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Abstract

Production tabular data are often extremely sensitive and thus difficult to manipulate.
My thesis surveys generative machine learning methods and their ability to learn data
distributions. This ability is used to generate new synthetic data that can completely
replace the original data where it is needed. The thesis provides a theoretical basis
with a strong focus on two significant deep learning approaches, VAE and GAN.
Existing GAN modification for tabular data, CTGAN, is implemented and trained
with banking dataset as a proof of concept. Results from different metrics show that
the chosen anonymization approach of banking data might be very successful and
steps following this thesis are suggested. The thesis was written in collaboration with
Komerční Banka.

Keywords generative methods, banking data, generative adversarial networks, tab-
ular data, CTGAN, anonymization, data augmentation

Abstrakt

Produkční data často obsahují velmi citlivé informace a je složité s nimi manipulovat.
Má práce zkoumá generativní metody strojového učení a jejich schopnost naučit se
distribuci dat. Tato schopnost je použita pro generování syntetických dat, která
mohou v případě potřeby kompletně nahradit ty reálná. Práce nejprve prezentuje
teoretický základ a věnuje se do hloubky dvěma metodám hlubokého učení, VAE a
GAN. Existující modifikace GAN pro tabulková data, CTGAN, je implementována
a na bankovních datech je natrénován model. Výsledky vycházející z různých metrik
ukazují, že tento způsob anonymizace bankovních dat může být velmi úspěšný a
jsou navrženy další kroky, které mohou zakládat na této práci. Práce je tvořena ve
spolupráci s Komerční Bankou.

Klíčová slova generativní metody, bankovní data, generativní adversariální sítě,
tabulková data, CTGAN, anonymizace, augmentace dat
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Chapter 1

Introduction

Motivation
Many workflows heavily rely on good-quality data. Although the pace of producing
new data is faster than ever in history, it might be very complicated to access the
data. Making copies of original data can lead to safety issues and increases the risk
of data breaches. Additionally, regulations such as GDPR further limit the possibility
to spread data containing sensitive personal information. All companies which collect
customer data to improve their services are affected because they usually need the
data for their development and testing routines. This often requires moving and
copying the data a lot, and therefore indirectly threatens the original data source.
By all means, the banking industry is a representative area considering this issue due
to strong regulations and high sensitivity of financial data.

Data masking solves the issue by replacing sensitive data with artificial values. How-
ever, the approach faces many challenges. Masked data must retain all real data
aspects and when used in a certain process, the result must be consistently similar.
Also, the algorithm must not be vulnerable to reverse engineering as it would make
the masking useless. There are many techniques which can be used to replace certain
values in the data. With that being said, they are formed by complex rules which
respect certain constraints and therefore can be very limited.

On the other hand, generative models aim to learn data distribution so they can
naturally sample new data from it without defining complex rules. In theory, this
synthetic data should not differ from the real data as they come from the same
probabilistic distribution. When using a generative model, no original features are
taken from the real dataset, and instead, a completely synthetic one is generated.
This prevents everyone who is working with the synthetic data from knowing anything
about the original data.

Also, the generative model can be useful outside of the data masking scope. When per-
forming a task, which requires an extensive amount of data, we can use the synthetic
data generated by the model alongside the real ones and thus increase the amount
of data available for the task. This technique is often called data augmentation.
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Objectives
There has been a serious focus on generative methods over the past decade. A lot
of papers and new algorithms for synthetic data generation have been published and
the field is evolving very fast.

The thesis surveys generative methods which can be used to anonymize and aug-
ment data in Komerční Banka. Its goal is to thoroughly review generative machine
learning approach with respect to its ability to create synthetic data. State-of-the-art
methods which are applicable for tabular banking data should be analyzed and one
method selected based on the analysis and its suitability for the bank’s environment.
The method has to be implemented and trained with a production dataset provided
by Komerční Banka. The model then has to be evaluated using different techniques.
Lastly, further changes and improvements should be presented.

Thesis Structure
Including this chapter, the thesis consists of 7 chapters. The second chapter introduces
synthetic data and their usage. The third chapter describes generative models and
presents the most important representatives. The fourth chapter presents specifics for
tabular data and algorithms designed for them and thoroughly explains the selected
method. Implementation details are presented in the fifth chapter and the model is
evaluated in the sixth chapter. The last chapter discusses future improvements to the
implementation.



Chapter 2

Synthetic Data

Unlike the data collected in real-world situations, synthetic data are completely gen-
erated by a program. They can be utilized in various manners and help us overcome
many challenges which come with the real-world data.

One of the most significant features is the simplicity of obtaining such data. Once
we know how to generate new instances, we can create large synthetic datasets with
little effort. This is especially useful in machine learning as many algorithms require
an extensive amount of training data to perform as intended. Additionally, the al-
gorithms can produce perfectly clean data which do not need to be preprocessed for
further use. There are no missing or ambiguous values in the dataset unless we want
them to be there. Also, the fact that the data do not come from a real-world source
makes it much safer to manipulate, copy and move the data as it is less likely for
them to be misused by a third party.

The biggest challenge, in general, is to perfectly mimic the data coming from the real
world. In a perfect scenario, the synthetic dataset should not be recognizable from the
real world one concerning a task performed. Also, the importance of the data realness
usually differs, meaning that there are many methods to generate the data varying
in complexity. The simplest methods draw the data from a predefined probabilistic
distribution, such as Gaussian, and therefore need no additional training [1]. Although
they are widely used for simple tasks and demonstrative purposes, they lack the ability
to provide any useful information, so they cannot be used in more complex scenarios.
When trying to generate realistic data, a generative machine learning model has to
be trained using a real dataset. The model learns the real data distribution and then
samples new data from it, theoretically preserving the real-world data characteristics.
Generative models can be used to solve various machine learning problems, yet this
thesis further discusses their application to data augmentation and anonymization.
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Data Augmentation
Data augmentation techniques aim to increase the number of samples in our dataset.
It can be advantageous for multiple reasons, such as prevention of overfitting and
model stability improving, and therefore boost the overall performance of our model.
Although the algorithms used depend on many dataset specifics, generative models,
in general, are being used for data augmentation across all machine learning fields
when there is a need of good-quality data.

The augmentation can also be advantageous when we have enough data at the first
glance. To set an example, many machine learning models behave differently when
they are provided highly imbalanced data. Highly imbalanced data occur a lot in real
world, especially in datasets related to anomalies such as fraud detection. To rebalance
the dataset, we can augment it first and then down-sample it back to its original size,
preserving all minority class data points and thus rebalancing the dataset.

Data Anonymization
Data anonymization can generally be defined as a process of data transformation
which aims to make an identification of the former data point impossible. In other
words, the anonymization should be irreversible and it should protect the information
we want to anonymize from any other party. This thesis aims to accomplish that by
replacing all real data with fake samples generated by a generative model. The process
is naturally irreversible as the anonymized data points do not come from the original
ones and with correct data preprocessing, no sensitive information is projected into
the new dataset.

It is often not easy to achieve full anonymization of a dataset. Even when all sensitive
information is covered or changed, a set of values which appears together can still
define a very specific situation. In such case, it would still be possible to identify
original values with a prior domain knowledge. As a result of that, more complex
anonymization technique is often required.



Chapter 3

Generative Methods

There are two different machine learning approaches to a classification task using
statistics. Consider a general machine learning classification task, a feature vector x
and a target variable y.

Discriminative methods aim to learn the conditional probability distribution
P (y | x). In other words, they find boundaries in the data vector space for
all values of the target variable with respect to the training data.

Generative methods aim to learn the joint probability distribution P (x, y),
which they use to infer the conditional probability using the Bayes theorem.

Discriminative models used to be superior and widely used until the last decade.
Although this has mostly changed thanks to various deep generative models which
were introduced recently (3.1), there are both advantages and disadvantages of each
approach when it comes to the classification task and the comparison can get very
complicated. However, the approaches differ a lot considering new data generation.
Contrarily to generative methods, discriminative methods do not recognize the un-
derlying distribution of the data and therefore cannot be used for the data generation
task when we train them. This is why they are not discussed any further in the thesis.

This thesis focuses on deep models as they are considered to be one of the most
promising machine learning areas and majority of the state-of-the-art algorithms use
deep learning techniques for data generation.

3.1 Deep Generative Methods
Deep generative models combine the ability to learn data distribution with capabil-
ities of neural networks and deep learning techniques. The universal approximation
theorem, first proven in [2], tells us that we can approximate any given function with
a neural network, so we are theoretically able to approximate any data distribution.
This makes deep models generally very powerful when it comes to solving complex
generative problems with large inputs, including reconstruction or generation of high
resolution images [3].
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Additionally, deep generative algorithms are usually unsupervised. While supervised
methods require labelling the training data in order to learn, unsupervised methods
do not need any guidance. This means we need nothing but a dataset to train such
model and it expands the suitability of deep generative models for synthetic data
generation even further.

In the following part, two key deep generative approaches, variational autoencoders
and generative adversarial networks, will be described. Their fundamental compo-
nents will be explained, showing their significant characteristics and why they are so
popular and widely used.

3.2 VAE
This section describes variational autoencoder (VAE), originally introduced in 2013
[4], and its base components. First, the vanilla autoencoder architecture is briefly
outlined. After that, its limits are discussed, presenting all improvements to the VAE
and its data-generative features.

Autoencoder
Autoencoder is an unsupervised neural architecture which aims to learn a representa-
tion of a given dataset. The architecture is made of two neural networks, an encoder E
and a decoder D. In each iteration of the learning process, E takes a data point x and
encodes it into a new latent representation z. D then decodes z back to the original
space, creating new data point xd. Decoded point xd is then compared to x and the
error between the points determined by a loss function L(x, xd) is backpropagated
through both neural networks, forcing the output to be as similar to the original
input as possible. The idea behind the algorithm is displayed in figure 3.1.

Figure 3.1 Architecture of autoencoder

In most cases, a dimension of the latent space Z is lower than a dimension of the
input space X. Thus, the input is compressed by the encoder, potentially loosing
some of the initial information. As a result of that, the latent representation is forced
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to keep the most important features as the decoder tries to recreate the original input
from it. Finding such encoding of reduced dimension can be extremely useful in many
scenarios, ranging from noise filtering to dimensionality reduction. In that case for
example, the autoencoder works similarly to a principal component analysis in linear
algebra, being even more powerful thanks to the ability of neural networks to apply
non-linear transformations.

Although the autoencoder is good at finding different data representation, it is nearly
impossible to generate good quality data without any algorithm modification. The
latent space tends to be highly irregular, making it difficult to create plausible data
by sampling latent points sampling. In short, the space irregularity is a scenario when
two similar points are encoded into very distant latent representations. The original
data structure becomes corrupted and the latent space becomes seemingly randomly
organized. When this happens, there is no guarantee that a point sampled from the
latent space by averaging two real encodings would give us anything close to a mixture
of the original data points. Because of that, a latent space regularization technique
is needed in order to make a data generation possible.

Latent Space Regularization
To generate completely new data samples, VAE uses slightly different training tech-
nique in order to ensure the latent space regularity. Instead of encoding the input as
a point in the latent space, it is encoded as a probabilistic distribution over the latent
space. Normal distribution is used, meaning that we can naturally encode the input
as a pair of variables defining a normal distribution, a mean and a variance. Then,
a point is sampled from the distribution and the algorithm follows the vanilla autoen-
coder training algorithm. The sampled latent point is decoded and the error returned
by a modified loss function is backpropagated through the autoencoder network.

In theory, this change to the training process helps to regularize the latent space
as the decoder input can be sampled anywhere from a distribution returned by the
encoder, meaning the distributions now have to be organized as they might overlap.
However, the technique alone does not work in practice, because the relation between
a mean and a variance of each distribution over the latent space is not restricted with
respect to each other [5]. As a result of that, all distributions can have extremely
low variance considering the distances among them, behaving almost the same as a
vanilla autoencoder which works with simple points.

To prevent this scenario, the covariance matrix of each latent distribution is forced
to be as close to the identity as possible, presuming no correlation between any of
the latent vector elements, while keeping the means of the distributions as centered
as possible. This is achieved by a change to the loss function, which penalizes the
autoencoder not only when the reconstructed output differs from the input, but also
when the latent space distribution diverges from the standard normal one. Figure 3.2
shows the modified algorithm.

Simply put, the encoded distributions are squeezed close to each other and they aim
to maintain a shape of the standard normal distribution by encoding the input into
multivariate normal distributions instead of single points. Further, the latent space is
forced to be more regular, because the encoded representations of the inputs overlap
and thus have to be systematically organized with respect to each other. Once the
algorithm is trained, synthetic data can be generated by sampling from a normal
distribution over the latent space.
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Figure 3.2 Architecture of VAE

3.3 GAN
Generative adversarial networks (GAN) is an approach first introduced in 2014 [6]
which caused tremendous surge in machine learning research related to deep gen-
erative models. Although many improvements to the original algorithm have been
proposed [7, 8], this section will outline the components of the original vanilla GAN
as all improved algorithms are naturally based on it.

Figure 3.3 Architecture of GAN
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The architecture of GAN can be seen in figure 3.3. The algorithm consists of two neu-
ral networks, a generator G and a discriminator D, which play a two-player minimax
game against each other. G takes a random noise sampled from a prior as an input
and transforms it into a fake data point xθ. D is given both real and fake samples
with a goal to distinguish them. The realness of an input is indicated by a scalar r
ranging from 0 to 1. During the training process, D tries to maximize the chance
of classifying its input correctly while G aims to confuse D, aiming to minimize the
chance. The minimax game value function V (D,G) can formally be defined as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log (1−D(G(z)))] (3.1)

where z is an input noise sampled from a prior pz(z) and x is a real data point coming
from the data distribution x ∼ pdata(x).

As proven in the original article [6], a unique perfect solution to the game exists,
with G successfully learning the underlying data distribution and D being unable to
detect artificial data points, returning 1

2 for every input. Both D and G are multi-
layer perceptron neural networks, which means they can approximate any function or
distribution and, in theory, can converge to this solution via backpropagation. Loss
functions for both D (equation 3.2) and G (equation 3.3) can be directly inferred from
the value function.

There are two differences in the loss functions. First, both functions differ in sign as
the networks play a minimax game and what one minimizes, the other maximizes.
Additionally, part related to the classification of real images is omitted from the
generator loss, because they are not related to it by any means.

LD = −[log (D(x)) + log (1−D(G(z)))] (3.2)

LG = log (1−D(G(z))) (3.3)

After the training process is complete, it is straightforward to generate synthetic data
with GAN. Since the generator was trained to create as real data points as possible,
it can be used the same way to generate completely new data from a random noise
input. The discriminator network is contrarily only used for the generator training
and it does not participate in the data generation process.

3.4 VAE And GAN Comparison
This section highlights advantages and disadvantages of VAEs and GANs and their
key differences are analyzed. Although newer methods might solve some of the dis-
advantages and their architecture might be different, the vanilla methods, presented
in 3.2 and 3.3, will be compared as their characteristics discussed are highly important
for every derived algorithm’s usage and they are essential when choosing an algorithm
to be used.
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As already mentioned, all generative models are used to learn the data distribution.
The most significant difference among all of them is the training procedure and the
objective function, because they together define how the model aims to converge
towards that distribution. This applies to VAEs and GANs too and the difference
in the training has several consequences.

For better interpretation of the difference, the maximum likelihood estimation method
(MLE) and the likelihood (equation 3.4) need to be defined first. A generative model
is defined by a set of parameters θ, for instance, the weights of a neural network.
L(X, θ) is a likelihood for a model to have θ as parameters, considering a dataset X
of n samples, defined as a joint probability distribution over all data points from
X. MLE tries to find the maximum likelihood for X by maximizing L(X, θ) using
an optimization technique over θ, such as gradient descent.

With an assumption that all data points were obtained independently, the likelihood
can be defined as a product of marginal probabilities as follows:

L(X, θ) =

n∏
n=1

p(xi, θ) (3.4)

where xi is a data point from X and p(xi, θ) is a probability of xi coming from
a distribution of a model with parameters θ.

VAE is an explicit method, which means the likelihood function is explicitly available
for the training and we could theoretically obtain the maximum likelihood param-
eters using analytical methods. However, the maximum likelihood function is gen-
erally intractable in practice and it has to be approximated. To solve that, VAE
uses lower bound estimator of KL divergence [9] DKL(Pdata || Pmodel) between the
target distribution Pdata and the model distribution Pmodel (equation 3.5). It is used
with a reparameterization trick so that an optimizable approximation of the objec-
tive function is yielded and the gradient descent optimization is possible [4]. Since
the KL divergence is a measure of how two probability distributions are similar to
each other, to maximize the likelihood, it is analogous for the model to minimize
DKL(Pdata || Pmodel).

KL Divergence between two continuous distributions P and Q is defined as:

DKL(P || Q) =

∫
x

P (x) log
P (x)

Q(x)
dx (3.5)

GAN objective can be characterized by a symmetrized mean of two KL Divergences,
the JS Divergence [10], which overall yields better results than a single KL Divergence.
A JS Divergence DJS(P || Q) between two distributions P and Q is defined as:

DJS(P || Q) =
1

2
DKL(P || P +Q

2
) +

1

2
DKL(Q || P +Q

2
) (3.6)

where DKL is a KL divergence defined in equation 3.5.
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GAN is an implicit method, which means that it samples data from their distribution
and that the generator does not need to explicitly know the target distribution, be-
cause its parameters are adjusted based only on the discriminator’s loss. Since the loss
function (equation 3.2) can be thought of as maximizing the conditional probability
P (Y = y | x), where Y indicates whether x comes from the real data distribution
(y = 1) or from the generated one (y = 0), the likelihood objective is projected into
GAN through the discriminator. For any given generator, this discriminator likelihood
objective can always reach the optimum when both networks have enough capacity.
The generator can then be updated to improve the objective (equation 3.1) for the
optimal discriminator and thus make its distribution converge towards the real data
distribution [6]. Therefore, contrarily to VAE, there is no intractable integral which
needs to be approximated.

For VAE, approximating the likelihood of a dataset generally means a limitation in
generating perfect samples. For example, images generated by VAE might not look
realistic as they often appear to be blurry. Yet, the objective and the explicit likelihood
approach is naturally quite stable. On the other hand, GANs are theoretically capable
of producing more realistic data thanks to its objective function. With that being
said, they are notoriously very hard to work with and they are very unstable when it
comes to their training and many unwanted situations which might occur due to it
[11]. Some of the improvements to the vanilla GAN architecture which combat the
issues are discussed later (section 3.5).

Another disadvantage of the adversary training is the inability to properly evaluate
the trained network or the samples generated by it. Apart from a subjective realness
evaluation of every generated sample by a human, GANs do not provide any natural
metric which would tell us how good it is. This is due to the fact that the loss
function of the generator used for synthetic data sampling only expresses how good
the generator is at fooling the discriminator. However, this alone does not provide
any information about the quality of the samples alone. Contrarily, the loss function
of VAE expresses a reconstruction loss on an input after its encoded into the latent
space and decoded back, providing us some information about the model once it is
trained. The evaluation used in this thesis is described in detail in chapter 5.

3.5 GAN Improvements
As already mentioned, vanilla GAN algorithm (section 3.3) has proven to be highly
unstable. This section first points out the most frequent problems [12] which make a
GAN training difficult. Then, it describes improving techniques which aim to solve
these problems by architectural changes. The techniques presented are used by various
state-of-the-art algorithms (including the CTGAN algorithm, thoroughly described
in 4.2), to increase the overall performance and stability.

Although there are also many improvements to vanilla VAE algorithm (section 3.2),
only GAN techniques are presented. Techniques which have been proposed for VAE
are not used in the implementation part (chapter 6), so they do not need to be
discussed any further.
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Common Issues
The issue presented the most when it comes to GANs is a modal collapse. A collapse
might develop when the model tries to learn a multi-modal data distribution. Since the
generator is only backpropagated whether it fooled the discriminator or not, it might
learn to ignore most of the data modes and to generate very similar data points which
would fool the discriminator. Because of that, the generator only explores a small
part of the data space and although it might produce high quality data, the output
is very little diverse.

Another common obstacle is a non-convergence of a model. Although GANs are
theoretically proven to converge towards the optimal solution, it is immensely difficult
to achieve that in practice in a generic manner. The minimax training approach is
unreliable and the and all models are extremely dependent on their hyperparameters.

This is closely related to a vanishing gradient problem. To help the training sta-
bility, the discriminator is often in advance to the generator. This can lead to the
discriminator overfitting, meaning the loss function of the generator does not provide
a sufficient gradient for learning, preventing the discriminator from converging.

There are many improvements which aim to solve the listed problems [7], but only
few are presented further in this thesis. It would be out of the scope of this thesis
to describe all important improvements to the vanilla GAN architecture which have
been proposed. As a result of that, the thesis only presents the techniques adopted
by the CTGAN algorithm as they are important to justify the choice of a GAN-based
algorithm.

WGAN
Many GAN adaptations define new objective function to improve the training stability
of the algorithm. Wasserstein GAN (WGAN), proposed in 2017 [8], significantly
reduces the chance of a modal collapse and it does not require careful balancing of
both adversaries. To measure the divergence of a real and a generated distribution,
WGAN [8] uses a Wasserstein distance. It is often referred to as the Earth-Mover
distance and it intuitively determines how mass we have to move to transform one
distribution to the other. Formally, a Wasserstein distance DW (P || Q) between two
distributions P and Q is defined in the original publication as follows:

DW (P || Q) = inf
γ∈Π(P, Q)

E(x,y)∼γ [ ||x− y|| ] (3.7)

where Π(P, Q) is the set of all joint distributions γ(x, y) of marginal distributions P
and Q.

Unlike the cross entropy loss and the JS divergence, the Wasserstein distance provides
strong gradient when the distributions are very far from each other or do not overlap
at all. Additionally, the distance increases and decreases much more smoothly than
it does in case of the traditional divergences and it prevents potential instabilities in
the gradient descent training process.

The infimum in the equation 3.7 is intractable, so the Wasserstein distance has to
be transformed first in order to yield an appropriate loss function. To do that, the
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authors of WGAN use a Kantorovich-Rubinstein duality. The transformation itself is
complicated and it is therefore simplified for the purpose of this thesis. Considering
a real data distribution Pr and a generated data distribution Pθ, the Wasserstein
distance between both distributions DW (Pr, Pθ) is transformed as [13]:

DW (Pr, Pθ) =
1

K
sup

||f ||L≤K

Ex∼Pr
[f(x)]−Ex∼Pθ

[f(x)] (3.8)

where K is a Lipschitz constant. K has to satisfy:

||f ||L ≤ K (3.9)

When the condition 3.9 is satisfied, the function f is K-Lipschitz continuous. The
loss function LWGAN (Pr, Pθ) can now be formulated. As an objective, WGAN tries
to find the best fw from a set of K-Lipschitz continuous functions {fw}w∈W . With
respect to that, the loss function is formally defined as:

LWGAN (Pr, Pθ) = max
w∈W

Ex∼Pr [fw(x)]−Ez∼Pr(z)[fw(Gθ(z))] (3.10)

where Gθ is a WGAN generator with parameters θ.

The discriminator in WGAN is referred to as a critic (C), because it learns to compute
the Wasserstein distance between the distributions instead of discriminating real data
samples from fakes. The slightly updated architecture of WGAN with a notation from
the equation 3.10 can be seen in figure 3.4.

Figure 3.4 Architecture of GAN
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The one last problem this approach comes with is how to preserve the K-Lipschitz
continuity of fw during the gradient descent training. To solve that, the WGAN
learning algorithm clamps the weights w to a small window (for example, the original
implementation uses a rule |w| ≤ 0.01). This makes the space of all weights w very
compact and maintains the K-Lipschitz continuity. [13]

WGAN-GP
The weight clipping trick in WGAN algorithm is not perfect (even according to the
authors of WGAN paper) and a generally better solution was proposed in 2017 [14].
WGAN-GP (WGAN with a gradient penalty) does not use a hyperparameter hard-
clamping of the weights at all and instead, it introduces new modified loss function
for the WGAN critic.

In short, it is necessary for a function f to only have gradients with a norm lesser
or equal to 1. To enforce the constraint, a gradient penalty is added to the vanilla
WGAN loss function (equation 3.10). The new loss function LWGANGP (Pr, Pθ) is
thus simply defined as:

LWGANGP (Pr, Pθ) = LWGAN (Pr, Pθ) +GP (3.11)

where GP is the gradient penalty.

The gradient penalty corrects the discriminator when its gradient norm moves from 1.
Since the loss would be intractable for all x, it is only computed for a gradient norm
of randomly chosen samples x̂. GP is defined as follows:

GP = λ Ex̂∼Px̂
[(||∇x̂D(x̂)||2 − 1)2] (3.12)

where D is the WGAN critic and λ is a model hyperparameter, referred to as gradient
penalty coefficient.

Although WGAN-GP adds another computational complexity to the original WGAN
loss function, it has proven to perform significantly better than the original algorithm
[14] and it is generally a good objective when our goal is to generate high-quality
data.

Packing
Packing [15] is another technique which fights the modal collapse issue. It was in-
troduced in 2018 (along with a PacGAN algorithm) and as the paper suggests, it
significantly decreases the chance of a modal collapse when it is applied to a vanilla
GAN architecture.

The idea of packing is very simple. Instead of using a discriminator D(X) which would
take one data point X as an input and classify it (whether it is real or fake), PacGAN
uses an augmented version of the same discriminator architecture D(X1, X2, ..., Xm)
which takes m data points as an input and classifies them all together. To keep the
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classification meaningful, all m samples are always drawn from the same distribution,
either the real one or the generated one. The generator stays unmodified.

According to the authors, distributions with more modal collapse are penalized by the
augmented discriminator. Additionally, it makes a training process smoother, because
the output of the discriminator is always based on several different data samples.

Adam Optimizer
Adam [16] is an optimization technique that is not solely related to GANs so the
thesis does not describe it thoroughly. Since it is basically an extension to the classical
gradient descent optimization, it can be used in any deep learning algorithm, including
GANs, to improve the learning efficiency.

There are two main features which help the algorithm to be faster and more efficient,
adaptive learning rate and momentum. The first allows Adam to adjust the learning
rate as the learning goes, improving its performance on problems with sparse gradi-
ents. The second helps to keep a relative direction and thus to be more resistant to
noise.



Chapter 4

Tabular Data

Most of the generative deep learning algorithms that have been proposed focus solely
on tasks related to images. Deep learning algorithms have no problem handling even
large high-dimensional inputs and the uniformity of visual data being represented
by pixels makes generative algorithms extremely effective. Contrarily to such data,
tabular data are usually represented by low-dimensional inputs, making their dis-
tribution theoretically even easier to learn. With that being said, they have many
characteristics which cause synthetic tabular data to be generally difficult to generate.

4.1 Tabular data specifics
Each dimension of a tabular data space is defined by a different data column. The
column might either be discrete or continuous and each one of them has its own
properties. This section presents important issues which a generative model has to
take in count in order to appropriately learn a joint distribution of any tabular data.

Data distributions
Single table columns often do not follow any standard easily-defined probabilistic dis-
tribution, such as Gaussian. Since table columns can describe any real-world property
and each column within a table might even come from a different source, they often
vary a lot from each other even within the same dataset and it is greatly difficult to de-
fine any generic prior distribution. Additionally, many columns have multiple modes
which makes it even more difficult for the generative model to learn the underlying
distribution.

Imbalanced columns
As mentioned in [17], majority of the discrete columns are highly imbalanced. The
same trend can be observed in the enclosed notebook where the marginal column
distributions are plotted. This can cause severe overfitting of the majority class when
regular random sampling of the training data is implemented. The data points which

16
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contain a minority class values would be hardly ever selected, causing the model to
almost ignore them entirely.

Data types
Table columns can be of a different data types. While some of them, such as integers
or floats, are easily transformed to serve as an input for a neural network, the more
complicated ones are not. The data thus require preprocessing and there has to be a
clear way to transform a table row into a numeric representation, so that a a generative
model is able to learn from it. Also, this transformation has to be bidirectional,
meaning a synthetic row can be obtained from a model’s numeric output.

Constraints
Table columns are often constrained, whether it is only by a given range of values or
with respect to another column. A model does not understand what table columns
represent in reality and even when it is trained on logically correct data, the correct-
ness of synthetic samples is not guaranteed. Although this does not directly affect
the training process, there has to be a modification to the sampling process.

Null Values
Missing values can complicate both the training and the sampling. They have to be
imputed for most deep learning architectures, so there is more preprocessing work
required before the training. When sampling synthetic data, on the other hand, we
often have to create missing values in order to imitate the real dataset in all of its
aspects.

4.2 CTGAN
CTGAN (Conditional Tabular GAN) is a state-of-the-art algorithm published in 2019
with a GAN based architecture designed for tabular data generation. The following
section covers all components and techniques described in [17] and shows its benefits.

Algorithm Selection
The algorithm selection is not based on any custom evaluation of different approaches.
Instead, it is based on the theoretical part of this thesis and consultations with em-
ployees of the bank. Section 3.1 shows that both VAE and GAN based algorithms
can be extremely effective when it comes to data distribution learning. Although
they both have limitations, they can perform extremely well even for difficult tasks
and their recent applications prove that deep learning methods are often an excellent
choice [3].

Apart from the selected algorithm, GANs and generative deep learning approaches in
general have already demonstrated that they can create powerful tools for tabular data
generation [18, 19]. CTGAN differs from the older algorithms in several architectural
aspects and based on the benchmark published with the algorithm, it outperforms all
other tabular data focused generative methods.
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Except for this algorithm, [17] also introduces its version of an algorithm derived
from VAE (3.2), which is called TVAE (Tabular VAE). Although it performs slightly
better than CTGAN on a presented benchmark, the algorithms can be expected to
perform similarly overall as there is more flexibility in the CTGAN architecture and
the benchmark only uses a single hyperparameter setup. As a result of that, the choice
of the architecture derived from GAN (3.3) over the one derived from VAE is based on
one of the advantages of the adversarial training. According to the thesis assignment,
the selected algorithm should be able not only to augment real dataset, but also
to completely anonymize them during the process. This is much easier to achieve
with an architecture derived from GAN, because no real data are ever introduced
to its generator and synthetic data can thus be considered as differentially private.
In contrary, VAE is trained with its real data reconstruction error, so it cannot be
strictly defined as a differentially private algorithm.

CTGAN features multiple techniques which aim to eliminate issues related to ad-
versarial training (section 3.5) and thus is a relatively stable and generic algorithm.
This makes it easier to successfully train different synthesizers for different produc-
tion datasets when the dataset is appropriately preprocessed. It also means that no
advanced knowledge is required to train a model reasonably well.

Additionally, the algorithm is a part of SDV framework (6.2) and thus is even easier
to implement. It provides high-level API for easier implementation and the algorithm
used can easily be substituted by a different algorithm when needed (such as TVAE).
Also, the evaluation is easier thanks to the framework built-in evaluation module,
which is used later in this thesis (5.2).

Architecture
Since CTGAN architecture is derived from GAN, it uses two adversarial neural net-
works (3.3). Both networks are fully connected and they are composed of 2 hidden
layers. The networks are trained against each other using the WGAN-GP objective
along with the Adam optimizer. The critic also uses the packing to improve the
stability. All of the improving techniques are described in detail in section 3.5.

CTGAN also implements multiple specific custom techniques which help the algorithm
to process a tabular input and learn the distribution defined by it. All these techniques
are described below.

Mode-specific Normalization
Tables can contain both discrete and continuous columns. CTGAN transforms each
of the column types differently, so its original inner representation is maintained.

To represent a discrete column, each of its values is encoded as a one-hot vector. For
a column of n distinct values, the one-hot vector contains (n − 1) zeros and a single
one, for each distinct value at a different position. Thanks to that, all distinct values
from a column can be represented by a different one-hot vector. To set an example,
the values from a column with 3 unique values would be represented either by vector
(1, 0, 0), vector (0, 1, 0) or vector (0, 0, 1).

In theory, all continuous columns would not have to be transformed at all and they
could be directly fed into a discriminator. In practice, GANs often use normalization
to adjust the input values so that they come from a predefined range.



19

For example, to normalize a column C to come from a range of [−1, 1], each value x
from C is min-max normalized as follows:

x′ = 2 (
x− xmin

xmax − xmin
)− 1 (4.1)

where x′ is a new normalized form of x, xmin is the minimal value from C and xmax

is the maximal one.

Although the min-max normalization can be effective when all columns come from
a single-modal distribution, such as normal, it fails when a column follows a more
complicated multi-modal distribution. Values which are close to the same mode are
normalized to very similar values and the difference between them is negligible. Be-
cause of that, the difference between them might have little impact on the weights of
the model, even though it could be significant in reality.

To prevent such scenario, the algorithm uses a mode-specific normalization to trans-
form all continuous columns instead. First, a number of modes of the column distri-
bution is estimated by fitting a Gaussian mixture to it. Intuitively, the distribution is
split into multiple normal distributions, so that all the normal distributions combined
sum up to the column distribution.

Formally, the probability PC(x) over the column C is a mixture of K normal distri-
butions (N1, ...,NK), where Ni = N (ηi, σ

2
i ). It is defined as follows:

PC(x) =

K∑
k=1

ϕi Ni(x) (4.2)

where ϕi is a weight of the distribution Ni. The weight is not used in the normalization
process at all.

Each normal distribution represents an estimated mode and their mean and variance
are used to compute normalized values of the column. Every point is normalized with
respect to a distribution which has a highest probability in it. A figure 4.1 (originally
from [17]) shows a distribution as a mixture of 3 normal distributions, meaning there
are 3 modes estimated in total (η1, η2 and η3). Each mode is represented by a mean
of the corresponding normal distribution.

Figure 4.1 Gaussian mixture of a multi-modal distribution
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Each value x from a column C is normalized as:

x′ =
x− ηk
4σk

(4.3)

where ηk is a mode with the highest probability in x and σk is a corresponding
standard deviation.

Since two values from the same column can now be normalized with respect to a
different mode, they can end up having the same norm even when they are originally
far from each other. To distinguish a mode which was utilized for the normalization,
it is encoded as a one-hot vector described above and the vector is appended to the
input.

As a result of the mode-specific normalization, the dimension of the input significantly
grows, because each discrete value is encoded as a vector and each continuous column
as another vector and a normalized scalar value. With that being said, the tabular
input is usually much smaller than a visual one and the transformed representation
is mostly composed of one-hot vectors, so it does not cause any computational issues.

A very important characteristics of the whole transformation is its reversibility. Given
the vector representation of a row, it is not complicated to obtain the original version
which it is supposed to represent. Thanks to that, the generator can output the vector
representation so that it can directly serve as an input for the discriminator and when
the generator samples new synthetic dataset, its output can be easily translated into
the original row format.

Conditional Generating
Conditional generating is not a strictly unique feature to this algorithm. However,
it is presented in this section, because it better complements other CTGAN spe-
cific features and the described way of conditional generating is only specific to this
architecture.

In the vanilla GAN architecture, the generator only requires a randomly generated
latent noise as its input (section 3.3). The conditional GANs [20], such as CTGAN,
also create a conditional vector for each run of the generator and append it to the
latent noise. The condition is therefore projected into the generator input while the
randomness is still maintained thanks to the noise.

The conditional vector always represents one unique value out of all discrete columns
in the dataset. A column to be represented is selected randomly before each iteration
and a value from that column is then selected based on its frequency within that
column. Instead of a plain frequency, its natural logarithm is used instead. This
means that values which do not occur in the dataset very often are highly prioritized
with respect to their absolute frequency, so the frequent values get selected only
slightly more often.

The generator then tries to create a data point which contains the value represented
by the conditional vector. In order to train him to do that, a cross-entropy loss
between a conditional vector and a generated sample has to be added to the original
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WGAN-GP loss function (equation 3.11). Apart from the original loss, the generator
is also penalized when it generates a different value than the condition, so it gradually
learns to project the condition into the generation process.

The cross entropy loss for the condition is defined as:

LCE = −
n∑

i=1

ĉi log(p̂i) (4.4)

where ĉ is the average over all conditional vectors within the current batch, ĉi is the
value at ith position of ĉ and p̂i is an estimated probability for ĉi.

Each time a new condition is generated, it is also projected into the real data sampling
part of the algorithm, so that only samples which do not violate this condition are
sampled. Thanks to that, the critic always computes the loss from real and fake
samples conditioned by the same value. Simplified CTGAN architecture preview,
derived from WGAN architecture (3.4), is presented in figure 4.2.

By this design, the generator is forced to consider all possible values from the discrete
columns. If the generator was not conditioned at all, the scarce discrete values would
have a negligible influence on the overall distribution learned by the generator.

Figure 4.2 CTGAN architecture



Chapter 5

Evaluation Techniques

Although the adversarial training has multiple advantages, it provides no meaningful
metric of how well it performs (3.3). Because of that, other metrics have to be defined
in order to appropriately evaluate the result.

The metrics described in this chapter are the ones used are the ones used for the
final evaluation of the implemented CTGAN model (6). Each metric is theoretically
described and a score of the model is provided for each of them.

5.1 Machine Learning Efficacy
ML efficacy is a technique which simulates the ability of a synthetic dataset to be
utilized in another task, as a substitution for a real one. To measure a performance
of a generative model, completely synthetic dataset is first sampled. It is then used
in the task instead of a real dataset and the results are compared to those obtained
with the real dataset.

The evaluation process implemented in this thesis is designed to emulate the real use
case of the dataset. Since it is originally utilized to predict whether a client will fail
to repay a debt or not, a classifier is used as a referential model. The actual model
which is adopted by the bank could not be used in this thesis, so a simple decision
tree is implemented instead. The decision tree algorithm is not vulnerable to a target
column imbalance and it is somewhat universal. Thanks to that, it can serve well as
a benchmark even without hyperparameter tuning.

Additionally, features with the highest importance for the utilized decision tree are
the same features important to the production model. Therefore, the decision tree
should be a relevant benchmark model.

F-Score
F-score has to be defined first so that the evaluation pipeline can be described. It is a
widely used performance measure for binary classifiers which is often used to evaluate
classifiers which try to predict an imbalanced variable.
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It can be computed from a confusion matrix, which is displayed in figure 5.1 (originally
from [21]). General F-score Fβ is defined a weighted mean of precision and recall with
β being a parameter, such that the recall is β times as important as the precision.

Figure 5.1 Binary classification confusion matrix

Precision is defined as:

precision =
TP

TP + FP
(5.1)

and it tells us how many samples classified as positive are in fact positive.

Recall is defined as:

recall =
TP

TP + FN
(5.2)

and it tells us how many positive samples were classified as positive.

This thesis only uses a generalized version of Fβ with β equal to 1. It means precision
and recall are equally important in F1. The β parameter is not considered any further
in the thesis and F-score is meant to be F1.

As a harmonic mean of precision and recall, F1 is defined as:

F1 =
2

precision−1 + recall−1 (5.3)
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Evaluation Process
Details of the evaluation process can be seen in figure 5.2. A real dataset Dreal is
required as an input. Dreal is randomly split into two subsets, a train set Dtrain and
a test set Dtest. A generator G is then trained using Dtrain and a new completely
synthetic dataset Dsynth is sampled with it. After that, two decision tree classifiers
Creal and Csynth are trained with Dtrain and Dsynth respectively to predict client
failure. Both classifiers are evaluated with Dtest and an F-score is computed for each
of them (Freal for a real dataset, Fsynth for a synthetic dataset). ML efficacy score S
is then obtained as follows:

S =
Fsynth

Freal
(5.4)

The optimal value for S is 1, meaning both classifiers perform identically. Although
scores over 1 mean the synthetic data trained model performs better, it is not the
goal of data generation. Instead, the model should create data which are as similar
to the original dataset as possible.

Figure 5.2 ML efficacy evaluation pipeline
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5.2 SDV Evaluation
The SDV framework utilized for the implementation (section 6.2) offers multiple eval-
uation metrics. This section presents all of these metrics used in the enclosed imple-
mentation. The metrics can be divided into 3 categories, there are 2 tests in each of
the categories.

Statistical Metrics
Each metric runs a statistical tests on both real and synthetic data and compares the
results.

CS Test — Uses a chi-squared (CS) test to compare the distributions of all
discrete columns. Frequencies from the real dataset contingency table are
compared against its synthetic counterparts.

KS Test — Uses a Kolmogorov–Smirnov (KS) test to compare the distribu-
tions of all continuous columns. The test works with Cumulative Distribution
Functions (CDF) of all columns and the resulting score of the test is an aver-
age distance between real and synthetic CDF over all continuous columns.

Detection Metrics
Each metrics trains a ML classifier and then tries to discriminate whether the data
belong to the real or the synthetic dataset. Each data point is first assigned a flag
that indicates which dataset it originally belongs to. Then, all data points are mixed
together, a ML model is trained to predict the flag. The final evaluation is computed
as 1−Ŝ, where Ŝ is an average score of multiple models, where each model is validated
on a different subset of the mixed dataset.

SVC Detection — Uses a Support Vector Classifier (SVC) for the detection.

Logistic Detection — Uses a logistic regression model for the detection.

Divergence Metrics
Each metric computes a divergence of the synthetic data from the real data. Both
metrics use a KL divergence for the computation (equation 3.5).

Discrete KL Divergence — Evaluates all discrete columns.

Continuous KL Divergence — Evaluates all continuous columns.

All metrics output a single scalar between 0 and 1, with 0 being the worst possible
score and 1 being the best. An aggregated score is also computed at the end of the
evaluation and it is the average of all scores obtained from the separate tests above.
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5.3 Visual Evaluation
Both ML efficacy (5.1) and SDV metrics (5.2) output a single score, which indicates
the quality of a synthetic dataset. Synthetic data can also be evaluated manually
by plotting certain characteristics of synthetic and real data and comparing these
characteristics to each other.

For each visual comparison, the enclosed implementation first selects two different
subsets of data rows. The subsets can either come from the same dataset, when the
goal is to compare distributions conditioned by the target variable, or from different
datasets, when the goal is to compare the real dataset to the synthetic one. Then, the
marginal distribution of each column is plotted for both subsets against each other.



Chapter 6

Implementation

This section presents details of the enclosed implementation. It serves as a proof of
concept for the CTGAN model (thoroughly described in 4.2) selected in the analytical
part of this thesis.

6.1 Technologies
Whole implementation uses Python as a programming language. There is a framework
(6.2) in Python which offers an easy CTGAN algorithm high-level implementation and
apart from that, there are many data-related libraries which make the data processing
and the implementation easier. The version of the Python used is 3.7.0.

The enclosed document which contains the implementation is in IPython (.ipynb)
format [22]. It is a JSON-based format which combines Python programming lan-
guage with other programming languages, such as Markdown. This allows interactive
computing and visualizations in Python to be in a presentable form, thanks to the
Markdown formatted text. In this thesis, markdown is the only other programming
language used for the implementation apart from Python.

Another advantage, important for this work, is that the IPython document preserves
its Python output when being transferred and it can be exported into several read-
only formats, such as HTML. This is very important, because the enclosed code
requires the original dataset to work, and thus is not runnable. The train dataset for
this thesis is a production dataset provided by the bank, so the data are all highly
sensitive and they cannot be exported from the bank perimeter.

6.2 SDV Framework
Synthetic Data Vault (SDV) [23] is a Python framework that enables synthetic data
generation. In addition, it implements several other functions, such as data evaluation
metrics and model benchmarks, from which this thesis uses the evaluation metrics
(section 5.2). The library is open-source and it is free to be used by anyone, even for
commercial purposes.
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What is the most important, SDV contains a tabular module, which can be used
for the tabular data generation. It offers multiple statistical and ML generative al-
gorithms, including the CTGAN. The algorithms have universal high-level API and
they can be optimized by defining different hyperparameters. Thanks to that, it
is very easy to use a different algorithm if needed in the future, even thought this
demonstration only implements CTGAN.

6.3 Procedure
This section describes the demonstrative data anonymization pipeline. Whole process
is pictured in figure 6.1.

Figure 6.1 Data anonymization pipeline
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First, the real dataset is loaded from a CSV file. Although the data are loaded by
directly from a database in practice, the demonstrative implementation only works
with CSV files. It contains information about clients of the bank and it is origi-
nally used as a train dataset for a binary classification model. The target variable is
GOOD_BAD. Apart from the target variable and ID column which is dropped later
in the preprocessing phase, the dataset has 24 features.

It is down-sampled and preprocessed, so it can be used for the synthesizer training.
Data constraints are defined and a CTGAN model is trained. The constraints defined
before the training are projected into the data sampling process by a reject-sampling
technique and a synthetic dataset is generated. It is then evaluated against the
original dataset and all results are displayed. Finally, all columns of the synthetic
dataset which are in a different format due to the preprocessing phase are converted
back and the dataset is saved.

Both model training and new data reject-sampling can be skipped. In such case,
a pretrained model or an already synthesized dataset respectively are used instead.
This option was used not only in the enclosed notebook, but also for debugging.

Sampling
The dataset originally contains 233 035 rows, so it is randomly down-sampled with
respect to GOOD_BAD column. The dataset has highly imbalanced target variable,
with 94 % of the rows being positive and only 6 % of the rows being negative. Although
the CTGAN synthesizer can learn from imbalanced columns, all negative samples
(minority class) are kept and only the positive ones (majority class) are sampled to
20 %. Thanks to that, not only is the classifier used for the ML Efficacy test trained
with more balanced dataset, as it is in the practice, but also the visualization of
negative samples are more relevant. Additionally, there are still enough samples left
after the process and both training and evaluation algorithms require significantly
less time to complete. After this part, the dataset contains 57 810 rows, with 76 %
of the rows being positive and 24 % of the rows being negative.

Preprocessing
The preprocessing part is relatively short, because all values in the dataset are gener-
ated by machine and the dataset is naturally very clean. The date column converted
into a numeric format, so that the generator can better learn its distribution and all
categorical columns are identified. This is extremely important, because the CTGAN
algorithm does not process categorical the same as continuous ones. After categorical
columns are identified, all columns are converted to correct data types.

The algorithm only distinguishes between discrete and continuous columns, but there
is no natural way of identifying a column as categorical or ordinal. This is very easy
to accomplish in case of the presented dataset, because all columns marked as discrete
only contain two values and thus probably represent binary categories. However, this
issue is open to any solution which works for each specific dataset. Generally speaking,
the best approach would probably be to treat ordinal columns as continuous, but it
definitely depends on other column characteristics, such as number of unique values.
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Training and Reject-sampling
Next part of the notebook analyses all null values in the dataset. This method is
slightly more complicated as the anonymization process has to preserve all relations
between null values in different columns. Although CTGAN algorithm is capable of
working with null values, the goal is not to create a dataset with imputed null values.
Synthetic data should rather be as similar to real data as possible, including the null
values appearance. The training and sampling process is pictured in figure 6.2

Figure 6.2 Training and reject-sampling process

The presented constraints mechanism is based on a number of null values in each
column. Considering the number of rows in the dataset, it is very likely that multiple
columns with equal amount of null values only appear together. Therefore, all columns
are compared to each other with a consideration of their null values appearance, so
that null values constraints (NVC) can be defined for each of the columns. For each
column, NVC define which other columns have to always be null and which of them
have to always be filled in case that the column is null itself.
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Based on the analysis, a new column NULL_FLAG is defined to indicate which NVC
a row maintains and the column is added to the dataset. The extended dataset
is then used to train the CTGAN model, so it learns the distribution with respect
to NULL_FLAG. Then, the model keeps sampling small synthetic datasets. These
datasets get reject-sampled, meaning that all corresponding NVC are applied to each
row based on its NULL_FLAG value and all the rows which violate any of NVC
are dropped. The new dataset generation and the reject-sampling continues until a
predefined number of synthetic rows is generated. Finally, NULL_FLAG column is
dropped from the dataset as it is not needed any further.

Although the reject-sampling can theoretically take extremely long time to complete
when there are a lot of constraints that have to be respected, the sampling is very
fast in the demonstration as it only rejects minority of rows. This is probably thanks
to the fact that the model learns the data distribution well, so it samples new rows
naturally well with respect to the constraints.

It should be noted that the model trained for the sampling has default hyperparame-
ters and no tuning technique is implemented. This causes no major issue as the main
purpose of the implementation is being a proof of concept.

Data Ratios
There are many different subsets of both datasets used during the procedure. For bet-
ter clarity, figure 6.3 and table 6.1 display all data subsets used.

Figure 6.3 ML efficacy evaluation pipeline
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Dataset Number of rows Relative ratio
Real data 233 035
Real sampled data 57 810 1.0
Synthetic data 57 810 1.0
Real train data 40 467 0.7
Synthetic train data 40 467 0.7
Real SDV data 28 905 0.5
Synthetic SDV data 28 905 0.5
Real test data 17 343 0.3

Table 6.1 Sizes of different data subsets

6.4 Results
Generated dataset is evaluated with all techniques presented in chapter 5. There are
57 810 synthetic rows sampled for the evaluation, because all the evaluation techniques
should work with two equally large datasets. The only exception is the ML Efficacy
(5.1), which utilizes synthetic data only for a classifier training. For its purpose, the
synthetic dataset is randomly down-sampled to 40 467 rows in order to have the same
size as the real data train set.

ML Efficacy
The results are obtained by the procedure described in 5.1. The ML efficacy score is
0.9943. Figures 6.4 displays confusion matrices (5.1) of both real and synthetic data.

(a) Real (b) Synthetic

Figure 6.4 Confusion matrices of both datasets

Although the confusion matrices are slightly different, the score alone indicates excel-
lent results, showing that a classifier trained with synthetic data has almost identical
performance as the one trained with real data.



33

SDV Evaluation
The table bellow presents the results obtained from all SDV metrics defined in 5.2.
The average score aggregated from all metrics is 0.6595.

CS Test 0.4121
KS Test 0.8868
SVC Detection 0.7617
Logistic Detection 0.6668
Discrete KL Divergence 0.9155
Continuous KL Divergence 0.3140

Table 6.2 SDV metrics results

The scores of KS Test and Continuous KL Divergence show that the model learned
the distribution fairly well in case of continuous columns. On the other hand, both
test which focus strictly on discrete columns, CS Test and Discrete KL Divergence,
show that discrete columns differ considerably. Since all discrete columns are bi-
nary, it simply indicates a change in label frequencies across the synthetic dataset.
The detection test show good results, meaning it is generally difficult to predict which
dataset a sample comes from.

Marginal distributions
Real and synthetic data are plotted against each other so they can be visually com-
pared. Marginal distributions of all columns were compared separately, as described
in 5.3. Apart from the enclosed implementation, histograms of all columns across
both datasets can be seen in appendix A.

(a) Discrete column (b) Flat column (c) Multi-modal column

Figure 6.5 Learned marginal distributions examples
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Some of marginal distributions are very similar, meaning that the model converged
nicely with respect to them and was able to learn the real data distribution reason-
ably well. However, several columns have extremely flat distributions with one very
frequent mode. In their cases, the model generally failed to cover all possible values
and only approximated the distribution while keeping even lower variance.

It should also be noted that the model had no trouble to learn marginal distributions
which have multiple modes, thanks to the mode-specific normalization described in
section 4.2.

Evaluation Summary
Generally, the model achieved significantly better results in case of continuous columns,
with an exception of columns with extremely flat distribution. This trend can be seen
in both SDV evaluation part and visualizations part above. The model preferred mi-
nority class over the majority class, with respect to their original frequency. This was
probably caused by the log-frequency sampling implemented by the algorithm (4.2).
Although it helps to learn the overall distribution even when the classes are highly
imbalanced, the sampling frequency of each class is apparently projected into syn-
thetic data. With that being said, since the ML efficacy test shows excellent results,
it does not necessarily have to cause any trouble. The log-frequency sampling can be
set off as one of model’s hyperparameters and its choice depends on intended use case
of the synthetic dataset.

Although some of the marginal distributions were learned incorrectly, it had no signif-
icant impact on a classifier in the ML efficacy test. This probably means that omitted
values were not originally important for a prediction and their absence thus did not
change how a classifier is trained. With that being said, the values should occur in
synthetic data in many other cases and the visualization thus shows a potential defect
of the model.



Chapter 7

Conclusion

The thesis outlines generative machine learning methods with a focus on synthetic
data generation. This chapter summarizes the main contribution with a consideration
of the assignment. Then, future improvements to the implementation are discussed
as it is the last part of the assignment.

7.1 Contribution
The thesis discusses the idea of using generative methods for data anonymization and
augmentation. The generative methods are surveyed with an extensive focus on deep
learning methods as they are the best option for such task at the moment. Two main
deep learning approaches, VAE and GAN, are thoroughly described and objective
is analyzed, considering both their advantages and disadvantages. The theoretical
part of this thesis can therefore be utilized by other programmers from the bank or
by anyone who would start working in the synthetic data generation field with little
prior knowledge. Although the methods described in the thesis are simplified with
respect to the original papers, the thesis should provide solid theoretical basis.

An algorithm suitable for the task is selected and it is then trained on a production
dataset. The implementation part, which includes simple data preprocessing and
model training, serves as a proof of concept for any tabular data anonymization.
The trained model can be easily exported and thus serve as synthetic data oracle in
the future. Therefore, it can be later used for both data anonymization and data
augmentation, as described in the assignment of the thesis. The evaluation part
shows that the idea of using completely synthetic datasets instead of real ones is very
promising.

The thesis also shows an example of applying more complex constraints to the sam-
pling process (6.3). The mechanism is effective and it handles all constraints correctly.
Although there are many use cases when restricting null values is not necessary, the
implemented mechanism can also generally serve as a proof that the reject-sampling
process does not have to be immensely time consuming when a generator learns the
real data distribution well enough.

35
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Thanks to the selected method, the implementation is simple and the training process
is not difficult to control, as it might be in case of other deep learning methods. The
algorithm is a part of SDV library, which contains other synthetic data related features
and opens up several easy improvements of the implementation. These improvements
are discussed in section 7.2.

7.2 Future Improvements
This section discusses possible improvements to the implementation which is discussed
in section 6.3.

Hyperparameters
Firstly, there is no hyperparameter tuning process in the procedure and it should
definitely be added in order to get the best results possible. It is very unlikely for
the selected algorithm to have a universal hyperparameter set up with the best per-
formance and the hyperparameter tuning is one of the key techniques which could
improve a model by a lot. Although tuning techniques often require immense com-
putational power, it is not expected to be an issue in the future.

On the other hand, hyperparameter tuning is generally very problematic in case of
GAN derived algorithms and it cannot be done automatically with a simple evaluation
metric. The best technique is an open topic and although WGAN objective (3.5)
suppresses many GAN training issues, all technique still requires expertise.

Evaluation
There are multiple metrics used to score the final model, all described in 5. With that
being said, each metric only measures certain aspect of the model and even together,
they still cannot provide a completely objective rating of the model. Although another
technique would not solve the issue, there are many techniques which could be added
to provide more complex evaluation.

An excellent example of another metric is an improvement to the ML efficacy tech-
nique (described in section 5.1). Even though the technique is relatively complex and
it imitates the intended use case of synthetic data, it can still be somewhat narrow.
To set an example, the ML efficacy score obtained in the implementation is extremely
good (6.4), while there is a slight difference in the confusion matrices obtained by the
classifier (6.4). This could mean that the synthetic data classifier prioritizes different
features than the real data one, but both options are equally important. To measure
this, we could either compute a closeness of the confusion matrices or a closeness of
feature importance vector, in case it is important in our situation.

Relational Data Anonymization
The implementation only shows anonymization process for a single table. Since data
needed for a certain task are often stored in multiple tables, another step could be an
anonymization of a relational structure of multiple tables. This could either be done
by implementing SDV hierarchical modeling algorithm (HMA) or by implementing
custom recursive algorithm with use of a tabular generative model, such as CTGAN.
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Simple Rules Constraints
Lastly, SDV constraints mechanism could be used to maintain trivial relations be-
tween columns that have to be respected. Although there is custom constraints im-
plementation for null values in this thesis (6.3), SDV offers faster way to define simple
constraints, such as value ranges for certain columns. Although it is not used for the
null values in the enclosed implementation for its inflexibility, it works perfectly fine
with simple conditions, such as restriction of a time period. The values are not con-
strained in the demonstration as it is not necessary for its purpose, but they could
definitely be useful in a real case scenario.
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Figure A.1 Marginal distributions of real and fake data columns



Appendix B

Content of enclosed medium

impl....................................................enclosed implementation
thesis.html.........................read only notebook exported to HTML
thesis.ipynb.............source IPython notebook with the implementation

text
thesis.pdf...............................................thesis text in PDF
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