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Abstract: The authors look at the benefits of exploiting gradient information to enhance the 
progressive probabilistic Hough transform (PPHT). It is shown that using the angle information in 
controlling the voting process and in assigning pixels to a line, the PPHT performance can be 
significantly improved. The performance gains are assessed in terms of repeatability of results, a 
measure that has direct relevance for its use in many applications. The overall improvement in 
output quality is shown to be greater than that found for the standard Hough transform using the 
same information. The improved algorithm gives results very close to those of the standard Hough 
transform, but requires significantly less computation. 

1 Introduction 

The Hough transform is a well studied method for extract- 
ing geometric primitives. In this paper we look at some 
refinements to a variant of this method called the ‘progres- 
sive probabilistic Hough transform’ (PPHT). Details of this 
method have been presented previously [ 1-31. 

The key difference between the PPHT and the probabil- 
istic Hough transform (PHT) [4] on which it is based is that 
the accumulator space is scanned for significant peaks as 
each vote is cast and lines are removed as they are found. 
When a line is detected, all edgels that are assigned to the 
line are removed from the list of unused edgels. Votes of 
the edgels that have been added to the accumulator are 
removed. This scheme compares well in terms of computa- 
tional cost with other adaptive schemes [5-71 which rely 
on monitoring peaks in the accumulator space. It also 
avoids making assumptions about the distribution of peak 
sizes, and problems that may occur if these constraints are 
violated. 

The only parameter the PPHT requires to be set is the 
false positive threshold ( I ) .  The threshold controls the 
fraction of acceptable false positives that can be generated 
by the algorithm. The effect of this parameter on the total 
number of votes required to process an image is studied in 
[2]. In essence, the smaller the value, the longer it will take 
for the algorithm to terminate but the false-positive line 
detection will also be lower. 

In this paper, we investigate the benefits gained by using 
gradient direction in conjunction with the PPHT algorithm. 
Similar improvements are possible with the SHT [S, 91 and 
as they have been considered elsewhere [lo-121, their 
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performance benefits will not be examined in detail here. 
We show that with the use of gradient direction informa- 
tion, the accuracy of the PPHT can be brought very close 
to that of the SHT using the same information, while 
retaining a significant advantage in computational speed. 

2 Modifications to the PPHT algorithm 

The use of gradient direction does not significantly alter 
the overall operation of the PPHT algorithm (algorithm 1). 
The differences will be explained later in this section. 

Algorithm 1: Progressive probabilistic Hough- - /  runsform 
Step 1. Vote into the accumulator with a single edgel 
randomly selected from the input set. If none, then finish. 
Step 2. Remove edgel from input set. 
Step 3. Check if the highest bin count in the accumulator 
(the peak) that was modified by the new edgel is higher 
than threshold thr(N), defined in Section 2.1. If not, then 

Step 4. Look along a corridor defined by the peak, and find 
the longest segment of edges that. is either contiguous or 
not exhibiting a gap larger than a given threshold. This 
forms the segment support. 
Step 5. Remove the edges in the segment support from 
input set. 
Step 6. Unvote from the accumulator all the edgels in the 
segment support. 
Step 7. If the segment support is longer than the minimum 
length add it into the output list. 
Step 8. Goto 1. 

In using gradient direction, we make two key changes to 
the original PPHT algorithm. The first is to constrain the 
range of angles, which has two effects. It reduces the 
computation required to process a new edgel; it also 
reduces the clutter in the Hough space, or, in other 
words, increases the signal to noise ratio. Gradient direc- 
tion can be made available from several sources. Most edge 
detectors provide the information as part of their output. If 
edge information is not available directly, it is possible to 
estimate it, for instance by calculating the moments of the 
neighbouring edgels. 

go to 1. 
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The second change is to use gradient direction in the 
post-processing part of the PPHT. When the corridor 
corresponding to a peak in the accumulator is searched, 
only edgels with a gradient consistent with the line para- 
meters specified by that peak (within the same range used 
for voting) are considered for assignment to the line. This 
can significantly improve the quality of lines generated, 
both in edgel assignment at T-junctions, and where there 
are many closely spaced lines. 

The key factor influencing the improvement gained by 
using gradient direction is the amount of uncertainty of the 
gradient direction at each edgel. Unfortunately this can be 
very difficult to quantify theoretically for the whole image 
capture and processing chain. Where it is possible, the 
results would still only be applicable to a single set of 
equipment. For the purposes of this paper, we will assume 
the angular error distribution is unknown but approxi- 
mately uniform for each edgel. 

2. I 
Constraining the number of angles used when voting 
changes the distribution of votes in the accumulator, and 
so the original analysis of the peak detection threshold for 
PPHT is no long accurate. It is now easier to consider the 
accumulator to be a set of 1-D histograms of possible p 
values, one histogram for each angle 6 considered (the 
standard p-H representation of the accumulator space [ 131 
is assumed). When a vote is cast only a subset of these 
histograms is updated. 

In setting the decision threshold, we assume that all 
points are due to noise. It is a worst-case assumption, but if 
many lines are present in the image the assumption is 
almost valid, since only a fraction of points belong to any 
single line. 

Let us denote the number of histograms for angles as N(] 
the number of bins for distance from origin as N, and the 
number votes for a given angle as VH. We adopt the 
following model of the voting process. Every randomly 
selected edgel votes once into a subset of the available No 
histograms, the exact bins depending on the gradient 
direction of the edgel and the uncertainty in its value. 
The size of the uncertainty, denoted by 7,  is related to Vn 
as follows: 

Changes to the threshold computation 

An edgel can belong either to no line (a noise point), to a 
single line, or lie on an intersection,of lines. In the first 
case all votes cast add noise to those histograms. We 
assume that, for every one of the Vo, histograms voted 
into, a random bin is incremented. Each bin in a histogram 
is equally likely to be incremented with probability 1 /N, . 
If a point lies on a line, one vote is cast into the bin 
corresponding to this line and the remaining Vu, votes are 
assumed to fall into random bins, one in each of the 
corresponding histograms. For points on line intersections, 
we assume V, - 2 votes fall in random bins. Since Vo >> 1, 
V,,X V, - 1 x Vu - 2, we do not (and we cannot) distin- 
guish between the three cases and assume that always 
random Vo bins are incremented. 

Clearly, the p histograms are not independent, and the 
counts in bins with similar 0 and p are not statistically 
independent either, because of the cosine voting pattern of 
a single point. Nevertheless, to keep computation tractable, 
we will assume that the count in any single bin in a 
histogram is an independent random variable with bi- 
nomial distribution B (Vo, p ) ,  where Vo is the number of 
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edgels that voted in each p histogram so far and p = 1 IN, 
is the probability of selecting a particular bin with a given 
6. In our voting model, the distribution of votes in the N, 
bins for a given H follows the multidimensional hyper- 
geometric distribution (not multinomial distribution, since 
the sampling is without replacement). We adopted the 
B(V(j, p )  simplification because we could not find a prac- 
tical (efficient) testing procedure for the hyper-geometric 
distribution. The hypothesis that is being tested after every 
bin increment is the following: 

Is the count C(p, 0) in bin (p, 6) higher than a value likely 
to occur if C(p, 0) was a realisation of a random variable 
with binomial distribution B( Vo, p)? 

We would like to set the threshold so that 

Significance level 1 is a user parameter that shall, if the 
model is accurate, indicate the number of false positives (in 
case of no post-processing) due to noise. If there is more 
than one peak found in voting for a single edgel, the 
highest is used. For a binomial distribution, it is easy to 
compute the threshold for a given N by evaluating the sum 

for a l l j  till 1 - 1 is reached. This value can be computed 
relatively efficiently with the incomplete beta function 
[14]. To further speed the process of voting, these values 
can be precomputed and stored in a look-up table. 

3 Experiments on synthetic data 

The experiments presented aim to quantify the perfor- 
mance benefits gained by using gradient direction with 
the PPHT. The main factors for consideration are the 
improvement in the interpretation o f .  the results and 
computational benefits. 

For consistency, the stopping criterion of the algorithm 
exploiting gradient direction should be modified to take 
account of the reduced influence of noise on the accumu- 
lator statistics. However, to make clear performance 
comparisons between the modified and unmodified 
PPHT, no changes were made to the threshold calculation 
in the first set of experiments. 

The synthetic images used for these experiments were 
256 pixels squared, each with 20 lines of random length 
uniformly distributed between 1 and 100 edgels. An 
example of such a synthetic image can be seen in Fig. 1. 
Each experiment was repeated 100 times. This enables the 
computation of the means and the standard deviations for 
the measured quantities shown in the graphs. All error bars 
correspond to one standard deviation. To make the gradient 
direction data in the synthetic image realistic, it was 
estimated by counting the moments of all the edgels 
within a radius of 2.5 grid squares. This estimation also 
works well on real images, and sometimes better as they 
often contain fewer crossing lines. 

The following criteria were used for determining the 
error statistics. False positives are all those lines detected 
that cover less than 80% of any single ground-truth line in 
the image. False negatives are those lines in the model that 
are covered by less than 80% by the detected lines, 
excluding those counted as false positives. 

Fig. 2 shows the number of voting operations used in 
processing the images. Though voting for a restricted range 
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Fig. 1 Example of synthetic edge image 
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of angles means that the number of voting operations is no 
longer directly proportional to the time required for 
computation, these numbers can still be used to compare 
the relative performance of the algorithm. The test images 
contain 2000 edgels, and hence the full SHT uses 2000 
voting operations. This means the results for the PPHT 
were obtained with about one-tenth of the operations 
required by the SHT. 

As the range of angles used drops below the uncertainty 
in the gradient direction information, the number of votes 
needed to process the image starts to rise for values of y 
below 30" (Fig. 3). This occurs because, as the range of 
bins incremented becomes smaller than the uncertainty in 
the direction, it becomes increasingly likely that the bin 
corresponding to the actual line parameters will not be 
incremented. 

Figs. 4 and 5 show the detection performance results for 
the PPHT as a function of the gradient angle constraint. For 
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SHT with gradient direction 

comparison, the results of SHT using the same information 
are shown in Fig. 3. The performance is measured in terms 
of average number of false positives (Fig. 4) and false 
negatives (Fig. 5 )  (undetected lines) as compared with the 
known ground truth for each test image. We note that when 
y has values between 30 and 60°, the number of false 
negatives dips significantly for the faster version of the 
PPHT with the false positives threshold 1 set at 0.1. At the 
same time, the false positive rate is significantly reduced to 
a level comparable to the PPHT operating at the high 1 of 
lov9. It is important not to set the orientation threshold too 
tight, as the false negative rate dramatically increases as the 
angle uncertainty interval approaches zero. Fortunately, the 
performance curves are reasonably flat for values of y 
between 30 and .60°, and one can allow a sufficient 
margin to prevent moving into the degraded performance 
range due to changes in the image signal to noise ratio. 

0 45 90 135 180 
angle range y 

-1 I 

Fig. 4 
tion 
__ I=0.1 

PPHTfalse positives, using gradient direction info for  accitmula- 

_ _ _  I =  10-9 

IEE Proc-Vis. Image Signul Process., Vol. 148, No. 3, June 2001 160 



..... 
..... , 

I I  

- 1 - I  

I 

ob 45 90 135 180 
angle range y 

Fig. 5 
lation 

~ I=0.1 

PPHT false negatives, using gradient direction info for  accumu- 

_ - -  I =  10-9 

For values of I smaller than lop4, the results for false 
positives shown in Fig. 4 are fairly similar for the PPHT 
and the SHT, but the number of false negatives in Fig. 5 
shows about a 20% drop over the previous results for 
values of y between 30 and 60". For small values of 1 the 
overall results for the PPHT, at least on synthetic images, 
are better than those for the SHT. As can be seen from 
Fig. 2, this extension has little impact on the number of 
voting operations required to process the image. 

4 Experiments on real images 

In the first experiment on real images, we compare the 
output of the SHT and the PPHT on a real image. This 
experiment illustrates that the improvements give similar 
benefits when processing real image data. These experi- 
ments were run with the house edge image as used in [9]. It 
is worth noting that the PPHT with gradient direction 
information has been tested successfully with many other 
real images. 

The SHT was run with y of 30" to give as near optimal 
interpretation as possible. The SHT and the PPHT use 
different stopping rules and hence the number of short 
lines recovered vary significantly. To reduce problems with 
this causing excessive false positives, only lines of 10 
edgels and longer where used in the comparison. The 
PPHT was run with an 1 of lop4 which has been found 
to give good performance. 

Fig. 6 shows the results of the comparison. As indicated 
by the experiments on synthetic data there is an optimal 
value for y of about 30". This gives a very close approx- 
imation to the results of the SHT. 

Evaluating the performance of any feature extraction 
routine on real data taken from a complex environment is 
difficult. The idea of 'correct results' for a line detector 
cannot be defined without some reference to an intended 
application. This can be clearly seen when considering 
how to interpret a curve. Depending on the intended 
application, one may wish either to ignore it, or to 
approximate it with straight lines. 
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Comparison of results from PPHT and the SHT on real images 
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For this reason we discard the abstract concept of 
correctness and replace it with repeatability. Repeatability 
is of direct relevance in tracking and object recognition. It 
is necessary (but not sufficient) that the line extraction 
routine gives a consistent interpretation of its input data. A 
measure of repeatability gives a limit to the best perfor- 
mance you can expect of algorithm that depends on a 
particular interpretation. 

The experiments were carried out on image sequences 
captured from a CCIR601 source, using the intensity value 
only. The resolution was halved in both directions by 
summing pairs of adjacent pixels, from the corresponding 
positions in the fields of each frame. 

Input images were first processed by a Deriche [ 151 edge 
detector. Subsequently linear non-maximum suppression 
with four-connectivity was used to find the edgels, and 
gradient direction calculated from the Deriche results. 
Typical edge images from the sequence, from photos in 
Figs. 7 and 8, can be seen in Figs. 9 and 10. The difference 
between consecutive images in a sequence is relatively 
small, but large enough to generate different line inter- 
pretations even in a deterministic algorithm like the SHT. 

Lines extracted from successive frame were compared. 
Every pair of lines which have both end points within 5 
pixels were considered as matches. Only lines 10 edgels 
and longer were considered in the comparison. Table 1 
gives a typical set of results from such a comparison. 
y = 40 in all experiments. 

One of the most striking features of the results shown in 
Table 1 is the improvement in performance made when 
edgels with full 360 gradient direction were used. The 
PPHT on both sets of data showed a 50% improvement in 
the fraction of lines that were successfully matched. The 
improvement to the PPHT was greater than that seen in the 
SHT. This brings the performance of the PPHT very near 
to that of the SHT, within 10%. Table 2 shows the 
execution time. The implementation for the SHT was 
kept identical, where possible, with that used for the 
PPHT. The one area of the SHT that was not optimised 
was the search of a peak in the accumulator space. Even 
allowing that it could be speeded up many times, the PPHT 
far outperforms the SHT. 
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Fig. 7 npicul door intage 

Fig. 8 Typical shelves irnuge 
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Fig. 9 Example door edge images 

Fig. 10 
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Table 1: Comparison of t he  PPHT and t h e  SHT 
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Table 2: Execution t imes for  processing 100 frames 

Data Method Range Time 
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It is interesting to note that there is a little extra 
computational cost in using full 360" direction information 
(the differences arise because of the effects a larger 
accumulator on memory caching). In the SHT, the 
increased accumulator size doubles the cost of scanning 
for peaks, while in the PPHT, because the scan is done 
during voting, the extra cost is negligible. 

Figs. 11 and 12 show the effect of using gradient 
direction on the stability of the sequence of real images. 
These results agree well with those given on the synthetic 
data. The best performance for the door image was with 
y set at 40" and for the shelves the value was around 
30. These figures correspond well with the minimum in 
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Fraction of lines matched as a function of angle width for  the 

false negatives and positives seen in Fig. 6. They also 
support the results on the synthetic data, shown in Figs. 4 
and 5 .  

5 Discussion 

The results of the experiments clearly show an improve- 
ment in performance for the PPHT. They show that when 
the PPHT is used with gradient direction information, it 
has a performance similar to the SHT, even where the SHT 
uses the same information. 

From Figs. 4 and 5, it can also be seen that algorithm is 
robust with respect to the confidence angle interval. When 
the range is set too low, or the uncertainty increases the 
PPHT uses more votes to compensate for this missing 
information. This is important if the uncertainty in the 
angles varies. It allows this parameter to be set at an 
optimal value, without fear that the algorithm will com- 
pletely fail if angles become more noisy than usual for a 
short while. 

The results on real images summarised in Figs. 11 and 
12 demonstrate that the benefits shown on synthetic data 
extend to the processing of real image data. With the added 
stability in the generated output achieved by the use of 
gradient direction, the PPHT becomes an attractive choice 
for real-time processing of edge images. 
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MATAS. J.. GALAMBOS. C.. and KITTLER. J.: ‘Progressive orobabil- 6 Conclusion 

The simple modifications shown here notably improve both 
the accuracy and performance of the PPHT, when gradient 
direction is available. It has also been shown that the 
relative improvement in the PPHT is significantly greater 
than that seen with equivalent modifications to the SHT. 

Even where gradient direction is not directly available, 
it is possible to use neighbouring edgels to estimate the 
required information successfully. The main disadvantage 
of using gradient direction is the addition of an extra 
parameter that defines the uncertainty in the edge1 
angles. This, however, can be estimated easily by either 
tuning to optimise performance or by comparing the angles 
of the edgels to those of the lines they are finally assigned 
to. Otherwise, the proposed modifications are easy to 
implement, and the improvements are gained without any 
significant drawbacks. 
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