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Abstract

In the beginning of this thesis, we compare authentication methods commonly
used today and dive into the history, state of the art as well as the future of
password security.

Later on, we use the tool Hashcat to experiment with brute-force and
dictionary attacks accelerated with Markov models and word mangling rules.
We also compare two hardware approaches — regular computer and cloud
computing.

Based on our findings, we finally conclude with a set of password-cracking
recommendations with focus on hardware, dataset size and used hash function.

Keywords password cracking, comparison of password-cracking methods,
recommendations for password cracking, brute-force attack, Markov models,
dictionary attack, word mangling rules, cloud computing, Hashcat, authenti-
cation methods
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Abstrakt

Na začátku této práce porovnáváme dnes běžně používané metody autentizace
a také mluvíme o historii, současnosti a budoucnosti zabezpečení hesel.

Později využíváme nástroj Hashcat k experimentům s útoky hrubou silou
a slovníkovými útoky, které zrychlujeme s pomocí Markovových modelů a
pravidel pro manipulaci se slovy. Porovnáváme také dva hardwarové přístupy
— běžný počítač a cloud computing.

Nakonec na základě našich poznatků práci uzavíráme souborem doporu-
čení na prolamování hesel s důrazem na hardware, velikost datové sady a
použitou hašovací funkci.

Klíčová slova lámání hesel, porovnání metod lámání hesel, doporučení pro
lámání hesel, útok hrubou silou, Markovovy modely, slovníkový útok, pravidla
pro manipulaci se slovy, cloud computing, Hashcat, autentizační metody
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Introduction

There are many things in the digital world that we want only specific people
to access. This is where authentication comes into play. Nowadays, most
of us have something on the internet that is locked behind authentication.
However, authentication in the digital world can be relatively easy to bypass
and therefore opens up the possibility that someone else might access our
personal data. In most cases, all that the bad guy has to do to successfully
authenticate as us is put in our password.

One way of getting a particular user’s password is cracking the hash of
their password. There are many ways to acquire this hash. It could, for
instance, leak from some compromised internet service or simply be extracted
from the victim’s machine.

Although it may sound a little bizarre for some at first, the good guys,
sometimes known as white hat hackers, crack passwords too. Some of the
motivation behind this could be, for example, catching bad guys or identify-
ing weak passwords during penetration testing or security audits. Imagine a
company, where each employee has their own company account with access to
some sensitive data. We would probably not want any of that sensitive data
to leak outside the company just because of weak passwords.

The goal of this thesis is to create a set of recommendations for penetration
testers to help them decide what approach to take when cracking password
hashes based on various parameters such as sample size or used hashing algo-
rithm. Leading up to this main goal, there are several other subtasks, which
we address in the first four chapters.

In Chapter 1, we talk about the origin of user authentication, explore
the most popular authentication methods used today and compare them with
focus on ease of use and security.

In Chapter 2, we focus on password authentication and security. We talk
about the history, recent developments as well as where the future could be
headed.
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Introduction

In Chapter 3, we perform an analysis of methods, tools and hardware used
for cracking password hashes.

In Chapter 4, we present an implementation of several approaches to crack-
ing password hashes and discuss the results of various experiments.

Finally, in Chapter 5, we sum up the findings of this thesis to form a set of
recommendations to help penetration testers crack passwords more effectively
based on the parameters of those passwords and their hashes.

2



Chapter 1
User authentication

In this chapter, we are going to talk about what user authentication is and
why we need it by uncovering a little bit of its history. We will then dis-
cuss authentication methods commonly used today, specifically passwords,
fingerprint scanning, facial recognition, public-key cryptography and one-time
passwords. We will evaluate each of those methods in a separate section to
familiarize the reader with the state of said authentication methods. We con-
clude the chapter with a brief comparison of presented authentication methods
from standpoints of security and ease of use.

Let us start with the basics. According to [1], authentication is “an act,
process, or method of showing something (such as an identity, a piece of art,
or a financial transaction) to be real, true, or genuine”. This is precisely what
we need in the modern age of computers to, for instance, be able to impose
restricted access to resources, be it online storage or a desktop computer.
However, authentication is present in the real world as well. When we vote,
we have to present an identity document. When we pay with our credit
card, we usually have to type our Personal Identification Number (PIN) on a
terminal.

Digital authentication is believed to have started at Massachusetts Insti-
tute of Technology (MIT) in the early 1960s when Fernando Corbató helped
deploy the first known computer password. There was a mainframe that
used password authentication to separate user accounts and files to serve as
fundamental means of privacy so that people could not just nose around in
everybody’s files. [2]

1.1 Authentication factors
Let us first talk about authentication factors. We usually identify three main
factors of authentication — something we know, something we have and some-
thing we are [3].

3



1. User authentication

1.1.1 Something we know
The idea behind this factor is a shared secret, often called a password [3]. The
knowledge of this password then separates us from the others who do not know
our password. To authenticate, we present the password to an authentication
system, which has a way of telling whether we presented the correct password.

1.1.2 Something we have
This means using something in our possession as means of authentication.
Many of us use this authentication factor daily with credit or debit cards —
whoever has the card can purchase things using our money (though there is
usually an additional factor in the form of a PIN).

1.1.3 Something we are
As the name suggests, this factor is based on something that a person is —
both behavioral and physiological characteristics are employed, e.g., retinal
scan, fingerprint, voice print, keystroke timing or signature [3]. We commonly
utilize this factor in today’s smartphones that often come equipped with a
fingerprint scanner and facial recognition hardware.

1.2 Common authentication methods
In this section, we are going to discuss authentication methods that are com-
monly used today.

1.2.1 Password authentication
Passwords are everywhere. Chances are, if we create some sort of account, it
is going to support password authentication and, in many cases, even require
us to use it as the primary authentication factor.

Although passwords are very widely used, they do have problems. Unfor-
tunately, users tend to choose passwords that are easy to remember, which
usually means easy to guess [3]. Passwords that are hard to guess also tend
to be hard to remember, which sometimes leads people to write them down,
making it much easier for a potential attacker to find them [3]. In fact, [4] says
39% of people write their passwords down. Some people create really strong
passwords, but they often reuse one or a couple of them across multiple ac-
counts since they are hard to remember. This is not a good idea, because once
some service leaks some user’s password, not only is that user’s account on
that service compromised, but all other accounts of that user (even from other
services), which used the same password are likely going to be compromised
— especially if they used the same username, which is often just the user’s
email address.

4



1.2. Common authentication methods

Another disadvantage of passwords is that in order to use one, we have to
reveal it in a way. Even though password forms usually hide the characters we
put in them, we still have to type out the password. We usually do that with
keyboards, which are prone to shoulder surfing — people can simply figure
out our password by seeing what keys we press in what order [3].

Sharing/distributing passwords is very easy — everyone has the ability
to use the password, that is, as long as they know what the password is.
Easy distribution is definitely useful, however, it can get out of control when
the password is redistributed further than was intended and suddenly, people
who were not meant to be able to authenticate can authenticate, because they
know what the password is.

One aspect of passwords that, depending on where we live, can be a sig-
nificant advantage is the fact that a password simply cannot be forcibly taken
from us. If a strong enough1 password is in place and we decide not to share
it with anybody, nobody will ever be able to authenticate as us2.

Most of the security issues of passwords that we talked about can be
avoided by using a password manager, though [4] also found that only 28% of
people3 used one. Another survey [5] got somewhat similar results — 22.5%
of respondents4 were using a password manager. What could be even more
surprising is another finding of [5] that 65% of respondents did not trust
password managers and 48% even went on to say that nothing could moti-
vate them to use a password manager in the future. Out of those 65%, 34%
of respondents worried that their password manager could be hacked, while
31% said they did not trust companies behind password managers with their
information.

The author believes this lack of trust was mainly caused by the respondents
not being familiar with some practices in digital security. It should be noted
that when companies store encrypted data that only the user can decrypt,
there is nothing for the user to worry about5. This is called End-to-End
(E2E) encryption — the encryption key never leaves the user’s device and the
data is only ever encrypted/decrypted on that specific device. For instance,
1Password uses Public Key Infrastructure (PKI) to achieve just that [6]. In [6],
they say “1Password for Teams server never has a copy of the decrypted vault
key and so is never in a position to share it. Only someone who has that key
can encrypt a copy of it. Thus, an attack on our server could not result in
unwanted sharing.”

If the user wants full control over their data, offline password managers
are also an option, though they may come at a portability cost. Since the
data typically does not leave the device, synchronizing or migrating passwords

1as in uncrackable by known attacks
2assuming the password cannot be obtained from anywhere but its owner’s memory
31,000 Google users in the United States from ages 18 and up
41,283 Americans from ages 18 and up
5as long as the encryption algorithm is secure and used correctly
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1. User authentication

to another device might be a tedious process6. For comparison, 1Password
managed to make sharing and migration of passwords seamless [7] and secure
at the same time thanks to PKI.

Although there are many problems with passwords, there are reasons why
they are still around. Compared to other authentication methods, they are
relatively easy to implement and many solutions already exist, free for devel-
opers to use. This implies a low barrier to entry for developers. The barrier
to entry is also not very high on the user side — all that is required is that
the user remembers a secret phrase.

The convenience of using passwords may vary depending on how serious
users are about password security. Those who rely on their memory can easily
use their passwords from anywhere (e.g., home, work, school, etc.) as long
as they do not forget them, while others, who might be using a password
manager, either depend on a piece of software being installed on the device
they are trying to authenticate on or are bound to carry around a device on
which they can access their passwords.

As to what users think, passwords are just not convenient — 57% of
internet users reported they would prefer using some form of passwordless
authentication [8]. This does not come as much of a surprise since about 66%
of users are more concerned with security than convenience when creating
passwords [4]. As we have already discussed in this section, due to the nature
of passwords, it is hard to have both security and convenience when it comes
to password authentication.

1.2.2 Biometric authentication

Biometric authentication seems to be the second most common authentication
method. Biometry refers to measuring and analyzing an individual’s physical
traits, such as fingerprints, iris patterns, or even the way a person walks [9].
Many of the modern smartphones nowadays have the ability to authenticate us
with our fingerprint or our face. Therefore, it is not much of a surprise that in
2017, [10] found out 65% of consumers7 were already familiar with biometric
authentication and 86% were interested in using it to verify identity or to make
payments. Furthermore, [11] revealed that 62% of companies8 were already
using biometric authentication in the workplace in 2018 and that another 24%
were planning to do so by 2020.

Biometric authentication, when implemented correctly, is very convenient
for users. There is no need to remember anything since the authentication is
based on something that the user “is”, e.g., their fingerprint, face or some other
property of their body. One of the advantages biometry has over passwords is

6depending on abilities and extensibility of the specific password manager
7U.S. adult consumers who use at least one credit card, debit card and/or mobile pay
8based on 492 respondents from North America and Europe
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1.2. Common authentication methods
8.1 User Identification 503
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Figure 8.7 Probability distribution and decision regions for a biometric feature measurement:
1 – true positive identification (true acceptance) 3 – false positive identification (false acceptance)
2 – true negative identification (true rejection) 4 – false negative identification (false rejection)

of the biometric method being used and can be modified only within certain limits. In addition,
the FAR and FRR are mutually dependent, since a low FRR produces a high FAR and vice
versa. For the user, a high FRR means that he or she may be rejected in spite of presenting a
legitimate feature, which naturally affects user acceptance of the system. The system operator
wants to have not only a low FRR but also a low FAR, in order to prevent false positive
identifications.

PIN testing does not require complicated algorithms in the smart card, since it only involves
comparing received and stored PIN values. Unfortunately, things are not this easy with bio-
metric features. The reference value is of course stored in the card, but the comparison with
the measurement in question normally cannot be performed in the card. This is due to the large
amount of processing capacity needed to evaluate biometric features. Since smart cards usu-
ally do not have adequate processing capacity for this, the computer-intensive preprocessing
of the measurement values is performed externally. The result is then sent to the card, which
evaluates the preprocessed data using special algorithms that do not require a lot of memory
or processing capacity and then makes a yes/no decision based on the stored reference value.

This method is called ‘oncard matching’ or ‘matching on chip’ (MOC). The amount of
time required for matching depends on many factors, such as the biometric method used and
whether the data have been preprocessed. For example, it takes approximately two seconds
to test fingerprint data in a smart card with an 8-bit processor using data that have been
preprocessed in the terminal.

Biometric features are personal data and thus should be appropriately protected. This rep-
resents a very good application for smart cards, since the reference data needed for testing
never have to leave the card, which makes attacks significantly more difficult. However, if the
reference data are stored in a non-secure environment, they can be manipulated and read as
desired. In such a situation, a biometric identification method does not provide any significant
benefit. The steadily increasing processing capacity of microcontrollers and the possibility of
integrating sensors for biometric data acquisition into cards may allow smart cards to be used
in new application areas.

Figure 1.1: Probability distribution and decision regions for a biometric fea-
ture measurement: (1) true positive identification (true acceptance); (2)
true negative identification (true rejection); (3) false positive identification
(false acceptance); (4) false negative identification (false rejection). Adapted
from [15].

that shoulder surfing attacks are ineffective — attackers do not gain anything
from seeing us, for instance, use a fingerprint scanner or looking into a camera.

Although attackers themselves do not gain anything from seeing us au-
thenticate using biometry, if they somehow manage to extract, let us say,
our fingerprint or face scan, we get into a tough situation, because unlike in
the case of passwords, we cannot easily, if at all, change something like our
fingerprints or our face. This is a real threat, because research has shown
that it can be done — both fingerprint readers [12] and face scanners [13, 14]
have been fooled in the past. Do not forget that biometric data is something
that, again, unlike passwords, can be forcibly taken from us once we are, for
example, abducted by law enforcement or some bad actors.

Let us also talk about how biometric data is verified. Since the data mea-
sured by the reader/scanner are not going to be exactly the same every time,
there is a system in place that decides what, let us say, fingerprint is or is not
going to be accepted. The stricter the system is, the more fingerprints are
going to be rejected, sometimes even the correct ones (false negatives). On
the other hand, the more lenient the system is, the more fingerprints are going
to be accepted, sometimes even the incorrect ones (false positives). Since we
cannot reduce the amount of both false negatives and false positives, devel-
opers often strive to hit the sweet spot, where the system is both reasonably
convenient and secure at the same time. See Figure 1.1 for more details. [15]

To conclude biometric authentication, it is, without a doubt, much more
convenient than passwords. Although it does not beat correctly used pass-
words in security, it may be a step in the right direction since the majority of
users simply do not use passwords correctly [4].
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1.2.3 Public-key cryptography
PKI is something not nearly as many people may know about compared to
passwords and biometry. However, it is still something that is relatively widely
used for user/client authentication nevertheless. If nothing else, the Secure
Shell (SSH) protocol, used by tools such as ssh [16] or git [17], often uses PKI,
because it is considerably more secure than passwords [18].

The gist of it is an asymmetric encryption key pair consisting of two keys
— a public key and a private key [18]. As the word asymmetric suggests,
things encrypted with the public key can only be decrypted with the private
key [19] and vice versa — things encrypted with the private key can only be
decrypted with the public key [20]. As suggested by the names of the actual
keys, the public key is something we share with others, while the private key
is something we want to keep private at all costs [18].

Let us now talk about how this is used for authentication. First of all,
the client has to give the server its public key. After that, when the client
wants to log in, they are presented with a challenge that can only be solved
with the corresponding private key. The solution can then be verified with
the client’s public key on the server because of how asymmetric cryptography
works. Sometimes we use a digital certificate containing the subject’s public
key instead of just the public key [21]. A digital certificate is a file signed
by a trusted Certificate Authority (CA) that ties a public key to a particular
entity [22]. Therefore, as long as we trust the CA, we trust the certificate’s
claim that the public key it contains is owned by the entity it contains.

To get started with PKI, the user must first generate a key pair, which, in
the author’s opinion, could be a relatively big barrier to entry for the average
user, who has never heard of this concept. Once the user gets past this initial
setup, the authentication flow is effortless and convenient since everything
happens automatically.

There is just one caveat — it is recommended to protect (encrypt) the
private key with a password to increase security and prevent any breaches if
the key happens to get stolen or leaked [18]. This might not even affect the
convenience that much, because private keys can often be set up so that the
password is only required the first time the key is used in a computer session.
On the other hand, security could be at risk, because as we have learned in
Section 1.2.1, most users do not practice good password habits. Still, even if
the private key is not secured with a password, it will be more secure than just
using a password. To exploit an unprotected private key, a potential attacker
would first have to get access to the victim’s machine, which, unless the victim
is a high-profile9 target, is probably not going to be worth it for the attacker.

Another thing to consider is the key algorithm being used. A widespread
algorithm choice is Rivest–Shamir–Adleman (RSA), with the security factor
being the key length. Various security agencies recommend keys be at least

9meaning they attract a lot of attention
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2,048 bits long, with some, such as the National Security Agency (NSA),
recommending keys of size 3,072 bits [23].

Though handling and using a key pair may prove to be difficult for the
average user, the author could imagine some form of PKI authentication be-
coming mainstream if awareness of it were to rise, more tools to aid the average
user in using it were developed and more services actually started offering PKI
authentication.

1.2.4 One-time password
One-Time Password (OTP) is an authentication method that is mainly used
as the second factor in Two-Factor Authentication (2FA), which has become
more popular in the past couple of years. In fact, [24] found that adoption of
2FA has almost doubled between 2017 and 2019. In this section, we will focus
on a specific variant of OTP — Time-Based One-Time Password (TOTP)10,
which is based on HMAC-Based One-Time Password (HOTP)11. According
to a report from 2019 [24], as much as 19% of us have already encountered a
TOTP12.

TOTP, as the name suggests, is a password that is generated based on the
current time and can only be used once. The actual password, although it
could theoretically be up to nine digits long [25], tends to be a six-digit numeric
code that can only be used within a relatively short time window [26]. For op-
timal balance between security and usability, this time window should ideally
last 30 seconds, during which the correct code may only be used once [26].
The user therefore has to wait for the next time window if they wish to reau-
thenticate.

A TOTP generator is uniquely identified by a hash algorithm, secret key,
time-step size and length [25, 26]. From the author’s experience, services
usually indirectly push the user to store TOTP data on their phone using
apps such as Google Authenticator13 or Aegis14 by encoding the necessary
information into a Quick Response (QR) code and not letting them copy the
embedded otpauth:// Uniform Resource Identifier (URI) directly. Users scan
the QR code to add the generator to their TOTP app/manager, then they are
usually prompted to enter the currently valid code to verify that everything
is working as intended and they are all set. Therefore, the barrier to entry of
TOTP is relatively low since the average user should be more than capable of
downloading an app to their phone and scanning a QR code.

10https://www.rfc-editor.org/rfc/rfc6238.txt
11https://www.rfc-editor.org/rfc/rfc4226.txt
12The report labels it as “Authenticator App (OTP)”, but the author, based on their

extensive exposure to many services utilizing OTP for 2FA, believes the vast majority, if not
all, of those responses relate to TOTP.

13https://play.google.com/store/apps/details?id=com.google.android.apps.au
thenticator2

14https://getaegis.app
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A quick search on Google Play15 shows that as of April 2021, based on
downloads, Google Authenticator is by far the most popular app for storing
TOTP data. Out of the top 30 search results for TOTP, Google Authenticator
had roughly twice as many downloads (50 million) as the remaining 29 apps
combined (27 million). It is therefore safe to assume that, at least on Android,
most people are storing TOTP data using Google Authenticator.

TOTP is great when used as an additional authentication factor. Using
it as the only authentication factor might be viable, though users must be
careful, because some of the mainstream mobile apps that store TOTP data,
including Google Authenticator, are very open. Google Authenticator, as of
April 2021, does not require any authentication to access your data when
opened — one would expect to be prompted for the phone’s passcode or be
forced to authenticate with biometry for increased security.

The next problem with some TOTP managers, including Google Authen-
ticator, is that once we open them (and perhaps authenticate), the authenti-
cation codes are usually all revealed, which allows for easy shoulder surfing.
Yes, the codes only last for a relatively short amount of time (usually 30 sec-
onds16), but shoulder surfing could still, in theory, be effective. Although the
codes are only valid for one-time use within their time window, if they are all
revealed at once, an attacker simply has to pick any code other than the one
we are looking for at that moment.

Even when the user side is secure, implementation of the server side may
become tricky when it comes to storing the parameters of TOTP generators.
Unlike passwords, these parameters cannot be hashed, because the server has
to read them in order to know what authentication codes it should expect
from the user. To prevent potentially catastrophic data breaches, the TOTP
parameters should be encrypted and the encryption key/keys stored separately
in a different place. We could also let each user set their own encryption key
(password) for their TOTP parameters, but at that point, it becomes 2FA,
which is what TOTP is, and in the author’s opinion should be, mainly used
for.

A disadvantage of TOTP is that when its data, specifically parameters
of the generator that yields the authentication codes, is lost, the access to
the accounts, where it was used, is also lost, though the same can be said
for passwords (lost password manager data) and PKI (lost private key). As
a fail-safe, many services nowadays generate a set of backup codes when the
TOTP is first set up. Those codes, each limited to one-time use, can then be
used instead of the TOTP to authenticate. While these backup codes might
be useful, the user has to store them in a secure manner, which by itself could,
for some, potentially be a problem. One could just as easily store every TOTP

15The place, where most Android users download mobile apps. Located at https://pl
ay.google.com/store.

16though some services also accept codes from the previous time window for increased
convenience, effectively doubling the size of the time window
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on multiple devices at once (e.g., laptop + phone) and have that serve as a
backup in case access to one of the devices is lost.

As for convenience, it depends on how the user is storing their TOTP
data. From the author’s experience, an extensible password manager, such
as pass17, paired with a few simple scripts and some keybindings, can bring
the time needed to get the authentication code in the clipboard all the way
down to about five seconds. On the opposite end of the spectrum, we would
probably not be surprised if some users were annoyed by having to reach (or
perhaps search) for their phone, unlock it, open an app and then manually
type out a code on their computer.

1.3 Comparison
In this section, we will compare authentication methods presented in Sec-
tion 1.2 from standpoints of security and ease of use. We are going to assume
that the server side, which decides whether or not to authenticate users, is
implemented correctly and follows best practices for maximum security. Thus,
the main focus is going to be on the user side.

Passwords, when used correctly, are secure but inconvenient. Managing a
password manager, being dependent on a device to be able to authenticate on
the go and sometimes having to type strong passwords out all contribute to
lowering the convenience of passwords. It should be noted that most users do
not use passwords correctly [4, 5], which might be the reason why companies
are starting to shift to biometric authentication [11].

The opposite of passwords in terms of convenience is biometric authenti-
cation. When set up correctly, it is both fast and effortless. As long as the
biometric data is only stored locally and the actual authentication offloaded
to something that cannot leak our biometric data, biometric authentication
is, especially for the average user18, much more secure than passwords. That
way, if the server leaked all of our information, our biometric data would
not be compromised. For example, we could use our fingerprint to unlock a
locally-stored private key, which would then be used for the actual authenti-
cation. A big disadvantage of biometric authentication is that biometric data,
unlike passwords, can be forcibly taken from us and cannot be changed as
easily, if at all.

PKI is commonly used in machine-to-machine authentication since it pro-
vides great security and is harder to compromise, because it is stored on the
authenticatee’s machine and often protected with a password on top. Some
services, such as 1Password, use it behind the scenes to improve security [6].
In the case of 1Password, their software manages everything for the user auto-
matically, which also keeps the use of PKI relativelly convenient at the same

17https://www.passwordstore.org
18because the average user does not use passwords correctly
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time. PKI is still widespread in some groups of people thanks to applications
that depend on it, such as most things that communicate via the SSH protocol.

Overall, PKI is probably the most secure and arguably the least user-
friendly/convenient authentication method out of the ones we have talked
about. That is, unless it is managed by software that provides integration
with third parties, which considerably increases convenience for the average
user and lowers the barrier to entry. PKI is cryptographically much stronger
than passwords [18] and, unlike with some implementations of biometric au-
thentication, the server does not have to store any sensitive data — all it needs
is the public key.

TOTP is great as a second authentication factor to be used alongside
something else. It could theoretically be used as the only authentication factor,
but that would not be very secure in most situations, especially for the average
user. The convenience level highly depends on the user’s setup, ranging from
very convenient to very inconvenient. Authenticating on the go is the same
story as with passwords, specifically password managers. We depend on a
device to generate the current authentication code for us. The problem with
TOTP is that the parameters of the TOTP generator must be known to
the server so that it can verify the codes. If TOTP was used as the only
authentication factor, this could lead to a catastrophy if there happened to
be a data breach.

12



Chapter 2
Password authentication

In this chapter, we are going to start out by talking about the history of
passwords and how their security developed over time. We will conclude the
history of password security with state of the art key derivation functions
(scrypt, Argon2) and then move on to discuss where the future of password
security might be headed.

2.1 History
As we have briefly mentioned in Chapter 1, passwords date back to the 1960s
and mark what is believed to be the beginning of authentication. It all started
when Fernando Corbató helped deploy the first known computer password to
prevent users from accessing each other’s files [2] on a shared system called
the Compatible Time-Sharing System (CTSS) [27]. This was probably also
the first system to experience a data breach [27].

2.1.1 Early data breaches

Allan Scherr, at the time a PhD researcher at MIT, was using the CTSS to
run simulations, which required more computing time than the 4 hours he
was allocated per semester. At first, thanks to his access privileges, he was
able to add an instruction to one of his programs that could reset his usage
time. Once that stopped working in the spring of 1962, Scherr found a way to
print out all of the passwords on the system, which allowed him to continue
using more computing time than he was allocated. He only confessed nearly
25 years later. [28]

Another data breach that occured on the CTSS at MIT also happened
in the early 1960s. Two system administrators were editing the password file
and the daily message printed on everyone’s terminal on login at the same
time. Due to a software bug, the temporary files created by the editor were

13
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interchaged, resulting in the password file being the daily message printed on
login. [29]

Let us fast-forward to the late 1960s / early 1970s when the UNIX system
was first implemented [30]. UNIX, just like the CTSS, was first implemented
with a file that contained all users’ passwords in plaintext, which had to be
heavily protected. This was problematic, because system administrators had
unlimited access to the passwords and were able to uncontrollably distribute
them. On top of that, anyone who had physical access to backups of the
system could also read the password file.

2.1.2 Password hashing
Since storing passwords in plaintext has proven to be dangerous, people have
come up with password hashing. In cryptography, hash functions are one-
way19 functions, which transform input data of arbitrary size to a result of
fixed size, which is called a hash [31]. Different inputs are expected to produce
different outputs so it should be extremely unlikely to find a collision [31]. The
first implementation of password hashing on UNIX was a symmetric encryp-
tion used in a non-tradional way [29].

2.1.3 Initial encryption
The first attempt at getting rid of plaintext passwords was using a program
that simulated the M-209 cipher machine used by the U.S. Army during World
War II. With a given key, inverting cipher text back into plaintext was rather
trivial. On the other hand, trying to find the key for a given cipher text and
plaintext was much more difficult. For that reason, the password was used as
a key to encrypt a fixed plaintext and the resulting ciphertext was then used
as the password’s hash. [29]

This seemed to be a good approach, but it turned out the encryption was
too fast — it took about 1.25ms to encrypt a single password on hardware
from that time. Experiments conducted in [29] tried to determine the typical
user’s password habits and found that 86% of collected passwords could be
cracked within a relatively short amount of time. A third of those 86% were
found in just 5 minutes by searching various dictionaries, while the rest could
easily be cracked with a brute-force attack. [29]

2.1.4 DES
To avoid such attacks, UNIX has made several security improvements. First
of all, UNIX adopted the Data Encryption Standard (DES) encryption al-
gorithm that was announced in 1975 by the National Bureau of Standards

19i.e., unfeasible to invert
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(NBS) [32] or as we know it today, National Institute of Standards and Tech-
nology (NIST). [29]

DES was extremely slow when implemented in software and very fast when
running on a comercially available chip designed specifically to perform DES
operations. To prevent the use of such chips for password cracking, the UNIX
implementation of DES modified one of the internal tables used by the algo-
rithm so that it would depend on a random 12-bit number (salt20). This would
force attackers to build their own DES chips, which they obviously could do,
but it would come at a very high cost. [29]

2.1.5 Key stretching
Key stretching is a technique used to enhance the security of a cryptographic
key by transforming the initial key into an enhanced key [33]. In the case of
passwords, this is sometimes achieved with hash iterations — taking a hash
of a hash of a hash and so on. For example, the DES-based crypt algorithm
described in [29] was doing 25 iterations after the initial encryption. The re-
sulting 64 bits were then repacked to become a string of 11 printable characters
— the resulting password hash.

2.1.6 Salted passwords
Together with DES, UNIX also introduced password salting [29]. Password
salting is a key stretching technique that adds (usually prepends or appends)
random data (salt) to the given password before it is encrypted or hashed. This
salt is then stored in plaintext together with the encrypted/hashed password
and applied during authentication to verify passwords.

Here, the salt was not prepended or appended to the input, but rather used
as a parameter for the DES encryption instead. When a password was first
entered, UNIX read the real-time clock to obtain a 12-bit random number,
which was then used as the password’s salt. While this modification did not
make finding any individual password more difficult, it multiplied the amount
of work needed to test a given string against a large collection of password
hashes by up to 4,096 (212). [29]

2.1.7 Password policy
Since people behind UNIX knew that short and simple passwords were much
easier to crack, they modified the password entry program to urge users to
use more “obscure” passwords. It suggested alphabetic (either all uppercase
or all lowercase) passwords be at least six characters long. If a larger character
set was used, the recommended minimum length dropped to five characters.
Although this seemed to be a step in the right direction, [29] warned that

20The concept of password salting is explained in Section 2.1.6.
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users were not required to cooperate and even if they did, they could still use
passwords that were easy to guess, such as names of their relatives or words
from the dictionary. Keep in mind the maximum password length was limited
to eight characters (the length of a DES key). [29]

2.1.8 Preventing user enumeration
When logging in on UNIX, both the username and password must be valid.
When DES was first implemented for authentication, the encryption was done
only if the username was valid. This resulted in login responses having a no-
ticeable delay when the username was valid and no delay at all when the
username was invalid. This allowed attackers to easily find out whether a
particular username was valid. This flow was later modified to do the encryp-
tion even when the username was invalid to prevent such attacks. [29]

2.1.9 Growth of computing power
Let us fast forward again, this time to 1989. Ten years later after [29] wrote
about adaption of DES in UNIX, it was still being used for password encryp-
tion (UNIX’s crypt function). Because of many advances in both hardware
and software, DES encryption has become very fast. In fact, [34] found out
that the crypts/second/dollar21 ratio has increased by five orders of magni-
tude compared to ten years ago. DES encryption was now even faster than its
predecessor — the M-209 cipher on 1979 hardware. The software optimiza-
tion alone led to a 102.9 times speedup22. If this trend were to continue, no
password would soon be safe since they were limited to eight characters. [34]

2.1.10 Passphrases
The authors of [34] suggested extending the present algorithm to allow pass-
phrases23 that would go beyond just eight characters. Since English text has
a lower bound of 1–2 bits of entropy per character, an English phrase of 5–10
words would have sufficient entropy as a passphrase. To make this usable
in the UNIX’s crypt algorithm, a hash function would be needed to fold the
input into a 56-bit DES key, where each character would affect the resulting
key. [34]

2.1.11 Password file shadowing
Storing all passwords in a publicly available /etc/passwd file was a problem.
With no special privileges required, anyone could extract the password hashes

21i.e., hashes computed by the crypt function per second per U.S. dollar, adjusted for
inflation

22when compared to 4.2 Berkeley UNIX on a Sun 3/50 computer
23passwords consisting of multiple words, forming a phrase
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from the system. To prevent the average user from accessing this file, authors
of [34] suggested a technique called password file shadowing, which essen-
tially means storing passwords in a separate file that would only be accessible
by the system’s administrators. This technique is still being used today on
GNU/Linux and many other UNIX-based systems, often in the form of an
/etc/shadow file. [34]

2.1.12 MD5
Message Digest 5 (MD5) is a hash function first designed in 1992 by Ronald
Rivest at MIT [35]. Two years later in 1994, FreeBSD introduced an MD5-
based crypt library as an alternative to the DES-based crypt [36]. It enabled
the use of long passwords/passphrases, used 1,000 iterations of MD5 and sup-
ported up to 48 bits long salts [36]. Most GNU/Linux systems adopted this
implementation by the late 1990s [36].

Around the same time, in the mid to late 1990s, web applications became
popular, which made PHP gain popularity due to its ease of use [37]. Because
of cross-compatibility issues as well as U.S. export restrictions, developers
started using MD5 hashes for storing passwords [37]. This was a problem,
because the implementation lacked salting and did not perform any additional
iterations [36].

2.1.13 SHA
Secure Hash Algorithm (SHA) is a family of cryptographic hash functions first
published in 1993 by NIST. This initial version is now named SHA-0 and was
followed by SHA-1 (1995), SHA-2 (2001) and SHA-3 (2015). [35]

SHA has become widely adopted over the years not just for passwords [35,
38]. SHA-1 is not that common anymore due to the increasing number of
collisions [35]. Although git24 still uses SHA-1 by default to this day25 to
identify files and revisions, there have been efforts to move away from SHA-1
in favor of a more secure algorithm [39].

On the other hand, SHA-2 hash functions, the successors of SHA-1, have
remained in use up to this day. Bitcoin plus some other cryptocurrencies use
SHA-256 for verifying transactions as well as calculating proof-of-stake [35]
and many modern GNU/Linux systems use SHA-512 for authentication by
default [37]. Other applications of SHA-2 include Transport Layer Security
(TLS), Pretty Good Privacy (PGP), SSH and DomainKeys Identified Mail
(DKIM) [35].

The newest SHA family, SHA-3, was not meant to replace SHA-2 [35].
It was because of successful collisions and attacks on MD5 and SHA-1 that
NIST anticipated the need for a new, dissimilar hash function, which resulted

24https://git-scm.com
25Tested with git version 2.31.1.
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in SHA-3 [35]. SHA-2 is still widely used by developers and considered cryp-
tographically strong enough for modern applications [31]. Although there is
not much incentive to switch to SHA-3, that does not mean SHA-3 is not
used at all. To name a few, Ethereum26, Monero27 and Tor28 all make use of
SHA-3 [38].

2.1.14 PBKDF2

Back in the early 2000s, a simple Key Derivation Function (KDF) called
Password-Based Key Derivation Function 2 (PBKDF2) was developed [36].
KDF is a function that aims to securely derive a key from a password. Com-
pared to a plain hash, KDFs often come with built-in key stretching. There-
fore, it should not surprise us that one of their use cases is password hash-
ing. [31]

PBKDF2 is resistant to dictionary attacks as well as rainbow table attacks
and even comes with built-in salting and an iterations count parameter. The
algorithm is based on iteratively deriving Hash-based Message Authentication
Code (HMAC)29 many times with a configurable hash function. [31]

Although PBKDF2 is still approved by NIST [40], nowadays it is consid-
ered old-fashioned given that we have better options, such as bcrypt, scrypt
and Argon2. The main weakness of PBKDF2 is that it is not resistant to
Graphics Processing Unit (GPU) nor Application-Specific Integrated Circuit
(ASIC) attacks, because it uses a relatively small amount of memory and can
be efficiently implemented on previously mentioned hardware. [31]

2.1.15 bcrypt

Now let us go back even further to 1999 when [41] presented bcrypt as a
future-adaptable KDF. One of the selling points of bcrypt, apart from built-
in salting [31], was that it could keep up with growing computing power thanks
to its variable cost [41]. This was a big advantage compared to the fixed-cost
MD5-based crypt [41]. Unlike PBKDF2, bcrypt is both GPU-resistant and
ASIC-resistant [31].

Authors of [41] claimed that bcrypt would likely remain secure 20 years
into the future unless there was a major breakthrough in complexity theory —
and they were right, sort of. For instance, OpenBSD and some GNU/Linux
systems still use bcrypt by default for hashing passwords [37]. When hardware
becomes too fast, the cost of bcrypt can simply be increased to compensate
for the speedup [41]. The cost information is encoded into the hash so that

26https://ethereum.org
27https://www.getmonero.org
28https://www.torproject.org
29https://www.rfc-editor.org/rfc/rfc2104.txt
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hashes with different costs remain compatible [31]. With that being said,
while bcrypt is still good enough, there are better alternatives out there [31].

2.1.16 scrypt
Ten years later in 2009, a KDF called scrypt was published. Scrypt is memory-
intensive and designed to prevent Field-Programmable Gate Array (FPGA),
ASIC and GPU attacks with hardware highly efficient for password cracking.
Like bcrypt, it also requires a salt to be used, though it is considered more
secure — primarily thanks to its superior resitance to GPUs, ASICs and FP-
GAs. On the other hand, unlike bcrypt’s single cost parameter, scrypt offers
three parameters to adjust the cost — N (iterations count), r (block size) and
p (parallelism factor30). All three of those parameters affect the usage of both
the Central Processing Unit (CPU) and memory. [31]

As an example of a service that uses scrypt, let us take a look at Firebase
Authentication [42]. By examining the source code31, we can see that Firebase
sets the scrypt parameters to N = 2mem cost, r = rounds and p = 1. When
we create a fresh Firebase project32 and check the Firebase Authentication
settings, we see that the default values are mem cost = 14 and rounds = 8,
which would translate to N = 214 and r = 8.

2.1.17 Argon2
Argon2 is the most recent KDF / hash function we are going to talk about. It
is the winner of the Password Hashing Competition (PHC) that ran between
2013 and 2015. This was an open competition, where a group of cryptogra-
phers aimed to select one or more password hashing schemes for recommen-
dation as an industry standard. [43]

Argon2 is resistant to hardware acceleration and is believed to be even
more secure than scrypt when configured correctly. There are three main
variants of Argon2:

• Argon2d— provides strong GPU resitance, but is vulnerable to potential
side-channel attacks exploitable in very special situations,

• Argon2i — provides less GPU resistance, but is not vulnerable to side-
channel attacks,

• Argon2id — recommended, combines Argon2d and Argon2i.

Argon2 allows for variable cost via a couple of parameters that affect the CPU
and memory usage — t (number of iterations), m (amount of memory to use

30i.e., how many threads to run in parallel
31available at https://github.com/firebase/scrypt
32at https://firebase.google.com
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in kB) and p (parallelism factor). Just like the previously mentioned KDFs,
it also requires a salt to be used. [31]

Argon2 is one of the best schemes available in the industry when it comes
to password hashing. It is highly secure and generally recommended over
PBKDF2, bcrypt and scrypt. [31]

2.2 Future development
Thanks to the way modern KDFs such as scrypt or Argon2 are designed,
advances in software and hardware can both be defeated by increasing the
function’s cost. We may proactively come up with better KDFs in the future,
but unless there is a major breakthrough in computing, current KDFs will
definitely stay with us for a while. However, there is at least one potential
breakthrough in computing that we know is coming — quantum computing.

2.2.1 Quantum computing
The direct threat to post-quantum password hashing is Grover’s algorithm,
which, on a quantum computer, can search an unordered list for an item in
O(

√
N), where N is the number of elements in the list [44]. As described

in [45], the search requires a function f : {0, . . . , N − 1} → {0, 1}, which
recognizes the solution:

f(i) =
{

1 if i is the searched element
0 otherwise.

Such function could easily be implemented with any hash function or KDF
whose hash we are trying to reverse. This would mean a quadratic speedup for
brute-force attacks, leading to a complexity that is orders of magnitude lower,
though the attack would still run in exponential time [44]. For instance, [46]
shows that brute-forcing a PBKDF2-SHA256 hash of a 10-character password
would still take more than 107 years. They say this is because of the need for
Quantum Error Correction (QEC) for deploying Grover’s algorithm and that
the time frame could be reduced through reduction of QEC overheads in the
future.

The second potential threat to post-quantum passwords is Shor’s algo-
rithm, which brings an exponential speedup to the Discrete Logarithm Prob-
lem (DLP), the Elliptic-Curve Discrete Logarithm Problem (ECDLP) and
factoring problems — algorithms widely used in cryptographic applications,
such as RSA and Diffie-Hellman Key Exchange (DHKE) [44]. Since most
secure protocols rely on DHKE [44], this could be a problem. Once those pro-
tocols are broken, we will no longer have a way to transfer passwords securely
over the internet from the client to the server. If someone captured our traffic

20



2.2. Future development

while we were authenticating to a server, they would eventually be able to
decrypt the data we sent, including our password.

On the other hand, [44] also says we will probably not see quantum com-
puters capable of breaking RSA in this century and the authors of [46] say it
is highly unexpected that a quantum computer capable of breaking RSA-2048
would be built within the next decade. In 2017, NIST proactively started an
open competition in order to develop and standardize public-key cryptography
schemes that would not be broken by quantum computers [44].

Although capable quantum computers are still relatively far, the devel-
opment, standardization and deployment of post-quantum cryptography is
critical to prevent a potential security and privacy disaster in the future [46].
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Chapter 3
Password cracking: analysis

The goal of this chapter is to familiarize the reader with the options we have
when it comes to cracking password hashes. First, we will describe meth-
ods commonly used for cracking password hashes. Then, we will go through
available tools for cracking password hashes and talk about how we can use
them as well as how well they perform. After that, we will discuss a couple of
hardware options and finally conclude the analysis by laying out which of the
methods, tools and hardware we are going to use in the implementation.

3.1 Methods
In this section, we will introduce a few popular password-cracking meth-
ods/attacks.

3.1.1 Brute-force attack
The first and probably the most straightforward method is a plain brute-force
attack. This simply means testing every single possibility until we eventually
arrive at the correct one.

The main drawback of this approach is that it could take a lot of time. For
example, there are 628 ≈ 2.18 · 1014 possible values for a password consisting
of eight alphanumeric characters33. For some weak hashing schemes, such as a
plain MD5 hash, we could go through all possibilities in under an hour with a
single GPU [47]. On the other hand, when a stronger scheme, such as bcrypt
with cost even as low as 5, is used, the very same GPU would take 49.4 years
to do the same thing [47].

The amount of possibilities can be significantly reduced if we know what
character sets are being used in the given password, e.g., going from eight
alphanumeric characters to eight lowercase characters makes the key space

33assuming we limit ourselves to the English alphabet
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1000 times smaller and the cracking process 1000 times faster — years become
hours, days become minutes.

The advantage of this approach is that by going through all possible values
of a given password, we are, obviously, guaranteed to eventually crack it.

3.1.2 Dictionary attack

This method is a bit more sophisticated than plain brute force. Instead of
going through every single possibility, we go through words in a dictionary.
This results in a lot less password candidates that are more likely to be the
password compared to random strings of characters. Since we are not testing
all possibilities, we are not guaranteed to be successful. The sucess of the
attack depends entirely on the dictionary.

Commonly used dictionaries consist of passwords obtained from previous
data breaches. An example of this would be the RockYou dictionary from
2009 when a company called RockYou was hacked and exposed over 32 million
accounts with passwords in plaintext [48].

Dictionary attacks are usually used in conjunction with word mangling —
creating mutations of words from the dictionary based on a set of rules. For
instance, we could have two rules — one that does nothing and another one
that appends 123 to our password candidates. If our dictionary only contained
the word horse, then after applying these rules, it would contain horse and
horse123.

Word mangling is effective against passwords created by the users them-
selves34, because people tend to follow certain patterns when creating pass-
words, e.g., capitalizing the first character, beginning with a hashtag, ending
with an exclamation mark, period or a couple of numbers and many more.
If the RockYou dictionary is any indication of users’ habits when it comes to
creating passwords, [49] found out that 75% of passwords from RockYou were
either all lowercase characters, all numbers or lowercase characters followed
by numbers, though keep in mind that the only requirement of RockYou’s
password policy was that passwords be at least five characters long [48].

Another thing to consider with dictionaries is optimizing them with addi-
tional information about the target users. Tailoring our dictionary based on
users’ preferred language, country they live in, gender or age has shown to
yield slightly better results than using a single dictionary for everything [50].

3.1.3 Markov models

In this section, we are going to describe what a Markov model is and how we
can use it in password cracking.

34i.e., not randomly generated by a computer
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A Markov model defines a probability distribution over sequences of sym-
bols, i.e., it allows sampling character sequences that have certain proper-
ties. [51]

In a zero-order Markov model, each character is generated independently
of the previously generated characters according to the underlying probability
distribution. In a first-order Markov model, each diagram (ordered pair) of
characters is assigned a probability and each character is generated by looking
at the previous character. In other words, for the zero-order model,

P (α) =
∏
x∈α

ν(x)

and for the first-order model,

P (x1x2 . . . xn) = ν(x1)
n−1∏
i=1

ν(xi+1|xi),

where P is the Markovian probability distribution of character sequences, xi

are individual characters and the ν function is the frequency of individual
letters and diagrams in a given language. As demonstrated in [52], the ν
function could also be approximated by performing frequency analysis on a
large enough dictionary. [51]

Alphabetical passwords generated by humans, even when they are not
dictionary words, are unlikely to be uniformly distributed in the space of
alphabet sequences. In fact, an English-speaking user, when asked to pick a
sequence of characters at random, will likely generate a sequence, in which
each character is roughly equidistributed with the frequency of its occurrence
in English text. [51]

Using Markovian filtering, we can turn an existing dictionary into a Marko-
vian dictionary. To create such dictionary, we discretize the probabilities into
two levels by applying a threshold θ. We define the zero-order dictionary as

Dν,θ = {α :
∏
x∈α

ν(x) ≥ θ}

and the first-order dictionary as

Dν,θ = {x1x2 . . . xn : ν(x1)
n−1∏
i=1

ν(xi+1|xi) ≥ θ}.

Markovian dictionaries drastically reduce the size of the plausible password
space by eliminating the vast majority of character sequences from consider-
ation. [51]

Although the zero-order model produces words that do not look very nat-
ural to humans, it can already drastically reduce the size of the plausible
password space by eliminating the vast majority of character sequences from
consideration. [51]
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The authors of [51] showed a zero-order model with a very promising
keyspace compression. For a keyspace of all eight-character sequences and
a θ such that the size of the resulting Markovian dictionary was 1

7 of the
keyspace, any sequence generated according to their model had a 90% proba-
bility of being included in the dictionary. In other words, roughly 14% of the
password space contained 90% of all plausible passwords. They also showed
a first-order model, which had even better results. [51]

3.1.4 Probabilistic context-free grammars
In this section, we are going to describe what a PCFG is a how we can use it
in password cracking.

Let us start with the definition of a Context-Free Grammar (CFG). A
CFG is defined as G = (V, Σ, S, P ), where V is a finite set of variables/non-
terminals, Σ is a finite set of terminals, S is the start variable and P is a finite
set of production rules of the form α → β, where α is a single variable and β
is a string consisting of variables or terminals. [53]

PCFG is a CFG that has probabilities associated with each production
rule such that for a specific α, probabilities of all associated productions add
up to one. [53]

In these grammars, in addition to the start symbol, we only use variables
of the form Ln, Dn and Sn, where n ∈ N+. We call these variables alpha
variables, digit variables and special variables respectively. Rewriting alpha
variables is done using a dictionary similar to one that might be used in a
traditional dictionary attack described in Section 3.1.2. [53]

A string derived from the start symbol is called a sentential form, which
may contain both variables and terminals. The probability of this form is equal
to the product of the probabilities of the productions used in its derivation. [53]

In the pre-processing phase, we derive a PCFG from our training set of
passwords. See Table 3.1 for an example of such PCFG. Notice that the PCFG
does not have any production rules that rewrite alpha variables. The idea is
that “maximally” derived sentential forms, which only consist of terminal
digits, special characters and alpha variables, define mangling rules that can
be directly used in a distributed password cracking trial. For example, we
could compute these mangling rules and then pass them in order of decreasing
probability to a distributed system to fill in words from a dictionary. [53]

3.2 Tools
In this section, we will talk about two popular choices among the tools for
password cracking — Hashcat35 and John the Ripper (JtR)36. Both of them

35https://github.com/hashcat/hashcat
36https://github.com/openwall/john
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α β Probability
S D1L3S2D1 0.75
S L3D1S1 0.25
D1 4 0.60
D1 5 0.20
D1 6 0.20
S1 ! 0.65
S1 % 0.30
S1 # 0.05
S2 $$ 0.70
S2 ** 0.30

Table 3.1: An example of PCFG production rules. Adapted from [53].

are free and open source. We will first discuss each of those tools separately
and then compare their performance.

3.2.1 Hashcat

Hashcat claims to be the world’s fastest and most advanced password recovery
tool [54]. It utilizes Open Computing Language (OpenCL) and Compute
Unified Device Architecture (CUDA) for GPU acceleration and additionally
supports CPUs and FPGAs/DSPs/Co-Processors as well [54].

Many hash functions are included out of the box — for a complete list,
refer to [54]. To crack passwords, we can choose from five attack modes —
straight, combination, brute-force, hybrid wordlist + mask and hybrid mask +
wordlist [54]. We will now talk about how each one of the attack modes works.

Straight mode is a simple dictionary attack as described in Section 3.1.2.
Word mangling is supported in the form of rules [55].

Combination mode takes two dictionaries, let us call them D1 and D2,
as an input and generates candidate passwords by appending words from D2
to D1. We can also specify mangling rules for each of the dictionaries by
specifying the -j / --rule-left and -k / --rule-right parameters. For
example, combining yellow from D1 and car from D2 with -j '$-' and
-k '$!' would result in yellow-car!. [56]

Brute-force mode uses a brute-force attack as described in Section 3.1.1,
which uses pre-trained per-position37 Markov models under the hood to test

37i.e., it also considers positions of characters instead of just what preceeds them
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the most probable candidates first, though it still searches the whole keyspace.
We can turn off the character position context with the --markov-classic
parameter or disable Markov models altogether with the --markov-disable
parameter to approach the keyspace in a lexicographical order. To reduce
the keyspace with Markov models, we can set a threshold with the -t /
--markov-threshold parameter — the lower the threshold, the smaller the
keyspace.

Brute-force mode also supports password masking to further reduce the
searched keyspace [57]. For example, a mask pass?l?l?l?l19?d?d would
result in the keyspace passaaaa1900–passzzzz1999. If we do not specify a
mask, Hashcat will use a set of pre-defined masks and run in an incremental
mode — it starts with passwords of length one and gradually increments the
length as it exhausts each keyspace. We can limit the range of tested lengths
by explicitly turning on the mask increment mode with -i / --increment
and then setting the --increment-min / --increment-max parameters.

The idea behind the remaining hybrid wordlist + mask and hybrid mask +
wordlist modes is appending (hybrid wordlist + mask) / prepending (hybrid
mask + wordlist) a mask to words from a dictionary. Both of these modes can
be emulated by using the straight attack mode with a set of rules correspond-
ing to the used mask. As an example, let us say we defined a mask ?d?d?d?d
and our dictionary contained the words password and hello. In the case of
hybrid wordlist + mask, the resulting keyspace would then be the union of
password0000–password9999 and hello0000–hello9999. Similarly, in the
case of hybrid mask + wordlist, the resulting keyspace would be the union of
0000password–9999password and 0000hello–9999hello. [58]

3.2.2 John the Ripper
JtR is another password recovery tool. It can utilize both the CPU as well as
the GPU for password cracking and supports GPU acceleration with OpenCL
for some hash functions — 88 out of 495 hash modes were implemented with
OpenCL as of version 1.9.0-jumbo-1.

JtR comes with seven attack modes out of the box — wordlist, single crack,
PRINCE, incremental, mask, Markov, subsets and external [59, 60].

JtR’s wordlist mode is a simple dictionary attack that we described in
Section 3.1.2. Just like in the case of Hashcat, word mangling is supported in
the form of rules. [59]

Single crack mode is designed for files with General Electric Comprehen-
sive Operating Supervisor (GECOS) fields, such as username, full name, home
directory name or phone number. It uses this metadata as candidate pass-
words with a large set of mangling rules applied. Optionally, we can also feed
this mode a dictionary with the --single-wordlist parameter. This will re-
sult in combinations of words from the dictionary and data from the GECOS
fields. [59]
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PRINCE mode is an extension of the wordlist mode, where we also combine
words to longer and longer candidates in a clever order. Thus, a fairly small
dictionary can result in a vast amount of candidates. [60]

Incremental mode searches the entire keyspace as it is esentially a brute-
force attack. This mode uses trigraph frequencies to test the most probable
candidates first and crack more passwords early on in the session. To use
it, we either have to select one of the pre-defined incremental mode con-
figurations or create our own. One of the pre-defined options is the ASCII
configuration, which works with all 95 printable ASCII characters and creates
candidate passwords 0–13 characters long by default [61]. Minimum and maxi-
mum length can be set with the --min-length and --max-length parameters
respectively. [59]

Mask mode can be either used on its own to produce words based on the
provided mask or in conjunction with other cracking modes [62]. In the latter
case, the mask would be used as a form of word mangling on words generated
by the other mode [62], e.g., if incremental mode generated the word abc and
we used a mask ?w?l?l?l, the candidate abc would be replaced with an entire
keyspace of candidates abc000–abc999.

Markov mode is similar to Hashcat’s brute-force mode. It uses Markov
models to generate password candidates [59] and reduce the keyspace. To use
it, we pass the --markov=LEVEL parameter, where LEVEL can be either a range
(MIN-MAX) or a value of the maximum strength of passwords that are going to
be tested [63]. As the maximum LEVEL rises, the number of passwords that
are going to be tested increases exponentially [63]. If we pass the --markov
parameter without a level, a default value specified in JtR’s configuration will
be used instead [63].

Subsets mode is a brute-force variant that tries to generate candidate pass-
words in order of complexity without resorting to advanced techniques like
Markov models [64]. It aims to exploit low-entropy passwords and starts out
with very long password candidates consisting of few unique characters before
generating shorter ones with more unique characters [59]. This mode uses
a charset of all printable ASCII characters by default, though we could also
pass a custom charset with the --subsets[=CHARSET] parameter if we wanted
to [64].

Finally, there is the external mode. JtR allows us to define custom modes
and then use them for password cracking via the --external parameter. All
that is required is to define the mode with a couple of functions in a subset
of the C language, which JtR then compiles at startup when the mode is
requested. [59]

3.2.3 Performance comparison
Let us now talk about performance. Both Hashcat and JtR come with built-in
benchmarking mode, which allows us to measure the cracking speed for each
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HC-CPU HC-GPU JtR-CPU JtR-GPU
MD5 (MH/s) 764 10,404 51 4,850
SHA-1 (MH/s) 348 3,501 22 2,425
sha512crypt (H/s) 3,161 48,020 4,846 38,149
bcrypt (H/s) 188 388 288 205
scrypt (H/s) 82 10 190 N/A

Table 3.2: Benchmark results of Hashcat (CPU), Hashcat (GPU), JtR (CPU)
and JtR (GPU)

of their supported hash functions. We will test two weak and three strong
hash functions, namely MD5, SHA-1, sha512crypt (5000 iterations), bcrypt
(cost = 10) and scrypt (N = 215, r = 8, p = 1). We base those parameters on
suggestions from Go’s implementations of these KDFs [65, 66].

MD5, SHA-1 and sha512crypt are going to be benchmarked with the tools’
built-in benchmark modes — Hashcat’s --benchmark and JtR’s --test. For
our JtR runs, we are always going to set the --mask flag as it yields significant
performance improvements.

With bcrypt and scrypt, things get a bit more complicated. Both tools
are testing bcrypt with cost = 5, which is far from our target cost = 10, and
when it comes to scrypt, the tools differ in the parameters they test it with.
On top of that, these two GPU-resistant KDFs may be faster on a CPU than
a GPU. For that reason, we will run our tests on both the GPU and the CPU.
Since the benchmarks do not fit our needs, we will tests these KDFs with a
brute-force attack with the mask ?l?l?l?l?l?l?l?l on a single hash.

For GPU acceleration, Hashcat will be tested with CUDA, because based
on the author’s prior interactions, it seems to perform better in all of our cases.
JtR will only be tested with OpenCL as it does not support CUDA. The JtR
scrypt test will only be performed on the CPU, because JtR does not come
with a GPU implementation. The tests will be run on the author’s laptop,
which we later describe in Section 3.4 and will be conducted with Hashcat
version 6.1.1 and JtR version 1.9.0-jumbo-1.

From the benchmark results in Table 3.2, we can see that Hashcat dom-
inates JtR in the weak hashes. JtR starts to catch up in CPU tests with
stronger hashes, but since Hashcat allows us to use both the CPU and the
GPU at the same time38, JtR still comes short in all scenarios but scrypt,
where its CPU speed is two times higher than Hashcat’s CPU+GPU speeds
combined.

38at the cost of a minor GPU performance penalty
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3.3 Hardware

In this section, we are going to talk about three common hardware choices for
running password-cracking tools. The resulting performance may vary based
on the hash function we are trying to reverse. In some cases, there could be
a big performance boost when a GPU, ASIC or FPGA is used and the hash
function is not resistant to acceleration provided by such hardware.

3.3.1 Regular PC

A regular Personal Computer (PC) means a consumer-grade laptop / desktop
computer. Some of those PCs people have at home, especially gaming PCs,
which tend to have high-end CPUs and GPUs, could perform very well in
password cracking, though they are still going to be slow when compared to
what cloud computing has to offer.

3.3.2 Cloud computing

Cloud computing is an on-demand access, via the internet, to computing re-
sources hosted at a remote data center managed by a cloud service provider,
who usually bills users of such resources according to usage [67]. This way, we
can rent high-performance computer resources for relatively cheap compared
to buying the hardware.

The bills can still get quite expensive relatively fast though. For example,
on Amazon Web Services (AWS), the top-of-the-line Elastic Compute Cloud
(EC2) p4d.24xlarge instance with 96 virtual CPU cores, 1152GB of mem-
ory and eight NVIDIA A100 GPUs costs for $32.7726 per hour39 (billed per
second) [68, 69], which sums up to about $24,000 per month.

Some of the other major providers of cloud computing resources are Mi-
crosoft Azure and Google Cloud, both of which, among other things, rent out
virtual machines with powerful GPUs [70, 71].

3.3.3 Dedicated hardware

This category includes ASICs, FPGAs and other hardware crafted specifically
for the purpose of computing hash functions quickly. In the recent years, there
has been emerging research of hybrid CPU-FPGA accelerators [72, 73, 74].
This approach shows a promising application prospect thanks to its flexibility
and energy efficiency compared to ASICs and FPGAs, which suffer from high
design cost and poor flexibility [74].

39based on on-demand pricing in the US East (N. Virginia) region
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3.4 Conclusion
Let us first talk about tools. Based on our findings, Hashcat seems to out-
perform JtR in all scenarios except the ones with highly GPU-resistant KDFs
such as scrypt. For that reason and the sake of consistency, we will be using
Hashcat for our experiemnts in Chapter 4. It should be noted that JtR is
a great tool for cracking highly GPU-resistant KDFs, especially if the sys-
tem running it does not have powerful GPUs. In any case, the reader should
always check which tool yields better performance for their specific use case.

Our attack methods will depend on the specific capabilities of the tool we
chose — Hashcat. We are going to focus on smart brute-force attacks with
Markov models and dictionary attacks with word mangling.

Finally, as for hardware, we are going to focus on regular PC setups and
cloud computing. Regular PCs are going to be represented by the author’s
Lenovo ThinkPad X1 Extreme (Gen 2) laptop40. This laptop is running a
GNU/Linux system and is equipped with an Intel Core i7-9750H CPU (6
cores / 12 threads), 32 GB of memory and an NVIDIA GeForce GTX 1650
Max-Q GPU.

For cloud computing, we are going to use an NC24s v3 Virtual Machine
(VM) from Microsoft Azure. This VM costs $12.24 per hour41 (billed per
second) and comes with 24 virtual CPU cores, 448GB of memory and four
NVIDIA Tesla V100 GPUs [75]. In case the reader is considering AWS for
their cloud computing resources, this VM should perform about the same as
an EC2 p3.8xlarge instance, which comes with the exact same GPU setup [68].

40https://www.lenovo.com/us/en/laptops/thinkpad/thinkpad-x1/X1-Extreme-Gen
-2/p/22TP2TXX1E2

41based on pay as you go pricing in the East US region
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Chapter 4
Password cracking:

implementation

In this chapter, we are going to implement and evaluate a couple of approaches
to password cracking. We will first experiment with Markov models used in
Hashcat’s brute-force mode and run a variety of dictionary attacks. Those
experiments will be run on the author’s laptop, which we have described in
Section 3.4. After that, we will repeat some of the experiments in a cloud
computing environment to see how much performance there is to gain.

Throughout the chapter, we are mostly going to work with a subset of
passwords from the 2012 LinkedIn data breach [76]. Although the passwords
were originally leaked in the form of SHA-1 hashes, we have plaintexts avail-
able for the entire subset of 2,285,273 passwords. In each experiment, we
are going to hash these passwords with the given hash function and therefore
always end up with a set of the same size.

The hash functions / KDFs we will be testing are unsalted SHA-1, salted
SHA-256, bcrypt and scrypt. To save space in tables, we will abbreviate
passwords cracked to PC and passwords cracked per second to PC/s.

4.1 Methods

In this section, we are going to talk about the specifics of the password-
cracking methods, which we will later use in our expriments.

4.1.1 Brute-force attack

For the brute-force attack, we will first run the default brute-force mode and
then tweak the -t / --markov-threshold parameter to reduce the keyspace
and potentially crack more longer passwords.
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By observing Hashcat’s source code42, we can see that the default value of
--markov-threshold, which results in no keyspace reduction, is 256. We can
also see that Hashcat sets the threshold to 256 when --markov-threshold is
0. For those reasons, we will only test threshold values between 1 and 256.

Our brute-force attacks will be limited in runtime. Note that we will not
be using Hashcat’s built-in --runtime parameter, because it resets the limit
each time Hashcat transitions to a new keyspace. Instead, we will use the
timeout command from GNU core utilities43 to limit the runtime. This means
that any initial setup Hashcat does before the cracking process will also count
towards the runtime limit.

4.1.2 Dictionary attack
Even though the plaintexts are available to us, we will not base our dictionaries
on passwords from the 2012 LinkedIn data breach. For our dictionaries, we
will be using the RockYou dictionary44, the free Openwall dictionary45 and a
combination of the two.

We will also experiment with word mangling. More specifically, we are
going to use the following rule sets:

• Best64 (77 rules)46,

• T0XICv1 (11931 rules)47,

• Generated2 (65117 rules)48,

• all of the above combined.

4.2 Regular PC
The experiments in this section will be run on the author’s laptop. For the
hardware specifications, refer to Section 3.4. We are going to use both the
CPU and the GPU, because, as we can see in Table 4.1, combining them gives
us better performance than using the GPU by itself. SHA-1 and SHA-256
were tested with Hashcat’s built-in --benchmark, while the speeds of bcrypt
and scrypt were measured with a brute-force attack on a single hash with the
mask ?l?l?l?l?l?l?l?l.

42available at https://github.com/hashcat/hashcat
43https://www.gnu.org/software/coreutils/coreutils.html
44https://gitlab.com/kalilinux/packages/wordlists/-/blob/kali/master/rocky

ou.txt.gz
45https://download.openwall.net/pub/wordlists/all.gz
46https://github.com/hashcat/hashcat/blob/master/rules/best64.rule
47https://github.com/hashcat/hashcat/blob/master/rules/T0XlCv1.rule
48https://github.com/hashcat/hashcat/blob/master/rules/generated2.rule
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Hash function CPU+GPU speed GPU speed
SHA-1 3,725MH/s 3,499MH/s

SHA-256 1,423MH/s 1,324MH/s
bcrypt (cost = 10) 568H/s 381H/s

scrypt (N = 214, r = 8, p = 1) 265H/s 37H/s

Table 4.1: Comparison of Hashcat’s CPU+GPU and GPU-only hash rates
(regular PC)

4.2.1 Raw unsalted SHA-1
We will begin with raw unsalted SHA-1 hashes — the same hashes LinkedIn
was using back in 2012 when some of their passwords leaked. This will be
a good demonstration of what we can expect in a scenario, where we are
cracking many weak unsalted hashes.

Since this is a weak hash that can be computed very quickly at 3.7GH/s
on our machine49, we are going to run our attacks on all 2.2 million hashes.

Let us look at the results of our brute-force attacks — Figure 4.1 and
Figure 4.2. Per-position Markov models consistently performed better than
classic Markov models, beating them by 2–50% in all scenarios. The differ-
ence is most prominent in thresholds 10 and 25 (33–50%). Other thresholds
stay within 2–9% of increase in performance, except threshold 100, which
performed 5–20% better with per-position Markov models.

When we focus on the 30minute runtime, the most promising Markov
thresholds seem to be 50 and 75. For that reason, we chose these two thresh-
olds to show how the fraction of cracked passwords changed with longer run-
times — one hour and two hours. We only used per-position Markov models
in these tests, because they have so far outperformed classic Markov models
in every scenario. The results are in Figure 4.3 and Table 4.2.

We can see that Markov threshold 50 yields better results in shorter run-
times, though the difference becomes negligible once we get to one or two
hours. Threshold 75 even beats threshold 50 by 0.02% in the case of the
two-hour runtime.

An interesting finding is that for the five-minute runtime, Markov thresh-
old 50 performed worse than threshold 25. This may be because there was not
enough time to iterate to larger keyspaces (longer masks), which may contain
more passwords.

On the other hand, per-position Markov models with threshold 25 and
their runtime limited to 5 minutes had the highest PC/s value at 432 passwords
cracked per second. If we ignore Markov threshold 10, which performed very

49based on Hashcat’s built-in benchmark

35



4. Password cracking: implementation

50 100 150 200 250

5

10

15

Markov threshold

Pe
rc
en
t
of

da
ta
se
t
cr
ac
ke
d

5 minutes 15 minutes 30 minutes

Figure 4.1: Results of brute-force attacks on raw unsalted SHA-1 with classic
Markov models grouped by runtime limit (regular PC)
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Figure 4.2: Results of brute-force attacks on raw unsalted SHA-1 with per-
position Markov models grouped by runtime limit (regular PC)
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Figure 4.3: Results of brute-force attacks on raw unsalted SHA-1 with per-
position Markov models grouped by Markov threshold (regular PC)

Threshold Runtime PC PC/s
50 00h 05m 00s 112,442 (04.92%) 375
75 00h 05m 00s 109,966 (04.81%) 367
50 00h 15m 00s 255,519 (11.18%) 284
75 00h 15m 00s 243,056 (10.64%) 270
50 00h 30m 00s 336,968 (14.75%) 187
75 00h 30m 00s 330,553 (14.46%) 184
50 01h 00m 00s 419,833 (18.37%) 117
75 01h 00m 00s 418,525 (18.31%) 116
50 02h 00m 00s 463,277 (20.27%) 64
75 02h 00m 00s 463,685 (20.29%) 64

Table 4.2: Results of brute-force attacks on raw unsalted SHA-1 with per-
position Markov models (regular PC)
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Dictionary Rules Runtime PC PC/s
RockYou - 00m 09s 93 (00.00%) 10
RockYou Best64 00m 11s 20,091 (00.88%) 1,826
RockYou T0XICv1 02m 40s 176,500 (07.72%) 1,103
RockYou Generated2 17m 35s 305,875 (13.38%) 290
RockYou combined 20m 56s 363,989 (15.93%) 290
Openwall - 00m 09s 320 (00.01%) 36
Openwall Best64 00m 09s 4,694 (00.21%) 522
Openwall T0XICv1 00m 57s 62,399 (02.73%) 1,095
Openwall Generated2 06m 36s 86,421 (03.78%) 218
Openwall combined 07m 22s 120,369 (05.27%) 272
combined - 00m 10s 404 (00.02%) 40
combined Best64 00m 11s 22,176 (00.97%) 2,016
combined T0XICv1 03m 31s 193,495 (08.47%) 917
combined Generated2 24m 01s 328,454 (14.37%) 228
combined combined 27m 18s 391,206 (17.12%) 239

Table 4.3: Results of dictionary attacks on raw unsalted SHA-1 (regular PC)

poorly (5–26PC/s), other scenarios with per-position Markov models stayed
within 361–432 (five-minute runtime), 199–284 (15minute runtime) or 114–187
(30minute runtime) passwords cracked per second. The one-hour runtime did
not see any decrease of PC/s from the 30minute runtime, while the two-hour
runtime roughly cut the value in half to 64PC/s.

Moving on to the results of our dictionary attacks in Table 4.3, we can
see that the combined dictionary with Best64 mangling rules performed the
best when it comes to passwords cracked per second. In just 11 seconds, it
cracked 22,176 passwords (2,016 passwords per second), which may be useful
in scenarios, where the hash function is not nearly as fast to compute, but by
no means is it a lot — 22,176 passwords is only 0.97% of the dataset.

Next, we are going to step down to scenarios with around 1,000 passwords
per second, which have cracked a larger amount of the dataset. The com-
bined dictionary with T0XICv1 mangling rules cracked 193,495 passwords in
3 minutes and 31 seconds (917 passwords per second). This is a much more
satisfactory result as it cracked 8.47% of the dataset.
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To move on to better50 results from there, we have to step down all the way
to the 200–300 passwords per second range. Here, the best result is arguably
going to be the combined dictionary with all of the mangling rules combined,
which cracked 391,206 passwords in 27 minutes and 18 seconds (239 passwords
per second). This is the result with the most cracked passwords — 17.12% of
the dataset.

What may be a bit surprising is that dictionaries with no mangling rules,
especially the RockYou dictionary, which consists of passwords that people
have used in the past, have only cracked a negligible amount of passwords — 93
(RockYou), 320 (Openwall) and 404 (combined). This suggests that password
collisions are rare, though people still tend to compose their passwords of the
same words in various predictable patterns, as we have seen from our results
with mangling rules.

Let us also explore combinations of brute-force and dictionary attacks. If
our runtime was limited to around 30 minutes and we decided to only use one
approach, our best bets for this dataset would be per-position Markov models
with Markov threshold 50 (cracked 14.75% of the dataset in 30 minutes)
and the combined dictionary with combined mangling rules (cracked 17.12%
of the dataset in 27 minutes). However, when we combine brute-force51 and
dictionary attacks to get a combined runtime of around 30 minutes, we always
get better results than just sticking to one approach. Five minutes of brute
force (4.92%) and the combined dictionary with combined mangling rules
(17.12%) would crack 19.81% of the dataset in 32 minutes, 15 minutes of
brute force (11.18%) and the RockYou dictionary with Generated2 mangling
rules (13.38%) would crack 21.12% of the dataset in 33 minutes and finally, 30
minutes of brute force (14.75%) and the combined dictionary and T0XICv1
mangling rules (8.47%) would crack 20.90% of the dataset in 34 minutes.
Therefore, it is seemingly always worth it to divide our efforts into a brute-
force and a dictionary attack instead of only using one of the methods.

4.2.2 Raw salted SHA-256
We will follow unsalted SHA-1 with salted SHA-256 hashes. This is another
weak hash, which we can compute at the speed of 1.4GH/s on our machine52,
but the fact that it is salted will make the cracking process much more difficult
for a large amount of passwords. The hashes are salted with random 16byte
salts encoded as base16 strings.

We are first going to run our attacks on the entire dataset. We would ex-
pect to crack little to no passwords with this approach, because all of the salts
are unique and thus the amount of hashes we would have to compute to get

50as in more passwords cracked
51We only considered per-position Markov models with Markov threshold 50, because

those performed the best.
52based on Hashcat’s built-in benchmark
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through the whole dataset would be about 2.2 million (the size of our dataset)
times more than in the case of an unsalted SHA-1. For that reason, we will
only try attacks that previously gave us the best PC/s values in Section 4.2.1
and see how far we get in 30 minutes. Specifically, we will run a brute-force
attack using per-position Markov models with Markov threshold 25 and a dic-
tionary attack with the combined dictionary and the Best64 mangling rules.
For the brute-force variant, we are going to limit ourselves to six-character
passwords (mask ?1?2?2?2?2?2 with -1 ?l?d?u and -2 ?l?d), which is the
minimum length of passwords in our dataset. To make dictionary attacks on
salted hashes more feasible, we would need a much smaller and much more
personalized/targetted dictionary.

We will then simulate a scenario that is more likely to occur in the real
world, where an attacker might divide the dataset into small chunks and spend
a fixed amount of time trying to crack each chunk. We will shuffle our dataset,
take the first 1,500 hashes and spend one hour trying to crack them. We will
use a combination of a brute-force and a dictionary attack, because, as we have
discovered in Section 4.2.1, it gives better results than scenarios, where only
one of the approaches is used. We will use the same parameters with high
PC/s values, which we have described in the previous paragraph, because
1,500 unique salts will still cause a significant slowdown compared to unsalted
hashes. Since the dictionary attack would take almost an hour by itself, we are
going to limit both attacks to 30 minutes. If an attacker adopted this specific
method for this specific dataset, it would take them about two months to get
through the entire dataset53.

Our attacks on the entire dataset at once did not manage to crack any
passwords within 30 minutes54. This was expected as 2.2 million unique salts
result in 2.2 million times more hashes to be computed, i.e., a 2.2 million
times slower cracking process. Therefore, cracking this salted dataset with a
theoretical speed of 1.4GH/s would be equivalent to cracking unsalted hashes
at 613H/s.

The attacks we ran on the chunk of 1,500 password hashes managed to
crack 1 (brute-force attack) and 11 (dictionary attack) passwords. Since we
went about halfway through a dictionary, which should crack 0.97% of chunks
from this particular dataset on average55, this is about as much as we would
expect, but by no means a lot. We could use a larger rule set and let the
attacks run for, let us say, days, but that would make the attack, as in going
through the entire dataset of millions of passwords, unfeasible.

Although SHA-256 is still a weak hash, running an attack on the entire
dataset of 2.2 million salted hashes is unrealistic. We could crack 0.97% of
the dataset with the combined dictionary and Best64 mangling rules in about

53regardless of their hardware, because the time spent on each chunk is fixed
54meaning each of the attacks ran for 30 minutes
55based on our previous results
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Cost CPU speed GPU speed Combined speed
4 11,936H/s 21,474H/s 33,410H/s
5 5,966H/s 11,247H/s 17,213H/s
6 2,961H/s 5,905H/s 8,865H/s
7 1,475H/s 2,991H/s 4,467H/s
8 764H/s 1,515H/s 2,278H/s
9 384H/s 750H/s 1,135H/s
10 191H/s 378H/s 569H/s
11 92H/s 190H/s 282H/s
12 47H/s 96H/s 143H/s

Table 4.4: Speed of brute-force attacks on a single bcrypt hash based on cost
(regular PC)

51 days, but stepping up to larger rule sets would increase the length of the
attack to many years. However, if our dataset was much smaller, e.g., if the
chunk of 1,500 password hashes was the entire dataset, we could crack 17.12%
of it with the combined dictionary and combined mangling rules in about a
month. If it was even smaller, let us say, 50 password hashes, we could do the
same in just one day.

4.2.3 bcrypt
With bcrypt, we are slowly approaching the state of the art territory, where
computation gets much slower. Since bcrypt is also salted, we can apply meth-
ods from Section 4.2.2 to make the attack more feasible (smaller dictionary or
cracking smaller chunks for a fixed time), though the hash rate is going to be
much more limiting in this case.

Because bcrypt is very slow to compute56 and salted, we will focus on
cracking a single password and compare the speed / hash rate across various
values of the cost parameter. We will test this by running a brute-force attack
with the mask ?l?l?l?l?l?l?l?l. Since the cost parameter of bcrypt trans-
lates to 2cost iterations internally [41], we would expect the computation to get
two times slower/faster for each increment/decrement of the cost parameter.

As running an attack on bcrypt with high cost is very computationally
expensive on a regular PC57, this is where cloud computing will probably
start to shine.

56when used with recommended parameters
57i.e., the author’s laptop

41



4. Password cracking: implementation

N r p CPU speed GPU speed Combined speed
210 8 1 4,322H/s 3,886H/s 8,208H/s
211 8 1 2,193H/s 1,394H/s 3,587H/s
212 8 1 1,069H/s 442H/s 1,511H/s
213 8 1 501H/s 131H/s 633H/s
214 8 1 219H/s 37H/s 256H/s
215 8 1 81H/s 10H/s 91H/s

Table 4.5: Speed of brute-force attacks on a single scrypt hash based on cost
(regular PC)

The results in Table 4.4 follow the trend we hinted at in the previous
paragraph — each increment of the cost parameter more or less halves the
speed. Also notice that our CPU contributes to about a third of the total
speed. This is because bcrypt is somewhat GPU-resistant.

In Section 3.2.3, we mentioned that some implementations like Go’s crypto
package use bcrypt with cost = 10 by default. Cracking bcrypt with such high
cost would be very ineffective on our machine. Perhaps if we were trying to
crack just one password, the attack could be feasible, but at these kinds of
speeds, we would need over nine hours to go through our combined dictionary
before applying any mangling rules and about a month if we applied the Best64
rule set. However, if a lower cost was used instead, the whole process would
be much quicker. For example, cost = 8 would mean that instead of a month,
it would only take us a week to go through our combined dictionary with
Base64 mangling rules. If the cost was even lower, we could start looking into
cracking multiple passwords. Still, cracking a whole dataset on the machine
we are working with would be unrealistic.

4.2.4 scrypt

Scrypt is, by some, considered state of the art when it comes to password
hashing. It is salted, much more GPU-resistant than bcrypt and also takes
longer to compute than bcrypt. Methods from Section 4.2.2 still apply to
make the attack more feasible, though we are going to be limited by the speed
even more than in the case of bcrypt.

Just like with bcrypt, we are going to stick to comparison of cracking
speeds across various cost parameters and then discuss, whether there is po-
tential for a feasible attack. We will perform our experiments using the same
method, more specifically, we will run a brute-force attack with the mask
?l?l?l?l?l?l?l?l for various values of N with fixed r = 8, p = 1.
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From the results in Table 4.5, we can see that the CPU does most of
the work here, which confirms that scrypt is much more GPU-resistant than
bcrypt. We only went up to N = 215, because Hashcat failed to launch attacks
for N = 216 or higher. Doubling the value of N halves the performance on
the CPU side, as we would expect, and also cuts the hash rate of the GPU by
roughly 3–4 times. For N = 215, the GPU is barely doing any work.

Once again, we are going to reference Section 3.2.3, where we have talked
about Go’s implementation of scrypt, which recommends parameters N =
215, r = 8, p = 1 for interactive logins. Cracking scrypt with these parameters
would be about six times slower than cracking bcrypt with its recommended
parameters58 and nearly impossible on our machine unless the targetted pass-
word was very weak. For a single hash, it would take us over 70 hours to go
through our combined dictionary without applying any mangling rules. If we
applied the Best64 rule set on top of that, we would be looking at about six
to seven months of non-stop cracking.

Based on our results, we can confidently say that cloud computing is going
to be a must for cracking scrypt hashes. Cracking scrypt on a regular machine
is not feasible unless we can drastically limit the searched keyspace to the
point, where the attack makes sense, which is unlikely.

4.3 Cloud computing
For our cloud computing experiments, we are going to use an NC24s v3 VM
on Microsoft Azure. For the hardware specifications and pricing, refer to Sec-
tion 3.4. Just like in Section 4.2, we will first run a few a Hashcat benchmarks
to check whether it is better to utilize the CPU for password cracking or just
use the GPUs by themselves. We will also use the same methods as before
— SHA-1 and SHA-256 will be tested with Hashcat’s built-in --benchmark,
while the speeds of bcrypt and scrypt will be measured with a brute-force
attack on a single hash with the mask ?l?l?l?l?l?l?l?l.

Although some of the speeds we compared in our results (Table 4.6) were
very close and their values could be equal within the margin of error, we are
still only going to utilize the GPUs for all hash functions except scrypt, where
the CPU+GPU combination performs much better.

4.3.1 Raw unsalted SHA-1

Compared to our regular PC, the SHA-1 hash rate of the VM was about 17
times higher at 64.2GH/s. We are first going to run a brute-force attack with
per-position Markov models and Markov threshold 50 and compare the results
to the regular PC.

58i.e., cost = 10
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Hash function CPU+GPU speed GPU speed
SHA-1 63,102MH/s 64,198MH/s

SHA-256 24,017MH/s 24,657MH/s
bcrypt (cost = 10) 8,717H/s 9,309H/s

scrypt (N=214, r = 8, p = 1) 981H/s 573H/s

Table 4.6: Comparison of Hashcat’s CPU+GPU and GPU-only hash rates
(cloud computing)
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Figure 4.4: Results of brute-force attacks on raw unsalted SHA-1 with per-
position Markov models (cloud computing)

The results in Figure 4.4 show that in just five minutes (21.44% of dataset
cracked), we have already beaten what the regular PC achieved in two hours
(20.27% of dataset cracked). Table 4.7 shows how drastically the PC/s value
decreases with longer runtimes — from 1,633 (five-minute runtime) all the
way to 200 (one-hour runtime). This may be because the larger keyspaces
we were going through with longer runtimes perhaps did not contain as many
passwords.

As for the dictionary attacks, because of the 17 times higher hash rate,
going through the combined dictionary with combined mangling rules would
likely take us 1–2 minutes. Since the dictionary attack is so fast, it would be
a good idea to run it first and only then complement it with a brute-force
attack if the initial results were not good enough.
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Threshold Runtime PC PC/s
50 00h 05m 00s 489,961 (21.44%) 1,633
50 00h 15m 00s 615,834 (26.95%) 684
50 00h 30m 00s 668,134 (29.24%) 371
50 01h 00m 00s 720,448 (31.53%) 200

Table 4.7: Results of brute-force attacks on raw unsalted SHA-1 with per-
position Markov models (cloud computing)

4.3.2 Raw salted SHA-256

Compared to the regular PC, the VM’s SHA-256 hash rate was also about
17 times higher at 24.7GH/s. With this speed, some attacks on the entire
dataset become feasible. For instance, we could go through the combined
dictionary with Best64 mangling rules in 60–70 hours, though stepping up to
the T0XICv1 mangling rules would increase this time frame to anywhere from
a year to one year and three months.

We tested the same approach we introduced in Section 4.2.2, which con-
sisted of dividing the dataset into chunks of 1,500 hashes and cracking each
one of them for about 30 minutes. We combined a 30minute brute-force at-
tack, which used per-position Markov models and Markov threshold 25, with
a dictionary attack, which used the combined dictionary with Best64 man-
gling rules and only ran for 2 minutes and 30 seconds. Using the same dataset
of 1,500 hashes from Section 4.2.2, we managed to crack 15 (brute-force at-
tack) and 19 (dictionary attack) passwords for a total of 34 unique passwords
(2.27% of the chunk). We can see how the brute-force attack progressed in
Figure 4.5. If this is any indication of how these methods would perform on
other chunks, this approach could crack 2.27% of the entire dataset in roughly
a month.

Let us talk about scenarios with smaller datasets like the one we men-
tioned towards the end of Section 4.2.2, where our chunk of 1,500 hashes was
the entire dataset. In that case, we could use the combined dictionary with
T0XICv1 mangling rules for a dictionary attack that would only take 5–6
hours. We could even step up to the combined rule set for a dictionary attack
that would take about 35 hours.

If we were only cracking a single hash, the salt would not cause any slow-
down and we could, for example, go through the combined dictionary with
combined mangling rules within minutes. Similarly with a brute-force attack,
checking all guesses up to eight characters59 with Markov threshold 50 would
only take a few minutes as well.

59with Hashcat’s default mask
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Figure 4.5: Progression of a brute-force attack on a chunk of 1,500 raw salted
SHA-256 hashes with per-position Markov models (cloud computing)

4.3.3 bcrypt
We will begin by measuring the hash rate of bcrypt across various values of
the cost parameter. The results are in Table 4.8.

We see that the VM can compute bcrypt 16–17 times faster than the
regular PC. We will only focus on bcrypt with cost = 10 as that is what we
consider the recommended cost value. That being said, this speedup is not
enough to make attacks on multiple hashes or entire datasets feasible with
such high cost. For that reason, our discussion will revolve around cracking a
single bcrypt hash.

The speedup of our VM allows for a couple of feasible attacks — brute-
forcing passwords six or seven characters long with Markov threshold 25 (7 and
170 hours respectively) and dictionary attack with the combined dictionary
and Best64 mangling rules (45 hours). If we stepped up our brute-force to
eight characters or our dictionary attack to the T0XICv1 rule set, the attacks
would take much longer — six months for the brute-force and a year for the
dictionary attack.

Since cracking passwords longer than seven characters is likely going to be
unfeasible, we will have to rely on dictionary attacks. For dictionary attacks
to be efficient, we would need a much more targetted dictionary that would be
much smaller than our combined dictionary with 19 million words. Reducing
the dictionary size to 50,000 words would make the dictionary attack with
T0XICv1 rule set take just one day instead of a year.
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Cost CPU speed GPU speed Combined speed
4 - 561,200H/s 561,200H/s
5 - 288,400H/s 288,400H/s
6 - 146,700H/s 146,700H/s
7 - 73,653H/s 73,653H/s
8 - 37,125H/s 37,125H/s
9 - 18,504H/s 18,504H/s
10 - 9,180H/s 9,180H/s
11 - 4,655H/s 4,655H/s
12 - 2,297H/s 2,297H/s

Table 4.8: Speed of brute-force attacks on a single bcrypt hash based on cost
(cloud computing)

N r p CPU speed GPU speed Combined speed
210 8 1 8,024H/s 104,081H/s 112,105H/s
211 8 1 4,338H/s 25,260H/s 29,598H/s
212 8 1 2,121H/s 7,573H/s 9,694H/s
213 8 1 967H/s 2,138H/s 3,105H/s
214 8 1 409H/s 572H/s 981H/s
215 8 1 190H/s 148H/s 338H/s

Table 4.9: Speed of brute-force attacks on a single scrypt hash based on cost
(cloud computing)

However, if bcrypt was used incorrectly with a lower cost, the proposed
attacks would be much faster. As we have mentioned before, each decrement
of the cost parameter roughly doubles the speed of our attacks.

4.3.4 scrypt
First, we will measure the hash rate across various cost parameters the same
way we did in Section 4.2.4. The results are in Table 4.9

We see that the VM is about 4–14 times faster than the regular PC de-
pending on the value of N . The performance gap shrinks with increasing
N . We are going to go down a path similar to bcrypt — we will only fo-
cus on cracking a single hash of scrypt with the recommended parameters
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(N = 215, r = 8, p = 1). Just like in the case of bcrypt on cloud computing,
this speedup is not enough to crack multiple hashes or entire datasets effi-
ciently. We see a similar trend that the CPU’s hash rate halves as we double
the N value, while the GPUs take a bigger performance penalty. When we
get to N = 15, the CPU computes more hashes per second than the GPUs.

There could potentially be a few feasible attacks. One of them is a brute-
force attack on six-character passwords with Markov threshold 25, which
would take eight to nine days. We could also run a dictionary attack with
the combined dictionary by itself (15 hours) or Best64 mangling rules on top
of it (50 days). Stepping up to seven-character passwords (seven months) or
the T0XICv1 rule set (21 years) would make the attacks too long.

Scrypt is in a similar situation as bcrypt, except that it is 27 times slower60.
Feasible attacks could be achieved with much smaller and much more targetted
dictionaries — a dictionary of 10,000 words paired with the T0XICv1 rule set
would take about 4 days to get through.

Just like bcrypt, if scrypt is used with weak cost parameters, our proposed
attacks would be much faster, though attacking a dataset of many passwords
with unique salts would still be unlikely to be met with success unless the
passwords were very weak.

Since scrypt with high cost is faster on a CPU than a GPU, we also ran
a JtR benchmark with the built-in --test parameter on the VM and found
that for N = 214, r = 8, p = 1, it could do 843H/s with just the CPU, which
is only 14% short of Hashcat’s CPU+GPU performance (981H/s).

Assuming the CPU hash rate drops by half each time N is doubled, JtR
would beat Hashcat for N = 215, where the GPUs receive an even bigger
performance penalty. Therefore, using JtR paired with a VM that is more
focused on CPU performance rather than GPU performance is something the
reader should strongly consider before taking on scrypt hashes with high cost
parameters.

60when both are used with recommended parameters
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Chapter 5
Password cracking:

recommendations

In this chapter, we are going to talk about what approaches to cracking pass-
word hashes the reader should take based on the results of our experiments
from Chapter 4. We will focus on three variables — hardware, dataset size
and used hash function.

5.1 Hardware
Although we saw up to 17 times higher hash rates with cloud computing, it was
not enough to turn many years of cracking into feasible attacks. Nevertheless,
it did a great job at accelerating attacks that were already at least somewhat
feasible, e.g., turning 17 months into one month or 17 days into one day.

The attacks could be accelerated even further with Amazon’s top of the
line EC2 p4d.24xlarge instance, which manages hash rates three to four times
higher61 than the NC24s v3 VM from Microsoft Azure that we used [47].
Unfortunately, AWS did not approve the author’s request to access one.

As we have discovered near the end of Chapter 4, using JtR together with
more CPU-focused resources is likely going to be more efficient when it comes
to highly GPU-resistant KDFs like scrypt with strong parameters.

Keep in mind renting cloud computing resources can get quite expensive
quite fast. The VM we used goes for $12.24/hour ($8,935.20/month) with
pay as you go pricing, though there are discounts for long-term commitments,
specifically a 36% discount for a one-year commitment, i.e., $7.7970/hour or
$5,692.7516/month, and a 68% discount for a three-year commitment, i.e.,
$3.9169/hour or $2,859.2786/month62 [75]. For comparison, Amazon’s EC2

61on SHA-1, SHA-256 and bcrypt (the source did not benchmark scrypt)
62based on pricing in the East US region.
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Figure 5.1: Effect of dataset size on the hash rate of SHA-1

p4d.24xlarge instance starts at $32.7726/hour63 and also offers one-year as
well as three-year plans with discounts [69, 77].

5.2 Dataset size

Our intuition may tell us that the size of the dataset only matters when the
hash is salted. That is not true — there are massive performance penalties
when cracking very large datasets.

We ran a couple of tests to see how much the dataset size affects the hash
rate. The tests were run on the author’s laptop, which we have described in
Section 3.4. The results are in Figure 5.1.

When only cracking a single hash, Hashcats activates its Single-Hash opti-
mizer, which results in roughly 13% more performance compared to cracking
ten hashes. After that, there is not much difference in speed between ten
and 100,000 hashes. Going up to 1,000,000 hashes drops the speed by 16%.
Stepping even further causes an overflow of Hashcat’s bitmap table, which
results in a 45% slowdown. Pushing things even further to 50,000,000 hashes
(2 GB of data), which is about as much as Hashcat was able to load, drives
the performance to the ground, resulting in a 34,500 times lower hash rate.

When dealing with tens of millions of passwords, consider dividing the
dataset into smaller chunks to avoid the performance penalty.

63based on on-demand pricing in the US East (N. Virginia) region
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5.3 Hash function
In this section, we are going to provide the reader with recommendations for
password cracking based on used hash function.

5.3.1 Unsalted weak hash
An unsalted weak hash, for instance MD5 or SHA-1, is a hash that can be
computed very quickly — think hash rates of megahashes or gigahashes per
second. Thanks to such high hash rates, we can get away with brute-force
attacks as well as dictionary attacks with large dictionaries and large rule sets.
The combined dictionary with combined mangling rules we used in Chapter 4
had 1.46 · 1012 entries after applying the mangling rules and only took 27
minutes to get through when attacking unsalted SHA-1 on the regular PC.

For best results, divide your efforts in a brute-force attack and a dictio-
nary attack whenever possible — run a relatively quick64 dictionary attack
first and then use the remaining time for a brute-force attack. As for what
Markov threshold should be used for the brute-force attack, we found that
threshold 50 seems to yield the best results. When limited by time and/or
slow hardware, consider using threshold 25 for quick results. In the opposite
scenario, consider threshold 75 to slightly increase the keyspace and poten-
tially crack more password that would have otherwise been missed due to
keyspace reduction.

Because the hash is unsalted, the size of the dataset will likely not affect
the hash rate by much. Consequences of cracking very large datasets at once
were discussed in Section 5.2.

5.3.2 Salted weak hash
A salted weak hash is the same kind of hash we described in Section 5.3.1,
except that it is salted. Salting results in having to compute amount of unique
salts hashes more than in the case of unsalted hashes — if we had a dataset
of 10,000 hashes and each one had a unique salt, the cracking process would
take 10,000 times longer than if the same hash was used without a salt.

When cracking large datasets, consider dividing the datasets into smaller
chunks and spending a fixed amount of time on each one. As we have already
suggested in Section 5.3.1, combine brute-force and dictionary attacks for best
results whenever possible. Lowering the Markov threshold from 50 to 25 may
help when cracking multiple hashes with unique salts. If the dataset is large
and running a brute-force attack becomes unfeasible, stick to a dictionary
attack and consider using a smaller dictionary and/or a smaller word-mangling
rule set. Cloud computing will likely be required for feasible attacks on larger
datasets.

64as in quick compared to the brute-force attack
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5.3.3 Salted strong hash
Salted strong hashes are going to be similar to salted weak hashes with the
difference that they are slow to compute even before considering the salt. An
example of such hash would be bcrypt.

Since the low hash rate is very limiting, dictionary attacks are going to
be the way to go here, as they achieve considerably higher PC/s (passwords
cracked per second) values than brute-force attacks and generally search a
much smaller keyspace.

Unless a very small dictionary with a relatively small set of mangling rules
is used, cloud computing is going to be a must. Cracking more than one hash
will be very hard, because the already low hash rate will be divided by the
amount of unique salts in the dataset. Cracking larger datasets will likely be
impossible with the hardware available today unless the targetted passwords
are very weak or a very small and effective dictionary is used.

In the case of hash functions with variable cost like bcrypt, weak cost
parameters could significantly speed up the cracking process. For example,
since each decrement of bcrypt’s cost parameter roughly doubles the hash
rate, the cracking speed is going to be 64 times faster with cost = 4 than with
cost = 10 (the recommended value).

5.3.4 Salted strong GPU-resistant hash
The one salted and highly GPU-resistant hash we tested is scrypt. The
main difference between scrypt and bcrypt is that scrypt is much more GPU-
resistant, resulting in larger performance penalties for the GPU with increas-
ing cost parameters.

When scrypt is used with the recommended parameters (N = 215, r =
8, p = 1), the hash rate drops to just hundreds of hashes per second with
cloud computing. The regular PC did not even reach 100H/s on scrypt with
the recommended parameters. Because of this, the only feasible attacks are
going to be dictionary attacks with small dictionaries and small rule sets.
Even with cloud computing, cracking a single scrypt hash is going to be hard.
Attacking multiple hashes or larger datasets seems very unrealistic.

However, we could potentially speed up cracking of scrypt with strong
cost parameters by using cloud computing resources that are more focused on
CPU performance rather than VMs with multiple GPUs, which we have used
for our cloud computing experiments in Chapter 4. Such resources combined
with JtR, which achieved about 2.3 times higher hash rate on the CPU than
Hashcat65 would likely result in some speedup, though it would most definitely
not be enough to invalidate what we said in the previous paragraphs of this
section. Keep in mind that lowering N significantly boosts the hash rate of
GPUs, thus making JtR much less competitive.

65in an scrypt test with N = 215, r = 8, p = 1 on the regular PC
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Just like in the case of bcrypt, weak cost parameters can significantly speed
up the cracking process — scrypt with N = 210, r = 8, p = 1 was over 300
times faster than scrypt with N = 215, r = 8, p = 1 on the VM we used in
Chapter 4. Dividing N by 2 resulted in roughly four times higher hash rate
in our cloud computing experiments.

5.4 Time estimates
On top of what we discussed in Section 5.3, the reader can get an idea of how
long their attacks are going to take from Table 5.1 (brute-force attacks) and
Table 5.2 (dictionary attacks).

Simply look up how long an attack with some specific parameters would
take and then divide that time frame by how many times the used hardware is
faster. For example, if an attack took eight years at 1MH/s and our machine
was able to compute 4MH/s, the attack would only take 8/4 = 2 years. If the
hashes are salted, multiply the prior result by the amount of unique salts in
the dataset.
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Time @ hash rate
MT ML 1 GH/s 1 MH/s 1 kH/s 1 H/s
25 3 < 1 second < 1 second 16.3 seconds 4.5 hours
25 4 < 1 second < 1 second 6.8 minutes 4.7 days
25 5 < 1 second 10.2 seconds 2.8 hours 3.9 months
25 6 < 1 second 4.2 minutes 2.9 days 8.1 years
25 7 6.4 seconds 1.8 hours 2.5 months 201.6 years
25 8 2.7 minutes 1.8 days 5 years -
25 9 1.1 hours 1.5 months 126 years -
25 10 1.2 days 3.2 years - -
25 11 28.7 days 78.8 years - -
25 12 10.2 months - - -
25 13 8.4 years - - -
25 14 84 years - - -
50 3 < 1 second < 1 second 1.1 minutes 18.5 hours
50 4 < 1 second 2.4 seconds 40 minutes 27.8 days
50 5 < 1 second 1.4 minutes 1 day 2.7 years
50 6 3.1 seconds 51.8 minutes 1.2 months 98.6 years
50 7 1.9 minutes 1.3 days 3.6 years -
50 8 1.3 hours 1.8 months 145.1 years -
50 9 2.2 days 6 years - -
50 10 3 months 243.8 years - -
50 11 10 years - - -
50 12 107.5 years - - -

Table 5.1: Estimated duration of brute-force attacks based on Markov thresh-
old (MT), maximum password length (ML) and hash rate
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Time @ hash rate
DS 1 GH/s 1 MH/s 1 kH/s 1 H/s
102 < 1 second < 1 second < 1 second 1.7 minutes
103 < 1 second < 1 second 1 second 16.7 minutes
104 < 1 second < 1 second 10 seconds 2.8 hours
105 < 1 second < 1 second 1.7 minutes 1.2 days
106 < 1 second 1 second 16.7 minutes 11.6 days
107 < 1 second 10 seconds 2.8 hours 3.9 months
108 < 1 second 1.7 minutes 1.2 days 3.2 years
109 1 second 16.7 minutes 11.6 days 31.7 years

1010 10 seconds 2.8 hours 3.9 months 317.1 years
1011 1.7 minutes 1.2 days 3.2 years -
1012 16.7 minutes 11.6 days 31.7 years -
1013 2.8 hours 3.9 months 317.1 years -
1014 1.2 days 3.2 years - -
1015 11.6 days 31.7 years - -
1016 3.9 months 317.1 years - -
1017 3.2 years - - -
1018 31.7 years - - -
1019 317.1 years - - -

Table 5.2: Estimated duration of dictionary attacks based on dictionary size
after applying mangling rules (DS) and hash rate
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Conclusion

The main goal of this thesis was to create a set of recommendations to show
penetration testers which approaches to password cracking work best in vari-
ous scenarios. Leading up to this goal, there were several other subtasks. All
of the goals were fulfilled.

We first explored and compared authentication methods commonly used
today. Then, we talked about the history as well as the present of password
authentication and also discussed what its future may hold. After that, we per-
formed an analysis of hardware, tools and methods used for password cracking
and decided which approaches we were going to use for our implementation.

In the implementation, we experimented with Hashcat’s brute-force and
dictionary attacks accelerated with Markov models and word mangling rules.
We also showed how the size of the keyspace searched in a brute-force at-
tack can be reduced by specifying a Markov threshold value. After running
experiments on the author’s machine, we explored how our attacks could be
accelerated with cloud computing and performed similar expriments on a VM
with multiple high-performance GPUs provided by Microsoft Azure.

Finally, in the last chapter, we summarized how hardware, dataset size
and used hash funtion can all affect the speed of password cracking. On top
of that, we laid out some recommendations for password cracking and created
two tables, which estimate how long brute-force and dictionary attacks are
going to take based on the attack’s parameters and hash rate.
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Appendix A
Acronyms

2FA Two-Factor Authentication. 9, 10

ASIC Application-Specific Integrated Circuit. 18, 19

AWS Amazon Web Services. 31, 32

CA Certificate Authority. 8

CFG Context-Free Grammar. 26

CPU Central Processing Unit. 19

CTSS Compatible Time-Sharing System. 13, 14

CUDA Compute Unified Device Architecture. 27, 30

DES Data Encryption Standard. 14–16

DHKE Diffie-Hellman Key Exchange. 20

DKIM DomainKeys Identified Mail. 17

DLP Discrete Logarithm Problem. 20

E2E End-to-End. 5

EC2 Elastic Compute Cloud. 31, 32

ECDLP Elliptic-Curve Discrete Logarithm Problem. 20

FPGA Field-Programmable Gate Array. 19

GECOS General Electric Comprehensive Operating Supervisor. 28
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A. Acronyms

GPU Graphics Processing Unit. 18, 19, 23, 31

HMAC Hash-based Message Authentication Code. 18

HOTP HMAC-Based One-Time Password. 9

JtR John the Ripper. 26, 28–30, 32

KDF Key Derivation Function. 18–20

MD5 Message Digest 5. 17

MIT Massachusetts Institute of Technology. 3, 13, 17

NBS National Bureau of Standards. 14

NIST National Institute of Standards and Technology. 15, 17, 18, 21

NSA National Security Agency. 9

OpenCL Open Computing Language. 27, 30

OTP One-Time Password. 9

PBKDF2 Password-Based Key Derivation Function 2. 18

PC Personal Computer. 31

PCFG Probabilistic Context-Free Grammar. xv, 26, 27

PGP Pretty Good Privacy. 17

PHC Password Hashing Competition. 19

PIN Personal Identification Number. 3, 4

PKI Public Key Infrastructure. 5, 6, 8–12

QEC Quantum Error Correction. 20

QR Quick Response. 9

RSA Rivest–Shamir–Adleman. 8, 20, 21

SHA Secure Hash Algorithm. 17

SSH Secure Shell. 8, 12, 17
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TLS Transport Layer Security. 17

TOTP Time-Based One-Time Password. 9–12

URI Uniform Resource Identifier. 9

VM Virtual Machine. 32, 43
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Appendix B
Contents of enclosed SD card

dataset.........................directory with data used in experiments
dictionaries........................directory with used dictionaries
hashes....................................directory with used hashes
rules ................................... directory with used rule sets
dataset.plain.........................password dataset in plaintext

src..........................................directory with source codes
thesis.....................directory with LATEX sources of the thesis

text...........................directory with compiled text of the thesis
thesis.pdf.................................text of the thesis in PDF

README.md........................................description of contents
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