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Abstract

An extension of the AdaBoost learning algorithm is pro-
posed and brought to bear on the face detection problem.
In each weak classifier selection cycle, the novel totally cor-
rective algorithm reduces aggressively the upper bound on
the training error by correcting coefficients of all weak clas-
sifiers. The correction steps are proven to lower the upper
bound on the error without increasing computational com-
plexity of the resulting detector. We show experimentally
that for the face detection problem, where large training
sets are available, the technique does not overfit.

A cascaded face detector of the Viola-Jones type is built
using AdaBoost with the Totally Corrective Update. The
same detection and false positive rates are achieved with a
detector that is 20 % faster and consists of only a quarter of
the weak classifiers needed for a classifier trained by stan-
dard AdaBoost. The latter property facilitates hardware im-
plementation, the former opens scope for the increase in the
search space, e.g. the range of scales at which faces are
sought.

1. Introduction

Face detection has numerous applications and a range of
algorithms has been proposed [8, 10, 12, 4]. In many appli-
cations, real-time performance is required. Recently, Viola
and Jones [12] introduced an impressive face detection sys-
tem capable of detecting faces in real-time with both high
detection rate and very low false positive rates. The de-
sirable properties are attributed especially to the efficiently
computable features used, the AdaBoost learning algorithm,
and a cascade technique adopted for decision making. In
this paper, an improvement of the AdaBoost algorithm is
proposed and its utility for cascade building in the context
of face detection is shown.

The Viola and Jones detector consists of several classi-
fiers trained by the AdaBoost algorithm [1] that are organ-
ised into a decision cascade. Each cascade stage classifier is
set to reach a very high detection rate and an “acceptably”
low false positive rate. Since it is trained on the data classi-

fied as a face by the previous stages, the final false positive
rate is very low (equal to the product of false positive rates
of all stages, see Algorithm 3) and the final detection rate
remains high.

The cascade evaluation is equivalent to a sequential clas-
sification using a degenerated decision tree. When the cur-
rent stage classifier labels a region in an image as a non-
face, the decision process is terminated. Otherwise, the next
stage classifier is run. A region is declared a face if it is ac-
cepted by all classifiers in the cascade.

Face detection is done by moving the cascade detector
across the image at multiple scales and locations. A typical
image contains only a small number of face regions com-
pared to the number of regions scanned. Due to early ter-
mination of the decision process in non-face regions, only
few stages of the cascade are evaluated on average [12, 5].
Hence, the speed of evaluation depends heavily on the com-
putational complexity and rejection rates of the first few
stages. The enhanced AdaBoost learning algorithm pro-
posed in this paper produces a classifier that, for a given
detection and false positive rates, is more likely to make a
decision early in the evaluation of the cascade.

AdaBoost constructs the classifier as a linear combina-
tion of “weak” classifiers chosen from a given, finite or in-
finite, set. Its goal is to choose a small number of weak
classifiers and assign them proper coefficients. The lin-
ear combination can be seen as a decision hyper-plane in
the weak classifier space. Hence, AdaBoost can be viewed
as an optimization procedure, that operates in the space of
weak classifier coefficients, starting with a zero vector and
ending with a vector with only small number of non-zero
elements.

The standard (discrete) AdaBoost is a greedy algorithm,
that in each step sets one zero-valued coefficient to a non-
zero value. Because of its greedy character, neither the
found weak classifiers nor their coefficients are optimal.

A totally corrective algorithm with coefficients updates
(TCAcu) proposed in this paper differs from the standard
AdaBoost in two main aspects. Firstly, the coefficients of
already found weak classifiers are updated repetitively dur-
ing the learning process. Secondly, in the standard Ada-
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Boost, a newly added weak classifier can be shown to be
“independent” in a precisely defined way of the previously
added weak classifier. The TCAcu algorithm finds a new
weak classifier that is independent of all weak classifiers se-
lected so far. It is shown that these modifications minimise
the classification error upper bound more aggressively and
that shorter classifiers are found.

The term “totally corrective algorithm” was introduced
by Kivinen and Warmuth [3]. However, the Kivinen and
Warmuth algorithm did not update the coefficients of al-
ready found weak classifiers. The algorithm thus lost the
important property of minimisation of the upper bound on
the training error. Kivinen and Warmuth made no empirical
evaluation of the algorithm. It was experimentally tested by
Oza on several standard problems with poor results [6].

Another attempt to shorten the final classifier was pro-
posed by Li et al. [4] and was motivated by the feature selec-
tion view of AdaBoost. In case, the weak classifiers corre-
spond directly to the features as in the Viola and Jones face
detection framework, changing one coefficient to a non-zero
value effectively selects this feature [12]. Li et al. pro-
posed FloatBoost, a modification of AdaBoost where some
of already non-zero coefficients are set back to zero when
it leads to a lower upper bound on the classification error.
Instead of the greedy feature selection, the sequential float-
ing forward selection (SFFS) technique [7] is used. Li et al.
show that this modification leads to shorter classifiers.

The main contribution of this paper is (1) a modification
of AdaBoost algorithm which leads to shorter classifiers and
a speedup of classification, (2) the introduction of totally
corrective algorithm to face detection training. It is shown
that resulting classifier performance is comparable to the
standard AdaBoost and the resulting classifier runs faster.

The paper is structured as follows. In the Section 2 the
totally corrective algorithm with coefficients updates is de-
scribed in the framework of the standard AdaBoost. Then,
in Section 3, necessary details of the Viola and Jones work
are given. Experimental results are shown in Section 4 and
the paper is concluded in Section 5.

2. Totally corrective algorithm

In this section, the standard AdaBoost algorithm is de-
scribed and motivation for the totally corrective step (TCS)
is given. Then TCS is explained and its role in AdaBoost
learning is discussed.

2.1. Standard AdaBoost

The totally corrective algorithm with coefficient updates
(TCAcu) is based on AdaBoost [1] and its structure is de-
picted in Algorithm 1. Schapire and Singer’s [9] notation is
used and the algorithm differs from Schapire and Singer’s

Given: (x1, y1), ..., (xm, ym); xi ∈ X , yi ∈ {−1, 1}
Initialize weights D1(i) = 1/m
For t = 1, ..., T :

1. Find ht = arg min
hj∈H

εj ; εj = 1

2
[1 −

m∑
i=1

Dt(i)yihj(xi)]

2. If εt ≥ 1/2 then stop

3. Set αt = 1

2
log( 1−εt

εt
)

4. Update

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt

5. Totally corrective step (see Algorithm 2)

Output the final classifier:

H(x) = sign

(
T∑

t=1

αtht(x)

)

Algorithm 1: TCAcu: Totally Corrective Algorithm with
coefficient updates.

one only by an additional Step 5. The standard AdaBoost,
i.e. Step 1 to 4, will be described first.

The goal of AdaBoost is to train a classifier using a set
of examples. First, a weight D1(i) is assigned to each train-
ing example. Learning then proceeds in a simple loop. At
time t, the algorithm selects a weak classifier ht minimis-
ing a weighted error on the training set (Step 1). The loop
is terminated if this error exceeds 1/2 (Step 2). The value
of αt is computed next (Step 3) and the weights are updated
according to the exponential rule (Step 4). In Step 4, Zt is
a normalisation factor which assures Dt+1 remains a distri-
bution. The final decision rule is a linear combination of the
selected weak classifiers weighted by their coefficients. The
classifier decision is given by the sign of the linear combi-
nation.

There are two properties of AdaBoost exploited in the
paper. First, as has been shown in [9] the algorithm min-
imises an upper bound on the classification error εtr(H) on
the training set

εtr(H) ≤

T∏

t=1

Zt =
1

2T

T∏

t=1

√
εt(1 − εt) (1)

This upper bound is minimised by selecting a weak classi-
fier with the smallest weighted error εt on the training set
as done in Step 1 and by setting its coefficient as done in
Step 3.

Second, the re-weighting scheme assures that the up-
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Initialize D̂0 = Dt

For j = 1, 2, ..., Jmax

1. qj = arg maxq=1..t |εq − 1/2|.

2. If |εqj
− 1/2| < ∆min exit the loop.

3. Let α̂j = 1/2 ln((1 − εqj
)/εqj

).

4. Reweight

D̂j+1(i) =
1

Zj

D̂j(i) exp(−α̂juqj ,i)

5. αqj
= αqj

+ α̂j

Assign Dt+1 = D̂j

Algorithm 2: The Totally Corrective Step

dated distribution satisfies

m∑

i=1

Dt+1(i)ut,i = 0 (2)

where ut,i = ht(xi)yi.
Step 1 of the AdaBoost algorithm at time t + 1 can be

also written as

ht+1 = arg max
hq∈H

m∑

i=1

Dt+1(i)uq,i (3)

Employing equation (2) it is evident that the selected ht+1

is “maximally independent” of the mistakes made by ht [9].
Moreover, for the weighted error εt+1

t of ht where the
upper index indicates that the error is measured on the
weights used at time t + 1

εt+1
t =

1

2
(1 −

m∑

i=1

Dt+1(i)ut,i) =
1

2
(4)

The weak classifier ht is therefore equivalent to a random
guess on the weights Dt+1.

Summarising equations (1) - (4), the AdaBoost algo-
rithm minimises the upper bound on the classification er-
ror, selects weak classifiers with the smallest weighted er-
ror, and the selected weak classifier at time t is maximally
independent of the mistakes made by the weak classifier se-
lected at time t − 1.

2.2. Totally corrective step
The independence property discussed in Section 2.1 is very
attractive from the feature selection point of view. A ques-
tion arises whether a new weak classifier, maximally inde-
pendent of all already selected ones, can be found. In such
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Figure 1: Weighted errors ε11
t (eq. (4)) of weak classi-

fiers ht after ten iterations (T=10) for AdaBoost (circles)
and TCAcu (crosses). In AdaBoost, ε11

t for all but the last
weak classifier are arbitrary. In TCAcu, all errors satisfy
|ε11t − 0.5| < ∆min. Note that the selected weak classifiers
may be different for AdaBoost and TCAcu.

case, the distribution Dt+1 must satisfy

m∑

i=1

Dt+1(i)uq,i = 0 for q = 1, ..., t (5)

where uq,i = hq(xi)yi or equivalently εt+1
q = 1

2
for q =

1, ..., t.
There is no closed-form solution to the system of equa-

tions (5) and sometimes even an exact solution does not ex-
ist [3]. This is a consequence of the non-negativity con-
straint on Dt+1, which is a distribution. Therefore, TCS is
designed as an iterative optimisation algorithm.

In AdaBoost, equation (5) holds at time t (after reweight-
ing, Step 4) only for q = t. A typical situation is depicted in
Figure 1. Weak classifier errors are shown after step t = 10
of AdaBoost. The weak classifier errors differs from 0.5
except for the last (10th) weak classifier.

Another observation can be made about the change of
the upper bound. From equation (1), we see that the upper
bound is reduced if the error of a newly added weak classi-
fier differs from 0.5. The bigger the difference, the bigger
the reduction of the upper bound. If follows that the upper
bound can be further reduced by formally adding an already
used weak classifier, if its error differs form 0.5. This addi-
tion has two important consequences.

First, because of the linear combination form of the final
classifier, addition of an already used weak classifier hr,
r < t, requires only a change of αr coefficient, not a change
of the final classifier size. A new coefficient is computed as
αr = αr

r +αt+1
r , where the upper indexes express the cycle

in which the coefficient was computed.
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Second, a new distribution obtained by this addition sat-
isfies equation (5) for q = r, but not for any other q. If
equation (5) is approximately satisfied for all q the goal
is reached. If not, another q is selected and hq ”virtually
added”. Each such addition will lower the upper bound.

TCS is formally summarised in Algorithm 2. At time
t, a distribution Dt is used to initialize the algorithm. In
each iteration a weak classifier is selected from the already
used ones so that the absolute difference of its error and 0.5
is maximised. The standard scheme is used to find α̂j and
the new distribution D̂j+1. The value α̂j is added to the
corresponding coefficient and the loop is repeated.

Since an exact solution may not exist, the computation is
terminated if a close enough solution is found or if the max-
imum allowed number of iterations is reached. The final
distribution is then used in cycle t + 1 of AdaBoost learn-
ing. A typical result of the algorithm is depicted in Figure 1.

Convergence properties of the TCS step and standard
AdaBoost are the same. The only difference is in the set
of weak classifiers which in TCS is limited to the already
selected ones in the main AdaBoost loop.

A similar algorithm was proposed by Kivinen and War-
muth [3]. TCAcu differs from Kivinen and Warmuth al-
gorithm in two important aspects: (1) the coefficients of
weak classifiers are updated repetitively, (2) the property
of minimisation of the upper bound is kept. The Kivinen
and Warmuth algorithm was experimentally tested by Oza
on several standard problems [6] with poor results.

3. Face detection and AdaBoost
The totally corrective algorithm was applied to the face de-
tection problem using the framework introduced by Viola
and Jones [12]. To train a classifier, Viola and Jones select
from a large number of very efficiently computable features
(see [12] for detailed description). Every weak classifier
implements a simple threshold function on one of the fea-
tures. Having such a large set of weak classifiers, AdaBoost
learning is used to chose a small number of weak classifiers
and to combine them into a classifier deciding whether an
image is a face or a non-face.

Due to its greedy character, AdaBoost is able to cope
with very large sets of weak classifiers. However, for face
detection, very large training set has to be explored as well
in order to build a high-quality classifier. To solve infeasi-
bility of this problem a bootstrapping technique [11] is com-
monly used. Viola and Jones proposed another technique to
cope with this problem.
Cascade building. Instead of training a single classifier, a
cascade of classifiers is built. An image window (region)
is passed to the first classifier. It is either classified as non-
face or a decision is deferred and the image is passed to the
second, etc. classifier. The goal of each classifier is to prune

Input: Allowed false positive rate f , and detection rate d;
final false positive rate ffinal

F0 = 1, D0 = 1
Do until Fi > ffinal

1. Train a classifier until freached < f and dreached > d on
the validation set

2. Fi+1 = Fi × freached

3. Di+1 = Di × dreached

4. Throw away misclassified faces and generate new non-
face data from non-face images

Algorithm 3: Building the cascade.

the training set for the next stage classifier of the cascade.
Since easily recognisable non-face images are classified in
the early stages, classifiers of the later stages of the cascade
can be trained rapidly only on the harder, but smaller, part
of the non-face training set.

The cascade building is described in Algorithm 3. Inputs
to the algorithm are: the desired false positive rate f , the
detection rate d of the cascade stages, and the final false
positive rate of the cascade. Each stage is trained until f and
d are reached. Since AdaBoost is neither designed to reach
low false positive rates nor high detection rates, a threshold
is adjusted ex post.

In the cascaded classifier, the overall false positive and
detection rates are a product of the rates of individual stages.
The pruning process is asymmetric and concentrates on the
non-face images. The stage false positive f is usually set to
higher values. The multiplication in Step 2 guarantees an
exponential reduction of the overall false positive rate. The
detection rate must be set close to one to ensure that final D
is high.

4. Experiments
The performance of TCAcu and AdaBoost was compared
on the face detection problem. The training dataset, training
process and obtained results are discussed next. The perfor-
mance evaluation concentrates on the speed and complexity
of the learned cascaded classifiers.
Training data. The data for training were collected from
various sources. Face images are taken from the MPEG7
face dataset [2]. The dataset contains face images of vari-
able quiality, different facial expressions and taken under
wide range of lightning conditions, with uniform or com-
plex background. The pose of the heads is generally frontal
with slight rotation in all directions. Eyes and the nose tip
are aligned in all images. The dataset contains 3176 images,
one image was removed due to severe distortion.
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Figure 2: Selectivity comparison. Horizontal axis: the com-
plexity of the cascaded classifier expressed by the number
of weak classifiers used. Vertical axis: number of weak
classifier evaluations on the MIT+CMU dataset.

Pose variability was added synthetically to the data. The
images were randomly rotated by up to 5◦, shifted up to one
pixel and the bounding box was scaled by a factor of 1 ±
0.05. Two datasets, training and validation, of the same size
as the original dataset were created by the perturbations.

Non-face images were collected from the web. Images
of diverse scenes were included. The dataset contains im-
ages of animals, plants, countrysite, man-made objects, etc..
More than 3000 images were collected and random sub-
windows used as non-face examples.
Training process. During the training process, the training
and validation dataset are updated for each stage (cf. Algo-
rithm 3). The non-face part of the training and validation
datasets consist of 5000 randomly selected regions from the
non-face images. Only regions that were not rejected by
previous stages of the cascade are included. The face set
remains almost the same over the whole training. The faces
rejected by some of the stage classifiers are removed, but
the cascade is build to ensure that these false rejects are just
a small fraction of the face data.

The process is driven by the stage false positive, detec-
tion and final false positive rates. In the reported experi-
ments, the values were set to 0.4 stage false positive rate,
0.999 detection rate and 0.0001 the final false positive rate.
The final false positive rate was reached in stage eight in
TCAcu and in stage ten in AdaBoost.

4.1. Results

The classifiers were tested on the MIT+CMU dataset [8].
This dataset has been widely used for comparison of face

detectors [8, 10, 12]. The main objective of the experi-
ments is to demonstrate the detection speedup in compari-
son with the classical Viola-Jones approach, rather than im-
provement of the detection rate per se. This means that we
did not try to find e.g. the optimal sets of weak classifiers
since this is not important for a fair comparison of Ada-
Boost and TCAcu.

The results for the cascades trained by the two variants of
AdaBoost are summarized in Table 1. For each number of
stages in the cascade, the following quantities are recorded
(left to right in Table 1): the number of weak classifier form-
ing a stage in the cascade, the total number of evaluations
in each stage, and the false negative and false positive rates
on the MIT+CMU dataset.

It can be observed that for both algorithms the complex-
ity of stages increases gradually except for two small fluc-
tuations. At the beginning the growth of TCAcu is slower
and it changes after four stages. However, the complexity is
not the only important factor determining the speed of face
detection. Also the number of regions marked as a potential
face in each stage is significant. It can be seen that TCAcu
discards many more regions in early stages than AdaBoost.
This early prunning influences false positive and false neg-
ative rates that are shown in the last two columns. These
two rates measure the performance of the cascaded clas-
sifier. The table shows that both algorithms lead to similar
false positive and false negative rates, but TCAcu converges
much faster.

To compare the speed of the cascades trained by TCAcu
and AdaBoost, the number of weak classifiers evaluated on
MIT+CMU dataset was measured. All regions have to be
evaluated by the first stage classifier. The number of eval-
uations is consequently a product of the number of regions
and the length of the first stage classifier. The same holds
for the second (and higher) stage classifier, but only regions
not rejected by the first (previous) stage(s) are evaluated.
Summing the numbers evaluations of the first and the sec-
ond stage gives the number of evaluations of the two-stage
cascade classifier. The result for all lengths of the cascade
and for both algorithms is depicted in Figure 2.

Figure 2 demonstrates two important phenomena. First,
the complexity of the cascades with comparable false neg-
ative and false positive rates is up to four times smaller for
the TCAcu algorithm (six-stage TCAcu vs. eleven-stage
AdaBoost). Second, the number of evaluations needed in
AdaBoost is higher by 20 % than in TCAcu.

5. Conclusions

A new extension of the AdaBoost algorithm was proposed
and compared with the state-of-the-art Viola and Jones face
detection algorithm. The proposed TCAcu algorithm finds
the final classifier by aggressive minimisation of the up-
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Number Stage classif. Number of False False
of length evaluations negatives positives

stages AB TCAcu AB TCAcu AB TCAcu AB TCAcu
1 6 6 12431151 12431151 0 0 3930473 3682307
2 10 9 4009205 3757632 0 0 1598933 1054019
3 14 11 1643072 1083123 0 1 795262 492881
4 15 10 823246 512004 2 5 415751 173341
5 17 22 435483 183962 4 16 189902 44287
6 22 33 201982 49814 11 39 92226 6488
7 23 36 100887 9052 17 83 46499 1584
8 25 55 52867 3173 26 143 22966 183
9 31 27504 35 11262

10 40 14818 53 5070
11 47 7568 59 2193
12 55 4194 73 905
13 49 2602 84 426

Table 1: Comparison of AdaBoost (AB) and TCAcu performance.

per bound on the training error and produces a significantly
shorter classifier. The obtained results are comparable to
the Viola and Jones method in terms of detection and false
positive rates. The classifier trained by the novel method
was about 20 % faster and consists of only a quarter of the
weak classifiers needed for a classifier trained by standard
AdaBoost.

The algorithm can be applied with other weak classi-
fiers suitable for face detection and in conjunction with
FloatBoost-like feature selection techniques. The reduction
of the number of weak classifiers can be important in ar-
eas where the weak classifiers are expensive to compute or
to implement, e.g. on smart cards or other special purpose
hardware.
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