FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Assignment of bachelor’s thesis

Title: Interpretability of machine learning-based results of malware detection
using a set of rules

Student: Jan Dolejs

Supervisor: Mgr. Martin Jurecek

Study program: Informatics

Branch / specialization: Computer Security and Information technology
Department: Department of Computer Systems
Validity: until the end of summer semester 2021/2022

Instructions

Nowadays, machine learning algorithms are common techniques used to detect malware. However, ML
algorithms are not directly incorporated into antivirus programs installed on users' systems. Therefore,
it is convenient to interpret the ML results (obtained in the cloud) as a set of detection rules (e.g., as
formulas: (x_10_1h_1)AND ... AND (x_n o_.n h_n), where x__i are features, o__i relational
operators, and h__i values) to avoid the need to maintain large datasets.

Instructions:
1) Study and describe methods for creating malware detection rules.

2) Collect benign and download malware samples (in the PE file format) or use an existing dataset
provided by the supervisor.

3) Use ML libraries (e.g., Scikit-learn) and apply at least three state-of-the-art ML algorithms to the
dataset from step 2).

4) Implement at least two methods for creating malware detection rules to describe the results from
step 3).

5) Evaluate and discuss the experimental results.

Electronically approved by prof. Ing. Pavel Tvrdik, CSc. on 25 January 2021 in Prague.

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Bachelor’s thesis

Interpretability of Machine Learning-based
Results of Malware Detection using a Set
of Rules

Jan Dolejs

Department of Information Security

Supervisor: Mgr. Martin Jurecek

May 13, 2021

Acknowledgements

I would like to express my profound gratitude to my supervisor Mgr. Martin
Jurecek. He was a great source of knowledge as well as motivation throughout
the work. Thank you.

Further thanks go to my family and friends for their continuous (and dif-
ferentiable) support in all these years. Life would be tough to imagine without
you.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No.121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague

Faculty of Information Technology

© 2021 Jan Dolejs. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Dolejs, Jan. Interpretability of Machine Learning-based Results of Malware
Detection using a Set of Rules. Bachelor’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2021.

Abstract

Machine learning methods have been quite successful in a variety of applica-
tions. Antivirus companies use them for quick and reliable malware detection,
providing their users with a safer environment from ceaseless daily threats.
However, machine learning methods such as deep neural networks are often
considered black boxes as the reasoning behind their decisions may often be
unclear. Their interpretability is important and helps understand potential
errorful decisions. This thesis studies rule-learning algorithms and explores
their potential to interpret the outcomes of machine learning algorithms. Two
publicly available datasets with Portable Executable file attributes and tailor-
made implementations of rule-learning algorithms were used throughout the
work. Results showed that algorithm RIPPER is mostly successful at this task;
it achieved high accuracies while maintaining compact sets of rules, making
rule-learning algorithms a useful alternative to signature-based methods.

Keywords malware detection, rule-based classifiers, interpreting machine
learning, PE files

vii

Abstrakt

Metody strojového uceni se prokazaly jako uziteCny néastroj v radé aplikaci.
Antivirové spolecnosti nasly jejich vyuziti i pro rychlou a spolehlivou detekci
nimi hrozbami. Metody strojového uceni, jako jsou naptiklad hluboké neu-
ronové sité, jsou vSak casto povazovany za black boxy, jelikoz dtuvody jejich
rozhodnuti mohou byt ¢asto nejasné. Jejich intepretovatelnost je dulezita a po-
maha pochopit potencialné chybna rozhodnuti. Tato prace se zabyva algoritmy
pro tvorbu pravidel a zkoum4 jejich potencial v ramci interpretace vysledku
metod strojového uceni. V préaci bylo vyuzito dvou vefejné dostupnych data-
setu, obsahujicich atributy PE souborii, a na miru navrzenych implementaci
algoritmti pro tvorbu pravidel. Vysledky ukazaly, ze algoritmus RIPPER je
v tomto tkolu prevazné uspésny; vysokou presnost vykazoval i pri zachovani
kompaktnich sad pravidel, coz déla z algoritmi pro tvorbu pravidel uzite¢nou
alternativu metody zalozené na signaturach.

Klicova slova detekce malwaru, klasifikdtory zalozené na pravidlech, inter-
pretace strojového uceni, PE soubory

viii

Contents

1

|1 Decision Rulesl 3
1.1 Formal Introduction 3

1.2 Rule Characteristic 5

1.3 From Treesto Ruled 6

1.4 Rule Learning Algorithmsl 7
.............................. 7
............................. 8

1.4.3 I-REP 12

144 RIPPER|. 14

1.4.5 Other Approachesj 18

|2 Portable Executablel 21
2.1 Dos Header and Stud 21

.2 PE Headenll 22

.3 Optional Heade1| 22

0.4 Section Headers{ 22

|3 Implementations of Rule Based Classiﬁer4 23
3.1 Decision Listo 23

24

24

24

25

|4 Experimentsl 29
|4.1 Dataset Descriptiod 29
|4.1.1 Kozék’s Datasetl 29

ix

12 EMBER Datasetl

|4.2 Feature Transformation and Selectiod

1.2.1 Feature Vectorisatiod
1.2.2 Feature Hashing]
1.2.3 Feature Selectiod
1.3 Evaluation Metricd

1.4 Interpreting ML results using RBCSI

1.4.1 Pruning and Metricy . . .

1.4.2 Removing Rules in RIPPERl

|'U|'

]_)iscussiod

H.2 Comparison with Related Worksi

onclusio

B 0 p Yy

A Acronyms

B Figures

k? Contents of enclosed SD Card

5.1 Experiments Reviewl

43
43
45

47

49

55

57

61

List of Figures

Il.l Decision Tree - Describing a simple disjunction [13]| 6
|4.1 Understanding pruning metrics as 3D graphsl 37
5.1 Rule coverage size — RandomForest & EMBER 44
5.2 Visualisation of rule sizes over time — RandomForest & EMBERl .44
B.1 Rule coverage size — EMBERI 58
B.2 Rule size - EMBER| 59

xi

Introduction

The first-ever malicious software (malware) appeared as a school joke in
1982 [1]. Since then, malware development has become a serious business
and a threat to computer and smartphone users. In 2017, ransomware called
WannaCry was widely spread across the Windows operating system due to an
unpatched bug [2]. Ransomware is a type of malicious software that typically
demands ransom payment for returning access to a user’s device [3]. Prior
to this incident, many massive Distributed Denial of Service (DDoS) attacks
have taken place. This was done using the botnet malware Mirai, which was
used to enslave poorly secured IoT devices. One of the targets was Brian
Krebs’s website with a 620 Gbps network load. Brian Krebs is an American
journalist who later discovered those responsible for the attack [4].

Two approaches exist to determine whether a file is malicious or not: static
analysis and dynamic analysis [5]. Dynamic analysis requires the file to be
executed, commonly in a sandbox environment, to examine its behaviour [6].
In contrast, static malware detection does not require the file to be executed
and is used to examine file’s attributes, e.g. opcodes, file headers, machine
code, and more.

We can combine both approaches with machine learning methods for effec-
tive malware detection [[]. The advantage of this is identifying new malicious
samples with high accuracy [8]. However, it is still necessary to maintain an
extensive database of file hashes with either malicious or benign labels, which
is ineffective and most probably unsustainable for future usage. Thus, it is
practical to maintain the results as a set of detection rules.

This thesis aims to study rule-learning algorithms and measure their per-
formance on the outcomes of machine learning methods. Machine learning
methods are often considered black boxes, and we can interpret their outcomes
using a set of rules. We will create our implementations of rule-learning al-
gorithms and propose a new algorithm. The implementations will allow us to
change certain parts of the algorithms and better understand their behaviours.
The results will be shown using two publicly available datasets on which we

LIST OF FIGURES

will train five machine learning models. Used datasets will contain informa-
tion about Portable Executable files gathered through static analysis.

The structure of the thesis is as follows:

Chapter m introduces the theory necessary for rule-learning algorithms.
Next, four rule-learning algorithms are described.

Chapter E explains the PE file format, which is later used in the datasets.

Chapter E describes the specifics of our implementations and introduces
one additional algorithm with a different approach to rule-learning.

Chapter @ gives details on the datasets, as well as their transformation
and feature selection. Further, the experimental setup and process are
described. Chapter Y contains the evaluation of the experiments, too.

Chapter a further discusses the results from Chapter @ with an additional
view on the results.

CHAPTER].

Decision Rules

People are used to making decisions daily — from getting up once our alarm
clock starts ringing to making ourselves a bit of food once we get hungry. We
do these actions quite naturally, and it is uncommon for us to think of them
as rules. On the other hand, these actions could very easily be expressed as a
set of if-then rules. They would remain as expressable as our initial thought,
for example: if alarm clock starts ringing then get up or if hungry then make
food.

We call these rules decision rules, and they are considered one of the more
interpretable models in machine learning [9]. In [10], the authors define inter-
pretability as “the ability to explain or present in understandable terms to a
human”. Other machine learning methods, such as deep neural networks, are
often considered black boxes as the reasoning behind their decisions may often
be unclear [11]. However, the interpretability of the models is very important;
nowadays, they are widely used for various applications, e.g. criminal risk
assessment [12] or malware detection [[7]. Interpreting the results means that
we can explain why a person is considered at high risk of criminal activity or
why a benign file was marked malicious. This work will focus on classification
rules used to classify data, as the name already suggests [13].

1.1 Formal Introduction

Above, we have only shown an elementary set of rules. The antecedent, or the
precondition, is usually more complicated and is built upon many different
features. The consequent, or the conclusion, gives us the ability to decide, or
more importantly in this work, to classify different samples. We can generalise
a single precondition in the following form.

1. DEecisioN RULES

Table 1.1: Example of the EMBER [16] dataset content

filesize }fééza,il(;"fs timestamp Eéiﬁf,? l();ii class
16,384 512 2018-07-02 2,072 benign
40,960 4,096 2007-05-04 2,526 benign
45,568 1,536 2019-05-10 4,213 benign
156,784 1,024 2016-10-11 8,479 malware
167,936 1,024 2016-04-06 4,227 benign
245,829 1,024 2013-04-01 11,460 malware
298,486 1,024 2004-11-06 15,703 malware
773,044 512 2018-05-29 25,774 benign
817,518 1,024 1992-06-20 97,446 benign
966,594 4,096 2017-09-03 22,979 malware

Definition 1 (Condition). We define condition c as follows:
c=xOh, (1.1)
where x is a feature, ® is a relation, and h is the searched value.

Usually, the preconditions are logically ANDed together, making it necessary
for all tests to fire [9, 13, 14].

Definition 2 (Rule & Rule Size). We define rule r as follows:
r=ci A Acm, (1.2)

where m is the number of conditions for rule r. We say that rule r has a size
of m.

However, the condition conjunction is not a necessity, and a single rule may
be expressed by a general logical expression [13, [L5].

To get a bit more familiar with the samples we will be working with, we
have included Table El] from the EMBER [[16] dataset, which is later covered in
Section . We could create the following rule for the samples in Table @:

if size of headers = 1024 A

1.3
timestamp > 2000-01-01 then is malware. (13)

Notice, however, that this rule does not classify all samples correctly.

For a given rule, we are interested in its quality, more specifically in its
coverage (support) and accuracy (confidence). We say that a rule covers a
sample if the sample satisfies the rule’s preconditions [17].

4

1.2. Rule Characteristics

Definition 3 (Coverage). Given a set of samples S, we define the coverage
of rule r as
coverage(r,S) = {s|s € S,r covers s}. (1.4)

We may want to express this numerically.

Definition 4 (Coverage Size). Given a set of samples S, we define the coverage
size of rule v as
S
coverage__size(r,S) = [coverage(r, 5)| . (1.5)

5]

Rule (E) covers four samples out of ten from Table ; thus, its coverage
size is 40%.

For a set of samples S; in a given class ¢, we are interested in the accuracy
of a given rule. We understand accuracy as a metric [15], for example:

_ |coverage(r, S;)|

accuracy(r, S;) yied{l,...,m}, (1.6)

 |coverage(r, S)|

where m is the number of classes in S. Rule (@) covers three samples from
the malware class. However, it _also covers one sample from the benign class.
Its accuracy given by Metric (@) is 75%, where S; is a set of samples from
the malware class.

1.2 Rule Characteristics

Rules are said to be mutually exclusive if no two rules cover the same sample.

Definition 5 (Mutually Exclusive Rules). Given a set of samples S, we say
that rule r; and rule rj are mutually exclusive, if

coverage(r;, S) N coverage(rj, S) = 0,1 # j,i,j € {1,...,n}, (1.7)
where n is the number of rules for S.

Rules are said to be exhaustive if every sample is covered by at least one
rule [14].

Definition 6 (Exhaustive Rules). Given a set of samples S, we say that rules
r; are exhaustive, if

U coverage(r;,S) = S,i € {1,...,n}, (1.8)
i=1

where n is the number of rules for S.

1. DEecisioN RULES

However, such rule restrictions are often not required, and we allow the
rules to overlap and not cover the whole set. Different problems arise, some
rules may contradict each other, or some of the samples may not be covered
at all. Two different schemas can be used to solve this: a decision list or a
decision set [9, 14].

In a decision list, the rules are ordered as follows:
R:[Tl,TQ,...,T'n], (19)

where n is the number of rules for a given list. In other words, the rules are
kept in the order in which they were added. The same order is later used for
classification, too [9].

A decision set does not require rules to be ordered; instead, all rules get to
vote on classifying a given sample. Unfortunately, it is pretty easy to lose the
interpretability with the voting schema once a decision set grows larger [9].
Thus, we will be using a decision list in this work if not stated otherwise.

1.3 From Trees to Rules

Before proceeding to the next section, let us briefly compare another popular
machine learning tool — a decision tree. Decision trees are built from nodes,
where each node, except the last ones, tests a feature with a given value (see
Definition [If). The last node, also called a leaf, represents a decision, for
example, classifying samples as benign or malicious [13]. Although the idea
behind decision trees is quite simple, they may turn out to be quite complex
and hard to interpret [L§].

Figure 1.1: Decision Tree - Describing a simple disjunction [[13]

1.4. Rule Learning Algorithms

Figure @ illustrates a simple decision tree, also shown in [13]. However,
its outcome may be a little misleading as it is a simple disjunction, which can
be easily described using rules:

ifaAb thenx
elseif c \Nd then x (1.10)

elsey

In his work [[17], Quinlan designed an algorithm called C4.5rules, which
converts a decision tree to a decision list. After its construction, it tries to
improve it. Unfortunately, this part of the algorithm is expensive. Cohen [19]
showed that the complexity is near O(n?), where n is the number of samples.

1.4 Rule Learning Algorithms

This section describes various methods for creating rule-based classifiers. Prob-
ably the simplest one would be to identify a feature that describes a given set
of examples the best and uses it for further classification. This idea was first
implemented in 1993 by Holte [20] and is called 1R, or 1-rule.

1.4.1 1R

According to Holte [20], there were already some indications that simple rules
could perform well on already known datasets. This turned out to be accurate,
and Holte’s 1R stayed behind Quinlan’s C4.5 [17], a state-of-the-art algorithm
used to create a decision tree model, by 2.1% points on average [20].

Describing the Steps of @

1R takes the train set as an input and examines its features. At the very
beginning, 1R creates an empty hypothesis (step 1), which is later used to
find the best performing decision list R. Then, it iterates through all features
in the train set (step 2), and for each step, an empty decision list R is cre-
ated (step 3). For every value of a given feature (step 4), 1R calculates how
often each class appears (step 5) and creates a specific rule that best describes
the most frequent class. If multiple classes satisfy this condition, a random
class is selected. The relation f ® v depends on the implementation; for ex-
ample, we could use the operator = for categorical features or < for numeric
features (step 6). — C denotes that the rule assigns the samples to class C.
This is specific for 1R as it can alternate between different classes with its
decision list. The rule is inserted into decision list R (step 7). After iterating
through all values, an error rate for decision list R is calculated (step 9). This
decision list is inserted into hypothesis H (step 10). Finally, a decision list R
with the lowest error rate is found (step 12) and returned.

1. DEecisioN RULES

Algorithm 1: 1R

Input: Train set
Output: Decision list

1 H<+{}; // hypothesis
2 for f € features do

3 | R [];

4 for v € f do // for every feature's value v
5 C < most frequent class;

6 create rule r such that f ©v — C;

7 R+ RUr; // insert r into R
8 end

9 err < R error rate;
10 H[R] < err

11 end
12 find R € H such that its err is lowest;
13 return R;

However, we have not mentioned how 1R deals with continuous and missing
values. Missing values are simply treated as another value, e.g., “missing”.
Continuous values are divided into several intervals. To avoid overfitting,
each interval must contain at least 3 or 6 samples of the same class. These
specific numbers were experimentally obtained by Holte et al. in one of his
previous papers [2(].

If applied to the samples in Table El], we would get the results shown
in Table . We can see that 1R found such a decision list that classifies
all samples from the train set correctly. The resulting list would have the
following form:

if printables # < 8479 then benign
elif printables # > 8479 A printables # < 25774 then malware — (1.11)
elif printables # > 25774 then benign.

1.4.2 CN2

Many rule learning algorithms learn iteratively one rule at a time while re-
moving the samples they cover from the train set [21]. Such an approach is
called sequential covering and was also adapted by Clark and Niblett in their
CN2 algorithm [22], inspired by Quinlan’s well-known ID3 [23] and Michal-
ski’s A4 [24] algorithms. Both ID3 and A9 assume there is no noise present in
the domain and search for a perfect description of the train data. However,
when dealing with real-world data, we expect some noise to be present in the
domain and need to find a way to handle it.

8

1.4. Rule Learning Algorithms

Table 1.2: Evaluating samples in Table El] with 1R

feature rule €ITors fotal
errors
< 156,784 — benign 0/3
filesize > 156,784 A < 773,044 — malware 1/4 2/10
> 773,044 A < 966,595 — benign 1/3
4 .
size of headers < 4,096 = benign 3/8 4/10
> 4,096 — malware 1/2
< 2016-10-11 — benign 2/5
timestamp > 2016-10-11 A < 2018-5-29 — malware 1/3 3/10
> 2018-5-29 — benign 0/2
< 8,479 — benign 0/4
printables # > 8,479 N < 25,774 — malware 0/4 0/10
> 25,774 — benign 0/2

Clark and Niblett presented three requirements that should be met by rule
learning algorithms to be considered useful in the real world domain. They
should be accurate even for noisy data, efficient in rule generation, and the
result should be simple enough to remain well comprehensible. The algorithm
is shown in Algorithm P.

Algorithm 2: CN2
Input: Train set — T'Set
Output: Decision list
1 R {}
2 repeat
3 T4 lFmd_Best_Rule(TSet)l;
if r is not empty then
T'Sub < coverage(r, T Set);
TSet < T'Set\T Sub;
C + most frequent class in T'Sub;
let r — C;
R+ RUm;
10 end

© w0 N O ;e

11 until T'Set is empty or r is empty;
12 return R;

1. DEecisioN RULES

Describing the Steps of

From a high point of view, CN2 is not very complicated and corresponds
to the already mentioned description of sequential covering. It starts with
an empty decision list (step 1) and tries to cover as many samples from
the train set as possible. This process ends once the train set is empty or
no further rules can be found. In each iteration, CN2 calls its other func-
tion (step 3), Find__Best_ Rule, presented in Algorithm E, which returns the
rule that describes the train set the best at a given moment. If the rule is
not empty (step 4), then all samples covered by the rule are found and in-
serted into T'Sub (step 5). These samples are then removed from the train
set (step 6), and the most frequent class for T'Sub is found (step 7). This
class is declared to be the consequent of the rule (step 8), and the rule is then
inserted into the decision list with respect to order (step 9). Finally, decision
list R is returned (step 12).

Algorithm 3: Find_ Best_ Rule
Input: Train set — T'Set, maximum rule size — max_ size
Output: best rule r
1S« {}h
2 best_r < empty;
3 conditions < { c| every possible ¢ = feature ® value};
4 repeat

5 N «—{rAc|resS,ce conditions};
6 N« N\(SU{r|re N,rcontradicts itself});
7 foreach r € N do
8 if r is statistically significant A\ usr__fun(r,TSet) then
9 ‘ best_r « r;
10 end
11 end
12 repeat
13 r < worst rule in N;
14 N < N\r;
15 until [N| < maz_size;
16 S+ N;

17 until S is empty;
18 return best r;

Describing the Steps of tF‘ind_Best_RuleJ

Find Best Rule examines the train set and tries to find a rule that best
describes it in its current state. The original algorithm used variable names
STAR and NEW ST AR, which we refer to as S and N for the sake of readabil-

10

1.4. Rule Learning Algorithms

ity. The function starts with an empty decision list S (step 1) and an empty
rule (step 2), best_r. A set of conditions is created for every feature and every
possible value. Then in each step, until .S is empty, a set N is created. The
relation in f ® v depends on the implementation; however, if more relations
apply to one feature, all should be included (step 3). N is built by combining
the rules in S and the conditions set (step 5). Rules already contained in S
and rules that contradict themselves are removed from N (step 6). Every rule
created this way is checked whether it is statistically significant and approved
by a user-defined function (step 8). If so, the best rule so far is replaced by any
rule performing better than it on the train set (step 9). Then, until the size
of N is lower than the user-defined maximum (step 15), rules that perform
the worst are removed from N (step 13-14). S is then replaced by N. As a
result, the best rule is returned (step 18).

Both the significance of the rules and usr__ fun are heuristics used in CN2
to determine the quality of the rules. To test the significance of the rules,
Clark and Niblett [22] used the likelihood ratio statistic [25] given by the
following definition.

Definition 7 (Likelihood Ratio Statistic). Likelihood Ratio Statistic is de-
fined by

n
2 filog, ﬁ, (1.12)
L t;
=1
where n is the number of classes, f; is the class frequency with respect to the
decision list and t; is the real class frequency.

This is done under the assumption that the rules select samples randomly.

The second heuristic is a user-defined function, usr__ fun. In their pa-
per [22], Clark and Niblett used the information-theoretic entropy for function
usr__fun.

Definition 8 (Entropy). Entropy is defined by

n
—> " pilogy pi, (1.13)

i=1
where n is the number of classes and p; the probability for a given class.

In this case, the smaller the entropy, the better the result.

When dealing with continuous attributes, CN2 divides them into discrete
subranges. The paper does not mention the exact process of this discretisation.
Missing feature values are replaced by the most common value occurring for
that feature, respectively, the mean in the case of continuous features [22].

11

1. DEecisioN RULES

1.4.3 I-REP

A standard way of dealing with noisy data in decision trees is called pruning. A
decision tree model that perfectly describes the train set is generated. To avoid
overfitting, branches are then cut off according to a given criterion. In 1994,
Firnkranz and Widmer introduced an algorithm called Incremental Reduced
Error Pruning, I-REP [26], which implements two pruning approaches: pre-
pruning and post-pruning, corresponding to the already described pruning
process for decision trees. Pre-pruning ignores some training examples so that
the final concept would not describe the train set perfectly.

Fiirnkranz and Widmer compare their approach to I-REP’s predecessor,
Reduced Error Pruning, REP. REP uses post-pruning to avoid noise that
could be potentially present in the train set. Although this technique is quite
effective in noisy domains, it also has several disadvantages.

For a large set of data, REP turns out to be very inefficient, as its com-
plexity is O(n?), where n is the number of samples in the train set. I-REP is
by several magnitudes faster, and its complexity is O(nlog?(n)). Both I-REP
and REP split the train data into two sets, a growing set and a pruning set.
The growing set is used to learn new rules and the pruning set allows for the
rules to stay more general. The difference is that REP creates both of these
sets only once, and thus the pruning set is used for post-pruning only. This
means that REP heavily depends on how both sets are created. On the other
hand, I-REP splits examples during each iteration and reduces REP’s problem
to a single rule learning. This strategy has drawbacks as it may consider a
nonempty rule worse than an empty one.

In contrast to decision trees, which use the divide-and-conquer technique,
rule learning algorithms use the separate-and-conquer technique. Both tech-
niques are relatively similar, but separate-and-conquer first focuses on the
part of the train set and tries to describe it. In contrast, divide-and-conquer
strives to maximise the separation between classes [13]. Firnkranz and Wid-
mer pointed out another significant difference: branch pruning does not affect
other branches, while rule pruning does affect other rules. This way, REP
does not have to pick the correct features, and pruning will not necessarily
help. I-REP solves this by pruning the rule right after it has been learned and
by using a decision list to preserve the order.

The last disadvantage mentioned in the paper is using a bottom-up hill-
climbing technique to maximise the accuracy. In noisy domains, the rules can
get too specific, resulting in a lot of pruning and a higher chance of getting
caught in a local maximum. Instead of bottom-up hill-climbing, I-REP uses
a top-down approach. This means that the final result is found by gradually
adding rules to an empty decision list.

12

1.4. Rule Learning Algorithms

Algorithm 4: [-REP
Input: Positive samples — Pos, Negative samples — Neg, Split Ratio
Output: Decision list R
1 R {};
2 while Pos # () do
3 Split Examples(Split Ratio, Pos, PosGrow, PosPrune);

4 Split Exzamples(Split Ratio, Neg, NegGrow, NegPrune);
5 r < empty rule;
6 | while NegGrow # () do
7 r < r A FindLiteral(r, PosGrow, NegGrow);
8 PosGrow < coverage(r, PosGrow);
9 NegGrow «+ coverage(r, NegGrow);
10 end

11 r < PruneRule(r, PosPrune, NegPrune);
12 if Accuracy(r) < Accuracy(fail) then

13 return R;

14 end

15 else

16 Pos < Pos\coverage(r, Pos);
17 Neg < Neg\coverage(r, Neg);
18 R+ RUr;

19 end

20 end

21 return R;

Describing the Steps of

I-REP requires the data to be split into positive and negative samples in
its input. One can also specify a split ratio, which is by default set to %
I-REP starts with an empty decision list (step 1) and completes it by itera-
tively adding rules until the set of positive samples, Pos, is empty (step 2).
Both Pos and Neg are randomly split into a growing set (2/3) and a pruning
set (1/3) (step 3-4). Then, the algorithm tries to find such a rule that does
not cover the negative growing set (step 6-10). However, the paper does not
further specify how this should be done. We could argue that for some sets,
this condition will never be satisfied. In other words, we have no guarantee
that a rule that covers the positive growing set the best will not cover the neg-
ative growing set. Thus, this part of the code can get stuck in an infinite loop,
and another condition is necessary to break out of it. After the rule is built,
it gets pruned using both pruning sets (step 11). PruneRule removes the
last condition to maximise pruning metrics mentioned below. The accuracy
of this rule must not be lower than the accuracy of an empty rule given by

13

1. DEecisioN RULES

HLN (step 12). If so, the algorithm ends and returns decision list R (step 13).

Otherwise, it removes the covered samples from both positive and negative
sets (steps 16-17), and it appends the rule to the decision list with respect to
order (step 18).

The paper mentions two variants of I-REP. Both differ in the metrics that
are used for pruning. I-REP-1 tries to maximise the following formula:

p+ (N —n)

PrLreP-1(p, Py, N) = PrN

(1.14)
where p (n) is the number of positive (negative) samples covered by the current
rule from a total number of P (V) positive (negative) samples in the pruning
set. The accuracy of the rules must not fall under PJFLN. I-REP-2 maximises

p

Prrep-2(p, P,n, N) = ntp

(1.15)

and the accuracy, also given by this formula, must not fall under 50%.

I-REP is an algorithm well suited for two-class classification. At the time I-
REP’s implementation was not ready for multiclass classification, neither was
it capable of handling continuous attributes. We could run the algorithm for
every class and divide them into discretised intervals in the case of continuous
attributes. The paper does not mention how it would handle missing values,
too.

1.4.4 RIPPER

Thanks to its complexity, [-REP is very efficient on large train sets. However,
in 1995, Cohen showed that I-REP does not learn rules well enough and can be
outperformed by previously known algorithms, such as C4.5rules [19]. Cohen
has addressed specific issues and explained how I-REP could be improved.

In his paper [19], Cohen introduced a new algorithm called “Repeated
Incremental Pruning to Produce Error Reduction”, RIPPER, a direct suc-
cessor of [-REP. Initially, Cohen’s team was only interested in replicating
Firnkranz’s and Widmer’s results and in doing further testing.

Cohen’s implementation of I-REP differs in some parts. First, when grow-
ing a rule, FOIL’s information gain [27] is maximised.

Definition 9 (FOIL’s information gain). We define FOIL’s information gain
of rules g and r1 as follows:

—log, —20), (1.16)

.F’I”o,T‘l = Do lo
(ro,71) p(g2pl+n1 82 o

where py (no) is the number of positive (negative) samples covered by rule rg,
and p1 (n1) is the number of positive (negative) samples covered by rule ry.

14

1.4. Rule Learning Algorithms

Their implementation allows multiple conditions to be deleted in pruning,
whereas the original implementation allowed only one condition to be deleted.
Rule learning stops when a newly generated rule has an error rate greater
than 50%.

Cohen and his team also generalised the algorithm for multiclass problems.
The classes are sorted in ascending order based on their prevalence; for exam-
ple, the least frequent class is the first, and the most frequent class is the last.
Then, for each class, I-REP is used to separate it from other classes. Their im-
plementation can handle continuous features as well as missing values. When
testing a sample with a missing value, the test fails.

To improve the algorithm, Cohen’s team made three modifications. Based
on their testing, they traced that the original Metric ([L.14) used for pruning
(assuming P and N are fixed) was significant as to why the algorithm has not
been able to converge in some cases. As shown by Cohen, this metric prefers
rule r; that covers p; = 2000 positive samples and n; = 1000 negative samples
to rule r; that covers p; = 1000 positive samples and n; = 1 negative sample.
The metric was then replaced by

p—n
p+n’

Pripper(p; Pyn, N) = (1.17)

I-REP’s rule learning often stops too soon due to the condition of the
maximal error rate of 50%. The solution to this was to minimise the total
description length instead [19, 17].

Definition 10 (Description Length). Given the positive real numbers n, k
and p # 1, we define the description length as follows:

1 1 1
S(n,k,p) = §(k10g2 » + (n — k) log, 1 + logs k), (1.18)

-Dp

As described by Cohen [19], this encoding allows two parties (sender and
recipient) to work over a set of n elements. The recipient can recognize k
elements, and p is known ahead. log, k is the number of bits required to send
the number k. The whole metric is scaled by % to limit possible redundancy
in the features.

Definition 11 (Decision List Exceptions). For a given set of samples S with
a positive class P and a negative class N, and for a given decision list R, we
define the number of exceptions as follows:

E(R, S) = log, (jf;) + log, (;7;) (1.19)

where tp (tn) is the number of samples correctly classified as P (N), and fp
(fn) is the number of samples incorrectly classified as P (N).

15

1. DEecisioN RULES

Definition 12 (Total Description Length). For a given set of samples S and
a decision list R we define its total description length as follows:

ki
T(Ra S) = ZS(TL,]{/},,*) +8(Ra 5)7 (120)
reER n
in order
where n is the total number of possible conditions for S and k, is rule r’s
length.

Learning stops once the total description length is more than d bits larger
than the smallest total description length found so far, or if there are not
any positive samples remaining. Cohen and his team used d = 64 for their
experiments.

The last step to improve I-REP’s performance was to add rule optimisa-
tion. For each rule, in the order they have been learned, two new rules are
created. The first rule, called replacement, is created by growing an empty
conjunction. The second rule, called revision, is grown by adding_conditions
to the original rule. Both rules are pruned and minimise Metric ([l.14) on the
whole pruning set. At the end of this process, it has to be decided whether
the replacement, the revision, or the original rule should be used. Out of the
three, the rule that lowers the total description length the most is picked.

Describing the Steps of

RIPPER can be divided into two parts, LlREP*, see Algorithm a, which sim-
ilarly grows a decision list as [-REP does, and the optimisation part in Algo-
rithm §. Unlike I-REP, I-REP* can start with a nonempty decision list, which
is further expanded. For steps 2—6 and steps 14-16, see the Algorithm E After
growing and pruning a rule, the total description length (TDL) (see Defini-
tion ﬁs is calculated (step 7). Then, if TDL is better than the minimum
description length (MDL), which is by default set to +o0o (step 1), TDL re-
places MDL (steps 8-10). Else, if TDL is greater than MDL by more than d
bits, the loop breaks (steps 11-13). Then for each rule in reversed order, check
whether or not the rule increases MDL. If it does, remove it (steps 18-24).
Note, however, that the original paper [19] does not specify how to minimise
MDL or in what order should be the rules removed.

Describing the Steps of RIPPER

The second part of the algorithm RIPPER starts by calling I-REP* to build
a new decision list R (step 1). k iterations follow, by default two (step 2). To
keep track of the remaining samples, RPos and RNeg are initialised. Then,
for every rule r in decision list R, in the order in which they were learned,
the samples are split into a growing set and a pruning set (steps 6-7). Two
new rules are created, rev and rep. The process for both is quite similar, yet

16

1.4. Rule Learning Algorithms

Algorithm 5: [-lREP*

[NV A VU

© @

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Input: Positive samples — Pos, Negative samples — Neg, Split Ratio,
Largest bit difference — d, Decision list — R
Output: Decision list R

MDL « +o0;
while Pos #) do
Split Examples(Split Ratio, Pos, PosGrow, PosPrune);
Split Exzamples(Split Ratio, Neg, NegGrow, NegPrune);
r < GrowRule(PosGrow, NegGrow);
r < PruneRule(r, PosPrune, NegPrune);
TDL < total description_length(R);
if TDL < MDL then
| MDL+« TDL
end
else if TDL — MDL > d then
‘ break
end
Pos < Pos \ coverage(r, Pos);
Neg < Neg \ coverage(r, Neg);
R+ RUr;
end
for r;,i € {|R|,...,1} do

MDL <« total__description__length(R);
TDL < total description_length(R \ 7;);
if TDL < MDL then
‘ R <+ R\ ry;
end
end
return R;

revise starts by growing an empty conjunction (step 8) and replace starts by
adding new conditions to the iterated rule r (step 11). Both rules are then
pruned, and two new decision lists are constructed, Revise and Replace, both
without the rule r, but containing the new rules rev and rep (steps 9-10 and
steps 12-13). Decision list that minimises TDL is the new decision list R (step
15). The rule r is updated accordingly (step 16); it either stays the same or
becomes rev or rep. Samples that are covered by the rule r are removed from
RPos and RNeg (steps 17-18). To cover any remaining samples, [-lREP* is
called again with the existing decision list R.

17

1. DEecisioN RULES

Algorithm 6: RIPPER
Input: Positive samples — Pos, Negative samples — Neg, Split Ratio,
Largest bit difference — d, Number of iterations — k
Output: Decision list R
1 R« I-REP * (Pos, Neg, Split Ratio, d, {});

2 for1l...kdo
3 RPos < Pos ; // remaining positive samples
4 RNeg < Neg ; // remaining negative samples
5 for r € R do
6 Split Examples(Split Ratio, RPos, PosGrow, PosPrune);
7 Split Exzamples(Split Ratio, RNeg, NegGrow, NegPrune);
8 rev < GrowRule(PosGrow, NegGrow);
9 rev < PruneRule(rev, PosPrune, NegPrune);
10 Revise < (R \ r) U rev;
11 rep < GrowRule(PosGrow, NegGrow,r);
12 rep < PruneRule(rep, PosPrune, NegPrune);
13 Replace < (R \) Urep;
14 DLs + {R, Revise, Replace} ; // DLs ...Decision lists
15 R + argmin(DLs) ; // minimise description length
16 update r ; // based on the decision list R
17 RPos < RPos \ coverage(r, RPos);
18 RNeg < RNeg \ coverage(r, RNeg);
19 end
20 R+ I-REP x (RPos, RNeg, SplitRatio, d, R);
21 end

22 return R;

1.4.5 Other Approaches

In 2003, Dain et al. [28] published the algorithm I-REP-++. It uses ideas
proposed by Cohen [19] to improve I-REP’s accuracy. The authors proved that
FOIL’s information gain is sortable. This allowed them to use special data
structures that profit from this. Since they aimed to reduce time complexity
mainly, they did not use the total description length (see Definition @) to
stop rule learning. Instead, -REP++ stops after it has learned five bad rules
(covers more negative than positive samples).

Rule learning search space can be of considerable size. That is why other
rule learning methods, such as genetic algorithms, can be used in this domain.
In [29], chromosomes (genes in a chromosome correspond to conditions — see
Definition [ll) are represented by classification rules (see Definition E) with three
mutation operators. Mutation operators change certain parts of the gene (e.g.

18

1.4. Rule Learning Algorithms

relation >= to <). Fidelis et al. have also used two-point crossover, which
randomly exchanges two genes of two parental chromosomes [30]. Mutation
operators and crossover are used to generate new offsprings. Offsprings are
subject to fitness maximisation.

We have mentioned an indirect method for rule extraction from decision
trees — C4.5rules. Generally, we could consider trained machine learning mod-
els as an oracle and use them to generate new data for rule learning. Craven
and Shavlik [31] used this approach in their TREPAN algorithm. However, it
is used to extract decision trees, not decision rules. Also, their oracle decides
the class labels and splits for non-leaf nodes.

19

CHAPTER 2

Portable Executable

Portable Executable (PE) is an executable file format used by 32-bit and
64-bit Microsoft operating systems. Its first appearance dates back to 1993
with the release of the operating system Windows NT 3.1. Although there
are some slight differences, the file format remains very similar to the original
one. Note that 32-bit and 64-bit versions differ, too. This chapter will briefly
describe the PE file format content, allowing the Windows operating system
to map the executable into its memory and load it [32, B3]. The structure of
the PE file format can be seen in Table R.1l.

2.1 Dos Header and Stub

To remain compatible with the Windows operating systems’ previous versions,
Microsoft has kept the original Disk Operating System header, shortly, MS-
DOS header. The MS-DOS header is 64 bytes long and contains a pointer,
commonly known as e_lfanew, to the PE File signature’s file address [34].

Table 2.1: PE File Format

MS-DOS Header
MS-DOS Stub
PE File Signature
PE Header

Optional Header

Section Headers

Section Data

21

2. PORTABLE EXECUTABLE

A short program also follows the header, referred to as STUB, which out-
puts “This program cannot be run in DOS mode.” [35].

2.2 PE Header

The PE file header follows the PE file signature. It was inspired by the
Common Object File Format (COFF) used by Unix. This header contains
information about the target machine, the number of sections, the timestamp
of the file linkage, and more [36].

2.3 Optional Header

Even though this header’s name contains optional, it is only optional for the
object files. This header is essential for executables and Dynamically Linked
Libraries (DLLs). The optional header consists of helpful information about
the executable, such as the initial stack size, program entry point, operating
system version, and more. It also includes important details such as the import
and export symbols, which can be accessed through the data directories [37].

2.4 Section Headers

The Section headers are straight away located after the Optional header. Each
section header has its name, addresses, and a series of flags. The number of
sections is not limited. Some of the typical headers are [3§]:

e .text — combined code segments

o .data, .rdata,.bss — data variables, read only data, etc.
e .rsrc — resource information

o .edata — export section for an application/DLL

o .idata — import section, necessary for the loader to find the target func-
tions

22

CHAPTER 3

Implementations of Rule Based
Classifiers

Below we describe the specifics of our implementations of some of the algo-
rithms mentioned in Section @ and an additional algorithm that performs a
different growing approach with an early stop condition. We have not imple-
mented the CN2 algorithm as the worst time complexity of Find__Best_ Rule
is O(f? s?n), where f is the number of features, s is the number of samples
and n is the maximum size of set STAR (see Algorithm E) [22]. We have
chosen the Python programming language for the implementations. Python
can often serve as an easy to use extension of libraries written in C/C++
or Fortran, such as those available from the SciPy ecosystem [39]. We have
used some of the vectorised operations® available in NumPy [41] to speed up
the execution time. This approach is also recommended in the scikit-learn
documentation [42]. We have also implemented a decision list class to reduce
code redundancy.

3.1 Decision List

Decision list serves as a wrapper for built-in Python data structures. Each
rule contained in the decision list class corresponds to Definition [ﬂ, where the
relation may be one of the following operators: {<=, >=, in}. Operator <=
and operator >= are intended to be used for numerical features and operator
in for categorical features.

'NumPy’s vectorised operations are efficiently implemented in C/C++ or Fortran. They
are more compact, less error-prone, and often resemble well-known mathematical opera-
tions [40].

23

3. IMPLEMENTATIONS OF RULE BASED CLASSIFIERS

Definition 13 (Operator in). The operator in is defined as follows
fins=f=s1V...V[f=sy, (3.1)

where n is the number of values in the set s = {s1,...,8n}.

3.2 1R

Our 1R implementation follows the steps in Algorithm m We have iteratively
searched for splits with at least three members of one class to discretise nu-
meric features. This fact is captured by 1R, o = 3 in Chapter @ Note that
in the case of 1R, we have not found much of a use of NumPy’s vectorised
operations. The implementation is inefficient for larger data sets, and we only
use it for comparison.

3.3 I-REP

As the original paper for I-REP (see Algorithm H) does not cover how to
deal with numerical features, we have used Cohen’s [19] suggestions for the
algorithm. During the growth phase, the algorithm searches for the best split
between the numerical and the categorical features. Rule growth for both I-
REP and RIPPER is guided by maximising FOIL’s gain and stops once there
are no negative samples left in the growing set. Neither of the papers [26, [19]
tackles the issue of learning the same rule twice. This may happen if present
feature values are the same for both positive and negative growing sets. Our
implementation stops the growing phase and proceeds to the next step.

Once a new rule is learned, it is immediately pruned. Pruning is guided by
maximising Metric () When pruning, we start by removing the last con-
dition learned. If the new rule created this way would increase Metric (),
we continue removing conditions that precede it. Else we stop the rule pruning
and return the pruned rule.

We stop adding new rules if the last pruned rule should have an error rate
higher than 50%.

3.4 RIPPER

In Section , we have mentioned that RIPPER can be_divided into two
separate algorithms — I-REP* and RIPPER (see Algorithms f and B) We have
described the rule growth and pruning phases in section above. Unlike I-
REP, I-REP* uses Metric () for pruning and uses different stop condition.
The stop condition is guided by minimising the total description length (see
Definition [12). Unfortunately, this metric is quite expensive, and we_try to
minimise its cost by caching rule description lengths (see Definition [L0). In

24

3.5. Greedy Grow

rules. We tried two additional approaches — Algorithm E and Algorithm E -

Section @, we have mentioned that Cohen [19] does not specify how to remove
that replace steps 18-23 in Algorithm B (see Section)

Algorithm 7: RIPPERK;emove all

MDL < total__description_length(R);
remove < {};
for r;,i € {|R|,...,1} do
TDL « total__description_length(R \ r;);
if TDL < MDL then
| remove < remove Ur;;
end

end
R < R\ remove;

© 0 N o ok W N

Algorithm 8: RIPPERk¢

while dr € R that increases TDL do
r < r that increases T DL the most;
R+ R\

end

oW N =

In Algorithm B, any rule that increases TDL is added to set remove, which
is then removed from decision list R. Algorithm E does not stop removing rules
until no rules remain that increase TDL. Both approaches are less efficient than
the one used in Algorithm f.

We followed the steps in Algorithm E during RIPPER’s optimisation phase.
We maximise Metric () on the whole pruning set in the pruning phase.
RIPPER can have k iterations; we note this fact by RIPPERE.

3.5 Greedy Grow

We propose an algorithm that would not require the data to be divided into
a growing and a pruning set during our experiments. By doing so, we believe
that we can consider all the data, and if any noise should be present, it should
be avoided by carefully chosen metrics.

Naturally, since we have seen I-REP and RIPPER, a question arises, how
are we supposed to prune our rules? We could use the same data we used
for growing for pruning, or we could not use any pruning at all. However,
this could lead us down a dangerous path, as we could easily overfit the data
and produce lengthy rules. This may lead to similar problems as described in
PRISM [1§]; that is, the rules could potentially use features that are irrelevant

25

3. IMPLEMENTATIONS OF RULE BASED CLASSIFIERS

to our problem. To prevent this, we could either stop condition search or rule
growth earlier. We tried the first approach in Algorithm g, described below.

Algorithm 9: Greedy Grow
Input: Positive samples - Pos, Negative samples - Neg,
Stop Grow - stopsearch, Stop Learn - stopjearn
Output: Decision List R
1 R+ {};
2 while Pos #) do

3 PosGrow, NegGrow < Pos, Neg;
a | re{}h
5 while NegGrow # () do
6 PosS, NegS « |PosGrow|,|NegGrow|;
7 while True do
8 ¢ < FindLiteral(r, PosGrow, NegGrow, PosS, NegS);
9 if rUc=rV stopsearch(r Uc) then
10 ‘ break
11 end
12 r<rUJc;
13 PosGrow < coverage(r, PosGrow);
14 NegGrow <+ coverage(r, NegGrow);
15 end
16 if 7 has not changed then break ;
17 end
18 if stopieqrn(r, Pos, Neg) then
19 break;
20 end
21 Pos < Pos \ coverage(r, Pos);
22 Neg < Neg \ coverage(r, Neg);
23 R+ RUr;

24 end
25 return R;

In addition to positive and negative samples, we can also specify function
StOpPsearch, function stopieq,n to identify when to stop searching, learning. In
our version of the algorithm, we stop the condition search if the number of neg-
ative samples should decrease by less than 20% of the current negative sample
size (NegS). We ran several experiments, and 20% seems to be producing
accurate and more compact decision lists than a lower percentage. We note
this by GREEDY 40, We have also decided to stop learning in the same way
that I-REP* does, that is, by minimising TDL (see steps 713 in Algorithm

). We need to ensure that the generated rule is not an empty conjunction
when stopping the condition search.

26

3.5. Greedy Grow

After initialising PosGrow and NegGrow, two nested loops follow (step 3).
The first one can be understood as rule growth (step 5) and the second one
as condition search (step 7). When searching for literals, we are maximising
the following metric:

P n

Gereepy (0, Pon, N) = 5(1 -), (3.2)
where p (n) is the number of positive (negative) samples covered by the rule
r, and P (N) is the total number of positive (negative) samples. Using this
metric, we make no distinction between a rule that covers 80% positive samples
and 70% negative samples and a rule that covers 25% positive samples and
4% negative samples. This allows identifying potentially good rules quickly.
Note that FindLiteral takes as an input PosS and NegS, too (step 8). They
correspond to the total number of positive (negative) samples in Metric (B.2).
If adding a condition ¢ to the rule » does not change it or stopsearen fires,
we stop the condition search (steps 9-11). Otherwise, we add the condition
to the rule (step 12) and proceed with the condition search. We only check
whether the rule has changed or not in the outer loop (step 16). After checking
stoprearn, We remove samples covered by the rule r and add the rule r to
R (steps 21-23).

27

CHAPTER 4

Experiments

Our aim throughout the experiments was to find out how well do rule-based
classifiers (RBCs) interpret the results of various machine learning meth-
ods. Along with these experiments, we were also interested in behavioural
changes of the algorithms should we replace pruning metrics. Additionally,
we tested other rule removing approaches mentioned in Section B.4. We used
the Python programming language as we did for the implementations, along
with the interactive environment Jupyter Notebook [43], packages from the
SciPy ecosystem [B9], or modules in the Python library (e.g. pickle [44]
to save experiments’ outcomes). The implementations of the RBCs and the
experiments can be found on the enclosed SD card.

4.1 Dataset Description

We have collected two datasets. A smaller one has been made available to
us by Kozak [45], whom we thank for access, and the other one called EM-
BER (Elastic Malware Benchmark for Empowering Researchers) [116] is freely
available to researchers.

4.1.1 Kozak’s Dataset

Kozak’s dataset consists of 30,154 samples and 303 columns. Columns are
built from categorical and numerical features, such as flags, hashes or section
entropy. One of the columns, is_malware, indicates whether the file is benign
(0) or malicious (1). The data is divided into 27,473 malicious samples and
15,077 benign samples. More details about the features can be found in the
file feature_transformation.ipynb on the enclosed SD card.

29

4. EXPERIMENTS

4.1.2 EMBER Dataset

The EMBER dataset consists of 1.1M samples, divided into a train set with
900K samples (300K malicious, 300K benign, 300K unlabeled) and a test
set with 200k samples (100K malicious, 100k benign). The feature set is
divided into eight groups of raw features. Similarly to Kozak’s dataset, the
EMBER dataset includes the header information, lists of imported functions,
byte histograms, and more. We have ignored the unlabeled samples in the
train set throughout our experiments.

4.2 Feature Transformation and Selection

Even though RBCs can handle numerical and categorical features, tradi-
tional machine learning algorithms and the implementations available from
scikit-learn [46], which we used to train our models, require the features to
be numerical only. Thus we performed similar steps to transform the datasets
as in Kozak [47], briefly described below.

4.2.1 Feature Vectorisation

Kozék’s dataset includes features (documents) that are sequences of strings,
for example, that inform the program user about an error. Some strings
may or may not carry a piece of important information as to whether the
file is malware or not. To transform string features into a sparse matrix, we
used a measure called TF.IDF (Term Frequency times Inverse Document
Frequency) [48], which assign every string a number with the following prop-
erties.

Definition 14 (Term Frequency). The Term Frequency is defined as follows:
fij

TF;=—219
Y maxy fi;

(4.1)

where f;; is the frequency of string i in document j.

Definition 15 (Inverse Document Frequency). The Inverse Document Fre-
quency is defined as follows:

N
IDF; =logy —, (4.2)
n;

where N is the number of all documents and n; is the number of occurences
of string 1 across all documents.

The TF.IDF for string ¢ in feature j is then simply defined as T'F;; x IDF;.
Strings with the highest TF.IDF often offer a good description of a given
feature [48]. scikit-learn implements this in TfidfVectorizer [49], which

30

4.2. Feature Transformation and Selection

we used for the transformation. Some of the words (strings) do not bear
any meaning on their own even though they occur quite often, for example,
“or” and “the”. They are called stop words. Thus, we have supplied the
TfidfVectorizer with the stop_words parameter for languages, which we
have identified to be present in the features and the max_df parameter to
exclude statistically uninteresting strings.

4.2.2 Feature Hashing

For the rest of the categorical features, we have used the class FeatureHasher,
which is also implemented in scikit-learn. FeatureHasher [50] uses a tech-
nique called the hashing trick. Feature names are transformed into a sparse
matrix, and a hash function is used to calculate the index of a categorical
value.

The authors of the EMBER dataset published a code [51] that transforms
available raw features into vectorised ones using the hashing trick. We have
decided to use this code to transform the features and ended up with 2,381
new ones.

4.2.3 Feature Selection

After transforming features in Kozék’s dataset, we immediately removed fea-
tures with zero standard deviation and features that were duplicates only.
The transformed dataset consisted of 1,290 features.

Before proceeding further, it was also necessary to standardise the data.
Some machine learning algorithms’ behaviour may worsen if the data do not
appear to be from the normal distribution [52]. We have used the class
MinMaxScaler from scikit-learn that transforms the features as follows:

x — min(X)
max(X) — min(X)’

Tstd = (43)
where x is the original value and X is the collection of every value in a given
feature.

Consequently, we have decided to use yet another scikit-learn tool,
SelectFromModel, to reduce the dimensionality of both datasets. This tool is
a meta-transformer that accepts an estimator as a parameter [53]. The esti-
mator must store feature importances. For example, feature importances for
random forest classifier are given by two measures: how much does accuracy,
Gini impurity, decrease if a variable is eliminated, chosen to split a node [54].
We can then limit the number of selected features by setting either threshold
or max_features. In our case, we have set max_features to 100.

For Kozak’s dataset, we have used Extra Trees classifier, and for the EM-
BER dataset, Random forest classifier. Random forest classifier is an ensemble
model built from many decision trees (see Section B) The final decision of

31

4. EXPERIMENTS

this model is driven by a majority vote [48]. The difference between the two is
that random forest makes the input more diversified and chooses an optimum
split on the selection of cut points. Extra Trees classifier works with the orig-
inal input and chooses the split randomly [55]. We could also use other meth-
ods for feature selection, such as Principal Component Analysis (PCA) [56].
However, PCA transforms the features, which results in interpretability loss.
Therefore we have decided to use the aforementioned methods.

In the end, we have identified features that carried no useful information as
to whether the file is malicious or not. This was done using the 1R algorithm
(see Algorithm m), and we removed three features that had less than 10% of
an error rate, e.g. feature is_exe.

4.3 Evaluation Metrics
To understand how well do machine learning (ML) algorithms or RBCs per-
form, we use several different metrics described in this section. We first define
terms that are used in the metrics [57].
o True Positive (TP) — Correctly predicted malicious samples as malicious
o True Negative (TIN) — Correctly predicted benign samples as benign
« False Positive (FP) — Incorrectly predicted benign samples as malicious
o False Negative (FIN) — Incorrectly predicted malicious samples as benign
Using the terms above, we can calculate the false positive rate (FPR),

also referred to as the fall-out rate [58], the true positive rate (TPR), also
known as sensitivity and accuracy (ACC).

FP
FPR= 557N (44)
TP
TPR= ———— 4.
R TP+ FN (4.5)
TP+TN
A = 4.
ce TP+TN +FP+ FN (4.6)

To better distinguish between individual performances of RBCs, we use
additional metric. We denote the number of rules in a decision list as DL size
and the mean number of conditions for rules in the decision list as ¢ r size. We
highlight those numbers that have the lowest “DL size X @ r size” throughout
the experiments.

32

4.4. Interpreting ML results using RBCs

Table 4.1: Well known ML algorithms and their performance on Kozak’s
dataset, and the EMBER dataset

Kozak’s Dataset EMBER Dataset
ML algorithm ACC TPR FPR ACC TPR FPR
LogisticRegression 95.34 95.90 5.59 07.58 89.88 74.72
RandomForest 98.82 99.43 2.38 89.21 92.01 13.58
DecisionTree 98.66 98.89 2.18 88.86 90.20 12.49
kNN 98.64 98.52 2.15 78.86 77.97 20.26
AdaBoost 98.25 98.85 3.11 87.00 90.25 16.25

4.4 Interpreting ML results using RBCs

We have used five ML algorithms to classify the datasets for the purpose of our
experiments — Logistic Regression (LR), Random Forest (RF), Decision Tree
(DT), k-nearest neighbours (kNN) and AdaBoost. For Kozdk’s dataset, we
have also fine-tuned the parameters, see file m1_tuning.ipynb on the enclosed
SD card. To reduce the number of biases, the training was done using 5-
fold cross-validation [48]. 5-fold cross-validation works as follows: the data
is divided into five equal chunks. One of the five chunks is declared as the
test data, and the rest of the chunks as the train data. This is repeated five
times, each time with a different chunk for test data, and the final result is the
average of all five results. The averaged results of each ML algorithm can be
seen in Table 1.1 We have also saved the predictions on the test data during
each fold.

Then, we used our RBCs implementations and trained them on ML algo-
rithms’ predictions. That is, for each ML algorithm and all of its five predic-
tions on the test data, RBCs were used to describe the outcomes of that ML
algorithm. The results were then averaged and are shown in Table @

We can see that 1R is easily outperformed by all other algorithms, except
I-REP’s FPR. Unfortunately, its simple approach leads to very long deci-
sion lists, which could still be understandable by machines, but not so much
by human beings. Despite its high FPR and second-lowest accuracy, I-REP
produces straightforward decision lists that could be easily understood by hu-
mans, too. Our algorithm, GREEDY¢, seems to be doing well in accuracy
and FPR - on Kozak’s dataset, it achieved the highest accuracy. However, it
could still potentially be using irrelevant features, as its sum of all conditions
is much greater than e.g. RIPPER’s. Finally, we have also tested RIPPER
with three different values for iterations (k). Although RIPPER does seem to
increase its accuracy with each iteration, it does not increase its FPR, which
seems rather unstable.

33

4. EXPERIMENTS

Table 4.2: Interpreting ML algorithms’ results on Kozék’s dataset using RBCs

time (s) shows the approximate time for training in seconds for each fold.
For example, I-REP required 25 seconds in total for kNN.

RBC ACC TPR FPR DL size @1 size time (s)
1Rmin_cl =3 83.31 77.34 6.23 724.2 1.00 245
I-REP 96.94 99.07 6.81 5.4 2.97 5
e RIPPERO 98.83 98.57 0.70 12.4 3.87 17
= RIPPER1 99.13 99.04 0.71 16.4 3.54 56
RIPPER2 99.18 99.11 0.68 17.0 3.48 106
GREEDY 505 99.35 98.98 0.00 17.60 5.64 30
1Rmin_cl =3 80.18 74.16 8.74 2976.2 1.00 244
I-REP 95.77 99.58 11.24 6.6 2.84 5
9 RIPPERO 99.25 99.06 0.38 14.2 4.11 18
~ RIPPER1 99.41 99.33 0.43 19.8 3.36 56
RIPPER2 99.52 99.47 0.39 23.8 3.04 96
GREEDY 509 99.55 99.31 0.00 18.6 5.31 29
IRmin_cl =3 80.04 74.09 9.14 2976.2 1.00 241
I-REP 95.59 98.92 10.47 6.0 2.85 5
= RIPPERO 98.40 98.12 1.09 15.6 4.50 21
A RIPPER1 98.58 98.53 1.34 15.0 4.32 66
RIPPER2 98.67 98.72 1.44 15.4 4.13 102
GREEDY 509 98.87 98.25 0.00 23.4 6.03 43
1Rmin_cl =3 81.67 76.65 9.30 2257.8 1.00 240
I-REP 95.09 99.02 11.99 6.6 2.97 5
Z RIPPERO 98.45 98.22 1.14 15.2 4.54 21
E RIPPER1 98.67 98.64 1.27 16.2 4.40 67
RIPPER2 98.83 98.86 1.24 20.2 3.99 103
GREEDY 9 98.84 98.19 0.00 22.4 6.08 43
1Rmin_cl =3 81.47 72.04 1.23 2911.8 1.00 255
2 I-REP 95.33 99.04 11.49 5.8 3.02 5
g RIPPERO 98.54 98.28 0.99 13.6 4.25 21
% RIPPERI 98.79 98.68 1.01 14.8 419 64
< RIPPER2 98.87 98.75 0.91 15.6 4.21 107
GREEDY 9 98.93 98.34 0.00 19.8 5.98 38

Similar experiments were performed with the EMBER dataset. Since EM-
BER comes with its own test set, we have trained the ML algorithms using the
train set only. The results can be seen in Table #.1. The training of the RBCs
was done using the ML algorithms’ predictions on the test set. Obtained
results are shown in Table @

We can determine that previous outcomes on Kozék’s dataset apply to the
EMBER dataset, too. However, there is a significant drop in both accuracy
and sensitivity. We could argue that this drop is caused by the ML algorithms
not performing too well with our current settings. On the other hand, the
worst performing algorithm LR was described almost perfectly by the RBCs.
Observe that for LR, the decision list sizes and the sizes of their rules are quite
small compared to other ML algorithms. Even though minimising the TDL
metric (see Definition [19) should prevent prematurely ending rule learning,
we can see that this may not always be the case, as with kNN. It may be

34

4.4. Interpreting ML results using RBCs

Table 4.3: Interpreting ML algorithms’ results on the EMBER dataset using
RBCs

time (s) shows the approximate time in seconds for training of RBCs

RBC ACC TPR FPR DL size @ size time (s)
I-REP 97.14 99.91 15.74 19 2.32 202
RIPPERO 99.77 99.76 0.20 24 3.92 234
5 RIPPER1 99.80 99.80 0.20 27 3.78 807
RIPPER2 99.82 99.82 0.22 28 3.71 1445
GREEDY 509 99.77 99.72 0.00 33 4.67 662
I-REP 91.94 98.95 15.90 53 7.40 659
RIPPERO 97.83 96.36 0.51 98 9.80 2937
E RIPPER1 98.30 97.45 0.75 105 9.65 10792
RIPPER2 98.43 97.70 0.75 112 9.73 18726
GREEDY 309 98.31 96.80 0.00 151 10.94 5039
I-REP 86.82 92.80 19.48 35 8.83 1322
RIPPERO 89.37 80.53 1.30 127 11.68 8901
E RIPPER1 91.03 85.23 2.85 128 11.03 41599
RIPPER2 91.71 87.72 4.07 122 10.44 67220
GREEDY 509 89.02 78.62 0.00 211 11.90 10106
I-REP 79.46 86.05 26.90 37 6.97 1223
RIPPERO 77.38 54.25 0.29 57 9.75 4291
% RIPPER1 79.38 58.42 0.40 75 9.44 14938
“ RIPPER2 79.75 59.19 0.40 78 9.45 31445
GREEDY 209 75.86 50.84 0.00 64 11.23 3096
. L-REP 87.58 96.39 22.47 30 7.97 960
§ RIPPERO 94.02 89.85 1.23 138 10.93 8488
r:g RIPPER1 94.64 91.93 2.27 133 10.45 39098
) RIPPER2 95.08 93.23 2.82 140 10.21 64606
< GREEDY 509 92.09 85.15 0.00 181 11.75 9762

necessary to increase the largest bit difference (see Algorithm B)

4.4.1 Pruning and Metrics

In Section , we have covered how both I-REP and RIPPER handle noisy
data — by utilising pruning. Cohen [19] pointed out that I-REP’s incapability
of converging towards better solutions is mainly caused by its pruning metric.
We were interested in knowing how much the pruning metric affects learning
and whether the cause of RIPPER’s FPR increase during optimisation phases
lies in the usage of Metric ()

Since the multiclass problem can be reduced to an alternating two-class
problem (see Section), we can understand pruning metrics as two-variable
functions. Fortunately, this number is perfect for a better understanding prun-
ing metrics by graphing them. Figure shows some of the pruning metrics
we have used in our experiments. We have simplified I-REP’s pruning metric
as it can be viewed as a plane for fixed P and N (see Metric (@)) Here lies
the key reason why I-REP tends to make bad decisions when pruning; points
with a different number of malicious and benign samples are often indistin-

35

4. EXPERIMENTS

Table 4.4: Testing different metrics on Kozdk’s dataset using RIPPERO

RBC ACC TPR FPR DL size @ 1 size
RIPPERO 98.83 9857 0.70 12.4 3.87
~ RIPPERO, .. 9885 99.10 1.60 11.6 3.74
= RIPPERO ;o 9870 99.00 1.83 10.4 3.47
RIPPERO,-: 98.47 99.00 2.47 8.8 3.22
RIPPERO 99.25 99.06 0.38 14.2 411
= RIPPERO, - 9923 9917 0.65 14.2 3.75
“ RIPPERO ,;; 9871 99.54 2.81 14.2 2.90
RIPPERO, 1 98.44 98.20 1.10 10.0 3.40
RIPPERO 98.40 98.12 1.09 15.6 4.50
.. RIPPERO, - 9810 98.60 2.81 12.0 3.73
2 RIPPERO ;- 9779 98.78 4.0 8.8 3.32
RIPPERO,-: 97.59 98.60 4.26 8.6 3.59
RIPPERO 98.45 98.22 1.14 15.2 4.54
> RIPPERO . 9821 98.79 2.82 12.8 3.80
% RIPPERO ,; 9791 9876 3.62 9.6 3.36
RIPPERO,-: 97.09 99.05 6.45 7.8 3.26
- RIPPERO 98.54 9828 0.9 13.6 4.25
5 RIPPERO; 9813 9851 2.56 9.8 3.65
= RIPPERO ;9798 98.98 3.84 9.6 3.23
< RIPPERO,-: 97.19 97.58 3.1 7.8 3.31

guishable. RIPPER’s pruning metric seems to have good characteristics; the
only issue we could identify is that it does not differentiate between positive
samples when no negative samples are present.

We tried several different metrics and picked three that performed well on

Kozak’s dataset:)

p—n p—n p—np- (4.7)
Vi Vo Jhr
M

Veach V' both p71

where p is the number of positive samples and n is the number of negative
samples in the pruning set. While designing the metrics, we searched for
functions with similar properties as Metric () Metrics were tested using
both I-REP and RIPPERO. However, since the results did not differ signif-
icantly, we only list those used with RIPPERO in Table @ Metrics veach
and v/both seem to outperform RIPPER’s pruning metric sensitivity wise. On
the other hand, the fall-out rate increases several times, too. There seems to

36

4.4. Interpreting ML results using RBCs

(a) Simplified IREP’s pruning metric (b) RIPPER’s pruning metric
— p=n
f(p,n):p—n f(pan)_P‘HL
oaf T In | [T

©
o

T T T T

o

|
e
no
T

|
<
=~
T
JJJJJJJJJJJJ‘JJ

(=3
<)

95 15 1 05 0
malicious (p)
(c) Scaled RIPPER’s pruning metric (d) Scaled function with a saddle point

flpn) = B f(p.n) = 222

3
2.
11 08 06 04 02 0 =
—
2

malicious (p)

R

r,

-

=

S S S H—
=

,1‘7
0
o <
= 22 15 1 0.5 0 = 22 15 1 0.5 0
- -

malicious (p) malicious (p)
Figure 4.1: Understanding pruning metrics as 3D graphs
Pruning metrics should have the following properties: If only malicious files
are present, pruning metrics should be at their maximum. For benign files
only, they should be at their minimum. Otherwise, they need to
compromise, and should take into account a lower number of benign files.

37

4. EXPERIMENTS

Table 4.5: Testing different metrics on the EMBER dataset using RIPPERO

RBC ACC TPR FPR DL size @ 1 size
RIPPERO 99.77 99.76 0.20 24 3.92
- RIPPERO, o 99.79 99.78 0.16 23 3.17
= RIPPERO, /5577 99.79 99.83 0.39 25 3.40
RIPPEROI,A 99.80 99.83 0.31 25 3.28
RIPPERO 97.83 96.36 0.51 98 9.80
w, RIPPERO, 97.33 97.76 3.14 69 8.62
s RIPPERO, /5577 96.73 98.26 4.99 67 8.49
RIPPEROP—I 95.03 96.42 6.54 17 7.18
RIPPERO 89.37 80.53 1.30 127 11.68
~ RIPPERO, 89.27 89.99 11.49 58 9.93
A RIPPERO, /5% 88.22 90.59 14.29 50 9.58
RIPPEROPA 77.79 63.37 6.99 6 8.00
RIPPERO 77.38 54.25 0.29 57 9.75
7. RIPPERO . 75.69 52.48 1.91 12 7.75
E RIPPERO /5% 83.11 73.80 7.91 62 8.95
RIPPEROpq 64.52 27.77 0.00 3 7.33
- RIPPERO 94.02 89.85 1.23 138 10.93
é RIPPERO, /o7 93.78 93.63 6.06 81 9.70
=5 RIPPERO 57 92.77 93.65 8.23 75 9.37
< RIPPEROpq 88.44 89.65 12.93 11 7.36

be a trend of more compact decision lists for our designed metrics. This could
be a potential trade-off for the otherwise worse performance.

Using the EMBER dataset, we tried to verify our results. Our results
show that metrics veach and vboth aim for higher TPR; however, as we saw
for Kozak’s dataset, they often increase the fall-out rate several times. Unlike
Kozak’s dataset, the drop in the total number of conditions is more significant.
kNN seems to be overall a special case. All metrics, except v both, are not
performing good. Notice that metric p~! is in some cases outperformed by
I-REP, as seen in Table @

We did not record any improvement nor deterioration upon exchanging
Metric () during RIPPER’s optimisation phase.

4.4.2 Removing Rules in RIPPER

We tested two additional rule removal approaches mentioned in Section @ -
RIPPERE emove al and RIPPEREgq¢. In this section, we highlight columns

38

4.4. Interpreting ML results using RBCs

with better performance than RIPPERE. We were expecting the total number

of conditions to drop. Our results on Kozik’s dataset in Table confirm
this, although the drop is not very significant. Both methods seem to perform
worse otherwise; however, after closer inspecting values in Table §.2, we can

see that these differences are minimal.

We ran a similar experiment for the EMBER dataset and ended up with
similar results, as shown in Table . This experiment also shows that re-
moving all rules (RIPPERk;emove a11) may be too greedy; it can lead to higher
FPR and a lower TPR, as seen for DecisionTree.

39

4. EXPERIMENTS

Table 4.6: Using different rule removal approaches (remove_all and sort) in
RIPPERE for Kozék’s dataset

Columns where rule removal approaches performed better than RIPPEREL in
Table are highlighted.

RBC ACC TPR FPR DL size @ 1 size
RIPPERO;emove_an 96.86 95.53 0.82 10.8 3.75
RIPPERO,0y¢ 98.77 98.58 0.89 11.4 3.78
= RIPPERlicmove_all 98.25 98.11 1.51 13.6 2.91
= RIPPERI1so 99.06 99.08 0.96 13.0 3.71
RIPPER2;emove_al 98.65 99.10 2.16 17.2 2.84
RIPPER2¢ 99.17 99.25 0.97 14.6 3.66
RIPPERO;cmove_all 98.37 97.68 0.37 12.2 4.05
RIPPERO,oy¢ 99.14 98.88 0.39 13.4 4.12
& RIPPERLemove an 99.29 99.36 0.83 19.2 3.24
A RIPPERI.x 99.37 99.28 0.45 14.6 3.96
RIPPER2;emove_al 99.50 99.66 0.78 25.4 2.88
RIPPER2.0¢ 99.41 99.31 0.42 14.8 3.91
RIPPERO;emovean 98.09 97.64 1.11 13.8 4.30
RIPPEROsor 98.37 98.15 1.22 15.2 4.30
. RIPPERLiemove_an 98.42 98.35 1.44 14.2 4.11
8 RIPPERI1sy 98.70 98.78 1.46 17.0 4.15
RIPPER2emove_al 98.39 98.79 2.34 16.2 3.50
RIPPER 2.0 98.71 98.79 1.43 16.4 4.12
RIPPERO;emoveall 97.52 96.79 1.15 14.6 4.34
RIPPERO,oy¢ 98.51 98.35 1.20 15.8 4.43
7 RIPPERL emove an 98.04 97.75 1.43 16.8 3.59
% RIPPERl.x 98.66 98.63 1.28 16.0 4.21
RIPPER2:emove_an 98.69 98.93 1.73 20.6 3.46
RIPPER 2,01 98.78 98.76 1.19 16.8 4.22
RIPPERO;emove_an 98.52 98.22 0.93 14.0 4.25
.~ RIPPERO.ox 98.55 98.27 0.93 14.2 4.31
S RIPPERLiemove all 94.84 92.54 0.94 11.2 3.94
% RIPPER 140y 98.75 98.65 1.07 14.4 4.10
< RIPPERZ;emove all 98.10 98.67 2.94 15.8 3.43
RIPPER2¢ 98.89 98.85 1.03 15.4 4.06

40

4.4. Interpreting ML results using RBCs

Table 4.7: Using different rule removal approaches (remove_all and sort) in
RIPPERE for the EMBER dataset

Columns where rule removal approaches performed better than RIPPERK in
Table are highlighted.

RBC ACC TPR FPR DL size @1 size
RIPPERO;emove_all 99.74 99.71 0.15 22 3.91
RIPPEROgo;¢ 99.74 99.71 0.15 22 3.91
r RIPPERIiemove an 99.81 99.80 0.12 25 3.72
= RIPPERI1.rt 99.81 99.80 0.14 25 3.68
RIPPER2;emove_all 99.83 99.82 0.13 27 3.67
RIPPER2¢,¢ 99.84 99.85 0.18 28 3.61
RIPPERO;emove_all 98.11 96.95 0.60 106 9.96
RIPPEROsort 98.13 97.01 0.60 108 9.98
i, RIPPERLiemove all 98.39 97.59 0.71 112 9.88
A RIPPER14o1¢ 98.45 97.78 0.81 119 9.78
RIPPER2;emoveall 98.44 97.88 0.93 110 9.67
RIPPERO;emove_all 86.82 75.04 0.76 93 11.90
RIPPEROsort 86.82 75.04 0.76 93 11.90
— RIPPERLemove_an 89.94 83.26 3.01 100 10.86
2 RIPPERIs 90.54 84.49 3.08 115 11.09
RIPPER2emove_all 82.01 69.72 5.02 99 10.12
RIPPER2¢o:¢ 91.32 87.27 4.40 97 10.33
RIPPERO;emove all 76.14 51.56 0.14 44 9.86
RIPPEROgq;¢ 76.14 51.56 0.14 44 9.86
. RIPPERI1;emove_all 79.16 58.09 0.49 70 9.61
5 RIPPER14ort 79.47 58.73 0.51 76 9.67
RIPPER2;emove all 80.19 60.33 0.64 7 9.73
RIPPER240¢ 79.93 59.79 0.63 83 9.76
RIPPERO;emove al 93.27 88.31 1.07 120 11.05
+ RIPPEROort 93.46 88.71 1.12 126 11.10
8 RIPPERILiemove an 93.73 90.17 2.21 107 10.26
% RIPPER140¢ 94.83 92.43 2.44 138 10.51
< RIPPER2emove_all 94.13 91.74 3.16 97 9.77
RIPPER2+ 95.04 93.24 2.90 135 10.22

41

CHAPTER 5

Discussion

This chapter discusses the results obtained in Chapter @ We further discuss
different behaviours of RBCs and bring another view for a better comparison.
Lastly, we compare our approach with other researchers covering a similar
topic.

5.1 Experiments Review

Our experiments show that RBCs could be a good tool to interpret the results
of ML algorithms. Out of the four algorithms we used, RIPPERE performed
the best. It was able to keep a good accuracy and still more compact deci-
sion lists than GREEDYpy,. RIPPERO’s outcomes could be more useful for
malware detection as it often had the lowest FPR (in RIPPER’S iterations).
The FPR increase may be caused by rule removal (see Algorithm ﬂ), although
different_removal techniques do not necessarily have much of an impact (see
Section) RIPPER2¢t required too much computational time for the
output of RF. Thus it is not included in Table @

The simplest algorithm, 1R, did not perform too well. However, it could
identify good features for other ML algorithms. In our case, we used it to
remove features that did not seem to have any significance as to whether the
file is malicious or not (see Section) We did not show results for 1R for
the EMBER dataset since the Python implementation is not efficient enough.

We further analysed the behaviours of RBCs. We were interested in know-
ing how much the RBCs’ performance differs over time. Figure shows the
rule coverage size for malicious samples for the EMBER dataset. Figure p.1b
shows this for benign files. Both figures use RandomForest’s outcome; the
rest of the figures can be found in Figure Ell in Appendix. We see that I-
REP starts by covering many more samples than the other two algorithms,
both malicious and benign. Our algorithm GREEDYye; does not cover any
benign samples and seems to be following a similar path as RIPPER2 does.

43

5. DISCuUSSION

w

v —— I-REP v 4 — I-REP
B —— RIPPER2 g —— RIPPER2
o4 —— GREEDY20% g —— GREEDY20%
© ©
o o 2
33 3
(] (]
Q o 14
22/ >
S S 0f
(o)) (o)}
o o
1 —1]
0 25 50 75 100 125 150 0 25 50 75 100 125 150
decision list size decision list size
(a) True positives (b) False positives

Figure 5.1: Rule coverage size — RandomForest & EMBER
Both graphs show how rules cover different samples over time. The y-axis is
log-scaled and represents covered samples; the x-axis represents a decision list
size. Both graphs use RandomForest’s output on the EMBER dataset. Value
—1 on the y-axis corresponds to no covered samples.

14

1

N

1

rule size
[ee] o
—
-
—
—
'_
=
=

—— I-REP
4 —— RIPPER2
—— GREEDY20%

0 20 40 60 80 100 120 140
decision list size
Figure 5.2: Visualisation of rule sizes over time — RandomForest & EMBER
The x-axis corresponds to rule sizes — a number of conditions; the y-axis
corresponds to decision list size. For example, the Oth rule learned by I-REP
has a size of two, the 20th rule learned has a size of eight.

Not covering any benign samples probably means that the stop condition we
chose does not have much of an impact. On the other hand, this is subject
to further testing with more datasets. We can see that RIPPER2 has a few
spikes along the way. Since both graphs are log-scaled, these spikes mean
RIPPER2 has been able to find rules with great coverage size. This brings
up an interesting question for further study: could we potentially shift those
spikes to have them occur as soon as possible? Perhaps by changing the order
of the rules?

Figure @ displays differences in rule sizes over time. Again, we used
RandomForest’s outcome for the EMBER dataset; the rest can be found in
Figure @ in Appendix. We would expect I-REP to have a small number
of conditions. However, it is surprising that this number gradually increases

44

5.2. Comparison with Related Works

with more rules. Both RIPPER2 and GREEDYyy are more stable in this
case. We cannot directly compare each rule size as every rule is dependent on
the previous one.

5.2 Comparison with Related Works

Feng et al. [15] combined three different approaches for malware detection —
hash-based approach, SVM-based approach and rule-based approach. Every
approach is intended to be used for malware classes (e.g. Trojan, Spyware)
with different distributions. Instead of building features from PE file headers
(see Chapter E), they used n-grams based on the content of a binary file —
n-grams are all subparts of a string, with length n [59]. In their experiments,
they reduced space complexity from 1.8MB (signature-based approach) to
17.9KB (combined approach).

Schultz et al. [60] compared RIPPER with other ML algorithms in mal-
ware detection on previously unseen samples. The paper does not clarify the
number of iterations used for RIPPER. They used static features extracted
from the PE files — used DLLs, DLL function calls and count of DLL function
calls. They discussed how malware developers could use the information gen-
erated by the classifiers to modify their malware, for example, by changing
resource usage.

Our work focuses on interpreting the results obtained by various ML algo-
rithms. Unlike the aforementioned works, our approach did not use any train
data; instead, we used the outcomes of ML algorithms to train the RBCs. We
cannot determine the accuracy of our approach on unseen data; this is subject
to further research. To offer a less biased view, we have used two publicly
available datasets. Thus our results should be easily verifiable. We also tried
to modify the behaviours of some of the algorithms by changing some of the
steps.

45

Conclusion

The main focus of this thesis was to verify whether rule-based classifiers would
be useful in interpreting the results of other machine learning algorithms. This
chapter summarises our approach and contribution to this topic and discusses
future work.

Contribution

Chapter ﬁ] laid necessary theoretical knowledge for rule-based classifiers. We
reviewed several papers and picked four rule learning algorithms. We dis-
cussed some parts of the algorithms that were not clarified in the papers and
suggested an approach to solving them. We implemented three of the algo-
rithms mentioned in Chapter E] and an algorithm with a different approach to
rule learning. Chapter B gave details about the implementations.

In Chapter E we briefly described the inner structure of PE files. It helped
us better understand the datasets we were working with. We thoroughly anal-
ysed Kozék’s dataset, transformed it and selected potentially good features
for classification. The EMBER [16] dataset served mainly for comparison, and
we used available functions from the authors to transform it. This process is
depicted in Chapter @

Chapter { analysed the performance of rule-based classifiers on the out-
comes of machine learning algorithms and further examined the behaviours
of some of the algorithms — mainly RIPPERE’s. Our results showed that
rule-based classifiers have great potential to interpret the outcomes of ma-
chine learning algorithms — again, mainly RIPPER. GREEDY 940;, which we
proposed in this work, may serve as an alternative tool if the error should be
as low as possible. We have also shown that [-REP and RIPPER algorithm
behaviours can be dramatically affected by using different pruning metrics.
RIPPER’s behaviour is most likely not affected by using a different rule re-
moval approach.

47

5. DISCuUSSION

Rule-based classifiers could reduce the space needed to store the results of
machine learning algorithms as well as bring some light upon possible decisions
of machine learning algorithms.

Future Work

Although we have created our implementations of rule-based classifiers, there
is much room for improvement. This would mainly require creating a better
underlying structure in a more appropriate language, such as C++. One
could then connect the parts implemented in C++ and Python by using, e.g.
Cython — a tool for writing C/C++ extensions for Python [61]. Such an
implementation could be beneficial for other researchers as well.

Algorithm GREEDY o could serve as a relatively good tool for precise
results interpretation. However, it should be verified that its performance
is better than, e.g. RIPPER’s performance without pruning. Other stop
conditions should be built, too.

The methods we used would be useful for offline learning. On the other
hand, if a decision list is grown and new data is obtained, simply regrowing the
decision list on all data would not be as efficient. Thus, other approaches are
needed. We think that RIPPER’s optimisation phase could offer a solution;
however, it is still necessary to explain its worsening behaviour in some cases.

48

Bibliography

SZOR, Peter. Art of Computer Virus Research and Defense. Pearson
Education, 2005. 1SBN 0321304543.

KROUSTEK, Jakub. WannaCry ransomware that infected Telefonica
and NHS hospitals is spreading aggressively, with over 50,000 attacks
so far today [online| [visited on 2021-04-28]. Available from: https :
//blog.avast.com/ransomware-that-infected-telefonica-and-
nhs-hospitals-is-spreading-aggressively-with-over-50000-
attacks-so-far-today.

SEGUIN, Patrick. The Essential Guide to Ransomware [online] [visited
on 2021-04-28]. Available from: https://www.avast.com/c-what-is-
ransomware.

KREBS, Brian. Who is Anna-Senpai, the Mirai Worm Author? [Online]
[visited on 2021-04-28]. Available from: https://krebsonsecurity .
com/2017/01/who-is-anna-senpai-the-mirai-worm-author/.
EGELE, Manuel; SCHOLTE, Theodoor; KIRDA, Engin; KRUEGEL,
Christopher. A survey on automated dynamic malware-analysis tech-
niques and tools. ACM computing surveys (CSUR). 2008, vol. 44, no. 2,
pp. 1-42. Available from DOI: 10.1145/2089125.2089126.

WILLEMS, Carsten; HOLZ, Thorsten; FREILING, Felix. Toward au-
tomated dynamic malware analysis using cwsandbox. IEEFE Security €
Privacy. 2007, vol. 5, no. 2, pp. 32-39. Available from DOI: 10.1109/
MSP.2007.45.

ELDER, Jeff. Is machine learning useful for cybersecurity? [Online] [vis-
ited on 2021-04-29]. Available from: https://blog.avast.com/avast-
explains-cybersecurity-ai-at-enigma-conference.

GUPTA, Rajarshi. Why is Security a unique challenge for AI [online]
[visited on 2021-04-29]. Available from: https://blog.avast.com/why-
security-is—a-unique-challenge-for-ai.

49

https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-is-spreading-aggressively-with-over-50000-attacks-so-far-today
https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-is-spreading-aggressively-with-over-50000-attacks-so-far-today
https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-is-spreading-aggressively-with-over-50000-attacks-so-far-today
https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-is-spreading-aggressively-with-over-50000-attacks-so-far-today
https://www.avast.com/c-what-is-ransomware
https://www.avast.com/c-what-is-ransomware
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1109/MSP.2007.45
https://doi.org/10.1109/MSP.2007.45
https://blog.avast.com/avast-explains-cybersecurity-ai-at-enigma-conference
https://blog.avast.com/avast-explains-cybersecurity-ai-at-enigma-conference
https://blog.avast.com/why-security-is-a-unique-challenge-for-ai
https://blog.avast.com/why-security-is-a-unique-challenge-for-ai

BIBLIOGRAPHY

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

20

MOLNAR, Christoph. Interpretable Machine Learning - Decision Rules
[online] [visited on 2021-02-18]. Available from: https://christophm.
github.io/interpretable-ml-book/rules.html.

DOSHI-VELEZ, Finale; KIM, Been. Towards a rigorous science of inter-
pretable machine learning. arXiv preprint arXiv:1702.08608. 2017.

GILPIN, Leilani H.; BAU, David; YUAN, Ben Z.; BAJWA, Ayesha;
SPECTER, Michael; KAGAL, Lalana. Explaining explanations: An overview
of interpretability of machine learning. In: 2018 IEEE 5th International
Conference on data science and advanced analytics (DSAA). 2018, pp. 80—
89. Available from DOI: 10.1109/DSAA.2018.00018.

ANGWIN, Julia; LARSON, Jeff; MATTU, Surya; KIRCHNER, Lau-
ren. Machine Bias [online]. 2016 [visited on 2021-04-29]. Available from:
https : / / www . propublica . org/article /machine - bias - risk -
assessments-in-criminal-sentencing.

WITTEN, Ian H.; FRANK, Eibe; HALL, Mark A. Data Mining: Practi-
cal Machine Learning Tools and Techniques. 2011. 1SBN 978-0-12-374856-
0.

PANDA, B. S. Rule Based Classification [online| [visited on 2020-11-04].
Available from: https://web.iitd.ac.in/~bspanda/rb.pdf.

FENG, Zhentan; AL., et. HRS: A Hybrid Framework for Malware De-
tection. In: Proceedings of the 2015 ACM International Workshop on
International Workshop on Security and Privacy Analytics [online]. New
York, NY, USA: Association for Computing Machinery, 2015, pp. 19—
26 [visited on 2021-01-27]. 1SBN 9781450333412. Available from DOI: 10.
1145/2713579.2713585.

ANDERSON, Hyrum S.; ROTH, Phil. EMBER: An Open Dataset for
Training Static PE Malware Machine Learning Models. ArXiv e-prints.
2018. Available from arXiv: 1804.04637 [cs.CR]|.

QUINLAN, John Ross. C4.5: Programs for Machine Learning. 1993. ISBN
978-1-55860-238-0.

CENDROWSKA, Jadzia. PRISM: An algorithm for inducing modular
rules. International Journal of Man-Machine Studies. 1987, vol. 27, no.
4, pp. 349-370. Available from DOI: 10.1016/S0020-7373(87)80003-2.

COHEN, William W. Fast effective rule induction. In: Machine learning
proceedings 1995. Elsevier, 1995, pp. 115-123. Available from DOI: 10.
1016/B978-1-55860-377-6.50023-2.

HOLTE, Robert C. Very simple classification rules perform well on most
commonly used datasets. Machine learning. 1993, vol. 11, no. 1, pp. 63—
90. Available from DOI: 10.1023/A:1022631118932.

MITCHELL, Tom M. Machine Learning. 1997. 1SBN 0070428077.

https://christophm.github.io/interpretable-ml-book/rules.html
https://christophm.github.io/interpretable-ml-book/rules.html
https://doi.org/10.1109/DSAA.2018.00018
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://web.iitd.ac.in/~bspanda/rb.pdf
https://doi.org/10.1145/2713579.2713585
https://doi.org/10.1145/2713579.2713585
https://arxiv.org/abs/1804.04637
https://doi.org/10.1016/S0020-7373(87)80003-2
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1016/B978-1-55860-377-6.50023-2
https://doi.org/10.1023/A:1022631118932

Bibliography

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

CLARK, Peter; NIBLETT, Tim. The CN2 Induction Algorithm. Ma-
chine learning. 1989, vol. 3, no. 4, pp. 261-283. Available from DOTI:
10.1023/A:1022641700528.

QUINLAN, John Ross. Learning efficient classification procedures and
their application to chess end games. In: Machine learning. Springer,
1983, pp. 463-482.

MICHALSKI, Ryszard S. On the quasi-minimal solution of the general
covering problem. 1969.

KALBFLEISCH, James G. Probability and Statistical Inference I1. 1979.
ISBN 978-1-4684-0091-5.

FURNKRANZ, Johannes; WIDMER, Gerhard. Incremental reduced er-
ror pruning. In: Machine Learning Proceedings 1994. FElsevier, 1994,
pp. 70-77. 1SBN 978-1-55860-335-6. Available from DOI: 10.1016/B978-
1-55860-335-6.50017-9.

QUINLAN, J Ross; CAMERON-JONES, R Mike. FOIL: A midterm re-
port. In: Furopean conference on machine learning. 1993, pp. 1-20. ISBN
978-3-540-56602-1.

DAIN, Oliver; CUNNINGHAM, Robert K.; BOYER, Stephen. Irep++,
a faster rule learning algorithm. In: Proceedings of the 2004 SIAM Inter-
national Conference on Data Mining. 2004, pp. 138-146. Available from
DOI: 10.1137/1.9781611972740.13.

FIDELIS, Marcos Vinicius; LOPES, Heitor S.; FREITAS, Alex A. Dis-
covering comprehensible classification rules with a genetic algorithm. In:
Proceedings of the 2000 congress on evolutionary computation. cec00 (cat.
no. 00th8512). 2000, vol. 1, pp. 805-810. Available from DOI: 10.1109/
CEC.2000.870381.

WHITLEY, Darrell. A genetic algorithm tutorial. Statistics and com-
puting. 1994, vol. 4, no. 2, pp. 65-85. Available from DOI: 10 . 1007 /
BF00175354.

CRAVEN, Mark; SHAVLIK, Jude. Extracting tree-structured represen-
tations of trained networks. Advances in neural information processing
systems. 1995, vol. 8, pp. 24-30. Available from DOI: 10.5555/2998828.
2998832.

MILLER, Michael. A Brief History of Microsoft Windows [online] [visited
on 2021-04-11]. Available from: https://www.informit.com/articles/
article.aspx?p=1358665&seqNum=4.

PIETREK, Matt. An In-Depth Look into the Win32 Portable Ezxecutable
File Format [online| [visited on 2021-04-06]. Available from: https :
/ /docs . microsoft . com/en-us/archive /msdn-magazine /2002 /
february / inside - windows - win32 - portable - executable - file -
format-in-detail.

51

https://doi.org/10.1023/A:1022641700528
https://doi.org/10.1016/B978-1-55860-335-6.50017-9
https://doi.org/10.1016/B978-1-55860-335-6.50017-9
https://doi.org/10.1137/1.9781611972740.13
https://doi.org/10.1109/CEC.2000.870381
https://doi.org/10.1109/CEC.2000.870381
https://doi.org/10.1007/BF00175354
https://doi.org/10.1007/BF00175354
https://doi.org/10.5555/2998828.2998832
https://doi.org/10.5555/2998828.2998832
https://www.informit.com/articles/article.aspx?p=1358665&seqNum=4
https://www.informit.com/articles/article.aspx?p=1358665&seqNum=4
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail
https://docs.microsoft.com/en-us/archive/msdn-magazine/2002/february/inside-windows-win32-portable-executable-file-format-in-detail

BIBLIOGRAPHY

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

52

OS DEV CONTRIBUTORS. PFE [online] [visited on 2021-04-06]. Avail-
able from: https://wiki.osdev.org/PE.

MICROSOFT DOCUMENTATION CONTRIBUTORS. /STUB (MS-
DOS Stub File Name) [online| [visited on 2021-04-06]. Available from:
https://docs.microsoft.com/en-us/cpp/build/reference/stub-
ms—-dos-stub-file-name.

DABAK, Prasad; PHADKE, Sandeep; BORATE, Milind. Undocumented
Windows NT. John Wiley & Sons, Inc., 1999. 1SBN 0764545698.

CARRERA, Ero. PE Header Walkthrough [online| [visited on 2021-04-
06]. Available from: https: //drive . google . com/file /d / 0B3 _
wGJkuWLytQmc2diOwajBlXzg/viewu.

KOWALCZYK, Krzysztof. Portable Executable File Format [online| [vis-
ited on 2021-04-06]. Available from: https://blog.kowalczyk.info/
articles/pefileformat.htmll.

VIRTANEN, Pauli; AL., et. SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python. Nature Methods. 2020, vol. 17, pp. 261-
272. Available from DOI: 10.1038/s41592-019-0686-2.

DEVELOPERS, NumPy. What is NumPy? [Online]. 2021 [visited on
2021-05-01]. Available from: https://numpy.org/doc/stable/user/
whatisnumpy.html.

HARRIS, Charles R.; AL., et. Array programming with NumPy. Nature.
2020, vol. 585, pp. 357-362. Available from DOI: 10.1038/s41586-020-
2649-2.

DEVELOPERS, scikit-learn. How to optimize for speed [online| [visited
on 2021-04-14]. Available from: https://scikit-1learn.org/stable/
developers/performance.html.

KLUYVER, Thomas; AL., et. Jupyter Notebooks — a publishing for-
mat for reproducible computational workflows. In: LOIZIDES, Fernando;
SCMIDT, Birgit (eds.). Positioning and Power in Academic Publish-
ing: Players, Agents and Agendas [online]. IOS Press, 2016, pp. 87-90
[visited on 2021-05-02]. ISBN 978-1-61499-649-1. Available from: https:
//eprints.soton.ac.uk/403913/.

CPYTHON DEVELOPERS. pickle — Python object serialization [on-
line] [visited on 2021-05-12]. Available from: https://docs . python.
org/3/library/pickle.html.

KOZAK, Matous. Malware detection dataset [online] [visited on 2021-
05-12]. Available from: https://github.com/matouskozak/malware _
detection_dataset.

PEDREGOSA, F.; AL., et. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research. 2011, vol. 12, pp. 2825-2830.

https://wiki.osdev.org/PE
https://docs.microsoft.com/en-us/cpp/build/reference/stub-ms-dos-stub-file-name
https://docs.microsoft.com/en-us/cpp/build/reference/stub-ms-dos-stub-file-name
https://drive.google.com/file/d/0B3_wGJkuWLytQmc2di0wajB1Xzg/view
https://drive.google.com/file/d/0B3_wGJkuWLytQmc2di0wajB1Xzg/view
https://blog.kowalczyk.info/articles/pefileformat.html
https://blog.kowalczyk.info/articles/pefileformat.html
https://doi.org/10.1038/s41592-019-0686-2
https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/whatisnumpy.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://scikit-learn.org/stable/developers/performance.html
https://scikit-learn.org/stable/developers/performance.html
https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://github.com/matouskozak/malware_detection_dataset
https://github.com/matouskozak/malware_detection_dataset

Bibliography

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

o7.

KOZAK, Matous. Static malware detection using recurrent neural net-
works. Prague, 2020. Bachelor’s Thesis. Faculty of Information Technol-
ogy, Czech Technical University.

RAJARAMAN, Anand; ULLMAN, Jeffrey. Mining of Massive Datasets.
Cambridge University Press, 2011. 1sSBN 9781139924801.

DEVELOPERS, scikit-learn. sklearn.feature extraction.text. Tfidf Vectorizer

[online] [visited on 2021-05-02]. Available from: https://scikit-learn.
org/stable/modules / generated/sklearn . feature _extraction.
text.TfidfVectorizer.html.

DEVELOPERS, scikit-learn. sklearn.feature_extraction. FeatureHasher [on-

line] [visited on 2021-04-20]. Available from: https://scikit-1learn.
org/stable /modules / generated / sklearn . feature _extraction .
FeatureHasher.html.

ANDERSON, Hyrum S.; ROTH, Phil. FElastic Malware Benchmark for
Empowering Researchers [online] |visited on 2021-05-12]. Available from:
https://github.com/elastic/ember.

DEVELOPERS, scikit-learn. 6.3. Preprocessing data [online] [visited on
2021-04-20]. Available from: https://scikit-learn. org/stable/
modules/preprocessing.html#preprocessing-scaler.

DEVELOPERS, scikit-learn. 1.13. Feature selection [online] [visited on
2021-04-20]. Available from: https://scikit-learn. org/stable/
modules/feature_selection.html#select-from-model.

HOARE, Jake. How is Variable Importance Calculated for a Random
Forest? [Online] [visited on 2021-04-20]. Available from: https://www.
displayr.com/how-is-variable-importance-calculated-for-a-
random-forest/.

AZNAR, Pablo. What is the difference between Extra Trees and Ran-
dom Forest? [Online| [visited on 2021-04-20]. Available from: https :
//quantdare.com/what-is-the-difference-between-extra-trees-
and-random-forest/.

ZHAO, Kai. Feature Extraction using Principal Component Analysis
— A Simplified Visual Demo [online| [visited on 2021-05-13]. Available
from: https : //towardsdatascience . com/ feature - extraction -
using - principal - component - analysis - a-simplified- visual -
demo-e5592ced100a.

HOSSIN, Mohammad; SULAIMAN, MN. A review on evaluation metrics
for data classification evaluations. International Journal of Data Mining
& Knowledge Management Process. 2015, vol. 5, no. 2, p. 1. Available
from DOI: 10.5281/zenodo.3557376.

93

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://github.com/elastic/ember
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-scaler
https://scikit-learn.org/stable/modules/feature_selection.html#select-from-model
https://scikit-learn.org/stable/modules/feature_selection.html#select-from-model
https://www.displayr.com/how-is-variable-importance-calculated-for-a-random-forest/
https://www.displayr.com/how-is-variable-importance-calculated-for-a-random-forest/
https://www.displayr.com/how-is-variable-importance-calculated-for-a-random-forest/
https://quantdare.com/what-is-the-difference-between-extra-trees-and-random-forest/
https://quantdare.com/what-is-the-difference-between-extra-trees-and-random-forest/
https://quantdare.com/what-is-the-difference-between-extra-trees-and-random-forest/
https://towardsdatascience.com/feature-extraction-using-principal-component-analysis-a-simplified-visual-demo-e5592ced100a
https://towardsdatascience.com/feature-extraction-using-principal-component-analysis-a-simplified-visual-demo-e5592ced100a
https://towardsdatascience.com/feature-extraction-using-principal-component-analysis-a-simplified-visual-demo-e5592ced100a
https://doi.org/10.5281/zenodo.3557376

BIBLIOGRAPHY

58.

99.

60.

61.

o4

RADECIC, Dario. A Non-Confusing Guide to Confusion Matriz [online]
[visited on 2021-05-02]. Available from: https://towardsdatascience.
com/a-non-confusing-guide-to-confusion-matrix-7071d2c2204f.

SANTOS, Igor; PENYA, Yoseba K.; DEVESA, Jaime; BRINGAS, Pablo
Garcia. N-grams-based File Signatures for Malware Detection. ICEIS (2).
2009, vol. 9, pp. 317-320.

SCHULTZ, Matthew G.; ESKIN, Eleazar; ZADOK, F.; STOLFO, Salva-
tore J. Data mining methods for detection of new malicious executables.
In: Proceedings 2001 IEEE Symposium on Security and Privacy. S&P
2001. 2000, pp. 38-49. Available from DOI: 10 . 1109/ SECPRI . 2001 .
924286.

BEHNEL, Stefan; BRADSHAW, Robert; SELJEBOTN, Dag Sverre; EW-
ING, Greg; STEIN, William; GELLNER, Gabriel; AL., et. Cython -
an overview [online] [visited on 2021-05-08]. Available from: https://
cython . readthedocs . io/en/latest /src/quickstart/overview.

htmll.

https://towardsdatascience.com/a-non-confusing-guide-to-confusion-matrix-7071d2c2204f
https://towardsdatascience.com/a-non-confusing-guide-to-confusion-matrix-7071d2c2204f
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1109/SECPRI.2001.924286
https://cython.readthedocs.io/en/latest/src/quickstart/overview.html
https://cython.readthedocs.io/en/latest/src/quickstart/overview.html
https://cython.readthedocs.io/en/latest/src/quickstart/overview.html

APPENDIX A

COFF Common Object File Format
DDOS Distributed Denial of Service

DL Decision List

DLL Dynamically Linked Library

DT Decision Tree

FN False Negative

FP False Positive

FPR False Positive Rate

I-REP Incremental Reduced Error Pruning
KNN k-nearest neighbours

LR Logistic Regression

MDL Minimum Description Length

ML Machnine Learning

MS-DOS Microsoft Disk Operating System
PCA Principal Component Analysis

PE Portable Executable

RBC Rule-based classifier

REP Reduced Error Pruning

95

Acronyms

A. ACRONYMS

RF Random Forest

RIPPER Repeated Incremental Pruning to Produce Error Reduction
TDL Total Description Length

TF.IDF Term Frequency times Inverse Document Frequency

TN True Negative

TP True Positive

TPR True Positive Rate

o6

APPENDIX B

o7

Figures

B. FIGURES

logsp rule coverage size

logsp rule coverage size

logsp rule coverage size

o8

—— I-REP
—— RIPPER2
—— GREEDY20%

10 20 30

decision list size

(a) True positives — LR

—— I-REP
—— RIPPER2
—— GREEDY20%

0 50 100 150 200
decision list size
(¢) True positives — DT
—— I-REP
—— RIPPER2
—— GREEDY20%
0 20 40 60 80
decision list size
(e) True positives — kNN
—— I-REP
—— RIPPER2
—— GREEDY20%

50 100 150

decision list size

(g) True positives — AdaBoost

logio rule coverage size log1o rule coverage size log1o rule coverage size

logio rule coverage size

— |-REP
31 —— RIPPER2
—— GREEDY20%
2 4
1 4
04
_1 4
0 10 20 30
decision list size
(b) False positives — LR
44
— |-REP
31 —— RIPPER2
—— GREEDY20%
2 4
1 4
04
_1 4
0 50 100 150 200
decision list size
(d) False positives — DT
44 — |-REP
—— RIPPER2

—— GREEDY20%

0 20 40 60 80
decision list size
(f) False positives — kNN
— I-REP
—— RIPPER2
—— GREEDY20%
0 50 100 150

decision list size

(h) False positives — AdaBoost

Figure B.1: Rule coverage size - EMBER

rule size

N W A~ U OO N 0

=

— I-REP
— RIPPER2
— GREEDY20%

14

=
o N

rule size

o ©

[e
o N B

rule size
[e¢]

14

1

N

=
o

rule size

0 5 10 15 20 25 30
decision list size

(a) LogisticRegression

¥ i
lﬂ‘w’ﬁ,(\‘w MM\ WMM

decision list size

(b) DecisionTree

—— |-REP
—— RIPPER2
—— GREEDY20%

0 10 20 30 40 50 60 70 80
decision list size

il i

— |-REP
—— RIPPER2
—— GREEDY20%

0 25 50 75 100 125 150 175
decision list size

(d) AdaBoost

Figure B.2: Rule size - EMBER

99

APPENDIX C

Contents of enclosed SD Card

README .Imd. .o ottttt e teeie et eiiiieeeenanneeenns Directory description

| _src
README I o o oottt eeeeeee e eeeaieeeenanneeeeennnn src description
rules_algos........... Implementation of RBCs & ML interpretation
ml_methods ML — feature selection, transformation & training
thesis...oovviiiiiiiiiiiiiiiiiia.,. Thesis text source code in IXTEX
I o1 = v AP Thesis text
LBT_Dolejs_Jan.pdf Thesis text in PDF format
L datasel S it Used datasets

	Introduction
	Decision Rules
	Formal Introduction
	Rule Characteristics
	From Trees to Rules
	Rule Learning Algorithms
	1R
	CN2
	I-REP
	RIPPER
	Other Approaches

	Portable Executable
	Dos Header and Stub
	PE Header
	Optional Header
	Section Headers

	Implementations of Rule Based Classifiers
	Decision List
	1R
	I-REP
	RIPPER
	Greedy Grow

	Experiments
	Dataset Description
	Kozák's Dataset
	EMBER Dataset

	Feature Transformation and Selection
	Feature Vectorisation
	Feature Hashing
	Feature Selection

	Evaluation Metrics
	Interpreting ML results using RBCs
	Pruning and Metrics
	Removing Rules in RIPPER

	Discussion
	Experiments Review
	Comparison with Related Works

	Conclusion
	Bibliography
	Acronyms
	Figures
	Contents of enclosed SD Card

