
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Radioelectronics

Continuous Speech Recognition using Advanced Deep
Neural Networks

Master thesis

Bc. Martin Šubert

Study program: Electronics and communication
Specialisation: Audiovisual technique and signal processing

Supervisor: Doc. Ing. Petr Pollák, CSc.

Prague, May 2021

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457157Personal ID number:Šubert MartinStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Radioelectronics

Electronics and CommunicationsStudy program:

Audiovisual and Signal ProcessingSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Continuous Speech Recognition using Advanced Deep Neural Networks

Master’s thesis title in Czech:

Rozpoznávání spojité řeči s pokročilými strukturami hlubokých neuronových sítí

Guidelines:
1. Meet the principles of automated speech recognition (ASR) with a special focus on architectures based on deep neural
networks (DNN).
2. Make a survey on currently used solutions for ASR with advanced structures of DNN and compare selected approaches
of large vocabulary continuous speech recognition.
3. Using KALDI toolkit and available example scripts (recipes), realize an implementation of LVCSR based on selected
approaches using available speech databases, analyze achieved recognition accuracy, and compare your results with
other ones obtained and published by other authors. Based on KALDI conventions, create new example scripts (recipes)
covering your designed solutions as a practical output of your work.

Bibliography / sources:
[1] X. Huang, A. Acero, H.-W. Hon: Spoken Language Processing. Prentice Hall, 2001.
[2] D. Yu, L. Deng. Automatic Speech Recognition A Deep Learning Approach. Springer-Verlag London. 2015
[3] M. Karafiát, et al. Multilingual BLSTM and speaker-specific vector adaptation in 2016 BUT Babel system. In 2016 IEEE
SLT Workshop, San Diego, CA, 2016.
[4] J. Fiala: DNN-HMM Based Multilingual Recognizer of Telephone Speech. Diploma thesis, CTU FEE, 2016.

Name and workplace of master’s thesis supervisor:

doc. Ing. Petr Pollák, CSc., Department of Circuit Theory, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 25.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Josef Dobeš, CSc.

Head of department’s signature
doc. Ing. Petr Pollák, CSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Declaration

I hereby declare I have written this thesis independently and quoted all the sources of
information used in accordance with methodological instructions on ethical principles for
writing an academic thesis. Moreover, I state that this thesis has neither been submitted
nor accepted for any other degree.

In Prague, May 2021

..
Bc. Martin Šubert

iii

Acknowledgements

I want to thank my supervisor, Doc. Ing. Petr Pollák, CSc., for his excellent assistance
and support. He introduced me to the speech recognition field and provided me with
the necessary tools to work on the experiments. His guidance taught me how to present
scientific work properly.

iv

Abstract

This thesis presents Automatic Speech Recognition (ASR) systems based on deep neu-
ral networks (DNN) with advanced structures and their implementations for the English
and Czech languages using the Kaldi toolkit. The experiments use the newest Kaldi
DNN nnet3 setup, which supports mentioned advanced DNN types. Moreover, two nnet3
models are adopted - the standard nnet3 models and the chain models, which are imple-
mented as a part of the nnet3 DNN setup with the intention to decrease decoding time.
The implementations work with DNN-HMM architecture with two neural network types,
Time Delay Neural Network (TDNN) and Long Short-Term Memory (LSTM), using both
nnet3 and chain models. Additionally, the Convolutional Neural Network (CNN) neural
network structure is adopted using the chain model.

Experiments compare the accuracy of the DNN-HMM ASR models with the standard
GMM-HMM approach, and the best accuracy was achieved with TDNN network with
World Error Rate (WER) of 2.69 % for the English language, which was about 5% im-
provement over the standard GMM-HMM model. The best result for the Czech language
was also accomplished with the TDNN network with a WER of 10.78 % (approximately
9% improvement over the GMM-HMM model). Secondly, the performance of DNN-HMM
systems using GMM-HMM models trained with trigram and fourgram language models
(LM) was analyzed as well as with a dictionary with and without silence and pronuncia-
tion probabilities. Finally, the accuracy improvements and the overall processing speed of
the chain models over the standard nnet3 models were tested. The enhancement of accu-
racy was achieved both in TDNN and LSTM-TDNN chain models when more extensive
improvements registered the TDNN chain model. The decoding time decreased for both
DNN chain models when LSTM-TDNN decoded almost nine times faster than standard
nnet3 implementation. LSTM-TDNN chain model also reduces the training time when
the model was trained about 20 % faster. Nevertheless, the TDNN chain model had worse
training speed when the network trained more than twice slower than the nnet3 variant.

Keywords: Deep neural networks, speech recognition, DNN-HMM, Kaldi, nnet3, chain
models

v

Abstrakt

Tato diplomová práce prezentuje systémy automatického rozpoznáváńı řeči založené na
hlubokých neuronových śıt́ıch (DNN) s pokročilými strukturami a jejich implementace
pro anglický a český jazyk s použit́ım Kaldi nástroj̊u. Experimenty použ́ıvaj́ı nejnověǰśı
verzi Kaldi DNN nnet3 nástroj̊u, které podporuj́ı zmı́něné pokročilé DNN struktury. Byly
použity dva nnet3 modely - standardńı nnet3 model a tzv. chain model, který byl vytvořen
jako součást nnet3 nástroj̊u za účelem sńıžit čas dekódováńı. Implementace pracuje s
DNN-HMM architekturou se dvěma typy neuronových śıt́ı, TDNN a LSTM, při použit́ı
nnet3 i chain model̊u. Nav́ıc byla použita CNN neuronová śıt za použit́ı chain modelu.

Experimenty porovnávaj́ı přesnost DNN-HMM modelu se standardńım GMM-HMM
př́ıstupem, kdy nejlepš́ı přesnost byla dosažena pomoćı TDNN śıtě s WER 2.69 % pro
anglický jazyk, což bylo zhruba 5% zlepšeńı oproti standardńımu GMM-HMM modelu.
Nejlepš́ı výsledek pro český jazyk byl také dosažen s použit́ım TDNN śıtě s hodnotou
WER 10.78 % (přibližně 9% zlepšeńı oproti GMM-HMM modelu). Druhá část experi-
ment̊u porovnávala zlepšeńı DNN-HMM systémů vycházej́ıćıch z GMM-HMM model̊u
natrénovaných s trigramovým a čtyřgramovým jazykovým modelem, a dále se slovńıkem
s a bez pravděpodobnostmi ticha a výslovnosti. Posledńı část experiment̊u porovnává
přesnost a celkovou dobu zpracováńı za použit́ı chain model̊u a standardńıch nnet3 model̊u.
Zlepšeńı přesnosti lze vidět u TDNN i u LSTM-TDNN chain modelu, kdy větš́ı př́ınos
zaznamenala TDNN struktura. Doba dekódováńı poklesla u obou DNN struktur, kdy
chain LSTM-TDNN model dekódoval téměř devětkrát rychleji než jeho implementace po-
moćı standardńıch nnet3 model̊u. U LSTM-TDNN chain modelu nav́ıc došlo ke sńıžeńı
doby trénováńı, kdy byl model natrénován zhruba o 20 % rychleji oproti standardńımu
nnet3 modelu. Nicméně u TDNN chain modelu byla doba trénováńı v́ıce než dvojnásobná
oproti standardńı nnet3 variantě.

Kĺıčová slova: Hluboké neuronové śıtě, rozpoznáváńı řeči, DNN-HMM, Kaldi, nnet3,
chain modely

vi

Contents

Acknowledgements iv

Abstract v

List of Tables ix

List of Figures x

List of Acronyms xi

1 Introduction 1

2 GMM-HMM based speech recognition 3
2.1 Front-end processing - signal analysis . 3

2.1.1 MFCC - Mel-frequency cepstral coefficients 4
2.1.2 Differencial features . 5
2.1.3 Feature normalization . 5
2.1.4 LDA features . 5
2.1.5 Speaker adaptation techniques . 5

2.2 Back-end processing - classification . 6
2.2.1 Acoustic model . 7
2.2.2 Lexicon and dictionary . 8
2.2.3 Language model . 9
2.2.4 Decoding . 9
2.2.5 Forced alignment . 10

3 DNN within speech recognition 11
3.1 Definition of DNN . 11

3.1.1 Training process . 13
3.1.2 Pre-training . 13
3.1.3 Data augmentation . 16

3.2 DNN-HMM models . 16
3.2.1 Features in DNN-HMM . 17
3.2.2 Time delay neural network . 18
3.2.3 Recurrent neural network . 19
3.2.4 Long short-term memory . 21
3.2.5 Convolutional neural network . 24

3.3 End-to-end models . 27
3.3.1 Connectionist Temporal Classification 27

vii

CONTENTS viii

3.3.2 Attention model . 28

4 DNN-HMM ASR system implementation 30
4.1 Recipe for LVCSR . 30

4.1.1 Stage 0: Data preparation . 31
4.1.2 Stage 1: Feature extraction . 31
4.1.3 Stage 2: Acoustic modeling in GMM-HMM model 32
4.1.4 Stage 3: Decoding in GMM-HMM model 32
4.1.5 Stage 4: DNN training and decoding 32

5 Experimental part 39
5.1 Results for various DNN-HMM ASRs . 40

5.1.1 DNN-HMM systems for English . 40
5.1.2 DNN-HMM systems for Czech . 42

5.2 Training variants of DNN-HMM . 44
5.2.1 Impact of the n-gram model . 44
5.2.2 Impact of silence and pronunciation probabilities 45

5.3 Comparison of nnet3 and chain models . 45
5.3.1 Model processing time . 45
5.3.2 Model accuracy . 46

6 Conclusions 47

Bibliography 56

List of Tables

4.1 Overview of AMs used in ASR implementation 32
4.2 Configuration of high-resolution MFCCs extraction 33

5.1 WSJ data structure . 40
5.2 WSJ train datasets . 41
5.3 WSJ test datasets . 41
5.4 WER results for English test datasets . 41
5.5 Train datasets for experiments with Czech language 42
5.6 Test datasets for experiments with Czech language 42
5.7 WER results for Czech test datasets . 43
5.8 WER comparison of models using LM with tri-gram and four-gram model 44
5.9 WER comparison of models using dictionary with and without silence and

pronunciation probabilities . 45
5.10 Training and decoding time of nnet3 and chain models 45
5.11 WER comparison of nnet3 and chain models for English 46
5.12 WER comparison of nnet3 and chain models for Czech 46

ix

List of Figures

2.1 Basic ASR system . 3
2.2 Extraction of MFCC features . 4
2.3 Structure of ASR system with models . 6
2.4 Three-state HMM model . 8
2.5 Forced alignment method . 10

3.1 DNN with three hidden layers . 12
3.2 RBM network . 14
3.3 DBN network . 15
3.4 DNN-HMM model architecture . 17
3.5 Principle of TDNN network . 18
3.6 TDNN with sub-sampling and without sub-sampling 19
3.7 Simple part of RNN . 20
3.8 RNN expressed as a sequence of neural networks 20
3.9 Structure of RNN module . 21
3.10 Structure of LSTM module . 21
3.11 Forget gate layer of a cell . 22
3.12 Input layers of a cell . 22
3.13 A cell state Ct updating . 23
3.14 Fourth layer of a cell . 23
3.15 CNN structures . 25
3.16 CTC loss end-to-end model . 28
3.17 Attention model . 29

4.1 TDNN block layers . 34
4.2 TDNN network structure . 35
4.3 TDNN and TDNN-F block structure . 36
4.4 LSTM-TDNN network structure . 37
4.5 CNN-TDNN network structure . 38

x

List of Acronyms

AM Acoustic Model

ASR Automatic Speech Recognition

BTT Backpropagation Through Time

CNN Convolutional Neural Network

CTC Connectionist Temporal Classification

DBN Deep Belief Network

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DNN Deep Neural Network

FFT Fast Fourier Transform

fMLLR Feature Spaced Maximum Likelihood Linear Regression

GMM Gaussian Mixture Models

LDA Linear Discriminant Analysis

LM Language Model

LSTM Long Short-Term Memory

LVCSR Large Vocabulary Continuous Speech Recognition

MFCC Mel-Frequency Cepstral Coefficients

MLLR Maximum Likelihood Linear Regression

MLP Multilayer Perceptron

OOV Out of vocabulary

PCM Pulse-Code Modulation

PDF Probability Density Function

xi

List of Acronyms xii

RBM Restricted Boltzmann Machine

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

TDNN Time Delay Neural Network

UBM Universal Background Model

VTLP Vocal Tract Length Perturbation

WER World Error Rate

WFST Weighted Finite-State Transducers

WSJ Wall Street Journal

Chapter 1

Introduction

Communication among humans seems to be one of the critical abilities to achieve partic-

ular progress in human life. As history shows, the way our ancestors were communicating

changed and developed through thousands of years. Presumably, the most natural and

effective form of communication among humans is speech when different languages arose

throughout history depending on the culture or geographic region. Most of the languages

also came with their written form, which helped to conserve ideas and messages.

Nowadays, the exponential development in the technology areas comes with a problem

of human-to-machine communication. The methods human used to communicate with

machines also developed over time and when the simple command buttons enhanced with

more sophisticated keyboards. With the introduction of graphic interface, the mouse

and touch screens arose their popularity, and they are nowadays still one of the most

adopted ways to communicate with computers. Nevertheless, they have some limitations,

e.g., obligation to use hands and paying more attention to the commands a person wants

to enter into the system. This may be problematic when a person wants to adjust the

GPS navigation while driving a car. Using speech to command the GPS seems to be

a more suitable way. Therefore, research in ASR systems becomes one of the critical

parts of today’s technological progress. Speech recognition helps in many fields like IT,

the industry sector, healthcare, and many more. Particular ASR applications can be

presented with automatic transcriptions of meetings and the creation of movie captions

or processing voice commands in the voice assistants. One of the latest usages of ASR is

in the speech to speech translation systems.

The first step towards large vocabulary continuous speech recognition (LVCSR) sys-

tems comes with the GMM-HMM model proposed in [1] in 1980. This model uses statis-

tical methods Gaussian mixture model (GMM) and Hidden Markov Model (HMM) and

became the state-of-the-art approach of LVCSR systems. Later on, in the 1990s, Mor-

gan and Bourlard proposed to replace the GMM in the hybrid GMM-HMM model with

1

CHAPTER 1. INTRODUCTION 2

artificial neural networks (ANN) [2]. The multilayer perceptron (MLP) in the hybrid

ANN-HMM model should calculate the HMM state-posterior probabilities. Nowadays,

models with integrated neural networks have become the leading ASR systems. Various

DNN networks were implemented in the hybrid model DNN-HMM, including feed-forward

networks such as TDNN, CNN, or variations of Recurrent Neural Network (RNN) like

LSTM. One of the significant impacts of achieving good accuracy with these systems is

the possibility of obtaining a larger dataset for training the ASR models. Finally, the

so-called end-to-end models show promising results and are among the primary interests

of speech recognition researchers.

This thesis aims to explore today’s DNN based ASR approaches. The theoretical part

introduces the DNN methods used in speech recognition, followed by the experimental

part, which presents the DNN-HMM approach using the latest DNN Kaldi toolkit ap-

proach, nnet3 models. Moreover, the implementations contain DNN-HMM systems based

on chain models. The Kaldi toolkit creators introduced the chain models [3] as part of

nnet3 with an intention to decrease the decoding time, which may be essential in the

online ASR applications.

This thesis is organized into seven chapters. Chapter 2 introduce the GMM-HMM

based ASR system. The first part 2.1 describes the feature extraction process and the

typical features used in the speech recognition process. The second part 2.2 presents the

training and decoding principles and the models adopted in the processes. Chapter 3

firstly defines the DNN, training algorithms, and other methods corresponding with its

practices. The second part 3.2 describes the DNN-HMM models with DNN types used

in these systems. The last part of this chapter 3.3 introduces the end-to-end models.

Chapter 4 discuss the DNN-HMM ASR system implementation. The ASR experimental

setup is described in chapter 5 together with achieved results. Finally, chapter 6 discuss

the conclusion of the thesis.

Chapter 2

GMM-HMM based speech

recognition

The task of speech recognition is to find a word sequence corresponding to the input audio

signal. Figure 2.1 shows the simple ASR system process. Implementation based on GMM-

HMM is a basic approach of ASR, which proved to be a working LVCSR system. It is also

the first ASR implementation used at the commercial level. Even though designs with

(DNN) networks are replacing the GMM-HMM ASR systems, there are many reasons why

they are still essential. An implementation with DNNs typically needs a more extensive

database to train an accurate ASR system. Moreover, many ASR designs with DNNs

use a GMM-HMM system to obtain frame-level reference in large training corpora. The

system accuracy can then be improved because of the discriminative training of the DNNs.

Figure 2.1: Basic ASR system

2.1 Front-end processing - signal analysis

Firstly, it is necessary to define the form of speech content information used during the

recognition process. In ASR applications, the speech features are extracted from an

audio recording to represent required information. Cepstral coefficients are mainly used

as features for the ASR application because they benefit from the principle of speech

production and perception knowledge [4].

3

CHAPTER 2. GMM-HMM BASED SPEECH RECOGNITION 4

2.1.1 MFCC - Mel-frequency cepstral coefficients

MFCC coefficients are typically the most frequently used features in ASR applications to

represent the short-time signal information. MFCC uses the so-called mel scale, triangular

bands with equal distances between each other, representing logarithmic characteristics

at the frequency level. Using the logarithmic scale for the frequencies comes from the

principle of the human auditory system. The process of obtaining MFCCs is shown in

figure 2.2.

Figure 2.2: Extraction of MFCC features

Due to the non-stationarity of a speech signal, the features are extracted from short-

time frames, considered stationary. The standard frame’s length is 25 ms with approx-

imately 10 ms frame step size [5]. Standardly, pre-emphasis is applied to compensate

for the attenuation of high-frequency components during speech generation. Next, Ham-

ming window is used to minimize spectral leakage, which appears during the discrete

Fourier transform (DFT) computation. Then, an auditory-based filter bank is applied

to compute the smoothed power spectrum, which models the logarithmic dependency of

frequency perception in the human auditory system. Specifically, the logarithmic energies

gj are calculated using a formula (2.1) where S[k] is the DFT spectrum, Hmel,j is the

frequency response of j-th filter, N is the number of samples of a particular frame, and

M is the number of filter bank’s bands. The cepstral coefficients cn are computed using

discrete cosine transform (DCT) with formula (2.2), where M is the number of MFCC

coefficients. Typically, 13 MFCC coefficients are used to represent the signal features in

GMM-HMM systems. However, the many DNN based ASR models use so-called high

resolution features where 40 MFCC coefficients are used. The 0-th coefficient contains

information about the power of the signal, and the rest of the coefficients represent the

shape of the magnitude spectrum.

gj = log

N/2∑
k=0

|S[k]|2Hmel,j[k], j = 1, 2, ...,M (2.1)

CHAPTER 2. GMM-HMM BASED SPEECH RECOGNITION 5

cn =

√
2

J

J∑
j=1

gj cos
(πn
J

(j − 0.5)
)
, j = 1, 2, ...,M (2.2)

2.1.2 Differencial features

Additional to basic MFCC features, the delta and delta-delta features are typically used

to represent the long temporal context information which may significantly improve the

accuracy of speech recognition [6]. These features represent the evolution of static features

[7] and can be added to the feature vector along the MFCCs. The delta dn coefficients

can be calculated using formula (2.3), where K is the size of the contextual window, and

cn is the feature frame.

dn =

K∑
k=1

k ∗ (cn+k − cn−k)

2 ∗
K∑
k=1

k2
, (2.3)

2.1.3 Feature normalization

Several aspects can bring unwanted variability and noise to the extracted features and

lower the ASR system’s robustness. Firstly, the convolution noise caused by the non-

stationary recording environment and speaker diversity, and secondly, the additive noise.

The normalization techniques are proposed to eliminate these factors. Commonly used

Cepstral Mean and Variance Normalization (CMVN) method is based on subtraction of

average cepstrum and its scaling. Normalization is typically performed at both utterance

or speaker level.

2.1.4 LDA features

An additional approach to obtain temporal context information is to stack static features

of many frames into one more dimensional vector. However, two main problems prevent

using the features in the GMM-HMM model. Firstly, the features are correlated, and

secondly, the dimension of the vector is too large [8]. The Linear Discriminant Analysis

(LDA) is a statistical method that can be used to achieve the decorrelation of the features

and lower the vector’s dimension. The LDA maps features from n-dimensional space to

m-dimensional space, where n > m.

2.1.5 Speaker adaptation techniques

Speaker adaptation methods are used to obtain speaker-dependent features, leading to in-

creased accuracy of speech recognition systems. One of the widely used speaker adaptation

CHAPTER 2. GMM-HMM BASED SPEECH RECOGNITION 6

techniques is the Maximum Likelihood Linear Regression (MLLR). Using this method,

the Gaussian means in the ASR system are adopted to maximize the particular speaker’s

data likelihood. The feature-spaced MLLR (fMLLR) is an alternative method to the

MLLR, where the transformation is executed directly on the acoustic feature vectors [9].

The final vector of size 40 represents speaker-adapted features.

2.2 Back-end processing - classification

The purpose of back-end processing is the decoding process that determines the out-

put recognized text form of input speech. The decoder uses an acoustic model (AM),

lexicon, and language model, which provide information about phone-level, word-level,

and sentence-level matching, respectively, as shown in figure 2.3. The decoding process

works based on several computational methods such as HMM and Weighted Finite-State

Transducers (WFST). This chapter describes these particular models and methods.

Figure 2.3: Structure of ASR system with models

The process of speech recognition may be expressed mathematically by finding the

word sequence W with the maximal a posteriori probability when on the input of the

system is the feature vector X = (x1, x2, ..., xN) using formula

W = argmax
W

P (W |X). (2.4)

This equation can be rewritten using Bayes rule as

W = argmax
W

P (X|W)P (W)

P (X)
. (2.5)

CHAPTER 2. GMM-HMM BASED SPEECH RECOGNITION 7

The first term P (X|W) is a probability of a sequence of extracted features X based

on a sequence of words W . This part is represented by the AM. The second part of the

numerator P (W) is an apriori probability of a word sequence without acoustic information.

This part is acquired from the language model. The last part of the equation P (X) is an

apriori probability of a sequence of feature vectors [10].

2.2.1 Acoustic model

The AM expressed by probability P (X|W) in formula (2.5) represents the phone units of

a language based on the extracted acoustic features X from the input signal. The acous-

tic features use the statistical Gaussian mixture model (GMM) for their representation.

Following the equation (2.6), each acoustic phone feature can be expressed by Gaussian

probability distribution p(x|λ), determined by a mean value and the covariance matrix,

where N(x, µsi , C
s
i) is a n-dimensional Gaussian function given by vector of mean values

µ and covariance matrix C.

p(x|λs) =
Ms∑
i=1

csiN(x, µsi , C
s
i), (2.6)

Hidden Markov Model

The HMM is a left-to-right model consisting of several states connected sequentially, one

after another. The model estimates the transitions among the states where the state

index remains or increases depending on the time change. The HMM modelling of the

most probable state sequence Q* can be mathematically express by equation (2.7), where

Q represent all possible HMM state sequences Q = {q1, q2, ..., q3}, the term p(qt|qt−1)
referred to the transmission probability and P (xt|qt) to the emission probability.

Q∗ = argmax
Q∈Q

P (Q,X) = argmax
Q∈Q

T∏
t=1

p(qt|qt−1)P (xt|qt) (2.7)

Figure 2.4 shows the three states HMM model. The three states q = 2, 3, 4 can express the

beginning, middle, and end parts of each phone. The state q = 1 and q = 5 manage the

chaining of HMM models in word or sentence decoding. The emission probability P (xt|qt)
is modelled by the GMM models, where two parameters, the mean and the covariance

matrix, define the Gaussian distribution. The HMM model computes the transmission

probabilities p(qt|qt−1), which define the probability of remaining in the current state or

moving to the following one. Two assumptions have to be satisfied in order to use the

HMM model. Firstly, successive observations are conditionally independent of the past

observations and states. Secondly, the state series is the first-order Markov chain [11].

CHAPTER 2. GMM-HMM BASED SPEECH RECOGNITION 8

Figure 2.4: Three-state HMM model

Even though speech recognition systems using GMM-HMM models had great success,

several weaknesses have already been known since these applications started to use the

models [12]. One of the assumptions that a speech pattern is produced by a piece-wise

stationary process, with instantaneous transitions between stationary states [13], is in

discrepancy to how the human speech is generated - by continuous movements in the

vocal tract. Secondly, the assumption that the probability of being in a state s at time t

depends only on a state at time t-1. This property of HMM might be problematic since

the actual state may depend on more past states in speech.

Phonetic Decision Trees

LVCSR systems use decision trees for clustering context-dependent HMM states [14]. The

first step of training is calculating the monophone model, which does not depend on any

other phone (context-independent model). The next stage of training builds the context-

dependent model where the actual phone depends, for example, on the left and the right

phone (so-called triphone model). The number of possible triphones is quite large, and

each triphone has a different probability of occurring in the training data. Decision tree

clustering helps to establish the context-dependent model more efficiently.

2.2.2 Lexicon and dictionary

The ASR system considers the dictionary as a list of words that can occur in the input

speech. Once the dictionary does not include a word in the system’s input, the Out of

vocabulary world (OOV) notation is used. Sequences of phonemes can express human

spoken words. Thus, each word needs its transcription into text characters. Lexicon

models each word in the dictionary into the corresponding sequences of phones (a text

form of phonemes).

CHAPTER 2. GMM-HMM BASED SPEECH RECOGNITION 9

2.2.3 Language model

The task of the language model is to find an apriori probability P (W). It represents the

occurrence probability of a word without any acoustic information. These probabilities are

computed for all sentences listed in the training set. The most popular model is the n-gram

model when the probability is computed for a given word based on limited words before,

e.g. for trigram model the probability of occurrence of a word wi is P (wi|wi−1, wi−2).
There is also a special model called uni-gram when the probability of a word wi does not

depend on information from any other word. The probability is computed as the word’s

quantity of occurrence divided by the number of words in the training text corpus.

2.2.4 Decoding

A decoder aims to take the speech representatives from the front-end part and create a

corresponding written form. In other terms, the decoder maps the most probable sequence

of words to make the final transcript of input audio speech.

Weighted Finite-State Transducers

Nowadays, the typical method used for decoding is with (WFST). It uses the AM, lan-

guage model, and lexicon to establish the final decoded text. The WFST uses a static

recognition graph HCLG = H ◦C ◦L ◦G from a composition of particular automata. H

represents the actual HMM topology, C is a context-dependency transducer from context-

dependent phones to context-independent phones, L stands for lexicon, which maps the

words from the input phonemes, and G is a probabilistic grammar, which sequences the

words in the most probable order based on the language model. A transducer uses a

composition operation that combines the representations. For instance, a pronunciation

lexicon can be combined with the word-level grammar and create the phone-to-word trans-

ducer. The composition operation allows combining all levels of the ASR transducers into

an integrated transducer [15].

The integrated transducer is optimized in two steps: determinization and minimal-

ization. There are several additional optimization methods, but determinization and

minimalization are mainly adopted. The determinization purpose is to eliminate redun-

dant paths in the composed transducers, which reduce the recognition time. Moreover, it

reduced the transducer size and improve the efficiency of composition [15]. This process

is performed at each composition step of every pair of transducers. The final integrated

transducer N can be expressed with equation

N = πε(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G)))), (2.8)

CHAPTER 2. GMM-HMM BASED SPEECH RECOGNITION 10

where πε is an erasing operation that replaces the auxiliary distribution symbols by ε’s.

L̃ is a modified lexicon L with auxiliary phone symbols. The auxiliary phone symbols

are added at the end of a word and help distinguish two different words with the same

pronunciation. Using L̃ implies adopting context-dependency transducer C̃ that pairs the

context-independent auxiliary symbols from the modified lexicon L̃. Finally, H̃ is modified

HMM representation H that allows to map the auxiliary context-dependent phones from

C̃ into a new distribution name. The minimization can be express with formula (2.9),

where the min operator is added. The minimization algorithm further decreases the size

of the integrated transducer.

N = πε(min(det(H̃ ◦ det(C̃ ◦ det(L̃ ◦G))))), (2.9)

2.2.5 Forced alignment

Forced alignment occurs during the decoding when a model of a sentence is aligned to

the given transcription. The main principle of the alignment is shown in the figure 2.5.

The computation typically uses the Viterbi algorithm, which estimates the likelihoods of

passing through particular paths in the decoding graph. Subsequently, the backtracing

finds the maximum likelihood path. The graph contains information both from the AM

and the utterance content transcript represented by grammar. In this matter, it is crucial

to choose the pronunciation best matches the observed one. The forced alignment assumes

knowing the content of the sentence. If the corpus used for training does not contain a

reference transcription, the alignments are computed as the decoder’s best path.

Figure 2.5: Forced alignment method [16]

Chapter 3

DNN within speech recognition

There are various approaches of DNN usage in the implementation of the speech recogni-

tion systems. It can help to obtain better-extracted features using unsupervised training.

In that case, the features are extracted from one of the hidden layers of the neural net.

Another typical scheme is the DNN-HMM structure, where the DNNs produce the poste-

rior probabilities over HMM states. Therefore, the DNNs replace GMMs in the standard

GMM-HMM approach. Several enhancements improve the DNN-HMM design, such as

using different neural network settings, a different structure such as LSTM, CNN, and

similar. The most recent implementation uses an end-to-end DNN approach, when the

neural net input is the speech signal or its spectrogram and in the output is the transcript,

recognized text.

3.1 Definition of DNN

A basic DNN is based on a multilayer perceptron (MLP) with numerous hidden layers.

Figure 3.1 shows a DNN with one input layer, three hidden layers, and one output layer.

The size of an input layer depends on the neural network inputs. In the DNN-HMM model,

the neural network receives the extracted features, so the input layer size is the same as

the feature vector. The hidden layer’s size varies based on a particular application’s needs

and is typically more expansive than the input layer. The expected size of the hidden layer

is from 500 up to 10000 neurons, when the number of neurons typically decreases with

fewer hidden layers in DNN. The output layer size depends on the number of classification

classes.

11

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 12

Figure 3.1: DNN with three hidden layers

The so-called activation function defines each neuron of the hidden layer j, which

typically is a logistic function. The most common are sigmoid, giving values 0 or 1, and

a tangent function, giving -1 or 1. The output of the neuron yj can be calculated with

equation (3.1) using the sigmoid function or with formula (3.2), which applies the tangent

function.

yjsigmoid
=

1

1 + e−xj
, (3.1)

yjtangent =
exj − e−xj
exj + e−xj

. (3.2)

The xj is the total input to the neuron j and can be mathematically described using the

formula

xj = bj +
∑
i

yjwij, (3.3)

where bj is the bias of neuron j, i is the index of the layer before and wij is the connection

weight between layer i and j. The output of the DNN characterizes the a posteriori

probabilities computed by the softmax activation function pj described by equation

pj(xj) =
exj
J∑
i=1

exi
(3.4)

where index j belongs to the output layer, and the probabilities are calculated for the

neuron potentials xi.

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 13

3.1.1 Training process

The DNN model has two unknown parameter - the weights wij and the bias bj. These

parameters are estimated during the training process, which can be defined by a training

criterion and a learning algorithm [12].

The most common training criterion in the ASR applications is the cross-entropy [17]

criterion. The cost function C is then the cross-entropy between the reference output d

and the output of the softmax function p for each training stage j expressed with formula

(3.5), where the reference probabilities are the supervised information used to train the

DNN classifier [18].

C = −
∑
j

dj log pj, (3.5)

The training process can use the backpropagation of cost function’s derivatives. This

method may be computationally challenging with a large dataset. The solution for this

problem is to divide training data into smaller batches, and the derivatives are com-

puted within them. Another improvement brings the Stochastic Gradient Descent (SGD)

method by adding a momentum coefficient α which smooths the gradient. The actual

weight wij for batch t can be then computed using using formula (3.6), where ε is the

learning rate and 0 < α < 1.

∆wij(t) = α∆wij(t− 1)− ε ∂C

∂wij(t)
, (3.6)

The biases can be computed with the same method as the weights, looking at them as

the connections from neurons that always value one [18].

3.1.2 Pre-training

DNNs with many hidden layers and units per layer are very flexible, and they can be

trained for very complex and nonlinear relationships between input and output. How-

ever, this fact also comes with disadvantages. It permits to train false regularities as an

accidental characteristic of the training dataset, leading to an overfitting problem [18].

The DNN-HMM model uses supervised training in the training process of the neural

network. Therefore, the DNN needs a reference of the output that the network should

provide. In this matter, the GMM-HMM model is trained in the first places, providing

the context-dependent states from the forced-alignment process as the references. At this

moment, the input feature vector and the reference output of the neural network are

known. Furthermore, the weights and the biases of DNN need to be initialized before the

training starts.

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 14

According to [12], the neural network’s initialization has a significant impact on the

resulting model. There are several approaches to initialize such a network. The first prac-

tice is to set the weights and biases values randomly. Random initialization is necessary

because neurons in the DNNs are symmetric and interchangeable [12]. However, using the

random initialization may not lead to the best-resulting model, and overfitting can occur

while tackling a difficult task. The overfitting can be reduced by using large datasets [19],

but this results in a longer training process time.

Another strategy is to use advanced initialization techniques, including restricted

Boltzmann machines (RBM) and deep belief networks (DBN), which utilize the training

data’s information. The goal is to learn one layer of feature detectors from the previous

layer acting as it already obtained the training data. The pre-training process finds the

region of weight-space, making better progress during the discriminative fine-tuning and

significantly reducing the overfitting [20].

Restricted Boltzmann machines

The RBM is defined by one layer of stochastic binary visible units representing the input

data connected to the layer of stochastic binary hidden units that learn the significant

nonindependence between the visible units [21], as it can be seen in figure 3.2. The

connections are only between units in the visible layer and the units of the hidden layer.

Figure 3.2: RBM network

The RBM algorithm distributes energy to every configuration of visible units, vector

v ∈ RNv×1, and hidden units, vector h ∈ {0, 1}Nh×1, where the Nv and Nh are the number

of visible and hidden units, respectively [12]. The ASR applications usually use the

Gaussian–Bernoulli (GRBM) when the input units may take real values occurring in the

MFCCs. The mathematical equation of the GRBM energy can be computed as

E(v, h) =
1

2
(v − a)T (v − a)− bTh− hTWv, (3.7)

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 15

as seen in [12] where the W ∈ RNh×Nv is the weight matrix representing the connection

between visible and hidden units, a ∈ RNv×1 is the bias vector of visible units and b ∈
RNh×1 is the bias vector of hidden units.

Using the energy function, each connection between a visible unit and a hidden unit

obtain a calculated probability. Moreover, the posterior probabilities P (v|h) and P (h|v)

necessary for the learning process are defined by equation (3.8) and (3.9), respectively,

where σ = (1 + e−x)−1 is the element-wise logistic sigmoid function, N is a Gaussian, and

I is the appropriate identity covariance matrix [12].

P (v|h) = σ(Wv + b), (3.8)

P (h|v) = N (v;W Th+ a, I), (3.9)

Deep belief networks

Once the first RBM is trained, the hidden layers calculated states could be used as the

input data into a new RBM network representing the hidden-to-hidden layer of DNN. Fol-

lowing this principle, it is possible to chain many RBM networks to produce a multilayer

generative model, the so-called (DBN) network [18]. The DBN is used as unsupervised

training to initialize the DNN network. This initialization leads to higher accuracy com-

pared with the random initialization [22].

Figure 3.3: DBN network

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 16

3.1.3 Data augmentation

Data augmentation techniques in ASR helps to increase the amount of training data in

certain corpus. The usage of common used technique as Vocal Tract Length Perturba-

tion (VTLP) [23] showed improved robustness of ASR system trained with speech data

corupted with noise [24] or better acuracy of phoneme recognition [23].

An alternative method to VTLP, the speed-perturbation, is proposed in [25]. The

input audio signal x(t) is subjected to time wrapping by a factor α. The resulting out-

put signal x(αt) has shifted frequency components of the ˆx(ω) by value of frequency

ω [25] which corresponds approximately to a shift of the spectrum in the mel spectro-

gram [26]. These changes in the mel spectrogram are similar to the VTLP method. The

speed-perturbation techniques also make changes in the duration of the audio signal and

therefore prolong the number of frames in the utterance [25].

3.2 DNN-HMM models

A typical DNN requires fixed-size inputs, which is a problem since the speech signals

are time series. Therefore, the speech signal’s variable length must be considered if the

speech recognition system uses the DNN in its implementation. One of the solutions to

this problem is using DNN in combination with HMM. In this design, the HMMs models

the speech signal while the DNNs compute the observation probabilities. The DNN

takes the acoustic observations as an input to the neural network, and in the output,

each neuron represents the posterior probability of continuous density HMM’s state [12].

Figure 3.4 shows the DNN-HMM model architecture. The early systems with the DNN-

HMM model used context-independent phones as labels for DNN training and worked

well for smaller vocabulary corpora. Later on, the DNN achieve training with context-

dependent triphones, the so-called senons, which led to promising results even in LVCSR

[27].

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 17

Figure 3.4: DNN-HMM model architecture

3.2.1 Features in DNN-HMM

The DNN input layer usually obtains a vector of short-time features such as MFCC

with delta and delta-delta features. The neural networks may also improve using the

information of the speaker adaptation features. However, the fMLLR and other speaker

adaptation methods need two-pass decoding [28] which is challenging to use in online ASR

applications. iVectors are widely used in speaker recognition [29] and may also be used to

determine the speaker adaptation features for speech recognition purposes. They capture

both the speaker and environment information, which helps rapid and discriminative

adaptation of the DFT [30].

The acoustic feature vector can be considered as a sample, generated with a Uni-

versal Background Model (UBM) [31], represented as a GMM with diagonal covariance

Gaussians [32]. There is an assumption that between GMM speaker-dependent means

and speaker-independent means is a linear dependency. The extraction of the iVector is

computed based on this assumption and is described more in detail in [32]. The most

common method of using iVectors in DNN training is to extract iVectors for each speaker

or utterance and then concatenate it to the acoustic feature vector of the corresponding

speaker or utterance [33]. The resulting vector is introduced in the input of the DNN.

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 18

3.2.2 Time delay neural network

Each layer consists of units with an activation function as in standard DNN. The neurons

in TDNN have added delays D1 up to DN , where N is the total number of delays. Every

input Im will be multiplied by the weights of each delay wid, plus the weight of the

undelayed unit wi. For the TDNN presented in figure 3.5, 30 weights will be necessary

for the number of delays N = 2 and number of inputs M = 10. Each input will be

processed in three different time points - one for the undelayed unit and two for the

delayed units. The logistic function comes after the summation (sigmoid function σ is

used in this example).

Figure 3.5: Principle of TDNN network

As mentioned in [34], in the standard DNN, the initial transforms are learned for the

entire temporal context. The TDNN structure is different in the way that the initial

transforms are trained just from a limited context when the deeper layers process the

hidden activations from a broader temporal context [34]. Every layer of the TDNN has a

different resolution which increases with the deeper layer.

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 19

Figure 3.6: TDNN with sub-sampling (red) and without sub-sampling (blue) [34]

The hidden activations are calculated at all time steps, which comes with overlaps

and redundancy between adjacent steps. The standard TDNN structure can be improved

using sub-sampling proposed in [34]. The neighbouring activations can be sub-sampled if

there is a correlation between them. Instead of splicing together the temporal windows of

frames, this approach lets to have gaps between the frames. The difference between the

typical TDNN and the TDNN with sub-sampling is shown in the figure 3.6

As the training algorithm for TDNN can be used standard backpropagation method

with stochastic gradient descent (SGD) updates [34], [35].

3.2.3 Recurrent neural network

Recurrent Neural Networks (RNNs) focus on working with memory when the network’s

outputs depend on the inputs and the previous states. The dependency in prior states

is a question of thorough training of the network. An easy example of RNN is shown

in figure 3.7, where xt is the input of the network, A is one part of RNN, and ht is the

output of the particular layer A. The loop in the layer A can be understood as multiple

copies of classic neural networks as shown in figure 3.8.

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 20

Figure 3.7: Simple part of RNN [36]

Figure 3.8: RNN expressed as a sequence of neural networks [36]

The computation of the current state ht is similar to classic MLP with difference that

activations come from both the actual input xt and the delayed hidden layer activation

ht−1. Therefore, the current state ht can be expressed using formula (3.10), where Whh

are the weights hidden-to-hidden layer, Whx are the weights input-to-hidden, σ is the

activation function and bh is a bias. The output of the RNN yt is computed as in MLP

following the formula (3.11), where Wyh are the weights hidden-to-output.

ht = σ(Whhht−1 +Whxxt + bh) (3.10)

yt = Wyhht, (3.11)

Backpropagation through time

The learning process and network’s weights updating are performed by backpropagation,

although with some minor upgrades since the network deals with a sequence in time.

The basic concept of backpropagation through time (BTT) is to unfold the RNN into a

series of feed-forward networks, as shown in figure 3.8. The first step initiates the input

layer and the initial hidden layer states. The weights are randomly set. After that, it is

possible to execute forward and backward propagation and compute the gradients. The

gradients are then averaged, and the weights are continuously updated at the same time.

This process should be repeated for all the elements of the input sequence.

The BTT method has a problem dealing with long-term dependencies when the gradi-

ent flow will decay sharply through non-linear operations [37]. This phenomenon is called

the vanishing gradient problem.

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 21

3.2.4 Long short-term memory

Long-Short Term Memory network (LSTM) is a special kind of RNN which can deal

with the long-term dependencies causing the vanishing gradient problem. The LSTMs

are explicitly designed to learn long-term dependencies.

All the RNNs are possible to unfold into a sequence of classic neural networks. The

difference in LSTM is the structure of the neural network module. The typical RNN

network would have a simple tanh layer as shown in figure 3.9, where the yellow rectangle

is a single neural network layer.

Figure 3.9: Structure of RNN module [36]

Cell structure

The LSMT’s module structure is more complex, consisting of four neural network layers

as displayed in figure 3.10. Inside the module, four neural network layers are separately

trained. Moreover, there are different operations among the separate outputs of each

layer. The core value is then the state of the cell Ct. This state is passed through the

whole chain of the network, and each cell modifies it. Because of the more complex cell

structure, it is possible to control the cell states and outputs much better than in the

classic RNN.

Figure 3.10: Structure of LSTM module [36]

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 22

Forward propagation inside the cell

The process in the cell starts with two inputs ht−1 and xt going to the first layer with

sigmoid activation function σ as shown in figure 3.11. This part is also called forget gate

layer, and it decides what information will be removed from the state cell C. The output

of this layer ft can be calculated with the formula (3.12), where the Wf is the weight

matrix, and bf is the bias.

ft = σ(Wf [ht−1, xt] + bf) (3.12)

Figure 3.11: Forget gate layer of a cell [36]

The following two so-called input layers (figure 3.12) decide about the new information

which will be added to the cell state. The equation (3.13) express the output it of the

first sigmoid layer. This layer decides which values will be updated in the cell state.

The output of the second tanh layer Ĉt can be estimated with formula (3.14), where the

candidates of new values in the cell state are calculated.

it = σ(Wi[ht−1, xt] + bi), (3.13)

Ĉt = tanh(WC [ht−1, xt] + bC). (3.14)

Figure 3.12: Input layers of a cell [36]

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 23

The outputs of these two layers are multiplied and sum to the state cell. Figure 3.13

shows the particular operations between the variables from the forget gate layer and the

input layers. Then, the new cell state Ct is calculated using the equation (3.15), where ∗
is the element-wise multiplication of the vectors.

Ct = ft ∗ Ct−1 + itĈt (3.15)

Figure 3.13: A cell state Ct updating [36]

The last sigmoid layer, shown in figure 3.14, influences both the cell state and the

output of the cell ht. The computation is performed in two steps defined by formulas

(3.16) and (3.17).

ot = σ(Wo[ht−1, xt] + bo) (3.16)

ht = ot ∗ tanh(Ct) (3.17)

Figure 3.14: Fourth layer of a cell [36]

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 24

3.2.5 Convolutional neural network

A convolutional neural network (CNN) is a type of DNN that comes with a new network

structure. The two new layers, the convolutional and the pooling layer, are used alter-

natively to the hidden layer in the standard DNN. Typically the input layer of the CNN

obtains so-called feature maps instead of feature vectors. This different input type comes

from image processing, where the neural network deals with 2D objects. The feature map

can be considered for ASR purposes as a spectrogram with time and frequency axis using

static, delta, and delta-delta features.

Locality

One of the fundamental added values of CNN is exploiting the locality characteristic.

Each phoneme may have a various decomposition of energy throughout local bands on

the frequency axis. Combining filters working on different local frequency regions can lead

to better recognition of a particular phoneme. Using local filters also help the robustness

against ambient noise, especially if the noise appears in a specific frequency band.

The CNN inputs have to preserve the locality in both the time and frequency axis

to acquire stated advantages. The time axis input consists of several frames with a vast

context and does not bring locality problems. The difficulties come in the frequency axis

where the standard MFCC cannot be applied because DCT projects the spectral energies

into a new basis that may not keep locality. Therefore, the frequency axis input can be

represented with so-called MFSC features that use the log-energy computed directly from

the MFCC (with no DCT) and their delta and delta-delta features [38].

Input layer structure

There are several ways how to arrange the speech features into the feature maps in the

input layer. The first option is to organize each MFSC feature type (static, delta, delta-

delta) into its feature map. In this case, individual feature type is represented along

the frequency axis, as frequency bands, and along the time axis as frames within each

context window. The normalization of frequency and time axis is accomplished using

two-dimensional convolution. This structure is shown in figure 3.15(b).

The second structure of the input feature maps is displayed in figure 3.15(c) where the

feature map is a vector for each feature type for each frame. So if there are 15 frames per

window and three feature types, the total number of feature maps in the input layer will

be 45, each with a dimension of the number of filter banks (in this example, 40 frequency

bands). This arrangement uses one-dimensional convolution along frequency [38] and will

be considered for the rest of the chapter for a description of CNN.

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 25

Figure 3.15: CNN structures

Convolution layer

The convolution layer also consists of many feature maps which are connected with the

input layer. The principal difference from the hidden layer in standard DNN is that each

convolution unit takes input only from the input’s local region. Therefore, the unit of

the convolution layer represents specific features of the local area. The convolution layer

units can be built into various feature maps, which allows them to share the same weights

but take input from different places of a previous layer [38].

Each input feature map Oi (I input feature maps in total) is connected to J feature

maps in the convolution layer Qj. The connections are represented by I × J local weight

matrices wi,j. The convolution operation deals with the mapping, and for one-dimensional

input feature maps, the units of the convolution feature map are computed as

qj,m = σ

(I∑
i=1

F∑
n=1

oi,n+m−1wi,j,n + w0,j

)
, (j = 1, ..., J) (3.18)

where σ is the sigmoid function, F is the filter size representing the number of filter bands

in every input feature map that each convolution layer unit takes as input, oi,m is the

m-th unit of the i-th input feature map Oi, qi,m is the m-th unit of the j-th convolution

feature map Qi, and wi,j,n is the n-th element of the weight vector wi,j representing the

connection between i-th input feature map and the j-th convolution feature map. The

equation (3.18) can be expressed in matrix form with formula 3.19, where ∗ symbol is the

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 26

convolution operator, Oi is the i-th input feature map and wi,j local matrix weight.

Qj = σ

(I∑
i=1

Oi ∗wi,j

)
, (j = 1, ..., J) (3.19)

The number of feature maps in the convolution layer defines local weight matrices’ quan-

tity in the described convolution mapping. In real applications, many local weight matri-

ces are identical or very similar and can be removed. Therefore, the networks lower the

number of convolution layers.

Pooling layer

The pooling layer is another layer of CNN that always comes in pair with a convolution

layer. It also consists of the same number of feature maps as the corresponding convolution

layer. However, the feature maps’ size is smaller to decrease the resolution. The pooling

layer generalizes the corresponding convolution layer features, which reduce the variation

among speakers [39]. The reduction can be performed using the max-pooling function to

units in a particular local region specified by a pooling size parameter [38]. The max-

pooling can be computed as

pi,m =
G

max
n=1

qi,(m−1)×s+n, (3.20)

where G is the pooling size, s is the shift size, which defines adjacent pooling windows

overlap.

Training CNN

The learning of the CNN network uses the backpropagation algorithm as standard DNNs.

However, there are modifications in order to handle the sparse connections and weight

sharing. The basic weight matrix W is replaced by a large sparse weight matrix Ŵ [38].

Following the equation (3.19), the convolution output can be computed with Ŵ as

q̂ = σ(ôŴ). (3.21)

The input feature vector ô = [v1|v2|...|vM] consists of row vectors vm, where M is the

total number of frequency bands. Since the formula (3.21) is mathematically the same

as the output of hidden layer in the standard DNN, the update of Ŵ can be computed

using backpropagation as

∆Ŵ = ε · ô‘e, (3.22)

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 27

where e is the error vector, and ε is the learning rate. Updating the shared weights adds

a sum over the weights in their update stage as

∆wi,j,n =
∑
m

∆Ŵi+(m+n−2)×I,j+(m−1)×J . (3.23)

3.3 End-to-end models

The rise of speech recognition applications starts to require running the ASR systems on

largely adapted devices that are challenging to handle because of the size of the lexicon

and language model with its corresponding WFST. A different approach to implementing

an ASR system with only DNNs is eliminating the need for the WFST and LM. These

designs are called end-to-end systems, and they map input acoustic feature sequences into

the corresponding sequence of labels.

End-to-end ASR systems consist of a number of components combined together. The

components are particular DNN network structures when the DNN type used in the

system can vary based on the implementation. Applying RNN networks, the usage of

LSTM showed promising results [40], [41] as well as Gated Recurrent Unit (GRU) networks

[42]. The CNN neural networks were also successfully implemented in the end-to-end

systems with encouraging results [43], [44].

3.3.1 Connectionist Temporal Classification

A basic approach of an end-to-end ASR system can be constructed with neural network

layers stacked together with the Connectionist Temporal Classification (CTC) loss. This

architecture does not need to align the data in advance but requires just trained output

of the network since it uses supervised training [45]. The output of the CTC model is

a probability distribution of corresponding labels and the so-called blank symbol. Each

spike in the speech corresponds to a classification. The parts of the speech without any

spikes are represented with the blank symbol [45]. The posterior probability of the output

label sequence P (y|x) can be computed as

P (y|x) =
∑

ŷ∈B(y,x)

T∏
t=1

P (ŷt|x), (3.24)

where B represents all possible alignments, y is the output label sequence, ŷ is the output

label sequence after removing all blank symbols, and x is the network input. The equation

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 28

(3.25) determine the CTC loss L.

L = −E[log(P (y|x))]. (3.25)

The model uses the forward-backward recursion algorithm assuming conditional indepen-

dence [46]. Figure 3.16 shows the architecture of the CTC loss model.

Figure 3.16: CTC loss end-to-end model

3.3.2 Attention model

The attention model uses an attention mechanism that computes the similarity score be-

tween the decoder and every encoder frame [45]. The attention mechanism is represented

in the model architecture by another component inserted between the encoder and de-

coder, as shown in figure 3.17. The output of the attention component is the context

vector entering into the decoder. Mathematically, the attention process can be express

with equations

em,l = energy(hencm , hdecl−1), (3.26a)

am,l = softmax(em,l), (3.26b)

cl =
M−1∑
m=0

am,lh
enc
m , (3.26c)

CHAPTER 3. DNN WITHIN SPEECH RECOGNITION 29

where em,l is the energy between encoder hidden output hencm at time m and decoder

hidden output hdecl−1 at the label index l − 1. Formula (3.26c) computes the final context

vector cl used as the input to the decoder.

Figure 3.17: Attention model

Chapter 4

DNN-HMM ASR system

implementation

The experimental ASR system was implemented using Kaldi, a free, open-source toolkit

for speech recognition licensed under the Apache License v2.0. Kaldi is written in C++

language and supports many state-of-the-art designs such as standard methods using

the GMM-HMM model or systems with DNN. The fundamental advantages of the Kaldi

toolkit are the ability to use finite-state transducers, extensive linear algebra, and its non-

restrictive license [3]. Kaldi contains many recipes that serve as examples of how to work

with Kaldi tools using bash scripts. Each part of the recognition system is implemented

in a separate script. Therefore, it is easier to modify the recipe for a new dataset or adjust

parameters or methods based on different preferences.

The DNN-HMM ASR experimental setups use the standard s5 Kaldi recipe for LVCSR.

The overall process is to train the standard GMM-HMM model and obtain triphone mod-

els with their WFST graphs. Later, DNN networks are trained using the triphones model,

and a new decoding process is performed. The DNN part works with the latest Kaldi

recipes of neural networks nnet3. Additionally to the standard nnet3 models, the chain

models are used for several implementations. Two DNN architectures, TDNN and LSTM,

are adopted in both the standard nnet3 and chain models. Additionally, one more neural

network, CNN, is selected using the chain models.

4.1 Recipe for LVCSR

This section describes the implementation of the DNN-HMM LVCSR system used for the

experiments of this thesis. The implementation is divided into four stages, where stages

1-3 define the GMM-HMM model and stage 4 describe the training and decoding process

of the DNN-HMM system.

30

CHAPTER 4. DNN-HMM ASR SYSTEM IMPLEMENTATION 31

4.1.1 Stage 0: Data preparation

The first step in the experimental ASR system implementation is the data preparation

which consists of a definition of train, development, test data, creation of language models

and lexicons. The corpora’s data is divided into several groups of speakers with its utter-

ances. The data preparation process generates list files for each data group necessary later

in the ASR process. The lists contain information about the speaker’s ID, corresponding

utterances, transcript of the utterances, paths to original audio files, and similar.

The LMs are built using the standard n-gram model for train and test datasets. More-

over, several versions of LMs are used in the ASR system when the differences are in the

adopted dictionary, which may contain silences or OOV words. The implementation with

the Czech corpora uses one silence phone, silence (SIL), whether the implementation with

the English corpora uses three silence phones, silence (SIL), spoken noise (SPN) and

non-spoken noise (NSN).

Firstly, the LM for the train dataset is created. The folder representing the LM for

training contains lists of words and phones and a file topo, which represents the states

and transitions among states for HMM model. In the experimental setups, three and

five states were used to describe silence and non-silence phones, respectively. Further,

L.fst file is created for the WFST method in the decoding process based on the lexicon.

Then, the LMs for each test dataset are created with additional G.fst file representing

the grammar G in the WSFT algorithm. The LM is firstly built without the silence

probabilities. Later, the silences are added into the lexicon, and another LM is created.

4.1.2 Stage 1: Feature extraction

The implemented ASR system uses MFCC features. The features extraction process

begins with a definition of the frame length, where 25 ms frames are used with 10 ms

shifts. The preemphasis, offset elimination, and multiplication of Hamming window are

performed for each frame. Next, the power spectrum is computed using fast Fourier

transform (FFT). The mel bank consists of 23 overlapping triangular bins with equally

spaced centers in the mel-frequency domain. The cutoff frequency of mel frequency filter

banks is from 20 Hz to 7800 Hz. The energy is calculated in each of these mel bins

and takes the log value of the energies. Next, the 13 cepstral coefficients are computed

using the cosine transform. The sampling frequency is 16 kHz. Additionally, the CMVN

technique described in section 2.1.3 is applied. The normalization is done at the speaker

level.

CHAPTER 4. DNN-HMM ASR SYSTEM IMPLEMENTATION 32

4.1.3 Stage 2: Acoustic modeling in GMM-HMM model

The experimental ASR system uses forced alignment discussed in chapter 2.2.5 to optimize

the AM parameters. This alignment is executed in each cycle of the training process.

There are several AMs used in the ASR implementation. Each model use the MFCC

features normalized with CMVN technique with some extra features. The monophone

AM mono was expanded into context-dependent triphone models tri1, tri2, tri3, and tri4.

The AMs also differ in which LM is used. There are both LM without pronunciation and

silence probabilities (sp) and without them (nosp). The overview of the features used in

a particular AM is shown in the table 4.1. All the feature types are explained in chapter

2.1.

Model Features LM

mono MFCC nosp

tri1 MFCC, delta, delta-delta nosp

tri2 MFCC, LDA, MLLT nosp

tri3 MFCC, LDA, MLLT, SAT nosp

tri4 MFCC, LDA, MLLT, SAT sp

Table 4.1: Overview of AMs used in ASR implementation

4.1.4 Stage 3: Decoding in GMM-HMM model

The next stage of ASR implementation creates the HCLG graph used in the decoding

process. The finite-state transducer accepts the probability density function (PDF) IDs

in the input and produces word IDs in the output. Once the HCLG graphs for each model

are created, the decoding process calculates the final transcript.

4.1.5 Stage 4: DNN training and decoding

The GMM-HMM model is trained at this stage and can provide the necessary alignments

for the DNN-HMM model training. The experimental ASR implementations use the

latest Kaldi DNN recipes, nnet3 models. Two DNN architectures are adopted in the

experimental setups using nnet3 models, TDNN and LSTM. Moreover, the DNN-HMM

chain models introduced as part of nnet3 are applied. There are three DNN architectures

selected using the chain models, TDNN, LSTM, and additionally CNN network.

CHAPTER 4. DNN-HMM ASR SYSTEM IMPLEMENTATION 33

Chain models

The chain models use three times smaller frame rate at the neural net output, which

lowers the computational time during the test stage. Therefore, the systems should be

about three times faster to decode. Furthermore, the system’s accuracy is supposed to

be approximately 5 % better and the training stage a bit faster. The training is based on

the maximum mutual information (MMI) method [47] without the needs of lattices [48].

The training process performs a full forward-backward algorithm on a decoding graph

determined from a phone n-gram LM. The HMM topology is transformed to allow the

HMM traversal in one state obligated because of the reduced frame rate. So far, the HMM

transition probabilities are fixed without any further training. Additionally, a phone LM

is generated from the training data phone alignments necessary for the FST creation.

Data augmentation and iVector creation

Before the DNN training process starts, the data and features are adapted to the pur-

pose of DNN training. Firstly, the data augmentation is performed using the speed-

perturbation technique. The MFCC features with CMVN normalization are computed for

these low-resolution speed-perturbed data necessary for the alignment. The low-resolution

MFCCs have dimension of 13 and follow the configuration described in 4.1.2. Secondly,

the volume-perturbation is executed on the training data, which helps the trained DNNs

to be more invariant to the test data volume. Next, the high-resolution MFCC features

with CMVN normalization are determined. The process of high-resolution MFCCs ex-

traction is the same as for the low-resolution MFCCs but with a configuration shown in

the table 4.2. The feature vector keeps all the 40 MFCCs which provide the same infor-

mation as the filterbank features. However, the MFCCs are more efficiently compressible

because of the lower correlation.

Parameter Value Significance

–use-energy false using average of log energy

–num-mel-bins 40 number of mel bins

–num-ceps 40 number of cepstral coefficients

–low-freq 20 low cutoff frequency

–high-freq -400 high cutoff frequency

Table 4.2: Configuration of high-resolution MFCCs extraction

CHAPTER 4. DNN-HMM ASR SYSTEM IMPLEMENTATION 34

The second part of the process creates and trains the iVector. In the first step, about

a quarter of the high-resolution data are dedicated to training a diagonal UBM model.

The principal components analysis (PCA) [49] transform is computed using these data.

The diagonal UBM is then trained with 512 Gaussians. Finally, the iVector extractor is

trained using all the speed-perturbed data. The iVector dimension is set to 100. The

iVector is also extracted for the test data, but in such case, no speed-perturbed data are

needed.

TDNN architecture

Firstly, the standard nnet3 model architecture of TDNN is adopted in the experimental

setup. The input to the TDNN network consists of two types of features: 40-dimensional

MFCC features and 100-dimensional iVector. The iVector is concatenated with five MFCC

feature vectors in one 300-dimensional feature vector. Further, the component’s decorre-

lation is performed with the LDA method with an output vector of size 650, which is the

input to the TDNN network. Figure 4.2 left shows the nnet3 TDNN network structure

with five TDNN blocks. The TDNN block layers are shown in figure 4.1 where each

layer proceed following operations: affine transformation, ReLU activation, and batch

normalization, respectively.

Figure 4.1: TDNN block layers

As described in chapter 3.2.2, TDNN blocks perform 1-dimensional convolution on

input vectors at time t. The first TDNN block does not apply any convolution, the second

and third process the input vectors at times t− 1, t, t+ 1, the fourth block at times t− 3,

t, t+ 3, and the fifth block at times t−6, t−3, and t. The output block applies the affine

transform and the log-softmax function and produces a vector of dimension 3344.

The training proceeds with the cross-entropy method. Training parameters remain

with their default values except for –use-gpu which is modified from value ”yes” to value

”wait”. This option allows training the neural network with fewer GPU devices than the

number of jobs during the training. The GPU must be set to the exclusive mode in order

to use the ”wait” option. Finally, the decoding process is done in the standard way as in

the GMM-HMM model with corresponding test data.

CHAPTER 4. DNN-HMM ASR SYSTEM IMPLEMENTATION 35

Figure 4.2: TDNN network structure

Figure 4.2 right shows the TDNN architecture using the chain models. The first

TDNN block with a hidden layer’s dimension of 1024 follows twelve factored TDNN

blocks (TDNN-F) whose structure is based on the TDNN but is trained from a random

start with one of the two factors of each matrix constrained to be semi-orthogonal [50].

Figure 4.3 shows the difference in structure of TDNN and TDNN-F block. The TDNN-F

block introduces a linear bottleneck layer where the weight matrix from the standard

hidden layer to the bottleneck layer is supposed to be semi-orthogonal. The dimension of

the TDNN-F hidden layer is 1024, with a bottleneck layer dimension of 128. The output

consists of two blocks: the first block based on lattice-free MMI criteria (chain) and the

second output block using cross-entropy criteria (xent). Each output block produces a

vector with a dimension of 2840.

The training process of chain-based TDNN differs in several ways described early in

chapter 4.1.5. A new LM model is built based on the chain topology, which is later utilized

to create a phonetic decision tree. The decision tree works with the alignments of speed-

perturbed data obtained during the data augmentation and iVector creation process. The

decoding with chain models is the same as in the standard nnet3-based TDNN.

CHAPTER 4. DNN-HMM ASR SYSTEM IMPLEMENTATION 36

Figure 4.3: TDNN and TDNN-F block structure

LSTM-TDNN architecture

The LSTM-TDNN network is adopted using the standard nnet3 models has the same

300-dimensional input feature vector as the TDNN. Figure 4.4 left represents the LSTM-

TDNN architecture with six TDNN blocks of dimension 520. The TDNN block has the

same composition as in the standard TDNN network shown in figure 4.1. Additionally,

three LSTM blocks are added to the network. Each of the LSTM blocks has a cell

dimension of 520 and uses the so-called projected LSTM (LSTMP) [51]. The LSTM

block contains both recurrent and non-recurrent projection layers with a dimension of

130. The output block performs the affine transform and the log-softmax function and

returns a 3344-dimensional vector.

The network training is performed with the cross-entropy and produces AMs in output

chunks. This approach differs from the feed-forward TDNN training, which produces

individual outputs. Additionally, the shrinkage stage is added, which scales the model

parameters when the derivative averages at the non-linearities are below the threshold.

Training parameters are set to their defaults value except for the –use-gpu, which is

changed to ”wait”. The decoding process is done in the standard way as in the TDNN

model with corresponding test data.

The LSTM-TDNN architecture using the chain models is shown in figure 4.4 right. It

is the same feature vector with a dimension of 300 as in the standard nnet3 LSTM-TDNN

network. The first part of the network constitutes four TDNN blocks with a dimension

of 448. Next, the LSTM block with a cell dimension of 384 has the chain model structure

with a 256-dimensional bottleneck layer. Finally, two blocks compose the network output.

The chain output block uses the lattice-free MMI criteria and outputs a 2832-dimensional

CHAPTER 4. DNN-HMM ASR SYSTEM IMPLEMENTATION 37

vector, while the xent output block operates on a cross-entropy objective with an output

vector of the same dimension 2832. Training is similar to the nnet3 models with a few

modifications to satisfy the chain model’s criteria. The decoding process persists without

any changes.

Figure 4.4: LSTM-TDNN network structure

CNN-TDNN architecture

The CNN-TDNN network is implemented only for the chain models. The input of the

CNN-TDNN network consists of two types of features, the iVector, and the Mel filter-

banks. Since the standard input feature vector is with MFCC features, there is an addi-

tional layer on the network input which converts the MFCC features into Mel filterbanks

using IDCT transform. Moreover, the feature vector is transformed and sorted into the

CHAPTER 4. DNN-HMM ASR SYSTEM IMPLEMENTATION 38

matrix form. The CNN-TDNN network receives an input matrix containing values from

iVector and Mel filterbanks vectors.

The network architecture consists of six CNN blocks followed by nine TDNN-F blocks

as shown in figure 4.5. Each CNN block size is represented with a matrix with a height

(rows) and a number of filters (columns). The size of the matrix can differ in the input and

the output of a particular CNN block. Additionally, parameters ’time offset’ and ’height

offset’ define the context, i.e., which frames are processed. There are three components

used in the CNN block: convolution, ReLU, and batch normalization. The convolution

component applies time and feature space convolution on the input matrices, followed by

operation ReLU and batch normalization. The TDNN-F blocks have a dimension of 1024

with a bottleneck size of 128. The network output works with two types of output blocks.

The chain output block with lattice-free MMI criteria produces a 2840-dimensional vector,

and the xent output block with cross-entropy criteria produces a vector of a dimension

2840. The training process is the same as in the TDNN chain model training with settings

adapted to the CNN-TDNN network. The training parameters are left with their default

values. The decoding process persists without any changes.

Figure 4.5: CNN-TDNN network structure

Chapter 5

Experimental part

The experiments were realized for English and Czech languages using recipes described in

the previous chapter. The nnet3 recipes used in the experiments are primarily enhanced

for the English Wall Street Journal (WSJ) corpus. Then, the recipes were adapted so

that they could also be used for the Czech corpora. The evaluation was done using the

standard WER metric, which works on the word level and can be calculated as

WER =
S +D + I

N
× 100, (5.1)

where S stands for substitution, which represents the count of correct words replaced by

incorrect ones in the recognized sentence, D (deletion) expressed when a valid word is

missing in the recognized sentence, I (insertion) represents words added to the sentences

even though they do not belong there, and N is the number of words in the reference

transcript.

An ASR setup for the English language uses one corpus, WSJ, divided into train

and test datasets. Data for Czech languages are constructed from more corpora joined

together. A train dataset consists of TEMIC and SPEECON corpora. Moreover, data

from the SPEECON corpus are divided and also used in the test dataset along with

CtuTest, and CzLecDSP corpora.

The experimental part aims to testify the accuracy of DNN-HMM over the standard

GMM-HMM models for the English and Czech language. Additionally, investigate the

improvements in DNN-HMM systems when the DNN is trained with alignments from the

GMM-HMM system with different model parameters. Lastly, compare the efficiency of

the latest Kaldi DNN models, the nnet3, and the chain models in the speed and accuracy

domain.

39

CHAPTER 5. EXPERIMENTAL PART 40

5.1 Results for various DNN-HMM ASRs

The first part of the experiments compares the accuracy of the DNN-HMM models for

English and Czech languages. The results evaluate three DNN types, TDNN, LSTM, and

CNN. Additionally, the DNN-HMM models are compared with the GMM-HMM model,

whose computed alignments were used for the DNN training. The GMM-HMM model

works with trigram LM and tri3 triphone AM described in table 4.1.

5.1.1 DNN-HMM systems for English

This chapter introduces the adopted corpus used in the DNN-HMM system with the

English language, followed by a section with achieved results. The GMM-HMM model

was trained using all data from the train and test datasets presented later in this chapter

by table 5.2 and 5.3, respectively, while the DNN network of the DNN-HMM model was

trained using only the Train284 train dataset. The results were obtained for two test

dataset, Dev93 and Eval92 also presented later in this chapter.

Adopted corpora

Wall Street Journal (WSJ) dataset used in the implementation consists of close-

talking microphone English recordings. According to the WSJ design [52], corpus supports

both speaker-dependent and speaker-independent training. There is an equal portion of

verbalized and non-verbalized punctuation, different speaker adaptation materials, equal

numbers of male and female speakers with various voice quality and dialect. Most of the

utterances are recorded in read mode when the speaker is asked to read newspaper text

paragraphs. Dataset also contains a small amount of spontaneous speech for comparison.

Test data are constructed in order to examine the performance of speaker-dependent

and speaker-independent modification and variable size of lexicon with open and closed

vocabulary to test so-called out-of-vocabulary model [52].

The dataset is divided into two subsets wsj0 and wsj1 as shown in table 5.1. The data

are further combined and organized into train and test groups. Table 5.2 and 5.3 shows

the distribution of train and test dataset, respectively.

wsj0 ws1 wsj0 + ws1

Speakers 84 200 284

Utterances 7240 30276 37516

Table 5.1: WSJ data structure

CHAPTER 5. EXPERIMENTAL PART 41

Train284 Train84

Speakers 282 83

Utterances 37318 7138

Table 5.2: WSJ train datasets

Dev92 Dev93 Eval92 Eval93

5k 20k 5k 20k 5k 20k 5k 20k

Speakers 10 10 10 10 8 8 10 10

Utterances 410 403 513 503 330 333 215 213

Table 5.3: WSJ test datasets

Results

Table 5.4 presents the resulting WER for each experimental ASR system implemented

for the English language. The results of a model DNN (nnet2) written in italics are

taken over from [53] and were computed for the DNN-HMM model with a simple feed-

forward DNN network using older Kaldi nnet2 models. Overall, the decoding of Eval92

test dataset had better WER than the Dev93 dataset, except the DNN (nnet2) model.

Each DNN-HMM model within nnet3 had better accuracy than the GMM-HMM model

when the best result was achieved for Eval92 dataset using TDNN (chain) architecture

with WER of 2.68 % and for Dev93 dataset using CNN-TDNN (chain) architecture with

WER of 4.44 %.

Model Dev93 Eval92

DNN (nnet2) 7.02 7.25

GMM-HMM 11.16 7.25

TDNN (nnet3) 6.64 3.70

TDNN (chain) 4.68 2.68

LSTM-TDNN (nnet3) 6.80 3.97

LSTM-TDNN (chain) 5.57 3.14

CNN-TDNN (chain) 4.44 2.69

Table 5.4: WER results for English test datasets

CHAPTER 5. EXPERIMENTAL PART 42

5.1.2 DNN-HMM systems for Czech

The second part of the DNN-HMM comparison experiment is realized for the Czech

language. The data consisted of various Czech corpora describe more below. The train

dataset included two corpora defined by table 5.5 and was used for the GMM-HMM

training and the DNN-HMM training. The LM uses Czech National Corpus (CNK)

dictionary with a size of 340000 words. There were three test datasets (presented by

table 5.6) used to evaluate both the GMM-HMM and DNN-HMM models.

Adopted corpora

SPEECON is a Czech corpus with recordings from 550 adult speakers, taped in various

environments (office, public areas, cars, and so) using four microphones (headset, close

distance, medium distance, and far distance). The experiments use only the recordings

from the headset microphone. The audio files use a 16 kHz sampling frequency and a raw

16bit Pulse-Code Modulation format [54]. Data from the SPEECON corpus was used

both for training and testing the implementations. The SPEECON corpus was combined

with the Czech corpora described more below to obtain a larger dataset. Table 5.5 and

5.6 shows the distribution of train and test data, respectively.

SPEECON TEMIC

Speakers 225 301

Utterances 60877 12724

Table 5.5: Train datasets for experiments with Czech language

SPEECON CtuTest CzLecDSP

Speakers 24 40 8

Utterances 699 577 995

Table 5.6: Test datasets for experiments with Czech language

TEMIC corpus consists of Czech language recordings from 1000 speakers. The audio

files were recorded in a car with two channels and three different microphones. Even

though the recording was done in various car conditions (engine turn on/off, driving), all

the experiments in this thesis use just the recording from a standing car with engine turn

off and the headset microphone to match with the SPEECON dataset. Both the training

and testing stages of the experiment use data from the TEMIC dataset as shown in the

table 5.5 and 5.6.

CHAPTER 5. EXPERIMENTAL PART 43

CtuTest is a private corpus of Czech Technical University in Prague. The dataset

contains read speech of sentences from a journal with various topics with a total length

of approximately one hour which is relatively more minor than other corpora used in the

experiments. Therefore, the CtuTest database is used for testing purposes. The recordings

use 16 kHz sampling frequency and 16 bit linear Pulse-Code Modulation (PCM) format.

CzLecDSP designed by Czech Technical University in Prague consists of audio record-

ings from lectures about digital signal processing. It is a dataset with spontaneous speech,

but the utterance’s content is more formal. The audio files were recorded using 16 kHz

sampling frequency and 16 bit linear PCM format. The implementation uses this dataset

only for the testing stage.

Results

Table 5.7 presents the resulting WER for each experimental ASR system implemented for

the Czech language. The results of a DNN (nnet2) model written in italics are taken over

from [55] and were computed for the DNN-HMM model with a simple feed-forward DNN

network using older Kaldi nnet2 models. The best result for the Czech language was also

accomplished with the TDNN network with WER 10.78 % for the CtuTest dataset, which

is approximately 9 % improvement compared to the GMM-HMM model.

Model CtuTest SPEECON CzLecDSP

GMM-HMM 17.0 23.4 41.3

DNN (nnet2) 15.2 21.1 37.4

GMM-HMM 19.68 23.11 47.18

TDNN (nnet3) 18.83 18.33 31.60

TDNN (chain) 10.78 11.55 25.98

LSTM-TDNN (nnet3) 17.39 18.74 31.53

LSTM-TDNN (chain) 13.71 13.26 32.23

CNN-TDNN (chain) 11.21 11.55 21.86

Table 5.7: WER results for Czech test datasets

All implementations using nnet3 and chain models had better results than the DNN

nnet2 model except when using the CtuTest dataset, where TDNN and LSTM-TDNN

standard nnet3 models had worse results than the simple DNN nnet2 model. The reference

GMM-HMM model for nnet2 using the CtuTest dataset is better trained than the GMM-

HMM model used for nnet3 and chain models. Therefore, they may be harder to train

CHAPTER 5. EXPERIMENTAL PART 44

in order to achieve better results. The GMM-HMM for nnet2 used CtuCopy tool [56]

for the feature extraction while the GMM-HMM model for nnet3 used standard recipe

make mfcc.sh included in the Kaldi toolkit, which may be one of the reasons for getting

different WER results in the GMM-HMM models. However, the chain models achieved

significantly better results even though they were trained with worse reference GMM-

HMM model.

The DNN-HMM system for the Czech language achieved significant accuracy gains

over the GMM-HMM model as the DNN-HMM system for the English WSJ corpus.

Hence, the adaptation of the DNN-HMM models to the Czech corpora can be considered

adequate and effective.

5.2 Training variants of DNN-HMM

The second part of the experiments examines the GMM-HMM models trained with differ-

ent LM and analyzes their influence on the resulting DNN-HMM system accuracy. There

were used two DNN types in the DNN-HMM model, TDNN and LSTM, to evaluate these

experiments. The results were computed for the English language using WSJ corpus with

the same data structure described in section 5.1.1.

5.2.1 Impact of the n-gram model

Two n-gram LMs were used in this experiment - the trigram and fourgram models. Firstly,

the GMM-HMM model decodes with a trigram LM model to obtain the reference align-

ments for the DNN-HMM model training. Secondly, the fourgram LM for the GMM-HMM

model is created using lattice LM rescoring [57] in ARPA format. Then, the GMM-HMM

model decodes with the rescored LM to obtain reference alignments for the DNN-HMM

training. The experiments use the tri3 AM.

Table 5.8 presents the achieved results using WER metric. Using the fourgram model

resulted in better accuracy in all tested systems for both test datasets. The improvements

are not huge when WER always decreased less than 1 %.

GMM-HMM TDNN LSTM-TDNN

LM type Dev93 Eval92 Dev93 Eval92 Dev93 Eval92

tri-gram 9.40 5.42 6.64 3.70 6.80 3.97

four-gram 8.56 4.52 6.00 3.14 6.04 3.56

Table 5.8: WER comparison of models using LM with tri-gram and four-gram model

CHAPTER 5. EXPERIMENTAL PART 45

5.2.2 Impact of silence and pronunciation probabilities

This part evaluates the impact of the training model with a dictionary with (nosp) and

without (sp) silence and pronunciation probabilities. The GMM-HMM model is trained

using the particular trigram LM and generates the reference alignments for the DNN-

HMM model.

Table 5.9 shows the results for each LM settings using WER metric. The improvements

in accuracy can be seen in each example of the DNN-HMM model. However, the WER

difference between nosp and sp dictionary is not significant, and the usage of silence and

pronunciation probabilities had an even smaller impact than the fourgram LM.

GMM-HMM TDNN LSTM-TDNN

LM type Dev93 Eval92 Dev93 Eval92 Dev93 Eval92

nosp 9.40 5.42 6.64 3.70 6.80 3.97

sp 9.33 5.37 6.34 3.62 6.16 3.83

Table 5.9: WER comparison of models using dictionary with and without silence and
pronunciation probabilities

5.3 Comparison of nnet3 and chain models

This section compares two Kaldi DNN models: the standard nnet3 model and the chain

model. The results evaluate the accuracy changes between these two models and their

differences in training and decoding time. One of the main benefits of using chain models

instead of the standard nnet3 should be its significant reduction in decoding time which

may be very important in online ASR applications.

5.3.1 Model processing time

Table 5.10 presents the resulting times of training and decoding stages for two DNN

structures, TDNN and LSTM, using the WSJ corpus. Our results confirm the assumption

that the chain models decode faster than the nnet3 models.

TDNN LSTM-TDNN

Train time Decode time Train time Decode time

nnet3 8.95 h 6.10 m 9.08 h 19.05 m

chain 19.35 h 2.03 m 7.30 h 2.25 m

Table 5.10: Training and decoding time of nnet3 and chain models

CHAPTER 5. EXPERIMENTAL PART 46

The decoding time of a chain model with a TDNN network decreased approximately

three times than the implementation based on nnet3. However, the training time is

more than twice longer for the TDNN chain model. Even though the decoding time

is usually more critical in real applications, this disadvantage of longer training time

may be considered. Chain models using the LSTM network come with an even more

significant improvement with more than eight times faster decoding time than the nnet3

implementation. Moreover, the training time decreased approximately by 20 %.

5.3.2 Model accuracy

This section compares the accuracy of nnet3 and chain models with TDNN and LSTM

systems using the WER metric. Table 5.11 presents the WER rates for Dev93 and Eval92

dataset of English WSJ corpus. The accuracy improvements can be seen for both TDNN

and LSTM-TDNN chain models. The WER declined not more than 1 % for chain models,

except the TDNN chain model using the Dev93 test dataset, where the WER decreased

almost by 2 % compared to the TDNN nnet3 model. Table 5.12 shows the WER results

for Czech corpora. The chain models achieved better accuracy except for the LSTM-

TDNN model for the CzLecDSP dataset when the chain models had slightly worse results

than the standard nnet3 model. Generally, the chain models with the TDNN network

accomplish greater improvement in the accuracy over the nnet3 models than the models

with the LSTM-TDNN network.

TDNN LSTM-TDNN

Dev93 Eval92 Dev93 Eval92

nnet3 6.66 3.58 6.79 3.85

chain 4.68 2.68 5.57 3.14

Table 5.11: WER comparison of nnet3 and chain models for English

TDNN LSTM-TDNN

CtuTest SPEECON CzLecDSP CtuTest SPEECON CzLecDSP

nnet3 18.83 18.33 31.60 17.39 18.74 31.53

chain 10.78 11.55 25.98 13.71 13.26 32.23

Table 5.12: WER comparison of nnet3 and chain models for Czech

Chapter 6

Conclusions

The first part of this thesis introduced the theory of GMM-HMM based speech recognition

and DNN networks used in the ASR systems. Two DNN based speech recognition sys-

tems, the DNN-HMM and end-to-end, were presented with their properties and possible

architectures. The DNN-HMM ASR system was further studied and implemented using

the Kaldi toolkit. The DNN-HMM implementations used the newest Kaldi DNN nnet3

recipes with TDNN, LSTM, and CNN networks.

Inspired by the literature, the thesis investigates the following problems: Firstly, the

possible accuracy improvements of the DNN-HMM over the GMM-HMM models for En-

glish and Czech languages. The implementation for this experiment is primarily built for

English corpus WSJ and then further adapted to Czech corpora. Therefore, the exper-

iment should also reveal whether adaptation to the Czech language results in accuracy

augmentations. The experimental results confirmed the accuracy increase of the DNN-

HMM model over GMM-HMM for all DNN types when the implementations with TDNN

network achieved best results with WER 2.68 % with the English corpus and 10.78 %

with the Czech corpus. However, models with the CNN network achieved very compa-

rable results. The DNN-HMM system for the Czech language achieved similar accuracy

gains over the GMM-HMM model as the DNN-HMM system for the English WSJ corpus.

Therefore, the adaptation of the DNN-HMM models to the Czech corpora can be consid-

ered adequate and effective. Secondly, test the impact on the accuracy of the DNN-HMM

model trained with alignments from GMM-HMM using LM with different n-gram models

and LM with a dictionary with and without silence and pronunciation probabilities. The

results showed slight improvements using LM with fourgram over the trigram-based LM

and using LM with the dictionary with silence and pronunciation probabilities. However,

the accuracy changes of the DNN-HMM model correlated with the changes of the GMM-

HMM model used to train the DNN. Therefore, the modification of LM seemed to have just

minor significance. Lastly, compare the accuracy and processing time of the DNN-HMM

47

CHAPTER 6. CONCLUSIONS 48

model implemented using standard nnet3 models and nnet3 chain models. The systems

based on chain models achieved considerably better results for all DNN types. Decoding

time was significantly reduced for all DNN-HMM systems using the chain models when

the LSTM-TDNN model decoded almost nine times faster than implementation using

standard nnet3 models. Additionally, the training time also decreased approximately by

20 % for the LSTM-TDNN network. However, the model with a TDNN network trained

more than twice slower.

Due to the time and hardware limitations, the thesis did not contain the experiments

with the end-to-end systems. The Kaldi toolkit includes some recipes for end-to-end sys-

tems that could be considered to use for experimental implementations. An interesting

experiment could compare the accuracy of the end-to-end systems with DNN-HMM mod-

els with the same corpora since the size of the training dataset is critical for DNN based

ASR system. Further, several Python-based toolkits are developed combining the Kaldi

toolkit with Python-based layers. The PyTorch-Kaldi speech recognition toolkit [58]

presents a different approach for implementing the DNN-HMM ASR system using the

Kaldi for the feature extraction, label computation, and decoding, while the PyTorch-

Kaldi toolkit manages the DNN network part. Another tool is PyKaldi [59] providing

Python wrappers for the C++ code in the Kaldi toolkit. Combining Kaldi and Python

can deliver further advantages in building particular applications, which may be more

user-friendly for commercial use.

Bibliography

[1] T. J. Watson, F. Jelinek, L. Bahl, and R. Mercer, Design of a Linguistic Statistical

Decoder for the Recognition of Continuous Speech, ser. Research reports // IBM.

IBM Thomas J. Watson Research Division, 1974. [Online]. Available: https://

books.google.cz/books?id=agPvPgAACAAJ.

[2] H. Bourlard and N. Morgan, Connectionist Speech Recognition: A Hybrid Approach.

Jan. 1994, isbn: 978-1-4613-6409-2. doi: 10.1007/978-1-4615-3210-1.

[3] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hanne-

mann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely,

“The kaldi speech recognition toolkit”, in IEEE 2011 Workshop on Automatic

Speech Recognition and Understanding, IEEE Catalog No.: CFP11SRW-USB, IEEE

Signal Processing Society, Dec. 2011.

[4] J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong, Robust automatic speech recognition:

A bridge to practical applications. Jan. 2015, pp. 1–286.

[5] G. Sarada, T. Nagarajan, and H. Murthy, “Multiple frame size and multiple frame

rate feature extraction for speech recognition”, Jan. 2005, pp. 592–595, isbn: 0-

7803-8674-4. doi: 10.1109/SPCOM.2004.1458529.

[6] J. Pinto, S. Prasanna, B. Yegnanarayana, and H. Hermansky, “Significance of con-

textual information in phoneme recognition”, Jan. 2007.

[7] B. E. D. Kingsbury and N. Morgan, “Perceptually inspired signal processing strate-

gies for robust speech recognition in reverberant environments”, Ph.D. dissertation,

1998, isbn: 0599224762.

[8] R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for improved large

vocabulary continuous speech recognition”, in [Proceedings] ICASSP-92: 1992 IEEE

International Conference on Acoustics, Speech, and Signal Processing, vol. 1, 1992,

13–16 vol.1. doi: 10.1109/ICASSP.1992.225984.

[9] Z. Zaj́ıc, L. Machlica, and L. Müller, “Refinement approach for adaptation based on

combination of MAP and fMLLR”, Sep. 2009, pp. 274–281, isbn: 978-3-642-04207-2.

doi: 10.1007/978-3-642-04208-9_39.

49

https://books.google.cz/books?id=agPvPgAACAAJ
https://books.google.cz/books?id=agPvPgAACAAJ
https://doi.org/10.1007/978-1-4615-3210-1
https://doi.org/10.1109/SPCOM.2004.1458529
https://doi.org/10.1109/ICASSP.1992.225984
https://doi.org/10.1007/978-3-642-04208-9_39

BIBLIOGRAPHY 50

[10] U. Kamath, J. Liu, and J. Whitaker, Deep Learning for NLP and Speech Recognition,

1st. Springer Publishing Company, Incorporated, 2019, isbn: 3030145956.

[11] “Readings in speech recognition”, in, A. Waibel and K.-F. Lee, Eds., San Francisco:

Morgan Kaufmann, 1990, isbn: 978-1-55860-124-6. doi: https://doi.org/10.

1016/B978-0-08-051584-7.50003-6.

[12] D. Yu and L. Deng, Automatic Speech Recognition: A Deep Learning Approach.

Springer Publishing Company, Incorporated, 2014, isbn: 978-1-4471-5778-6. doi:

10.1007/978-1-4471-5779-3.

[13] J. Holmes and W. Holmes, Speech Synthesis and Recognition 2nd edition. Taylor &

Francis Group, 2003, isbn: 0-203-48468-1.

[14] S. J. Young and P. C. Woodland, “State clustering in HMM-based continuous speech

recognition”, Computer Speech and Language, 1994.

[15] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers in speech

recognition”, Comput. Speech Lang., vol. 16, no. 1, Jan. 2002, issn: 0885-2308. doi:

10.1006/csla.2001.0184. [Online]. Available: https://doi.org/10.1006/csla.

2001.0184.

[16] L. MacKenzie and D. Turton, “Assessing the accuracy of existing forced alignment

software on varieties of British English”, Linguistics Vanguard, vol. 6, 2020.

[17] K. Veselý, A. Ghoshal, L. Burget, and D. Povey, “Sequence-discriminative training

of deep neural networks”, Proceedings of the Annual Conference of the International

Speech Communication Association, INTERSPEECH, pp. 2345–2349, Jan. 2013.

[18] G. Hinton, l. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks for acous-

tic modeling in speech recognition: The shared views of four research groups”, Signal

Processing Magazine, IEEE, vol. 29, pp. 82–97, Nov. 2012. doi: 10.1109/MSP.2012.

2205597.

[19] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep, Big, Sim-

ple Neural Nets for Handwritten Digit Recognition”, Neural Computation, vol. 22,

no. 12, pp. 3207–3220, Dec. 2010, issn: 0899-7667. doi: 10.1162/NECO_a_00052.

eprint: https://direct.mit.edu/neco/article-pdf/22/12/3207/842857/

neco_a_00052.pdf. [Online]. Available: https://doi.org/10.1162/NECO_a\

_00052.

https://doi.org/https://doi.org/10.1016/B978-0-08-051584-7.50003-6
https://doi.org/https://doi.org/10.1016/B978-0-08-051584-7.50003-6
https://doi.org/10.1007/978-1-4471-5779-3
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1006/csla.2001.0184
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1162/NECO_a_00052
https://direct.mit.edu/neco/article-pdf/22/12/3207/842857/neco_a_00052.pdf
https://direct.mit.edu/neco/article-pdf/22/12/3207/842857/neco_a_00052.pdf
https://doi.org/10.1162/NECO_a_00052
https://doi.org/10.1162/NECO_a_00052

BIBLIOGRAPHY 51

[20] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empiri-

cal evaluation of deep architectures on problems with many factors of variation”,

ser. ICML ’07, New York, NY, USA: Association for Computing Machinery, 2007,

473–480, isbn: 9781595937933. doi: 10.1145/1273496.1273556. [Online]. Avail-

able: https://doi.org/10.1145/1273496.1273556.

[21] G. E. Hinton, “Training products of experts by minimizing contrastive divergence”,

Neural Comput., vol. 14, no. 8, 1771–1800, Aug. 2002, issn: 0899-7667. doi: 10.

1162/089976602760128018. [Online]. Available: https://doi.org/10.1162/

089976602760128018.

[22] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks

for acoustic modeling in speech recognition”, Signal Processing Magazine, 2012.

[23] N. Jaitly and E. Hinton, “Vocal tract length perturbation (VTLP) improves speech

recognition”, 2013.

[24] M. Gales, A. Ragni, H. AlDamarki, and C. Gautier, “Support vector machines for

noise robust ASR”, Jan. 2010, pp. 205 –210. doi: 10.1109/ASRU.2009.5372913.

[25] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for speech

recognition”, in INTERSPEECH, 2015.

[26] J. Anden and S. Mallat, “Deep scattering spectrum”, IEEE Transactions on Signal

Processing, vol. 62, no. 16, 4114–4128, 2014, issn: 1941-0476. doi: 10.1109/tsp.

2014.2326991. [Online]. Available: http://dx.doi.org/10.1109/TSP.2014.

2326991.

[27] H. Bourlard, N. Morgan, C. Wooters, and S. Renals, “CDNN: A context dependent

neural network for continuous speech recognition”, [Proceedings] ICASSP-92: 1992

IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2,

1992.

[28] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon, and K. Visweswariah,

“Boosted MMI for model and feature-space discriminative training”, in 2008 IEEE

International Conference on Acoustics, Speech and Signal Processing, 2008, pp. 4057–

4060. doi: 10.1109/ICASSP.2008.4518545.

[29] N. S. Ibrahim and D. A. Ramli, “I-vector extraction for speaker recognition based

on dimensionality reduction”, Procedia Computer Science, vol. 126, pp. 1534–1540,

2018, Knowledge-Based and Intelligent Information & Engineering Systems: Pro-

ceedings of the 22nd International Conference, KES-2018, Belgrade, Serbia, issn:

1877-0509. doi: https : / / doi . org / 10 . 1016 / j . procs . 2018 . 08 . 126. [On-

https://doi.org/10.1145/1273496.1273556
https://doi.org/10.1145/1273496.1273556
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1109/ASRU.2009.5372913
https://doi.org/10.1109/tsp.2014.2326991
https://doi.org/10.1109/tsp.2014.2326991
http://dx.doi.org/10.1109/TSP.2014.2326991
http://dx.doi.org/10.1109/TSP.2014.2326991
https://doi.org/10.1109/ICASSP.2008.4518545
https://doi.org/https://doi.org/10.1016/j.procs.2018.08.126

BIBLIOGRAPHY 52

line]. Available: https : / / www . sciencedirect . com / science / article / pii /

S1877050918314042.

[30] S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q. Liu, “Fast adaptation of deep

neural network based on discriminant codes for speech recognition”, IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 22, no. 12, pp. 1713–

1725, 2014. doi: 10.1109/TASLP.2014.2346313.

[31] D. Povey, S. Chu, and B. Varadarajan, “Universal background model based speech

recognition”, May 2008, pp. 4561 –4564. doi: 10.1109/ICASSP.2008.4518671.

[32] G. Saon, H. Soltau, D. Nahamoo, and M. Picheny, “Speaker adaptation of neural

network acoustic models using i-vectors”, in 2013 IEEE Workshop on Automatic

Speech Recognition and Understanding, 2013, pp. 55–59. doi: 10.1109/ASRU.2013.

6707705.

[33] V. Gupta, P. Kenny, P. Ouellet, and T. Stafylakis, “I-vector-based speaker adapta-

tion of deep neural networks for french broadcast audio transcription”, in 2014 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2014, pp. 6334–6338. doi: 10.1109/ICASSP.2014.6854823.

[34] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network architecture

for efficient modeling of long temporal contexts”, in INTERSPEECH, 2015.

[35] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme recog-

nition using time-delay neural networks”, IEEE Transactions on Acoustics, Speech,

and Signal Processing, vol. 37, no. 3, pp. 328–339, 1989. doi: 10.1109/29.21701.

[36] C. Olah. (Aug. 2015). “Understanding LSTM networks”, [Online]. Available: https:

/ / colah . github . io / posts / 2015 - 08 - Understanding - LSTMs/ (visited on

05/08/2021).

[37] T. He and J. Droppo, “Exploiting LSTM structure in deep neural networks for

speech recognition”, in 2016 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2016, pp. 5445–5449. doi: 10.1109/ICASSP.

2016.7472718.

[38] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, “Convo-

lutional neural networks for speech recognition”, IEEE/ACM Trans. Audio, Speech

and Lang. Proc., vol. 22, no. 10, 1533–1545, Oct. 2014, issn: 2329-9290. doi: 10.

1109/TASLP.2014.2339736. [Online]. Available: https://doi.org/10.1109/

TASLP.2014.2339736.

https://www.sciencedirect.com/science/article/pii/S1877050918314042
https://www.sciencedirect.com/science/article/pii/S1877050918314042
https://doi.org/10.1109/TASLP.2014.2346313
https://doi.org/10.1109/ICASSP.2008.4518671
https://doi.org/10.1109/ASRU.2013.6707705
https://doi.org/10.1109/ASRU.2013.6707705
https://doi.org/10.1109/ICASSP.2014.6854823
https://doi.org/10.1109/29.21701
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1109/ICASSP.2016.7472718
https://doi.org/10.1109/ICASSP.2016.7472718
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/TASLP.2014.2339736

BIBLIOGRAPHY 53

[39] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying convolu-

tional neural networks concepts to hybrid NN-HMM model for speech recognition”,

May 2012, pp. 4277–4280, isbn: 978-1-4673-0045-2. doi: 10.1109/ICASSP.2012.

6288864.

[40] K. Kim, K. Lee, D. Gowda, J. Park, S. Kim, S. Jin, Y.-Y. Lee, J. Yeo, D. Kim,

S. Jung, J. Lee, M. Han, and C. Kim, “Attention based on-device streaming speech

recognition with large speech corpus”, Dec. 2019. doi: 10.1109/ASRU46091.2019.

9004027.

[41] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao, D. Ry-

bach, A. Kannan, Y. Wu, R. Pang, Q. Liang, D. Bhatia, Y. Shangguan, B. Li, G.

Pundak, K. C. Sim, T. Bagby, S.-y. Chang, K. Rao, and A. Gruenstein, “Streaming

end-to-end speech recognition for mobile devices”, in ICASSP 2019 - 2019 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019,

pp. 6381–6385. doi: 10.1109/ICASSP.2019.8682336.

[42] K. Cho, B. van Merriënboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Bengio,

“Learning phrase representations using RNN encoder-decoder for statistical machine

translation”, Jun. 2014. doi: 10.3115/v1/D14-1179.

[43] A. Hannun, A. Lee, Q. Xu, and R. Collobert, “Sequence-to-sequence speech recog-

nition with time-depth separable convolutions”, Sep. 2019, pp. 3785–3789. doi:

10.21437/Interspeech.2019-2460.

[44] J. Park, Y. Boo, I. Choi, S. Shin, and W. Sung, “Fully neural network based speech

recognition on mobile and embedded devices”, in Proceedings of the 32nd Inter-

national Conference on Neural Information Processing Systems, ser. NIPS’18, Red

Hook, NY, USA: Curran Associates Inc., 2018, 10642–10653.

[45] S. Wang and G. Li, “Overview of end-to-end speech recognition”, Journal of Physics:

Conference Series, vol. 1187, p. 052 068, Apr. 2019. doi: 10.1088/1742-6596/1187/

5/052068.

[46] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist tempo-

ral classification: Labelling unsegmented sequence data with recurrent neural net-

works”, in Proceedings of the 23rd International Conference on Machine Learning,

ser. ICML ’06, New York, NY, USA: Association for Computing Machinery, 2006,

369–376, isbn: 1595933832. doi: 10.1145/1143844.1143891. [Online]. Available:

https://doi.org/10.1145/1143844.1143891.

https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/ICASSP.2012.6288864
https://doi.org/10.1109/ASRU46091.2019.9004027
https://doi.org/10.1109/ASRU46091.2019.9004027
https://doi.org/10.1109/ICASSP.2019.8682336
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.21437/Interspeech.2019-2460
https://doi.org/10.1088/1742-6596/1187/5/052068
https://doi.org/10.1088/1742-6596/1187/5/052068
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891

BIBLIOGRAPHY 54

[47] L. Bahl, P. Brown, P. Souza, and R. Mercer, “Maximum mutual information es-

timation of hidden markov parameters for speech recognition”, vol. 11, May 1986,

pp. 49 –52. doi: 10.1109/ICASSP.1986.1169179.

[48] D. Povey, M. Hannemann, G. Boulianne, L. Burget, A. Ghoshal, M. Janda, M.

Karafiát, S. Kombrink, P. Motĺıček, Y. Qian, K. Riedhammer, K. Veselý, and T. Vu,

“Generating exact lattices in the WFST framework”, Acoustics, Speech, and Signal

Processing, 1988. ICASSP-88., 1988 International Conference on, Mar. 2012. doi:

10.1109/ICASSP.2012.6288848.

[49] S. Shabani and Y. Norouzi, “Speech recognition using principal components analysis

and neural networks”, in 2016 IEEE 8th International Conference on Intelligent

Systems (IS), 2016, pp. 90–95. doi: 10.1109/IS.2016.7737405.

[50] D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi, and S. Khudan-

pur, “Semi-orthogonal low-rank matrix factorization for deep neural networks”, Sep.

2018, pp. 3743–3747. doi: 10.21437/Interspeech.2018-1417.

[51] L. Huang, J. Sun, J. Xu, and Y. Yang, “An improved residual LSTM architecture

for acoustic modeling”, Aug. 2017.

[52] D. B. Paul and J. M. Baker, “The design for the wall street journal-based CSR

corpus”, in Proceedings of the Workshop on Speech and Natural Language, ser. HLT

’91, Harriman, New York, USA: Association for Computational Linguistics, 1992,

isbn: 1558602720. doi: 10.3115/1075527.1075614. [Online]. Available: https:

//doi.org/10.3115/1075527.1075614.

[53] D. Povey, Results, Feb. 2017. [Online]. Available: https://github.com/kaldi-

asr/kaldi/blob/master/egs/wsj/s5/RESULTS.

[54] P. Pollák and Černocký Jan, “Czech SPEECON adult database”, vol. 104, 2004.

[55] P. Mizera, “Applying articulatory features within speech recognition”, PhD thesis,

Czech Technical University in Prague, 2019.

[56] P. Fousek, P. Mizera, and P. Pollak, Ctucopy feature extraction tool. [Online]. Avail-

able: http://noel.feld.cvut.cz/speechlab/.

[57] E. Chung, H.-B. Jeon, J.-G. Park, and Y.-K. Lee, “Lattice rescoring for speech

recognition using large scale distributed language models”, in Proceedings of COL-

ING 2012: Posters, Mumbai, India: The COLING 2012 Organizing Committee, Dec.

2012, pp. 217–224. [Online]. Available: https://www.aclweb.org/anthology/C12-

2022.

[58] M. Ravanelli, T. Parcollet, and Y. Bengio, “The pytorch-kaldi speech recognition

toolkit”, in In Proc. of ICASSP, 2019.

https://doi.org/10.1109/ICASSP.1986.1169179
https://doi.org/10.1109/ICASSP.2012.6288848
https://doi.org/10.1109/IS.2016.7737405
https://doi.org/10.21437/Interspeech.2018-1417
https://doi.org/10.3115/1075527.1075614
https://doi.org/10.3115/1075527.1075614
https://doi.org/10.3115/1075527.1075614
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/RESULTS
https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/RESULTS
http://noel.feld.cvut.cz/speechlab/
https://www.aclweb.org/anthology/C12-2022
https://www.aclweb.org/anthology/C12-2022

BIBLIOGRAPHY 55

[59] D. Can, V. R. Martinez, P. Papadopoulos, and S. S. Narayanan, “Pykaldi: A python

wrapper for kaldi”, in Acoustics, Speech and Signal Processing (ICASSP), 2018

IEEE International Conference on, IEEE, 2018.

[60] M. Záruba, “Modern techniques of speaker recognition based on GMM and DNN”,

Master thesis, Czech Technical University in Prague, 2017.

[61] J. Silovský, “Generative and discriminative classifiers in the tasks of text-independent

speaker recognition and diarization”, M.S. thesis, Technical University of Liberec,

2011.

[62] M. Lakosil, “DNN-based voice activity detector”, Master thesis, Czech Technical

University in Prague, 2017.

[63] K. Veselý, “Semi-supervised training of deep neural networks for speech recogni-

tion”, PhD thesis, Brno University of Technology, 2017.

[64] C. Chakraborty and P. Talukdar, “Issues and limitations of HMM in speech pro-

cessing: A survey”, International Journal of Computer Applications, vol. 141, no. 7,

13–17, 2016. doi: 10.5120/ijca2016909693.

[65] D. Silingas and L. Telksnys, “Specifics of hidden markov model modifications for

large vocabulary continuous speech recognition”, Informatica, Lith. Acad. Sci., vol. 15,

pp. 93–110, Jan. 2004. doi: 10.15388/Informatica.2004.048.

[66] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, “Speech recognition

using deep neural networks: A systematic review”, IEEE Access, vol. 7, pp. 19 143–

19 165, 2019. doi: 10.1109/ACCESS.2019.2896880.

[67] M. Ernestus, L. Kočková-Amortová, and P. Pollak, “The nijmegen corpus of casual

Czech”, in Proceedings of the Ninth International Conference on Language Resources

and Evaluation (LREC’14), Reykjavik, Iceland: European Language Resources As-

sociation (ELRA), May 2014, pp. 365–370. [Online]. Available: http://www.lrec-

conf.org/proceedings/lrec2014/pdf/134_Paper.pdf.

[68] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory based recur-

rent neural network architectures for large vocabulary speech recognition”, CoRR,

vol. abs/1402.1128, 2014. arXiv: 1402.1128. [Online]. Available: http://arxiv.

org/abs/1402.1128.

[69] S. Sen, A. Dutta, and N. Dey, Audio Processing and Speech Recognition: Concepts,

Techniques and Research Overviews, 1st. Springer Publishing Company, Incorpo-

rated, 2019, isbn: 9789811360978.

https://doi.org/10.5120/ijca2016909693
https://doi.org/10.15388/Informatica.2004.048
https://doi.org/10.1109/ACCESS.2019.2896880
http://www.lrec-conf.org/proceedings/lrec2014/pdf/134_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/134_Paper.pdf
https://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1402.1128
http://arxiv.org/abs/1402.1128

BIBLIOGRAPHY 56

[70] A.-L. Georgescu, H. Cucu, and C. Burileanu, “Kaldi-based DNN architectures for

speech recognition in Romanian”, in 2019 International Conference on Speech Tech-

nology and Human-Computer Dialogue (SpeD), 2019, pp. 1–6. doi: 10.1109/SPED.

2019.8906555.

[71] X. Huang, A. Acero, H.-W. Hon, and R. Reddy, Spoken Language Processing: A

Guide to Theory, Algorithm, and System Development. Prentice Hall, 2001, isbn:

0130226165.

[72] M. Karafiát, M. K. Baskar, P. Matějka, K. Veselý, F. Grézl, and J. Černocky, “Mul-

tilingual BLSTM and speaker-specific vector adaptation in 2016 but babel system”,

in 2016 IEEE Spoken Language Technology Workshop (SLT), 2016, pp. 637–643.

doi: 10.1109/SLT.2016.7846330.

[73] J. Fiala, “DNN-HMM based multilingual recognizer of telephone speech”, Diploma

thesis, Czech Technical University in Prague, 2016.

https://doi.org/10.1109/SPED.2019.8906555
https://doi.org/10.1109/SPED.2019.8906555
https://doi.org/10.1109/SLT.2016.7846330

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	GMM-HMM based speech recognition
	Front-end processing - signal analysis
	MFCC - Mel-frequency cepstral coefficients
	Differencial features
	Feature normalization
	LDA features
	Speaker adaptation techniques

	Back-end processing - classification
	Acoustic model
	Lexicon and dictionary
	Language model
	Decoding
	Forced alignment

	DNN within speech recognition
	Definition of DNN
	Training process
	Pre-training
	Data augmentation

	DNN-HMM models
	Features in DNN-HMM
	Time delay neural network
	Recurrent neural network
	Long short-term memory
	Convolutional neural network

	End-to-end models
	Connectionist Temporal Classification
	Attention model

	DNN-HMM ASR system implementation
	Recipe for LVCSR
	Stage 0: Data preparation
	Stage 1: Feature extraction
	Stage 2: Acoustic modeling in GMM-HMM model
	Stage 3: Decoding in GMM-HMM model
	Stage 4: DNN training and decoding

	Experimental part
	Results for various DNN-HMM ASRs
	DNN-HMM systems for English
	DNN-HMM systems for Czech

	Training variants of DNN-HMM
	Impact of the n-gram model
	Impact of silence and pronunciation probabilities

	Comparison of nnet3 and chain models
	Model processing time
	Model accuracy

	Conclusions
	Bibliography

