0.978 0.045 0.030 0.053

Circular 4 4000 0.603 0.011 0.008 0.014

Circular 12 1000 1.000 0.075 0.047 0.085

Circular 12 4000 0.947 0.020 0.012 0.022

Circular 16 1000 1.000 0.076 0.048 0.085

Circular 16 4000 0.948 0.020 0.012 0.022

Table 4.1: Sesquiterpenes fingerprints survey results. The number after the finger-
print name represents the maximum length of the path for the Path-based fingerprints
and the maximum diameter for the Circular fingerprints. Path-based 18 fingerprint
highlighted in red has the maximum harmonic mean of the g, I and p values.

where A and B are some fingerprints. It is a straightforward way to mea-
sure molecular similarity because it indicates the fraction of common frag-
ments concerning all fragments of two fingerprints. In general, Tanimoto sim-
ilarity is an appropriate choice for fingerprint-based similarity calculations,
because it retrieves the maximum information content of the total informa-
tion carried by eight different tested metrics [45]. The definition implies that
(VA,B # 0)(T (A, B) € [0,1]), where T(A, B) = 0 means that A and B have
no fragments in common and T'(A, B) = 1 means that A and B contain only
the same fragments.

Evaluation metric interpretation

While the Tanimoto similarity’s theoretical background is transparent, it is
not obvious how to interpret empirically obtained value from the [0, 1] inter-
val. Thus I propose to analyze the empirical distribution of the Tanimoto
similarities on the chosen fingerprint by comparing the same 330,229 pairs
that were selected for the [(A,S) calculation. shows the plot of
an empirical density function. Although the selected compounds are similar,
Tanimoto similarities are distributed across the entire range of possible values.
The mean value of the distribution is equal to 0.45, which satisfies an intuitive
expectation, that on average, two random molecules should have a similarity
score close to 0.5. depicts an empirical cumulative distribution
function, which helps understand how the values can be interpreted. For ex-
ample, two compounds having a similarity score of 0.4 are more similar than
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Figure 4.5: Evaluation metric on §-cadinene (green box) with other selected
molecules. The blue box contains other sesquiterpenes, and the orange box contains
distorted §-cadinene molecules (without consideration of chemical rules): change of
a carbon atom to an oxygen, change of a double bond to a single bond, deletion of a
bond, addition of a bond (changes are enumerated from left to right).

the 50% of other pairs. In terms of this work’s main task, the Tanimoto sim-
ilarity score higher than 0.86 (95th percentile) between actual and predicted
products means that the predicted molecule belongs to the 1% of the best
possible predictions among similar compounds. shows similarity
scores between d-cadinene and other selected molecules. The values confirm
that the selected approach to compare molecules indeed indicates the measure
of similarity and is sensitive for the sesquiterpenes.

I choose the Tanimoto similarity score on 1800 bits long Path-
based fingerprints (maximum path length equals 18) as the evalua-
tion metric for machine learning models, as it is a discriminative metric
with respect to sesquiterpenes. Also, I want to emphasize two facts. (i) Since
the distribution discussed above was obtained empirically, the interpretation
of the similarity scores should not be perceived with great precision. The goal
was to choose a rational evaluation metric and form an overall understanding
of the score. (i) Selected fingerprint and metric have good properties for
comparison of sesquiterpenes and compounds similar to them, but it is not
necessarily true for arbitrary molecules, which corresponds to the aim of the
whole analysis. Additionally, I define the evaluation metric score to equal zero
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if any of the argument molecules is not valid. In the further text, I will refer
to the ewvaluation metric score as a mean score of all the validation samples
across the folds discussed in the previous section.

4.3 Machine learning models pipeline

The following sections describe each part of the machine learning models
pipeline proposed as a solution for the prediction of sesquiter-
pene biosynthesis. Additionally, I describe important experiments elucidating
the choice of particular models.

4.3.1 ESM-1b Transformer

In order to obtain sesquiterpene synthases embeddings, I employ Facebook
AT Research ESM-1b Transformer used in the [2I]. It has already proven
its efficiency in such tasks as predicting protein substructures or amino acid
contacts, making the model ideal for terpene synthases based on the structure-
function relationship. The ESM-1b model was pre-trained on 250 million
Uniparc [10] protein sequences on the masked language modeling task. For
each input sequence 15% of amino acids were selected, and from that 15%,
80% were substituted with a special “masking” token, 10% were changed to a
randomly chosen alternate amino acid and the rest 10% were left unchanged.
Since the task was to predict a probability for amino acids substituting masked
tokens, the authors selected an average cross-entropy for each training batch
as a loss function. So, for each prediction of amino acid, it can be defined as

H(p,q) = —>_ p(z)logq(x), (4.5)
zeX

where X is a discrete random variable expressing possible amino acid tokens,
p is a true distribution over this variable and ¢ is a predicted one. The model
produces 1280-dimensional vectors with close-to-zero values.

TPSs embeddings space visualization

To test whether TPSs embeddings, obtained from the pre-trained ESM-1b
Transformer, capture substrate-specific folding, I applied the Uniform Mani-
fold Approximation and Projection (UMAP) algorithm to reduce the dimen-
sionality of all vectors from 1280 to 2 and visualized the reduced space
. It can be seen that synthases’ embeddings form clusters by substrates
they take, which means that the vectors at least partially capture enzyme pri-
mary function.

34



4.3. Machine learning models pipeline

® (+)-copalyl diphosphate
(2E)-GPP
20 (2E,6E)-FPP
(2E,6E,10E)-GGPP
o (2E,6E,10E,14E)-GFPP
151 (22,6E)-FPP
(22,62)-FPP
(E)-2-methylgeranyl diphosphate
101 & > ® (S)-2,3-epoxysqualene
5B,9a,10a-labda-8(20),13-dien-15-yl diphosphate(3-)
54 ) g > ® 8-hydroxycopalyl diphosphate
9a-copalyl diphosphate
ﬁ NPP
04 ° copal-8-ol diphosphate(3—)
- o ent-copalyl diphosphate
R, peregrinol PP
' squalene

@
o

—'5 6 _r') l‘O l‘5
Figure 4.6: Two-dimensional UMAP on ESM-1b Transformer TPSs embeddings.

Single colors correspond to different substrates (extremely rare substrates were ex-
cluded).

Terpene type classification

Since I focus on the prediction of sesquiterpenes it is important to test whether
embeddings can be classified by a product terpene type (monoterpene, diter-
pene, sesquiterpene, etc.). With an accurate classification by type and suc-
cessful sesquiterpene synthesis prediction, I could apply the same approach
for each terpene type independently. Therefore, I trained a random forest
classifier with 30 trees and entropy as a splitting decision function to classify
the synthases by the product type. The model achieved a mean accuracy score
of 0.95 for both validation and test folds (rare types were excluded, see
, which means that the sesquiterpene biosynthesis prediction
can be perceived as a proof of concept that any terpene biosynthesis
can be predicted.

Prediction of the evaluation metric fingerprint

Before solving the primary task, I tested whether obtained TPSs embeddings
contain information relevant to the primary task. For this purpose, I trained
relatively simple machine learning models to directly predict fingerprints se-
lected for the evaluation metric, which is a simplified primary task requiring
the same properties of enzymes encoded in the embeddings. More precisely,
the task is to predict a 1,800 bits-long bit vector based on a continuous vector
of a length 1,280. I examined logistic and linear regressors, trained to predict
each bit separately, and Multilayer Perceptron (MLP) with a single hidden
layer of 1,500 nodes with ReLU activations. As a loss function for the MLP,
I chose a binary cross-entropy (a special case of for the binary
random variable), as it is a natural way to penalize wrong classification predic-
tions in an exponential manner. Since there are only 321 training samples in
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Figure 4.7: Performance of selected models on prediction of evaluation metric fin-
gerprint from the ESM-1b Transformer TPSs embeddings as a function of embeddings
dimensionality. A UMAP algorithm was applied to reduce the dimensionalities to 2,
8, 15, 30, 70, 170, 500 and 900; the dimensionality of 1,280 corresponds to the original
embeddings’ size.

the TPS database, which points to the presence of the curse of dimensionality,
I additionally applied UMAP to the input vectors and examined the perfor-
mance of the models having different dimensionalities of UMAP embeddings
on the input. shows evaluation metric scores of selected models as
a function of the embeddings reduced dimensionality. MLP trained on 500
epochs achieved the best score of 0.71, which means that embeddings indeed
encode information about terpene synthesis. Logistic regressor reached similar
scores on 30-dimensional reduced vectors and the original 1,280-dimensional
embeddings, however, it is not true for other models. Consequently, original
embeddings are the best fit for the primary task. Remarkably, the linear re-
gressor achieved high scores, although it is not a model specific for the binary
classification. Further, MLP performance grew with the number of training
epochs. Even though there are only 321 training samples, the model does not
tend to overfit. It points to the high information content encoded in the em-
beddings. Conclusively, results prove that the TPSs embeddings obtained
from the ESM-1b Transformer are appropriate for sesquiterpene
prediction, thus I employ them in further experiments.

4.3.2 Chemical VAE

To be able to encode small molecules to continuous vectors and then decode
them back to the original form I employ Chemical VAE used by Gomez-
Bombarelli et al. [24] for the automatic chemical design. It was pre-trained
on 250,000 synthetic molecules from the ZINC database and showed impres-
sive results in the generation of novel chemical structures. The model was
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trained to compress SMILES strings to the 196-dimensional latent space and
to decompress the vectors back to SMILES. The 1D convolution layers were
chosen for the encoder and GRU [46] layers for the decoder.

Fine-tuning Chemical VAE

The authors of the Chemical VAE estimate that the model trained on 250,000
compounds from ZINC encodes approximately 7.5 million distinct molecules.
However, 1 observe that the learned subspace corresponding to sesquiter-
penes is sparse, due to the model not being able to encode and decode many
sesquiterpenes from the TPS dataset. Such observation is normal and ex-
pected, since the latent space learned during pre-training captures general
properties of various molecules, but not specific for some class of compounds.
Since the aim is to precisely predict sesquiterpenes I fine-tune the VAE by ad-
ditionally training it on sesquiterpenes and compounds similar to them. I ex-
amine fine-tuning on the full SesqSim, SmallSesqSim and SesqSim13 datasets
with the same parameters as during the pre-training, but on a lower number
(1 to 12) of epoch and at a 10 times lower learning rate.

To test whether fine-tuned model captures structural properties of the
target molecules and that fine-tuning process has not annihilated pre-trained
weights, I encode all the SesqSim compounds, reduce their dimensionality
from 196 to 2 by the UMAP and visualize the obtained space .
Plots show that the learned space captures such complex structural features
as the size of the smallest set of smallest rings (SSSR) and the fraction of
double bonds with respect to all bonds. To additionally ensure that the space
is dense enough to capture small changes, I sample random vectors from the
neighborhood of the (+)-(R)-germacrene A embedding and decode them to
molecules. satisfies expectations that the sampled molecules do
indeed differ in small changes. Also, one molecule contains a nitrogen atom,
which is a result of a large quantity of compounds containing nitrogens in
ZINC.

Decoding latent vectors

Since SMILES strings are sensitive to small changes and VAEs are probabilis-
tic, there are typically multiple attempts needed to decode a valid molecule.
Also, the learned latent space is not perfectly continuous and the final pre-
dicted vectors may be imperfect. Therefore, to decode a latent vector I sample
500 vectors from its neighborhood with the Fuclidean distances from the orig-
inal vector given by a normal distribution and decode all of them. Then I
select a successfully decoded SMILES string corresponding to the vector with
the lowest distance as the final decoding.

Since Cy5Hq4, Ci5H9qO and C;5H,304 are the only three possible chem-
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Figure 4.8: Molecules randomly sampled from the neighbourhood of (+)-(R)-
germacrene A encoding in the latent space of fine-tuned Chemical VAE.

ical formulas of TPS database sesquiterpenes, I apply an additional post-
processing step on the SMILES string after decoding. I substitute all heavy
atoms to carbons with an exception of a maximum of two oxygens allowed.

4.3.3 Multilayer perceptron

After obtaining the synthases embeddings and a latent space for sesquiter-
penes, there is a need to find a mapping between two spaces. For this purpose
I employed a Multilayer perceptron, as it is designed for the approximation
of continuous functions. I experimented with different hyperparameters and
loss functions to find the most appropriate model. I tested MLP with one
hidden layer of 725 nodes, two hidden layers of 900 and 500 nodes, three hid-
den layers of 1009, 738, 467 and, finally, four hidden layers of 1009, 738, 738,
467 with ReLU activation functions. I experimented with training the mod-
els on a different number of training epochs from 10 to 3,000. I used Adam
optimizer with 51 = 0.9, B2 = 0.99 and the learning rate equal to 0.01 for
the training. For the loss functions I used either Mean squared error (MSE)
or Mean absolute error (MAE). Additoinally, I examined the linear regressor,
as it showed high performance on directly predicting evaluation metric finger-
prints. Finally, to have a baseline model I performed a random sampling from
the latent space of Chemical VAE, which consists of obtaining random vectors
by sampling each element from the N (0,2) distribution.
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Figure 4.9: UMAP of embeddings of all SesqSim molecules obtained from the fine-
tuned Chemical VAE. Colors represent selected structural properties: (a) size of the
smallest set of smallest rings (SSSR), (b) fraction of double bonds with respect to all
bonds.
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CHAPTER 5

Results

In this chapter, I first summarize quantitative results of the sesquiterpene
biosynthesis prediction obtained on validation folds and choose a model lead-
ing to the best scores. Second, I analyze the performance of the model on the
test fold by interpreting particular predictions.

Quantitative analysis of the results

For the prediction of sesquiterpene biosynthesis, I examined different mod-
els mapping ESM-1b synthases’ embeddings to the latent space of fine-tuned
Chemical VAE and measured their scores on validation folds. For each model,
I computed the mean evaluation metric score (Score), which is considered as
the main value expressing the performance level of the model. Using the same
score, while considering only positive values (Positive score), can assess the
quality of only valid decoded molecules. Additionally, I counted the number of
perfect predictions (evaluation metric score equals to 1.0; #1) and the number
of invalid predictions that cannot be decoded from the latent space of VAE
(evaluation metric score equals to 0.0; #0).

[Table 5.0] summarizes scores of selected tested models. The linear re-
gressor trained only on the ZINC database without further fine-tuning (b)
achieved approximately the same mean score as the linear regressors addi-
tionally trained on two epochs utilizing SesqSim and SmallSesqSim datasets
(c and d). However, the fine-tuning increased #1 scores, which proves that
the latent space of fine-tuned Chemical VAE is more appropriate for the pre-
diction of sesquiterpenes. It can be seen that the fine-tuning on SesqSim13 (f)
leads to significantly better results comparing to SesqSim and SmallSesqSim
(especially for the Score and #0). In addition, scores of linear regressors
slightly improve with the number of fine-tuning epochs (e to 7); however, it
is not true for the Multilayer perceptron with a single hidden layer trained
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Model VAE fine-tuning Score Positive #1 #0
score
Dataset # epochs
a. Random sampling — - 0.08+0.04 0.254+0.08 0 207
b. Linear regressor - 0.35+£0.09 0.50+£0.06 3 91
c. Linear regressor SmallSesqSim 0.34+0.10 0.524+0.06 13 105
d. Linear regressor SesqSim 0.37+0.11 0.544+0.06 22 101
e. Linear regressor SesqSim13 0.38+0.09 0.50+0.06 10 74
f. Linear regressor SesqSim13 0.44+0.11 0.55+£0.07 29 65
g. Linear regressor SesqSim13 0.444+0.11 0.544+0.08 33 59
h. Linear regressor SesqSim13 0.46 £0.12 0.60+0.08 40 70
i. Linear regressor SesqSim13 2 0.474+0.12 0.59+0.08 43 64
j. MLP 1L 100E SesqSim13 045+£0.09 0.52+£0.07 34 41
k. MLP 1L 2000E SesqSim 041+£0.09 0.51£0.06 21 65

—_

2
2
1
2
5
8
1
2
2
. MLP 1L 2000E SesqSim13 2 045+£0.09 0.53+£0.07 30 46
. MLP 1L 3000E SesqSim13 2 046 £0.10 0.55+£0.07 33 53
5
5
5
5
1
5
5
5
5

m
n. MLP 1L 1000E SesqSim13 0.46 £0.10 0.53+0.07 43 41
o. MLP 1L 2000E SesqSim13 0.514+£0.09 0.55+£0.08 41 21
p- MLP 1L 3000E SesqSim13 0.50+£0.11 0.56 +£0.08 44 36
q. MLP 1L 4000E SesqSim13 0.47+0.11 0.56 £0.08 42 52
r. MLP 1L 2000E SesqSim13 2 0.48+0.10 0.55+£0.08 48 39
s. MLP 2L 2000E SesqSim13 0.53£0.10 0.56+0.09 59 17
t. MLP 3L 1500E SesqSim13 0.53+£0.10 0.54+0.1 62 11
u. MLP 3L 2000E SesqSim13 056 +0.10 057+0.10 73 6

v. MLP 3L 2500E SesqSim13 0.53+0.11 0.55+0.10 77 8

w. MLP 4L 2000E SesqSim13 5 0.54+0.10 0.55+£0.10 75 6

Table 5.1: Examined models validation scores. Score stands for the mean evaluation
metric score across validation folds with corresponding variances, and Positive score
— for mean positive evaluation metric score with variances. # 1 and # 0 represent
numbers of perfect predictions (evaluation metric score equals to 1) and not decoded
predicted latent vectors (evaluation metric score equals to 0) respectively (from the
total number of 315 samples). MLP 3L 2000F (u) achieved the highest Score and is
selected as a final model (MLP stands for the Multilayer perceptron, 3L — 3 hidden
layers and 2000F — 2000 training epochs). Notice that random baseline scores are
higher than expected due to the specificity of the selected evaluation metric.

for 2,000 epochs (1, o, 7). shows that the fine-tuning on five epochs
(0) leads to a much better relation between #0 and #1 scores. Therefore, I
trained MLPs with more layers — consuming more time for training — with the
SesqSim13 dataset and 5 training epochs as a fine-tuning setup. Conclusively,
the Multilayer perceptron with 3 hidden layers (u) outperformed other tested
models in the Score and is remarkably better when comparing all four scores
together. Due to this increase in score, I selected it as the final model for
the prediction of sesquiterpene biosynthesis. The chosen MLP achieved a
Score of 0.55 on the so far hidden test fold and perfectly predicted
11 molecules out of 34 in total.
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Detailed analysis of the predictions

[Figure 5.1] [Figure 5.2] and show skeletal formulas of predicted and
real molecules for the whole test fold. It can be seen that the majority of
predicted compounds preserve expected structural features. Molecules 1 to
11 have evaluation metric scores equal to 1.0. Despite their chemical equiv-
alence, some of the depictions are not identical, which is a result of possible
skeletal formula invariants of the same compound. For example, the predicted
molecule 4 and the corresponding real molecule are two opposite projections
of the same spatial conformation. Remarkably, the majority of other pairs
possess equal structures or substructures and only three predictions were not
decoded from the latent space of VAE (32, 33 and 3/ ). For instance, molecules
17 and 25 differ from the actual molecule only by bond types. Further, such
predictions as 13, 18 and 19 are remarkably interesting, since despite their
incorrectness they preserve structures and features of real molecules: 13 — two
rings with two agreeing stereochemical bonds to two hydrogens, 18 — all frag-
ments branch from two rings with similar stereochemistry, 19 — a large ring
with three branching moieties with similar structure. Ultimitally, it means
that the employment of Variational Autoencoder as a model producing space
for predictions is appropriate and is very interesting for future and deeper
investigation.

The most valuable observation is that from the total 34 predicted molecules,
14 satisfy the chemical formula of the sesquiterpene Ci5Hq . Of those 14: 10
are perfect predictions (1 to 8, 10 and 11), 2 have identical structures (17
and 25) but differ in bond types, and the remaining 2 preserve global features
(16 and 20). Since the analogous observation is true for the validation fold, it
is logical to generalize it into the following statement: a predicted molecule
satisfying the chemical formula C;5H,, is most likely a perfect pre-
diction. Therefore, a domain knowledge about the sesquiterpene chemical
formula can be used as a prediction confidence score that allows determining
perfect predictions without any information about expected ones. Together
with the observation that the fraction of perfect predictions on the validation
folds constitutes 23% and 32% on the test fold, there can be derived an even
stronger statement: each fifth prediction is most likely perfect and
can be determined without the knowledge of a real compound. It
implies that the proposed approach allows prediction of approximately 20%
of uncharacterized sesquiterpene syntheses and the majority of the remaining
80% may be relevant as well.
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Figure 5.1: Test fold predictions. Part 1/3. Although some real products are the
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CHAPTER 6

Future work

Terpene biosynthesis prediction has not been studied before and the amount
of time allocated for the work on bachelor thesis is highly limited. Regardless
of time constraint, I have unfolded many improvements of the introduced
approach. Thus, in the following sections I will describe potential future work
on the problem.

Improved datasets

The number of characterized terpene syntheses grow over time, resulting in an
increase of the size of the TPS database. SesqSim dataset can be significantly
improved by manually selecting the most similar sesquiterpenes groups of
compounds in public databases or leveraging such tools as MOLGEN, which
would allow obtaining millions of desired isomers. I can not only collect a
dataset for fine-tuning but also build a huge database for the primary training
purpose. For example a vast database of hydrocarbons may be much more
appropriate than a synthetic ZINC database of arbitrary molecules. Further,
I can collect a large database of tens of thouthands terpene synthases and
similar enzymes, which would allow me to fine-tune a Transformer for my
purpose instead of just using a pre-trained model.

Upgraded machine learning models

The obvious disadvantage of the current implementation is the fact that the
VAE operates on SMILES strings. These strings are extremely sensitive to any
changes. Typically, substitution or deletion of an arbitrary character leads to
an invalid molecule, when combined with the probabilistic essence of VAEs,
this becomes a serious complication for this type of model. Generally, repre-
senting small molecules as graphs instead of strings encoding their structures
is a more natural way and has obvious advantages. Neural networks do not
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have to learn the fragile syntax during the training, but can directly manip-
ulate graphs. Graph neural networks (GNN) have been actively studied and
developed in recent years. In the work of Gilmer et al. [47] authors propose a
Message-passing neural network (MPNN) framework, which was derived as a
generalization of efficient neural networks on graphs and is beneficial in the ap-
plication of molecules. This approach is based on sending messages between
atoms within bonds, resulting in the model directly learning the molecular
structure. Later, this approach evolved into other novel variants, such as for
example Directed MPNN (D-MPNN) [48]. These evolved models are even
more convenient for learning structures of molecules. I can therefore build a
Variational autoencoder on graphs inspired by the work of Kipf et al. [49],
but with a D-MPNN encoder. I believe that this upgrade will significantly
improve the results of my work. Also, I can experiment with Generative adver-
sarial networks (GANs) [50] for molecule generation. This was already done
by Prykhodko et al. [51], where they used GAN to operate on a latent space
of VAE.

Generalization of the proposed approach

Considering the fact that the current result was achieved without leverag-
ing guaranteed improvements, confident prediction of sesquiterpenes is only a
matter of time. The next step is the prediction of any terpene biosynthesis.
While I pointed to the generalization of other terpene types by creating in-
dependent models analogous to the one described in the thesis, a much more
interesting approach is one leveraging the power of the proposed pipeline of
machine learning models. The essence of the approach is a transformation of
enzymes and small molecules to continuous vectors, which allows expressing
biochemistry in terms of vector spaces and operations over them. At its core
biosynthesis is a transformation of a substrate molecule to a product molecule
catalyzed by an enzyme. If we denote x and y as vectors from the same space
assigned to a substrate and a product respectively and a — as an embedding of
an enzyme, then the prediction of biosynthesis is equivalent to the approxima-
tion of y with a neural network f(x,a). So the general form of a loss function
can be represented as

L(z,a,y) = |[f(x,a) -y (6.1)

From this perspective, the prediction of sesquiterpene biosynthesis discussed
in the thesis is a special case of a more general approach because
in the case of sesquiterpenes the term z is omitted. Term z is omitted since it
is constant for the prevailing majority of sesquiterpene biosyntheses and does
not affect learning optimization problem. The fact that x, y, and f(z,a) are
vectors belonging to the same vector space plays an important role and pro-
vides a great advantage for the neural network. For example, vectors assigned
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to substrate geranyl pyrophosphate and product limonene will have partially
similar encodings. During the training neural network will capture the fact
that the molecules differ in the presence/absence of a phosphate (which is typ-
ically true for all terpene syntheses) and several other bond types. It implies
that the model will learn the transformation of a molecule in a natural way
by employing an enzyme embedding as it is designed by nature. I believe
that the proposed general solution has far reaching potential, as it is very
robust and allows utilizing various biochemistry domain knowledge. For ex-
ample, enzyme cofactors can be additionally encoded to the before-mentioned
vector space or multiple synthesis products can be located in its pre-defined
subspace. Moreover, this approach is scalable regarding different biosyntheses
and diverse training data might remarkably increase the overall performance
due to its general expressivity. It means that the neural network could
learn a function directly displaying enzyme activity.
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Figure 6.1: General proposed approach for the biosynthesis prediction. First, Trans-
former (1) is pre-trained on millions of proteins, and Variational autoencoder (2) is
pre-trained on millions of small molecules. In order to predict a biosynthesis, a sub-
strate is encoded by VAE, and an enzyme is encoded by Transformer. Then the
Multilayer perceptron (3) is trained to predict a product in a latent space of the VAE
based on obtained encodings. Finally, a predicted molecule is obtained by decoding
the predicted latent vector.
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Conclusions

In the present work, I studied the capabilities of machine learning regarding
the prediction of sesquiterpene biosynthesis. I proposed a pipeline of machine
learning models consisting of Transformer, Variational Autoencoder, and Mul-
tilayer perceptron. A pre-trained Transformer was used to obtain embeddings
of sesquiterpene synthases and a pre-trained VAE to obtain a continuous space
encoding structural properties of small molecules. Multilayer perceptron was
used to predict a sesquiterpene vector in a latent space of VAE, which could
be subsequently decoded into a SMILES string of a molecule. Despite hav-
ing an extremely low amount of training data, the approach showed its effi-
ciency in decoding biosynthesis reactions encoded in sesquiterpene synthase
sequence. The best model achieved a Tanimoto similarity score of 0.55 on
sesquiterpene-sensitive fingerprints for the test fold. It managed to perfectly
predict 11 sesquiterpenes out of 34, while the majority of other predicted
molecules preserve structural features of actual compounds.

I showed that the domain knowledge about the chemical formula of sesquiter-
pene can be used as a confidence score of the prediction, which implies that
the model can be applied to the prediction of unstudied sesquiterpene syn-
theses. More precisely, on average, the model can perfectly predict one of
five uncharacterized sesquiterpene syntheses with a high level of confidence.
Although the mean numerical scores are not perfect, the features of similarity
between predicted and real compounds are fairly impressive. Typically, the
model properly predicts the general structural properties of molecules, which
means that it can be employed as an assistant for biochemistry experts in
practical applications.

I have studied a novel field of research and I believe that my thesis is
a pioneering contribution to further work on the prediction of biosyntheses.
The proposed pipeline constitutes a framework that allows operating on vector
spaces instead of row enzyme sequences and small molecules, which makes it
especially interesting for the generalization to other biosyntheses — which I
have pointed to — and future work in general.
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Acronyms

MAE Mean absolute error
MLP Multilayer perceptron

MSE Mean squared error
TPS Terpene synthase
UMAP Uniform Manifold Approximation and Projection

VAE Variational Autoencoder
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