
5/12/2021 ProjectsFIT

https://projects.fit.cvut.cz/theses/3837/assignment-print 1/1

Instructions

Research current state-of-the-art techniques that are used for augmenting medical imaging datasets. 

Compare the performance of chosen GAN architectures on CT and X-Ray data provided by the 

supervisor. Discuss the pros and cons of synthetic data used for classification and segmentation tasks. 

Present and compare the metrics one can use to evaluate GAN performance. Publish your prototype 

code and make sure your results are reproducible.
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Abstrakt

Ćılem této práce je pokusit se použ́ıt nedávno navržený model generativńı
adversarialńı śıtě pro klasifikaci a segmentaci lékařských obraz̊u a porovnat
výsledky s moderńımi modely GAN, které se v současné době použ́ıvaj́ı pro
rozšǐrováńı lékařských dat.

Kĺıčová slova generativńı adversariálńı śıtě, augmentace dat, DCGAN, Pix2Pix,
CycleGAN, generováńı medićınských obraz̊u, konvolučńı neuronové śıtě

Abstract

The aim of this work is to try to apply the recently proposed generative
adversarial network model for the classification and segmentation of medical
images and to compare the results with modern GAN models currently used
for medical data augmentation.

Keywords generative adversarial networks, data augmentation, DCGAN,
Pix2Pix, CycleGAN, medical image generation, convolutional neural networks
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Introduction

Medical diagnostics is largely based on visual data, which are obtained by X-
ray, computed tomography, dermoscopy, microscopy and other methods. For
example, radiographs and CT scans are crucial for evaluation of bony struc-
tures and internal organs, while dermoscopic images help detect contagious
and life threatening skin diseases such as skin cancer.

When diagnosing, two tasks are usually solved: classification and segmen-
tation. Classification includes, for example, determining the malignancy of a
tumor or the type of infection. Segmentation is the selection of certain objects
in the image. These can be lungs, heart, kidneys, and so on.

Accuracy plays an important role in classification and segmentation. The
health and lives of people depend on the correctness of the result. After all,
an incorrect diagnosis can lead to both the death of the patient from an un-
detected pathology, and inadequate treatment, including unnecessary surgery.
High level of accuracy may be achieved only with high level of training of
medical specialists, attentiveness and patience. Therefore, human-based ap-
proaches are time intensive and laborous. Further improvement of computer-
ized classification and segmentation methods is necessary.

Among modern automated methods, approaches based on machine learn-
ing look promising, since, unlike classical computer algorithms, they are capa-
ble of self-improvement. However, accessible amount of medical imaging data
is often insufficient to train machine learning models in order to reach high
accuracy. Data augmentation solves the problem of small number of samples
available for training of such models. Many machine learning experts recog-
nized that data augmentation is the way to improve human and automated
medical diagnostics [1, 2].

There is no comprehensive guide on how to choose the most suitable model
for medical imaging data augmentation or how to decide whether synthetic
training data may be used for a particular classification or segmentation task.

The aim of this work is to compare different methods of medical imag-
ing data augmentation with a focus on GAN-based methods and define their
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Introduction

limitations for training classification and segmentation models.
Chapter 1 contains theoretical aspects of machine learning necessary for

understanding of principles modern generative adversarial networks are built
on. Chapter 2 focuses on generative adversarial networks used in this work and
metrics for quality assessment of the generated images. Chapter 3 presents
datasets chosen for this work, evaluates images generated by a recently devel-
oped generative adversarial network model designed for fast training on small
datasets [3] and compares it with other generative networks currently used
for medical images classification and segmentation. Chapter 4 explains ex-
periments on augmentation of selected datasets to improve classification and
segmentation accuracy and compares the results with other current models.

2



Thesis’s Objective

The main goal of this work is to identify modern GAN architectures most
suitable for medical imaging data augmentation. In order to accomplish the
main goal following partial goals must be achieved:

• Research current state-of-the-art GAN architectures that are used for
augmenting medical imaging datasets.

• Present and compare the metrics one can use to evaluate GAN perfor-
mance for generating medical data.

• Compare the performance of chosen GAN architectures on CT and X-
Ray data provided by the supervisor.

• Discuss the pros and cons of using synthetic data for classification and
segmentation tasks.

• Publish prototype code and make sure results are reproducible.

3





Chapter 1
Machine learning background

This chapter provides the information one needs to understand the machine
learning principles on which this work is based.

1.1 Machine learning

Machine learning allows systems to adapt to a new data without exact direc-
tives [4].

Machine learning includes supervised, unsupervised, semi-supervised and
self-supervised learning.

1.1.1 Supervised learning

Supervised learning starts with known pairs of available data samples y and
labels x used to classify this data. The goal is to learn an underlying mapping
between data. Based on the learned mapping it is possible to predict the
labels for new samples.

1.1.2 Unsupervised learning

Unsupervised learning is performed on data samples without corresponding
labels. The goal is to divide the data into clusters

5





Chapter 2
Generative adversarial networks

GAN (generative adversarial network) technique was firstly proposed by [5]
and was based on the joint training of two models: generator G and discrimi-
nator D. G tries to mimic the original data x, while D distinguishes between
generated and real samples by adjusting its function D(x) denoting probabil-
ity of x being a real sample. In order to learn G employs random noise vector
z ∼ pz(z). Training for G aims to maximize the probability of D confusing
generated sample G(z) with real one. Thus G and D participate in a mini-
max two-player game, where G works towards minimizing the value function
V (G,D), while D seeks to maximize it:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log (1−D(G(z))] (2.1)

The ultimate goal of the training is to make G create images from distri-
bution pg that match the statistical distribution pdata of real samples, when
discriminator cannot guess, which image is real and which image is generated
and D(x) = 1

2 .
It was proved in the paper that in order to reach global minimum for

max
D

V (D,G) generator should reproduce the target distribution of real data,
i.e. to satisfy condition pg = pdata or in other words to reach zero Jensen-
Shannon divergence JSD(pdata||pg).

[5] also proposed an algorithm for GAN training which 2 fundamental steps
were ascend of the discriminator gradient and then descent of the generator
gradient. The algorithm was compatible with every common learning method
relying on gradients [5].

Another important finding from this work was that GANs can theoretically
not only restore distributions p(x), but also conditional distrbutions p(x|c) in
case, condition c is included as input for both generator and discriminator.
Thus, the authors laid the foundation for creating conditional GANs, allowing
to use generative networks not only for creating images, but also for translating
images from one domain into another.

7



2. Generative adversarial networks

2.1 Convolutional neural networks

First GANs used multilayer perceptrons as both generator and discriminator
[5]. Models were able to generate low resolution images, e.g. handwritten
digits from CIFAR-10 dataset with size of 32×32 pixels. The synthesized
images were, however, refered as of poor quality [6].

By this time, another class of neural networks, convolutional neural net-
works (CNNs), was already widely used for image processing [7]. Using 2
operations: discrete convolution and pooling, CNNs allowed to bring image
classification to a new level of accuracy [8]. The reason convolution networks
were so successful in image processing was because discrete convolution pro-
vided a way to preserve spatial structure of visual data.

The algorithm of discrete convolution is depicted in the figure 2.1. The
data that goes through the convolution process are called input feature maps
[7]. It is represented by pale blue lattice. A kernel matrix (dark blue grid)
moves along the input feature map. To calculate the result of the convolution,
called output feature map, it is necessary to multiply in pairs the elements
of the input feature map and the elements of the kernel overlapping them,
and then add the resulting products. It is possible to obtain multiple output
feature maps from one input feature map by repeating the process with various
kernels (Figure 2.2).

Figure 2.1: Calculating discrete convolution [7].

The shape of each convolutional kernel with n output feature maps, m
input feature maps and size kj of a dimension j may be described by tuple
(n,m, k1, .., kn). The output feature map size in dimension j depends on:

• input size ij in the relevant dimension

• kernel size ij in the relevant dimension

8



2.1. Convolutional neural networks

Figure 2.2: Obtaining 3 output feature maps from 2 input feature maps by
applying a group w of 3 pairs of 3×3 kernels. The left branch represents apply-
ing kernels w1,1 and w1,2 to the first and second feature maps correspondingly
and adding up the results, thereby forming the first output feature map [7].

• interval among successive locations of the kernel sj , also called stride,
when calculating the value of each element of the output feature map

• amount of elements (often zeros) pj , also called padding, appended to
the input feature map from both sides in the relevant dimension in order
to adjust the output feature map size

Example of convolution with strides and padding may be seen in Figure
2.3.

The pooling operation reduces the size of the input feature map using a
transformation that in a certain way characterizes by one value the area to
which it is applied. This can be the calculation of the mean or the highest

9



2. Generative adversarial networks

Figure 2.3: Convolving an input feature map with i1 = i2 = 5 and kernel
of size k1 = k2 = 3 with zero padding p1 = p2 = 1. Stride s1 = s2 = 2
means that the convolutional kernel moves 2 steps instead of one between 2
consecutive convolutions [7].

value. Like convolution, it is sequentially applied to all regions of the input
feature map, as shown in the figure 2.4.

Figure 2.4: When using max pooling, each region of the input feature map is
reduced to its maximum value [7].

One of the forms of discrete convolution fundamental to GANs is trans-
posed convolution. It is in some way an inverse to convolution, making it
possible to convert tensor resembling the output feature map of convolution
into tensor with shape similar to its input feature map. Among all types of
transposed convolution, the most important for GANs is the transposed con-

10



2.2. Deep convolutional generative adversarial networks

volution with non-unit strides, also named fractionally strided convolution.
Figure 2.5 helps to visualize how the transposed convolution with non-unit
strides is performed.

Figure 2.5: By including values among the elements of the input feature map
it is feasible to force kernel to take more steps than in the case of convolution
with a single stride, which leads to a larger size of the output feature map
compared to the input feature map [7].

2.2 Deep convolutional generative adversarial
networks

Until 2014, most convolutional neural networks were constructed using con-
volutional blocks with max-pooling layers in between with a small number
of fully connected layers at the end of a contracting path to perform image
classification [9]. This includes Alexnet and VGG16, the architecture of which
is shown in the Figure 2.6. [9] investigated the effect of substituting pooling
operations with convolution blocks with non-unit strides. They reached clas-
sification performance comparable with best conventional CNNs with a simple
model relying exclusively on convolutions for feature extraction.

Figure 2.6: VGG-16 architecture from [10].

Inspired by the success of CNNs in computer vision and borrowing from
[9] the idea of using fully convolutional network without pooling [6] developed
a GAN setting, where generator and discriminator were composed of convolu-

11



2. Generative adversarial networks

tional layers. It was called Deep convolutional generative adversarial network
(DCGAN).

The authors also experimented with reducing the number of fully con-
nected layers, considering for example global pooling. This method was finally
dropped due to the increased training time. Instead, the deepest convolutional
blocks were attached directly to the initial dense layer in the generator and
final decision making dense layer in the discriminator. Activations in layers
were normalized by means of batch normalization suggested by [11] to reduce
the potential problems coming from setting wrong initial parameters and ac-
celerating training.

The final model was based on the following principles:

• Build discriminator with strided convolutional layers instead of pooling
and generator with transposed convolutional layers

• Incorporate batch normalization into discriminator as well as generator
for robust training and avoiding vanishing and exploding gradients as
well as mode collapse

• Refrain from using multiple dense layers

• Choose hyperbolic tangent as an activation function for generator output
layer and rectified linear unit (ReLU) activation function for all other
generator layers

• Choose LeakyReLU activation function for all discriminator layers

The DCGAN generator scheme is displayed in Figure 2.7.

Figure 2.7: DCGAN generator for creating 64 × 64 images. The numbers
above the convolutional blocks represent the convolutional kernels count.

2.3 Pix2Pix

Pix2Pix is a conditional GAN which emerged as a universal tool for supervised
conversion of images from one domain to another domain [12]. The image

12



2.4. CycleGAN

goes through a generator which structure resembles U-Net. Unlike U-Net,
which uses upsampling to increase the size of the image in an expanding path
[13], the expanding generator path is composed entirely of fractionally strided
convolutional blocks. Similarly, in a contracting path, instead of max pooling
blocks, convolutional layers with non-unit strides are used. Output of each
layer undergoes batch normalization and ReLU nonlinearity. Skip connections
between contracting and expanding path help low level features get from the
input to the output. The discriminator is a PatchGAN, a model that, instead
of the entire image, considers individual areas of size N × N . Instead of a
single value, this discriminator returns a matrix of values. Each element of
the output matrix determines whether the corresponding area of the image is
real or fake. It has fewer layers and thus limited set of parameters compared
to a discriminator that perceives an entire image. This leads to faster learning
and the ability to process bigger inputs.

The loss function comes out of the definition of the original loss function
defined by [5], where the generator G takes not only a random vector z, but
also an input image x, converting it into an output image y. Similarly, the
discriminator receives at the input not only the resulting image, but also the
initial one. Therefore, the loss function can be expressed by the following
formula:

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log (1−D(x,G(x, z))] (2.2)

The authors also borrow the idea of adding per-pixel loss term to an ad-
versarial loss [14]. This forces the generator to generate an image on the one
hand that is convincing to the discriminator and on the other hand close to the
target real image. L1 loss term is favored by the authors due to its capability
of producing sharper images with well-defined details:

LL1(G) = Ex,y,z[||y −G(x, z)||1] (2.3)

Thus the resulting loss function for Pix2Pix is the combination of a con-
ditional adversarial loss and L1 loss and the optimal solution for recovering
mapping between input and target images is:

G∗ = arg min
G

max
D

LcGAN (G,D) + λLL1(G) (2.4)

with λ allowing to adjust the importance of L1 loss compared to adversarial
loss during training.

2.4 CycleGAN

CycleGAN allows to transform images of one style X into another style Y
[15]. In order to learn corresponding transformations it does not require di-
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2. Generative adversarial networks

rect mapping between training images. Instead it tries to discover the un-
derlying mapping G : X → Y together with inverse mapping F : Y → X
by taking into consideration cycle consistency F (G(X)) ≈ X and identity
G(Y ) ≈ Y, F (X) ≈ X.

2.5 FastGAN

Modern GANs are able to synthesize images of high resolution with good
quality, but at the cost of large computing resources. Recently a new GAN
architecture was proposed by [3], which is capable of synthesizing images with
definition up to 1024 × 1024. According to the assurances of the authors,
the model trains much faster than its counterparts and is capable of learning
even on small datasets. This is possible thanks to new techniques: using skip-
layer channel-wise excitation in generator and training discriminator in a self-
supervised manner to encode features in order to ensure the smallest possible
reconstruction error. By introducing skip-layer excitation (SLE) the authors
bring the idea of skip connections to the next level. While skip connections
can link only convolutional layers of the same shape SLE can be used to
connect layers with different resolution. The reason in that in the SLE block
addition or concatenation of output feature maps is replaced with channel-wise
multiplication. The SLE block together with generator scheme is presented in
Figure 2.8.

The output feature map y of the SLE with the low resolution input fea-
ture map xlow and high resolution input feature map xhigh is calculated the
following way:

y = F (xlow, {Wi}) · xhigh, (2.5)

where Wi represents SLE block weights and F corresponds to operations
applied to the low resolution feature map during SLE. At the beginning, xlow

is downsampled by means of an adaptive average pooling, then resulting 4×4
feature map is transformed by a convolutional layer to 1 × 1. This feature
map then goes through the LeakyReLU. After applying another convolution
it gets number of channels similar to xhigh.

Discriminator D is regularized in a self-supervised manner: it encodes
features from the input images, then simple decoders try to reconstruct the
original images from these features. D is coerced to seek for features that may
be reconstructed better by means of reconstruction loss. In order to calculate
the loss on real images feature maps f from the inner discriminator layers
go through the function G and real image x from the distribution Ireal goes
through the function T . Then loss is calculated the following way:

Lrecons = Ef∼Dencode(x),x∼Ireal
[||G(f)− T (x)||], (2.6)

14



2.5. FastGAN

Figure 2.8: FastGAN generator. Yellow rectangles are feature maps with the
number inside showing resolution of the corresponding feature map. Blue
block performs upsampling.

Figure 2.9: FastGAN discriminator.

2 decoders are shown In the Figure 2.9 (green rectangles): decoder f1 if
fed with images of size 16 × 16 and decoder f2 is fed with images of size
8×8. These decoders with just 4 convolutional layers upscale image to size of
128 pixels. Decoder f1 intent is to enforce generator producing fine details.
It operates on croped images of size 2 × 2 and outputs a reconstructed part
I

′
part, which is compared with part of the real image Ipart cropped from the

same place. Decoder f2 helps improving general structure of the image. It is
trained on encoded image and its output reconstruction I

′ is compared with
scaled down real image I. Due to their simplicity these decoders do not bring
computational overhead.

Total loss used in the FastGAN is a sum of hinge loss and reconstruction
loss:

LD = −Ex∼Ireal
[min(0,−1 +D(x))]− Ex̂∼G(z)[min(0,−1−D(x̂))] + Lrecons

(2.7)

LG = −Ez∼N [D(G(z))] (2.8)

Hinge loss does not provide better results. It is employed due to the best
computational complexity, which allows to train the model faster.
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2. Generative adversarial networks

2.6 GAN evaluation metrics

Among other quantitative metrics to evaluate GAN performance [16] describes
following: inception score, Frechet inception distance and multi-scale struc-
tural similarity index measure.

2.6.1 Inception score

Inception score (IS) is stated by [16] to outperform any other metric in pop-
ularity. In order to calculate IS a particular model is required: Inception Net
neural network with weights learned on the ImageNet samples. The goal is to
assess, whether images synthesized by the generative model may be easily sep-
arated into distinct groups one the one hand and are different from each other
on the other hand. The goal is to estimate the mean KL divergence among the
marginal distribution p(y) and conditional label distribution p(y|x) of images.
Entropy for p(y) is higher when generative model is able to produce images
of each class with approximately the same probability, while low entropy indi-
cates that the model prefers to generate images of the same class. Therefore,
the goal for the generative model is to have as high entropy of p(y) as possible.
Meanwhile, high entropy H(y|x) means, that images labeled as being of the
same class are very different from each other, which is not favorable. Instead
the aim for the generative model is to produce images easily identified to be
related to a particular class. Thus, IS helps to measure the difference between
entropies H(y|x) and H(y):

expEx[KL(p(y|x)||p(y))] = exp(H(y)− Ex[H(y|x)]) (2.9)

Specifically, Inception network allows to determine the conditional label
distribution p(y|x) for sample x, while marginal distribution is estimated with:

p(y) ≈ 1
n

N∑
n=1

p(y|xn = G(zn)) (2.10)

It was shown by [17] that higher IS is achieved by generative models that
are capable of producing many varied images of better quality. This metric,
however, is not without its drawbacks:

• GANs, that memorize images instead of capturing the underlying prob-
ability distribution are able to get high IS. Thus, overfitted model will
no be recognized

• IS is unable to identify mode collapse

• Inception model which is necessary to calculate IS, is biased towards the
ImageNet dataset it was trained on
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2.6. GAN evaluation metrics

• The value of this metric does not depend on the characteristics of the
probabilistic distribution of real images Pr (therefore it possible to get
high IS by generating distinct and varied images regardless of their sim-
ilarity to the real images)

• IS depends on image resolution

2.6.2 Frechet inception distance

According to [18] Frechet inception distance (FID) represents the likeness of
generated images and original images more precisely than IS.

Considering the distribution of generated images p(.) and the distribution
of original images pω(.) [18] introduces FID, which is represented by following
equation:

d2((m,C), (mω,Cω)) = ‖m−mω‖22 + Tr(C + Cω − 2(CCω)1/2) (2.11)

where (m,C) is Gaussian having same mean m and covariance C as the
distribution of generated images and (mω,Cω) is Gaussian having same mean
mω and covariance Cω as the distribution of original images.

As in case of inception score one needs a CNN in order to calculate FID,
because it involves calculating mean and covariance of the activations of a cor-
responding CNN in response to evaluated images. FID was stated to correlate
well with human assessments. Unlike IS, it is able to detect mode collapse as
well as disturbances in images. This qualities made FID a common metric for
evaluating modern generative models.
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Chapter 3
Images generation and

evaluation

In this chapter datasets used in the work are presented. Goals are set for
the augmentation of these datasets to solve 2 X-rays classification tasks and 2
segmentation tasks on Chest CT scans and dermoscopic images. Finally the
images created by FastGAN are evaluated and compared with other models
implemented in this work as well as results obtained by other researchers.

For each dataset, augmentation models are trained only on training data.
For each task, at the end of training the model, 2000 images are generated,
for which the IS and FID are calculated. Separate values are reported for
images, segmentation masks and for combined images containing both image
and its corresponding segmentation mask. This is done for easy comparison
with results of existing and future studies. FID is measured between generated
samples and training part of a corresponding dataset.

All computations are performed on author laptop GPU NVidia GeForce
GTX 1050Ti Mobile or in Google Colaboratory and Kaggle notebooks with
GPU Tesla K80.

3.1 Chest X-rays for tuberculosis detection

Dataset 1 is formed by merging Montgomery County CXR Set and Shenzhen
Hospital CXR Set and constitutes of anonymised ribcage X-rays: 406 RGB
images of healthy patients and 394 images of patients with clear indications
of tuberculosis [19]. Images were resized to 256 × 256 pixels and divided
into training and testing part. Training images include 366 normal and 355
abnormal X-rays. Testing images comprise of 40 normal and 39 abnormal
X-rays.

For this dataset, the goal is set to determine whether augmentation will
increase the accuracy of the VGG16 classifier in detecting tuberculosis.

19



3. Images generation and evaluation

3.1.1 CycleGAN

3 CycleGANs with perceptive fields of 46, 22 and 10 are trained for 200 epochs
each to perform unsupervised image-to-image trainslation from normal to ab-
normal X-rays and vise versa. Then each model generates 326 abnormal X-
rays from normal training samples and 316 normal X-rays from abnormal
training samples. Charachteristics of the generated images are presented in
the Table 3.1.

Table 3.1: CycleGAN generated tuberculosis X-rays quality

Model Perceptive field X-rays Inception score Frechet inception distance
1 46 Normal 2.25 136.55
1 46 Abnormal 2.42 133.73
2 22 Normal 2.47 143.81
2 22 Abnormal 2.54 114.94
3 10 Normal 2.39 92.98
3 10 Abnormal 2.55 91.13

The FID values indicate that the model with the discriminator with the
smallest field of view of 10 pixels performs the transformation better than
other models and achieves better similarity with real X-rays. It is decided
to use 183 normal generated X-rays and 177 abnormal generated X-rays to
extend the dataset.

3.1.2 FastGAN

2 FastGANs are trained separately on normal and abnormal X-rays. Normal
FastGAN is trained for 50000 epochs and abnormal FastGAN is trained for
52000 epochs.

IS and FID for generated images may be found in Table 3.2. Generated
X-rays together with real images from the dataset can be seen on Figure 3.1.

Based on good perceived quality and FID the decision is made to use 183
synthetic normal X-rays and 177 synthetic abnormal X-rays to augment the
dataset for tuberculosis detection.

3.2 Chest X-rays for viral pneumonia detection

Dataset 2 was created as a joint effort of Qatar University and University of
Dhaka research group together with contributors from Pakistan and Malaysia
and healthcare professionals [20]. Among other samples it contains 10200
normal ribs X-rays divided into 9180 training and 1020 testing samples and
1345 X-rays of patients with viral pneumonia split into 1211 training and 134
testing samples. The dataset is therefore unbalanced due to the significant
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3.2. Chest X-rays for viral pneumonia detection

Figure 3.1: Real (top) and generated (bottom) tuberculosis detection X-rays.

preponderance of normal X-rays over X-rays with viral pneumonia indications.
Images are resized to 256× 256 pixels.

The goal for this dataset is to generate viral pneumonia X-rays and evalu-
ate the effect of such augmentation on viral pneumonia detection accuracy by
means of VGG16 classifier. FastGAN is trained for 58000 epochs. However,
after epoch 42000 generated images perceived quality starts to drop. Model
trained for 42000 is selected in order to generate X-rays for augmentation.

Figure 3.2: Real and generated viral pneumonia X-rays.
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3. Images generation and evaluation

3.3 Chest CT scans for lung and heart
segmentation

Dataset 3 is made by selecting 3100 CT scans and their corresponding seg-
mentation masks from CT Lung and Heart and Trachea segmentation dataset,
which, according to the author [21] contains the biggest number of segmen-
tations from all chest CT segmentations datasets. Samples are resized to
256× 256 pixels. 3000 CT scans are used for training and 100 scans are used
for testing.

FastGAN is trained for 60000 epochs. IS and FID for generated images
may be found in Table 3.2. Generated CT scans and segmentation masks
together with real samples from the dataset can be seen in Figure 3.3.

Figure 3.3: Real (top first row) and generated (second and third rows) chest
CT scans. The third row shows the case where FastGAN is not able to cor-
rectly separate image channel from segmentation masks channels.

3.4 Melanoma segmentation

Dataset 4 is ISIC 2018 Skin Lesion Analysis dataset. 2594 epidermic wounds
images were gathered from multiple body parts using different dermatoscopes
[22]. Each image is paired with segmentation mask corresponding to the
position of the wound. Images are resized to 256× 256 pixels and grayscaled
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3.4. Melanoma segmentation

Table 3.2: FastGAN generated images quality for each dataset

Dataset Inception score Frechet inception distance
Tuberculosis X-rays (normal) 1.58 104.99

Tuberculosis X-rays (abnormal) 1.40 143.91
Viral pneumonia X-rays 2.14 189.20

Chest CT (images) 2.66 225.58
Chest CT (lung masks) 2.89 323.73
Chest CT (heart masks) 3.59 371.52

Chest CT (combined) 2.43 183.30
Melanomas (images) 3.74 130.83
Melanomas (masks) 3.19 140.85

Melanomas (combined) 2.75 87.82

in order to reduce training time and memory requirements. Both real and
fake lesions and segmentation masks are shown in Figure 3.4. It is decided to
use 1000 generated images and segmentation masks to augment the dataset
due to their good visual quality.

Figure 3.4: Real image and real segmentation mask (left side) and 2 generated
image-segmentation mask pairs (right side). It can be seen that FastGAN
learned how to add realistic bubbles to image, but is incapable of generating
proper hair around the wound.
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Chapter 4
Medical imaging data

augmentation

In this chapter images previously generated by selected models are used for
X-ray tuberculosis dataset augmentation to improve tuberculosis detection
accuracy and to expand chest CT and ISIC 2018 datasets to increase segmen-
tation accuracy of U-Net segmentation network.

4.1 Tuberculosis detection with pretrained VGG16

Keras VGG16 model is used with weights pretrained on ImageNet dataset
for features extraction. Model is trained on 366 normal and 355 abnormal
X-rays. 40 normal and 39 abnormal samples from the training dataset are
used for validation. Model is first fine-tuned on real data for 100 epochs for
each hyperparameters set with batch size of 16. All VGG16 weights remain
constant during training. Adaptive moment estimation optimizer is utilized for
training. Hyperameters values, validation accuracy, validation false positives
and false negatives are shown in Table 4.1.

Model with the best hyperparameters is then evaluated on the test data.
Test classification accuracy, false positives and false negatives are shown in
Table 4.2.

Then model is trained in the same fashion on the dataset augmented with
FastGAN, CycleGAN 1, CycleGAN 2 and CycleGAN 3 and results are com-
pared. IS and FID values for each model can be seen in the Table 4.2.

From all the GAN models used in this experiment only one was able to
improve the classification accuracy: CycleGAN2 with perceptive field of 22
pixels. As a result of augmentation, the classification accuracy on test data
increased by 4 percent, the number of false positives decreased by 2 and the
number of false negatives by 5, compared to the model trained only on real
data.
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4. Medical imaging data augmentation

Table 4.1: Validation results for fine-tuning tuberculosis detection model on
real data. Rows are sorted by classification accuracy in descending order

Learning rate Dropout rate Classification accuracy False positives False negatives
1 0.0003 0.3 0.90 8 8
2 0.0002 0.4 0.90 8 8
3 0.0002 0.5 0.90 8 9
4 0.0001 0.4 0.90 8 9
5 0.0003 0.5 0.90 9 9
6 0.0001 0.3 0.90 9 9
7 0.0002 0.3 0.89 9 9
8 0.0003 0.4 0.89 8 11
9 0.0001 0.5 0.89 9 11

Table 4.2: Test results for models trained on real and augmented datasets

Dataset Classification accuracy False positives False negatives
Real 0.76 17 20

FastGAN 0.76 18 19
CycleGAN1 0.76 18 19
CycleGAN2 0.80 15 15
CycleGAN3 0.70 28 23

4.2 Melanomas segmentation

[23] showed, that it is possible to improve segmentation precision by adding
GAN-generated images to the ISBI ISIC 2017 Skin Lesion Segmentation Chal-
lenge dataset. Model based on Pix2Pix architecture was used to synthesize
128×128 melanoma images from ground truth segmentation masks. However,
many details of the experiment were not disclosed, for example, the number
of convolutional filters and the number of layers in both generator and dis-
criminator.

Based on their success, the desicion is made to use their model as a base-
line for FastGAN. Several discriminator architectures are compared and their
parameters are adjusted to identify the best perfoming model. Experiments
include using perceptual loss as in [24] during training instead of L1 loss.
Moreover, inspired by [25], in addition, it is shown that DCGAN can be used
to generate segmentation masks for lesion segmentation, which in the case of
[23] were generated manually with the addition of elastic deformations.

Two segmentation models are used to assess the effectiveness of data aug-
mentation: Pix2Pix for 128× 128 images and U-Net for 256× 256 images.
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4.3. Tuberculosis classification with pre-trained VGG16

Table 4.3: Test results for segmentation models trained on real and augmented
datasets

Dataset Classification accuracy False positives False negatives
Real

FastGAN 0.74 535.04 619.40

4.3 Tuberculosis classification with pre-trained
VGG16

Model based on pre-trained VGG16 CNN model from Keras is used to classify
X-ray images into two groups: normal images and images with pneumonia.
On top of pre-trained VGG16 there is batch normalization layer, then global
average pooling layer, then dropout layer.

4.3.1 Image classification with VGG16

Classification model is built on top of VGG16 which was pre-trained on the
ImageNet dataset containing thousands of pictures [26]. This is called transfer
learning - approach which allows to overcome lack of training samples by
applying models trained on other problem sets [27] as well as making training
faster.

4.3.2 Training VGG16 on real Xray data

VGG16 is trained on 721 X-ray images: 366 healthy and 355 abnormal. 20%
of training images are used for validation. After 100 epochs training accuracy
of 0.96 and validation accuracy of 0.78 is achieved. Trained model is then
tested on 79 X-rays from which 40 are healthy and 39 are abnormal. Test
accuracy is 0.70. Big gap between training and validation accuracy may be
caused by model overfitting on training data. In order to avoid overfitting
data is augmented with three transformations:

• Random horizontal flip

• Random rotation in range from 36◦ clockwise to 36◦ counter-clockwise.

• Random zooming out and zooming by maximum amount of 10%

After adding rescaling and data augmentation training accuracy after 100
epochs became 0.82, validation accuracy 0.81 and test accuracy of 0.69. De-
crease in test accuracy and increase in validation and test accuracy may be
explained by augmentation helping to overcome overfitting of the model on
training data. After 1000 epochs test accuracy was 0.86, validation accuracy
0.77 and test accuracy 0.71.
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4. Medical imaging data augmentation

4.3.3 Data augmentation

4.3.3.1 DCGAN

Model is built using Tensorflow2 keras API.
Discriminator consists of following layers:

1. Convolutional 2-dimensional layer with 64 output feature maps, square
kernel of size 5, strides of value 2 expecting 64 × 64 pixels grayscale
image as an input

2. LeakyReLU acrivation function layer

3. Dropout layer with dropout rate of

4.

4.3.4 Measuring GAN performance

In order to measure GAN performance all synthesized images are classified by
VGG16 trained on real images and classification accuracy is evaluated. Since
separate models are created to generate healthy and abnormal images, it is
known in advance that a GAN model trained on healthy images produces only
images labeled healthy, and a GAN trained on abnormal radiographs creates
only radiographs marked abnormal. Classification accuracy on synthesized
abnormal x-rays is 0.02.

Table 4.4: Classification accuracy of VGG16 trained on real data on synthe-
sized images

model classification accuracy
DCGAN 0.695

4.3.5 Classification accuracy

Model was trained for 1000 epochs.

Table 4.5: Classification accuracy of VGG16

data test accuracy
original data 0.70
original data after rescaling and augmentation 0.76
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4.4. Generating melanoma images from segmentation masks

4.4 Generating melanoma images from
segmentation masks

[23] showed, that it is possible to improve segmentation precision by adding
GAN-generated images to the ISBI ISIC 2017 Skin Lesion Segmentation Chal-
lenge dataset. Model based on Pix2Pix architecture was used to synthesize
128×128 melanoma images from ground truth segmentation masks. However,
many details of the experiment were not disclosed, for example, the number
of convolutional filters and the number of layers in both generator and dis-
criminator.

Based on their success, we complemented the experiment by comparing
several discriminator architectures and varying their parameters. We also
tried to use perceptual loss as in [24] during training instead of L1 loss. More-
over, inspired by [25], who introduced the idea of using multiple discriminators
operating at different scales, we evaluated advantages of using 2 and 3 dis-
criminators during training. In addition, we showed that GANs can also be
used to generate segmentation masks, which in the case of [23] were generated
manually with the addition of elastic deformations.

4.4.1 Dataset and preprocessing

Dataset is the ISIC 2018 Skin Lesion Analysis dataset, which contains the
largest publicly available collection of quality controlled dermoscopic images
of skin lesions [22]. It consists of 2694 melanoma images and the same number
of ground truth segmentation masks. All images were resized to 128 × 128
pixels and divided into 2076 training, 518 validation and 100 test data pairs.

4.4.2 Generating segmentation masks

Ground truth segmentation masks for synthetic melanoma images were gen-
erated with DCGAN. DCGAN architecture was based on model proposed by
[28]. Generator was fed with 100-dimensional random noise vector, which was
then transformed to two-dimensional output by project and reshape block.
Project and reshape block was followed by sequential encoder blocks. Finally
convolution was applied to get output 128× 128 image.

Following changes were made to overcome graphical memory restrictions:
dense layer in the project and reshape block contained 8 times less units and
was reshaped to 512 output feature maps of 4×4 pixels instead of 1024 feature
maps with size 8× 8 pixels. In this regard, there was a need for an additional
decoder block. Thus generator was built using 5 transposed convolution layers
with 512, 256, 128, 64 and 32 convolutional filters respectively. Transposed
convolutions were followed by convolutional layer, which translated 16 input
feature maps to the resulting grayscale image. Similarly one convolutional
layer was added to the the discriminator. Discriminator consisted of 6 con-

29



4. Medical imaging data augmentation

volutional layers with 16, 32, 64, 128, 256 and 512 fiters respectively. All
convolution and transposed convolution layers used 5x5 kernels similarly to
[28]. The generator and discriminator architecture is shown in the figure 4.1.

Figure 4.1: Segmentation masks DCGAN generator architecture

Original adversarial loss and adaptive moment estimation optimizer with
learning rate of 0.0001 were used during training . Model was trained for 100
epochs.

To get IS and FID score 2594 segmentation masks were generated, since
the size of the dataset must be large enough so that the values of these met-
rics correspond to the real characteristics of the synthesized images. Model
achieved IS 1.86 and FID 861.41.

Then model was trained for another 100 epochs with the intention of in-
vestigating the behavior of the generator and discriminator during further
training. After 200 epochs generated images had IS 2.69 and FID 1827.49.
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4.4. Generating melanoma images from segmentation masks

Figure 4.2: Generator and discriminator losses for segmentation masks syn-
thesizer during 200 epochs

Figure 4.3: DCGAN generated segmentation masks after 100 epochs (left)
and 200 epochs (right)

The generator and discriminator adversarial losses are presented in the figure
4.2. Looking at the graphs we see that the discriminator learned to distin-
guish real from fake images significantly faster than the generator learned to
generate plausible images. Moreover, generator loss function was oscillating
through the whole training process, there was no sign of conversion. As a
consequence, resulting generated segmentation masks after 200 epochs were
of worse quality than images generated after 100 epochs.

The substantially higher value of the FID confirmed that the statistical
distribution of synthetic images after an additional 100 training epochs sig-
nificantly moved away from the statistical distribution of real images. This
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4. Medical imaging data augmentation

was another prove that relying only on classical adversarial loss often leads to
GAN training being inconsistent as denoted in [29].

4.4.3 Translating segmentation masks to melanoma images

Melanoma images from segmentation masks were generated with Pix2Pix
GAN. All models used U-Net-like generator consisting of the encoder and
decoder with skip connections, which was proved to be efficient for image-to-
image translation by [12]. Implementation was based on [30]. Because input
and output resolution was 2 times smaller, than in case of [12], both encoder
and decoder had 1 block less, than original generator. All other parameters
including kernel size 4, strides 2 and dropout rate 0.5 were not changed. Anno-
tation for describing generator and discriminator architecture was borrowed
from [12]. 2 main blocks were used: Ck standing for convolution layer fol-
lowed by batch normalization and ReLU activation function and CDk similar
to Ck with dropout applied before batch normalization. The structure of the
encoder and decoder in this notation was C64-C128-C256-C512-C512-C512-
C512 and CD512-CD512-C512-C256-C128-C64 respectively. 3 discriminators
with receptive field of 10, 22 and 46 were evaluated: Discriminator1, Discrim-
inator2, Discriminator3 with following structures: C64-C128-C256, C64-C128
and C64.

Receptive field of each convolutional layer cell was calculated using follow-
ing formula:

I = K + S(O − 1), (4.1)

where I is receptive field size, K is kernel size, S is stride and O is output
size along one dimension. Resulting receptive field was found starting from
the last convolutional layer. In case of Discriminator 3 it was:

IF inal = 4 + 1(1− 1) = 4 (4.2)

IC64 = KC64 + SC64(IF inal − 1) = 4 + 2(4− 1) = 4 = 10 (4.3)

For Discriminator2:

IF inal = 4 + 2(1− 1) = 4 (4.4)

IC128 = 4 + 2(4− 1) = 10 (4.5)

IC64 = 4 + 2(10− 1) = 22 (4.6)

For Discriminator3:
IF inal = 4 + 2(1− 1) = 4 (4.7)
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4.4. Generating melanoma images from segmentation masks

IC256 = 4 + 2(4− 1) = 10 (4.8)

IC128 = 4 + 2(10− 1) = 22 (4.9)

IC64 = 4 + 2(22− 1) = 46 (4.10)
Each model was trained for 200 epochs as in [23].
IS and FID distance for each model generated images are shown in the

table:

Table 4.6: Pix2Pix models description

Model Discriminator Loss
1 1 Adversarial, L1
2 2 Adversarial, L1
3 3 Adversarial, L1
4 1 Adversarial, perceptual
5 2 Adversarial, perceptual
6 3 Adversarial, perceptual

Table 4.7: Pix2Pix models scores
Model 1 2 3 4 7

IS 2.21 2.36 2.39 2.23 2.30

For training with perceptual loss VGG16 pre-trained on ImageNet dataset
was utilized to extract features from generated images.

Let Fi and λp,i denote output feature maps and weight of the ith layer of
the feature extractor with N layers in total. Perceptual loss may be calculated
as

LP ercep = 1
N

N∑
i=0

λp,i(||Fi(y)− Fi(G(x))||d), (4.11)

where d = 1 for MAE and d = 2 for MSE loss. In models 4, 5 and
6 λp,1 = 100, λp,2 = 200. In models 7, 8 and 9 λp,1 = 100, λp,2 = 200,
λp,3 = 300. For all models we use MAE, i.e. d = 1, based on the thesis that
the MSE causes image unsharpness [12].

4.4.4 Segmentation

Segmentation model architecture was the same as the Pix2Pix generator. This
architecture was chosen in order to assess its suitability for another experi-
ment.
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4. Medical imaging data augmentation

Figure 4.4: Real melanoma images (left) and Pix2Pix1 synthesized images
(right)

First, the model was fine-tuned using only real samples for maximum 100
epochs for each hyperparameters set in terms of validation mean IoU. Model
training stopped in case validation mean IoU not improving consistently over
15 epochs. Model trained with dropout rate 0.4 and learning rate 0.001 showed
the biggest validation mean IoU of 0.83.

Table 4.8: Hyperparameters for fine-tuning melanoma segmentation model
and results on validation images

Learning rate Dropout rate IoU False positives False negatives
1 0.01 0.3 0.69 888.65 797.41
2 0.01 0.4 0.73 608.32 661.92
3 0.01 0.5 0.63 637.91 1287.27
4 0.001 0.3 0.82 352.95 464.76
5 0.001 0.4 0.83 183.77 635.96
6 0.001 0.5 0.82 305.84 521.19
7 0.0001 0.3 0.81 233.47 641.37
8 0.0001 0.4 0.81 134.67 742.74
9 0.0001 0.5 0.81 229.01 646.29

This model was then evaluated on test data showing mean IoU 0.74, mean
false positives 306.74 and mean false negatives 809.98.

Second model with the similar architecture was then trained on data en-
riched with 1000 melanoma images and segmentation masks, generated with
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4.5. Small dataset augmentation

Figure 4.5: Segmentation model loss (left) and mean IoU (right) during train-
ing

simple augmentations. It gained mean IoU Third model was trained on data
extended with samples generated by Pix2Pix. Results of each model are shown
in the table 4.9.

Table 4.9: Segmentation results on ISIC 2018 dataset

Dataset Mean IoU Mean false positives Mean false negatives
Only real 0.74 306.74 809.98

Aug simple 0.74 325.17 821.72
Aug1 0.73 342.50 790.22
Aug2 0.74 433.77 728.79
Aug3 0.74 377.44 734.69
Aug4 0.75 302.14 797.80

4.5 Small dataset augmentation

In the following experiment we research the benefits of augmentation for train-
ing segmentation model on very small dataset. The specificity of augmentation
of small datasets is that the generated images may be indistinguishable from
real images, but at the same time do not correspond to the segmentation
masks from which they were obtained due to augmentation model overfitting.

4.5.1 Dataset and preprocessing

Dataset used for this experiment was created by selecting 240 melanoma im-
ages and ground truth segmentation masks from the ISIC 2018 Skin Lesion
Analysis dataset. Images were resized to 256 × 256 pixels due to the limita-
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4. Medical imaging data augmentation

tions of memory and computing resources. The dataset was divided into 160
training, 40 validation and 40 test mask-image pairs.

4.5.2 Generating segmentation masks

Segmentation masks were generated using DCGAN trained for 100 epochs.

4.5.3 Models description

Models are based on U-Net arhitecture as in the previous experiment with the
only difference - additional encoder and decoder block is added to double the
resolution of input and output images.

Model 1 is original Pix2Pix which is unlike original model and is trained
without random jitter. Generator and discriminator architecture is same as
in [12]. Model 2 has the same architecture as model 1, but is trained with
random jitter.

Table 4.10: Pix2Pix scores depending on architecture

Model 1 2 3 4 5 6
IS 3.87

FID 232.048
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Conclusion

In this work is the goal to evaluate capabilities of a newly proposed generative
adversarial network architecture and to compare it with selected GAN models
currently used for medical visual data augmentation.

Theoretical part gives the reader an overall understanding of methods
used in this work. Chapter 1 is an introduction to machine learning terms
necessary for understanding more advanced principles explained in the next
chapter. Chapter 2 introduces the reader to generative adversarial models
used to generate images. Chapter 3 explains what datasets and GAN models
were used for images generation and quality assessment. Chapter 4 contains
detailed information on experimenting with augmentation of selected datasets
to improve classification and segmentation accuracy.

Although the new model FastGAN is capable of generating good quality
high-resolution images, the images it generated could not improve the results
of training for the classification model based on VGG16 and segmentation
models based on U-Net and Pix2Pix. To improve the results, it is necessary
to try to augment the data used to train generative models as well as to
experiment more with models architectures and parameters including number
of layers and number of convolutional filters. It could be also beneficial to try
different training parameters, which include learning rate and different types
of optimizers.
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Appendix A
Acronyms

API Application programming interface

CNN Convolutional neural network

CT Computed tomography

DCGAN Deep convolutional generative adversarial network

FID Frechet inception distance

GAN Generative adversarial network

IOU Intersection over union

IS Inception score

MAE Mean absolute error

MSE Mean squared error

KL divergence Kullback-Leibler divergence

ReLU Rectified linear unit

RGB Red-green-blue
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Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
exe ..................................... the directory with executables
src.......................................the directory of source codes

wbdcm ...................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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