
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Materials in Computer Graphics

Material Converter

Tomáš Cicvárek

Supervisor: Ing. David Sedláček, Ph.D.
Field of study: Open Informatics
Subfield: Computer Games and Graphics
May 2021

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

466021Osobní číslo:TomášJméno:CicvárekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Materiály v počítačové grafice

Název bakalářské práce anglicky:

Pokyny pro vypracování:
Seznamte se s běžně používanými modely pro popis materiálových vlastností objektů (např. empirické, PBR a jejich
konkrétními variantami jako Phong) s ohledem na využití v realtime grafickém zobrazování herního enginu Unity a
fotorealistického rendereru Octane firmy Otoy, který slouží jako offline renderer (raytracer) pro Unity.
Popište formáty používané pro zápis těchto materiálů, přičemž se soustřeďte na formáty používáne při tvorbě her pro
přenos modelů (např. obj, fbx, gltf). Problémem využití Octane rendereru s Unity je nevhodná automatická konverze
materiálů z formátů, které unity importuje do vnitříního unity formátu s následnou konverzí do formátu Octane. Tato
konverze často vede na nutnou ruční editaci Octane verze daného materiálu (oprava automatické konverze).
Analyzujte možnosti existujících konverzních postupů a unifikovaných popisů materiálů. Navrhněte a implementujte
konverzní nástroje pro vybrané třídy materiálů z původního modelu do Octane popisu materiálu, tak aby se minimalizovali
časté ruční zásahy do konverzního postupu.
Konverzní skripty implementujte v podobě distribuovatelného balíčku (package). Funkcionalitu ověřte na široké škále
vstupních materiálů.

Seznam doporučené literatury:
1] J. Žára, B. Beneš, J. Sochor, P. Felkel, Moderní počítačová grafika, 2. vydání. Computer Press, 2004.
2] M. Pharr, W. Jakob, G. Humphreys, Physically Based Rendering: From Theory to Implementation, 3rd Edition. Morgan
Kaufmann, 2016. dostupné online: http://www.pbr-book.org/
3] Wes McDermott, The PBR Guide, 2018. dostupné online: https://academy.substance3d.com/courses/pbrguide
4] B. Burley, Physically-Based Shading at Disney, SIGGRAPH 2012. dostupné online:
https://www.disneyanimation.com/publications/physically-based-shading-at-disney/

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. David Sedláček, Ph.D., katedra počítačové grafiky a interakce FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 21.05.2021Datum zadání bakalářské práce: 18.03.2021

Platnost zadání bakalářské práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. David Sedláček, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements

I would like to give my thanks to my su-
pervisor, Ing. David Sedláček, Ph.D., for
his supervision over my thesis and for all
information and consultations provided
by him. I would like to thank my family
as well for their psychical support.

Declaration

I hereby declare that the present bache-
lor’s thesis was composed by myself only
and that I specified all used resources in
accordance with the Methodical guideline
for adhering to ethical principles when I
was working on the academic final thesis.

Prague, 20. May 2021

v

Abstract

The purpose of this thesis is to describe
formats used in real-time graphic view of
game engine Unity and photo-realistic ren-
der Octane created by the company Otoy.
Octane is used by Unity as an offline ren-
der (ray-tracer). Furthermore, conversion
methods are analyzed and implemented
in scripts used by Unity.

Keywords: materials, material
conversion, Unity, C#, Octane

Supervisor: Ing. David Sedláček, Ph.D.

Abstrakt

Téma této práce zahrnuje popis formátů
používaných v real-time grafickém zobra-
zování herního enginu Unity a fotorealis-
tického vykreslovacího softwaru Octane
firmy Otoy, který slouží jako offline vy-
kreslovací software (ray-tracer) pro Unity.
Dále jsou analyzovány konverzní postupy
a jsou implementovány ve skriptech pro
Unity.

Klíčová slova: materiály, konverze
materiálů, Unity, C#, Octane

Překlad názvu: Materiály v Počítačové
Grafice — Konvertor Materiálů

vi

Contents

1 Introduction 1

2 Materials in Computer Graphics 3

2.1 Empirical illumination Models . . . 3

2.1.1 Lambertian reflection model . . 4

2.1.2 Phong reflection model 4

2.1.3 Blinn-Phong reflection model . 5

2.2 PBR (Physically Based Rendering)
models . 6

2.2.1 Torrance-Sparrow reflection
model . 8

2.2.2 Cook-Torrance reflection model 9

3 Material formats 11

3.1 Wavefront Format 11

3.2 FBX Format 13

3.3 Octane PBR Override 13

3.3.1 Loading Octane in Unity 14

3.3.2 PBR Override material 16

4 Converter Specification 19

4.1 Reloading Octane Materials 19

4.2 Conversion Tool 19

4.3 Material Reading 20

5 Converter Implementation and
Functionality 23

5.1 Converter Structure 24

5.2 Wavefront Material Reading . . . 25

5.3 FBX Reading 29

5.4 Converter Usage 30

6 Testing 33

6.1 Loading Material Files 33

6.2 Conversion Testing 34

7 Conclusions 41

A Bibliography 43

B References of the External Files 49

C Octane Material Node Types 51

vii

Chapter 1

Introduction

In computer graphics, we use materials to describe how the surface of models
interacts with light. Simply put, materials describe the appearance of the
models. For that purpose, many formats are made. One of such formats is
brought to the Unity engine by the Octane render.

Octane is an unbiased spectrally correct GPU render engine, which allows
modification of the scene in real-time. Octane is gaining popularity among 3D
artists and in the film industry for its capabilities and performance. Although
Octane is not fast enough to be used in games, it is fast enough to quickly
make pre-rendered scenes and movies with it and modify those in real-time
while rendering.

To use Octane in Unity, Octane for Unity plugin is needed. This plugin adds a
new environment to Unity that can satisfy most scene developers and enables
them to make high-quality scenes with physically-believable 3D models and
materials.

While Unity supports many 3D file formats that are converted to the format
used by Unity, due to the fact that Octane is provided from an external source,
there is no conversion tool available in Unity for the materials provided by
Octane. Because of that, those materials must be created manually anew one
after another.

The absence of a conversion tool between the standardized materials and
the Octane materials lead to the purpose of this thesis, which is to analyze

1

1. Introduction
the materials provided by the Octane for Unity plugin, their capabilities and
description, and to devise and implement methods to make the automatic
conversion from standardized materials to Octane materials possible in Unity.

2

Chapter 2

Materials in Computer Graphics

In computer graphics, we use materials to describe the look of surfaces of
three-dimensional objects. Materials describe how light interacts with the
surface of an object. From the categories of optics, science about light, we
use are primarily geometrical optics and sometimes we describe light as
particles [JrF05]. Geometrical optics describe light as beams that traverse
through space and can be described with geometric rules.

2.1 Empirical illumination Models

Empirical illumination models are models that use empirical observations for
the computation of the lighting in three-dimensional scenes. Their advantage
lies in their computation complexity that is lower than in cases of physically-
based illumination models. Empirical models can be described as reflection
models that "account for masking and self-shadowing effects and predict
off-specular reflection." [KE09]

3

2. Materials in Computer Graphics.............................
I present here three examples of the empirical models.

2.1.1 Lambertian reflection model

Lambertian reflectance does not depend on the viewing direction. Because
of this fact, this reflection model is unable to compute specular highlights
and thus allows us to create diffuse and ambient lights only. Lambertian
reflection in one point is computed by using the normal vector in the point on
the surface, the viewing ray and the vector representing an incident ray from
the light source, the ray from the light source would pass through the surface.
The reflection occurs if the angle between the viewing ray and the normal
vector is equal to the angle between the normal vector and the incident ray.
For further detailed information visit [Kop14].

2.1.2 Phong reflection model

This reflection was designed by Bui-Tuong Phong in 1977. This reflection
model distinguishes between three types of light (Figure 2.2) [JrF05]:

. Ambient light. Diffuse light. Specular light

The ambient light is a light that does not come from any light source. It can
be viewed as a light reflected so many times that the direction from which the
light has come is unknown [Eck18]. The light is thus equally spread all over
the surface of the illuminated object. Let Ia be the intensity of ambient light,
ka its coefficient and La the ambient light color. The intensity of ambient
light is computed as

Ia = kaLa

where the intensity of the ambient light remains generally constant for the
whole scene.

The diffuse light on the other hand depends on the direction of its light
source. The assumption is that this light is reflected, the reflection is equally
spread in all possible directions. Let Id be the intensity of the diffuse light,

4

............................. 2.1. Empirical illumination Models

kd its coefficient, Ld materials diffuse color, ~L is a normalized vector from a
light source and ~N is a normalized normal vector on a surface. If (~N · ~L) < 0,
then the point on the surface cannot be illuminated by the light source. Then
the resulting diffuse light intensity on the surface will be computed as [JrF05]

Id = kd max(0, ~N · ~L)Ld

which equals the Lambertian reflection. The specular light depends on the

Figure 2.1: Ray vectors used in reflection model [Kim].

reflection vector and the view (eye) vector. This light component is responsible
for highlights that can be seen in the scene. Let Is be the specular intensity,
ks the specular coefficient, s the specular exponent, Ls the specular color, ~R
the normalized reflected ray, and ~V the normalized view ray. The specular
intensity will be computed as [IPI13]:

Is = ks(~R · ~V)sLs

The viewed resulting light is composed of those three light components [JrF05]

Iv = Ia + Id + Is

where Iv is the viewed light.

Figure 2.2: Composition of Phong reflection model [Smi].

5

2. Materials in Computer Graphics.............................
2.1.3 Blinn-Phong reflection model

Blinn-Phong reflection model is a modification of the Phong reflection model
made by Jim Blinn (Figure 2.3). According to [Bli77], this model solves issues
with reflections from the Phong reflection model by using the halfway vector
while computing specular light. This vector is computed as

~H =
~L+ ~E

||~L+ ~E||

where ~L is the direction vector to the light, ~H is the halfway vector and ~E is
the vector of direction to the eye (the synonym to the eye vector is a view
vector ~V), which can be seen in Figure 2.1. The resulting Phong equation
changes as such:

Iv = Ia + Id + S ∗ ksLs

where S = (~N · ~H)s, s is the specular exponent.

Figure 2.3: Comparison between Blinn-Phong and Phong reflection models [Rai].

2.2 PBR (Physically Based Rendering) models

PBR models tend to make their materials Physically-based, meaning that
they are physically-plausible. To achieve believable results, we will need a
few terms [TJL, JrF05]:

6

........................2.2. PBR (Physically Based Rendering) models

. Radiance

. BRDF

.Microfacets

Radiance is a unit used for global lighting. This unit indicates how much
light was received and emitted per unit solid angle per unit perpendicularly
projected area. We can simplify this unit as a ray color. The radiance is
constant in a vacuum and this fact is used in global lighting algorithms ex-
cluding participating media like smoke, fog, etc. [JrF05] BRDF (Bidirectional
Reflectance Distribution Function) describes the reflectivity of a material.
BRDF "returns the percentage of how much of the incoming light in a given
direction is reflected towards another given direction at a surface point." [TJL]
BRDF has those assumptions [JrF05]:

. The light that is going to be reflected is reflected immediately.

. A photon of a specific wavelength is reflected with the same wavelength.

. The light ray that is directed to a certain point on the surface is reflected
from the same point. If not, that would mean that the light traveled under
the surface. This behavior is described with BSSRDF (Bidirectional
Scattering Surface Reflectance Distribution Function), which is omitted
in BRDF.

The following text is based on [JrF05].

BRDF is always positive and is anisotropic. The second term means that
the reflected light does not depend only on the direction of the light that is
received or reflected, but on the surface rotation around the normal vector
of this surface as well. BRDF adheres to the energy conservation law. Thus
the amount of light that hits the surface is either reflected, transmitted or
absorbed.

PBR assumes the existence of the microfacets, which are small surfaces
that cast shadows over each other (in cases of non-reflective or partly reflec-
tive materials) generally in the shape of V-cavities. The V-cavities might
not be necessarily symmetrical in both directions (as in Figure 2.4), but in
one direction only. The whole surface is expected to be made out of them.
Microfacets thus have the ability to describe how reflective the surface is.

7

2. Materials in Computer Graphics.............................

Figure 2.4: Microfacets cast a shadow over each other and describe the reflectivity
of the material. [TJL]

2.2.1 Torrance-Sparrow reflection model

This section is based on the text from [PJH16, MU12]. Torrance-Sparrow
model was developed in 1967 to describe isotropic (e.g metallic) materials.
This PBR model uses the microfacet theory. Microfacets are distributed on
the surface according to set parameterization and their orientation is random.
As well as in the Blinn-Phong reflection model, the half-angle (previously
mentioned as halfway) vector is used instead of the surface normal, thus the
deviation between the microfacet normal vector and the half-angle vector is
measured instead.

According to the [MU12], the BRDF is computed as follows:

fr(~L, ~V) = kd

π
+ ks

4π(~N · ~V)
D(~H)F (~L)G(~L, ~V)

where kd and ks are diffuse and specular coefficients, ~L is a ray from the
source, ~H is the half-angle vector and ~V is the view vector. All the vectors can
be seen in Figure 2.1. The functions D(~H), F (~L) and G(~L, ~V) are described
as:

.D(~H) - Gives distribution of the normals of the microfacets aligned with
the half-angle vector. The functions primarily used are the Beckmann or
the Gaussian distribution functions.. F (~L) - "Fresnel factor gives the fraction of light that is reflected from
the entire surface." [MU12].G(~L, ~V) - Geometric attenuation factor describes the shadowing and
masking on the surface.

8

........................2.2. PBR (Physically Based Rendering) models

This model has put a base for many models based on the microfacet theory.

2.2.2 Cook-Torrance reflection model

R.L.Cook and K.E.Torrence put together a specular reflectance BRDF model
based on the Torrence-Sparrow model. The improvement this model has is
that only the microfacets oriented towards the half-angle vector contribute to
the BRDF. Moreover, this model distinguishes between the metallic and the
non-metallic surfaces and optimizes the computation process of the Fresnel
function.

There are some limits to this BRDF. The most important one is that this
model does not adhere to the energy conservation law at certain angles.

For more information visiting [TJL, MU12] is recommended.

9

10

Chapter 3

Material formats

If we want to store data about 3D models, we save those data to files of
certain formats. Many of the standardized 3D formats make it possible to
share our models between other applications and platforms. A lot of those
formats can save the whole scene: lights, geometry, materials, animations,
cameras, etc. On the other hand, there are formats that enable saving only
some of the scene parts that were mentioned previously.

There are two ways how to save the data. Several formats save data as
ASCII characters, that are readable in text editors. The other way is to save
the data in a binary file, which saves space, but specialized software is needed
in order to read them. Some formats use both ways of saving 3D data.

Establishing standardized formats put down the common ground for many 3D
applications of how to save material properties. Each of them can, however,
save the material properties in their own way or skip them. Such behavior
can be seen in 3D tools based on PBR rendering and formats that enable
empirical reflection models only. In such cases, some properties are missing
in the format or there are properties that remain unused.

3.1 Wavefront Format

This format contains the definition of the 3D models only, namely the ge-
ometry, the UVs and the materials, and saves them as ASCII characters in
two types of files. The geometry and the UVs are saved separately in an .obj

11

3. Material formats
file with references to the materials, which are all saved in a file with the
extension .mtl.

By following the documentation [DR95], the material is described by using
a list of statements with operators, which are voluntary. Those statements
contain:..1. Name of the material which follows the statement newmtl. The newmtl

statement separates the materials as well...2. Material color and illumination statements contain the color, trans-
parency and reflectivity values. The most used ones are:. Ka - ambient color (basic are RGB values in the range from 0 to 1). Kd - diffuse color (basic are RGB values in the range from 0 to 1). Ks - specular color (basic are RGB values in the range from 0 to 1). illum - enum value deciding, which illumination model should be

used (there are values available in the range from 0 to 10). d - opacity of the material (the value is in the range from 0 to 1,
where 1 describes fully opaque material while 0 fully transparent
one). Ns - specular exponent with the value from 0 to 1000..3. Texture map statements are accompanied by a file path to an image

texture. The most commonly used ones are:. map_Ka - ambient texture. map_Kd - diffuse texture. map_Ks - specular texture. map_Ns - map connected to the specular exponent. map_d - opacity map. bump - bump map..4. The reflection map is an environment that can be in the shape of a cube
or a sphere. This environment specifies reflections on the material and is
described by a texture. It can be imagined as a skybox used only by the
specified material.

The materials are saved according to the empirical reflection models. This
leaves 3D editing tools based on PBR reflection models in a situation, where
there are unused and missing statements. However, since the foundation of
this file format there have been attempts, and some of them were successful,
in establishing new statements according to the PBR statements as well.
According to the [WMT20] there were added these statements:

12

.....................................3.2. FBX Format

. Ke - emission color. map_Ke - texture describing emission color. norm - normal map

The other statements in the list described at [Hou15] were not officially added.

3.2 FBX Format

FBX is one of the most famous formats and is one of the formats that are
supported by Unity [Unib]. According to [Hou], this format was created in
order to share high-quality 3D data between different tools.

There is an SDK available to the public, however, the license to the FBX
itself is fully closed [TON13]. More about FBX can be found on the Autodesk
documentation website [Aut]. The FBX has both binary and ASCII versions
and can contain the whole scene including cameras and lights. The position,
UV coordinates and normals that have different topology are enabled in this
format as well. The downside to this format is that FBX format uses a
historical lighting model, materials are supposed to be saved in an empirical
reflection model Blinn-Phong, and enables only one texture per material
property [Hou]. By observing the ASCII formatted FBX file was deducted
that the FBX document is a nested list of nodes [TON13].

3.3 Octane PBR Override

There are many material shaders available in Unity. With the Octane for
Unity plugin developed by the company Otoy Inc., there is added another
one, the Octane PBR Override shader.

Octane is an unbiased physically-based GPU render engine [Bri10]. Its
work with GPU makes the rendering faster than other render engines that
use CPU for rendering computation.

Biased renders use methods to optimize the computation of the rendered
image, such as limiting the number of reflections. On the other hand, the
unbiased renders do not use those "shortcuts". An example of such behavior

13

3. Material formats
is that the unbiased renders wait until the light rays are fully absorbed or
until they leave the scene entirely. Although those methods allow creating
high-quality materials, those materials might not be necessarily physically
correct and their computation time much higher than in the case of the biased
renders. The term used is that those materials are physically believable
means that the material is not always described by accurate values, but its
appearance is close to reality and the difference from real materials is almost
unrecognizable [Nic16].

3.3.1 Loading Octane in Unity

Octane for Unity renders the scene in a separate tab which is called PBR
Viewport. To start rendering in this tab, a few steps must be followed:

Figure 3.1: The first step is to load Octane render.

14

.................................3.3. Octane PBR Override..1. Load the plugin (Figure 3.1) - After adding the Octane for Unity to a
project, a new item will appear in the top panel. This item, Octane,
contains an item Settings. After clicking on this item, a window appears.
There can be seen a button with the label Load Octane which starts the
Octane functionality.

..2. Create a render target (Figure 3.2) - Press the right mouse button in
the hierarchy. Find the Create PBR Render Target item and select it.

Figure 3.2: Create a render target.

..3. Begin the rendering process (Figure 3.3) - Now that the Octane render is
loaded and there is a render target available, the rendering process can
begin. Selecting the PBR Render Target in the scene hierarchy shows
properties of the PBR Render Target in the Inspector tab. There is a
button labeled as Render. After that button is clicked on, the rendered
scene appears in the PBR Viewport tab. This tab appears itself if it
was not opened before or if it was closed before the rendering process
started.

15

3. Material formats

Figure 3.3: Start the rendering process. The closed PBR Viewport tab is opened
automatically.

3.3.2 PBR Override material

The PBR Viewport tab is the only scene window in Unity capable of rendering
the Octane materials. The Scene tab or the Game tab cannot render these
materials. The PBR Viewport is compatible with two material shaders native
to Unity, the Standard and the Standard (Specular setup) shaders [Oto].

The materials can be examined and modified by using a source window that
can be opened in the Inspector tab after selecting the desired material (Figure
3.4).

The whole material is saved in a material file and saved as an Octane XML.
The XML consists of the following five types of nodes where only the top
three node types have influence over the appearance of the material. Their
description can be compared to the picture above (Figure 3.4):

16

.................................3.3. Octane PBR Override

Figure 3.4: The window used for managing an Octane material is divided into
three parts. In the left bottom part, there is a working area where is the graph
describing the material. In the right part, there is an area used for inspecting
the selected node in the graph and for manipulating attributes of the selected
node. In the top left part, there is a viewport area showing the current render of
the scene.

. node - Describes a node in a graph, however, nodes can be included in
the pin as well. A node can contain multiple attributes and pins. There
are several types of nodes available. A brief overview of node types can
be found in the appendix Node Types.. attribute - Contains a value of a node. A node has one or more
attributes. The value of the attribute is stored in its child node, which is
plain text. There are multiple attribute types available such as a single
number, a triplet of numbers (vectors and colors), a string, etc.. pin - A node type defining inputs in a node. In the picture, those are
the circular areas in the upper area of each node. The pin can refer to a
node in the scene graph, or contain one or more nodes. In the second
case, the nodes are not visible in the node editor..OCS2 - A scene node. This node contains the graph node.. graph - A node starting the graph of a material. The graph node
contains only the nodes of the node type. Those nodes can be seen
directly in the graph area in the picture.

17

18

Chapter 4

Converter Specification

The converter is supposed to create a material that is not native to Unity, the
Octane PBR Override material. A few steps were made to enable conversion
to this material and to ensure the existence of its description in a file.

4.1 Reloading Octane Materials

This material has the issue that when being written to an existing material
file, that file could not keep the change and return to its previous state. As
written in section PBR Override material, the Octane is saved as an XML
in the material file. This file is loaded when Octane starts operating and
during testing was proven, that the material itself is being cached even during
re-import of the material file or during the refreshing of the asset database.
The solution to this can be seen in the chapter Converter Implementation
and Functionality.

4.2 Conversion Tool

There are several ways how to implement the conversion tool. The tool
can consist of a list of statements as is in the case of Wavefront format or
Principled BRDF in Blender, or a graph structure similar to that in Octane.

19

impl:Loading Octane
impl:Loading Octane

4. Converter Specification
The proposed method is a graph structure that copies the structure of Octane
XML. There are several reasons...1. The structure of the MTL format has a high probability of absence

of several statements and there is a possibility that the order of the
statements is mixed up...2. Transferring the graph to an XML is easier than in the case of the list of
statements...3. Testing the correctness of the conversion tool had to be made as a
conversion of one Octane material to another Octane material, which
refers directly to the previous reason.

4.3 Material Reading

To make the conversion as efficient as possible, the materials have to be read
directly from the file.

Because the Wavefront format is saved in the ASCII format only, reading
it is straightforward. The only limitation is that Wavefront format enables
omitting statements and their order is not directly specified.

In the case of the FBX format, there are two ways of saving a file, bi-
nary and ASCII versions. To read such files, an FBX reading tool is needed.
There are many tools available:

. IrrExt [CSD15]
An FBX loader and an extension to the Irrlicht Engine. Provides loading
mesh and basic material properties. The project is written in C/C++,
there would be a need to create a dynamic library in order for it to work
in Unity..Python FBX reader API [BG18]
An FBX reader written in Python. All known data types should be
readable for FBX files from 2006-2012, files of later date were not tested.
This reader is unable to directly read an ASCII FBX file. There would
be a workaround for this reader to work in Unity.. fbx-conv [ls20]
A command line tool that uses FBX SDK to read the content of FBX

20

...................................4.3. Material Reading

files. There are pre-compiled binaries available. The project is written
in C/C++. A dynamic library would be needed in order for this tool to
work in Unity.. openfbx [ds13]
C/C++ FBX importer capable of reading ASCII FBX files. This tool
has a limited range of readable properties. A dynamic library would be
needed for this tool to work in Unity.. FBX manipulation for .NET [hms19]
This tool can read and write both binary and ASCII FBX files. Format
detection and advanced manipulation with FBX nodes are not available..C++ Library for reading and writing FBX files [js18]
C++ FBX reading and writing tool. Supports FBX binary files. Allows
inspection of FBX files in JSON format. A dynamic library would be
needed for this tool to work in Unity..OpenFBX [ns21]
FBX importer used by Flax Engine and Lumix Engine. The project is
written in C/C++, so a dynamic library would be needed for this tool
to work in Unity.. FbxWrapper [Whi19]
Fbx wrapper written in C/C++ for FBX SDK. Converts only certain
parts of FBX SDK.. FBX SDK for Unity
FBX SDK provided by Autodesk for Unity. Guide for usage can be
found here [Unia]. Reading the FBX file graph should follow the last
line of code in the guide
importer.Import (scene);
which loads the content of the file to the scene variable and thus enables
manipulation with the imported file.

Further issues contain the possible difference between materials that are from
empirical and PBR renders. To solve this issue, a system that realizes the
difference must be implemented, even if the process itself would depend on a
user.

21

22

Chapter 5

Converter Implementation and
Functionality

The converter itself is implemented in the way so saving the converted mate-
rial as Octane XML would be as straightforward as possible.

For the implementation and testing was used this software:

. Unity 2019.3.5f1. Blender 2.9.1.Maya 2020. Visual Studio 2019

Required packages and plugins are:

.Octane for Unity, version: 1.2.0.1410 or higher. Autodesk FBX SDK, version: 4.0.1 or higher

Autodesk FBX SDK installation

If the Autodesk FBX SDK is already in the device, search for the manifest.json

23

5. Converter Implementation and Functionality
file which is located in the location /ProjectFolder/Packages/manifest.json.
Open the file and add "com.autodesk.fbx": "4.0.1", to the list of
dependencies. If there are further issues with the package installation, follow
the manual posted on the Unity website [Uni21].

Octane for Unity installation

The Octane for Unity plugin can be found on the Unity Asset Store web-
site [Oto]. After clicking on the Open in Unity button, Octane Render for
Unity will be opened in the Package Manager. The Import button will add
Octane to the project.

Installation of the converter

After adding the MaterialConverter.unitypackage to the project, import
settings will be opened. After selecting files that will be imported, the con-
verter will be installed. The converter requires both the Octane for Unity
plugin and Autodesk FBX SDK to be installed.

There was a need for creating a new file. The reasons for such implementation
were the fact that Octane materials were not responding to refreshing the
asset database and to the re-importing of the material files. Due to those
issues and later due to the fact that the methods provided by Octane need
an existing material file in order to save the material properties, a new file
for the converted result is to be made.

5.1 Converter Structure

The converter uses two classes for loading imported assets, the Scripted
Importer [Unid] and the Asset Postprocessor [Unic].

The difference between those two classes is that that Scripted Imported
enables importing files of unsupported formats to Unity. Those formats are
distinguished by their file extension.

The Asset Postprocessor on the other hand enables developers to step into
the importing process of files of the supported file formats. This way the
original parameters of the imported files can be read before the start of the
conversion to the inner format implemented in Unity.

The inner structure of the converter is based on the Octane material structure.
This structure of Octane material is described for the scripting language

24

.............................. 5.2. Wavefront Material Reading

Figure 5.1: This diagram describes the way the converter works.

Lua [str13], however similar behavior is expected to work for C# as well. The
final result is written to a material as an XML [Mic].

5.2 Wavefront Material Reading

As said in the Wavefront format description, the Wavefront format separates
the contents of the model geometry and its materials into two file formats.
The files with the extension OBJ are supported and when imported to Unity
together with files with the file extension MTL, Unity creates a prefab of the
OBJ file with converted materials from the MTL file applied. However, the
files of the extension MTL are not supported by Unity themselves, only in
the combination with the OBJ files. To read those files, a derived class of
Scripted Importer must have been implemented.

Materials provided by Wavefront are described by a list of statements. There

25

5. Converter Implementation and Functionality
are many statements and many operators, however, due to the fact that
Wavefront materials are primarily formatted as an empirical model, some
were omitted. Ambient color and the illum statements are examples of such
cases. By observing the behavior of the Blender exporting tool, the Ambient
color in the combination with the illum statement are used to save metallic
values. However, such behavior will not be supported.

The supported statements and operators are:

. Supported statements:. newmtl - Indicates a new material.. Kd - Saved directly as an albedo color.. Ks - Saved directly as a specular color.. Ke - Saved directly as an emission color.. Tf - Saved directly as a transmission color.. d - Saved directly as an opacity value.. Ni - Saved directly as an IOR (Index Of Refraction).. Ns - Converted to a roughness. For this conversion, a conversion
equation from Blender was used:

roughness = 1−
√

min(900,Ns)
30

The equation can be found here [Mon19].. map_Kd - Saved directly as an albedo color map.. map_Ks - Saved directly as a specular color map.. map_Ns - Saved directly as a roughness map.. map_d - Saved directly as an opacity map.. bump - Saved directly as a bump map.. map_Bump - The same as the bump statement.. disp - Saved directly as a displacement map.. map_Disp - The same as the disp statement.. map_Ke - Saved directly as an emission color map.. norm - Saved directly as a normal map.. map_Norm - The same as the norm statement.. decal - By the notation from [DR95], the application of this
statement should follow the equation

result_color = tex_color(tv)∗decal(tv)+mtl_color∗(1.0−decal(tv))

26

.............................. 5.2. Wavefront Material Reading

for the ambient, diffuse and specular color. However, in this project
was selected a different method. The method suggests that this
statement affects the result of the albedo color, the specular color
and roughness components and is inspired by the Figure 5.3. The
resulted application of this statement to the previously mentioned
material components is

component = mix(base_color,decal)

where base_color is albedo color, albedo texture, or their multipli-
cation, and the ratio of this application is managed by a second
copy of the texture (see example in Figure 5.2), which is loaded as
a transparent texture. If there is not specified one of those three
components, the default one will be used. The resulting effect is
similar to the effect described here. More is available in the testing
sections.

Figure 5.2: Application of the decal to the components of the material. The
first connected component is the albedo color, the second is the specular color
and the third is the roughness value. The decal used in this graph is the rust
texture.

. map_Decal - The same as the decal statement.

. Supported operators (other operators will result in default value):

. xyz - Converter converts color from the XYZ color space to RGB
according to conversion matrix [Scr15].. -bm - This operator is followed by a value that indicates the bump
multiplier. It is multiplied with the bump map.

27

5. Converter Implementation and Functionality

Figure 5.3: Graph describing the application of the decal texture to the material
of the model [Jab14].

Maps and values of the same attribute type (e.g Kd and map_Kd) are multi-
plied.

If the file contains an error in the form of misspelled statement, that statement
will be ignored and the rest of the material will be disposed of. This measure
is created because of the possibility that the newmtl statement is misspelled
and the converter would add the definition of the new material to the previous
one. The converter expects that each statement would be written correctly
up to one time per material definition.

5.3 FBX Reading

There were many possible tools available, however, the most promising one
was the FBX SDK provided by Autodesk, mainly due to the fact that this

28

.................................... 5.3. FBX Reading

library is available natively in Unity. This package contains methods that
enable browsing through the FBX file. This web page shows how to start
reading the FBX file [Unia]. The reading of the FBX file should follow the
scene import to a variable.
There can be limitations to some functions and a small mistake would create a
difficult situation for the Unity developers. In order to avoid some difficulties,
this thread in the Unity forum is recommended [vko21]. This thread shows a
way how to unlock unavailable methods. However, this method is not used in
this project.

Each FBX file can be read as a graph where each node can have multi-
ple child nodes starting with the scene (root) node. Each node has several
properties which contain node attributes and can contain source and des-
tination objects as well. This behavior is applied to the properties as well.
Iterating through all of the nodes and properties and objects connected to
them would create an infinite cycle because the destination objects are pri-
marily pointing to the root node.

The FBX file is read from the root node until materials are found, only
the node children are searched. The materials are searched until the depth of
three of their source objects. Information about textures can be found in this
depth. The converted material values are as follows:

.Diffuse color - This color component is directly saved as an albedo
color. Transparent color is immediately subtracted from this component.
Similar behavior can be seen in Autodesk Maya.. Displacement color - Directly saved as displacement color.. Emission color - In FBX written as an "Emissive color". This component
is directly saved as an emission color.. Transparent color - This component is subtracted from the albedo color.
The opacity is computed from this node and its factor as well. The color
is multiplied by its factor and the opacity is computed as the average of
the RGB channels from the result.. Shininess - The value of this component can differ from which 3D tool
the file was exported from. If the file was based on PBR rendering, the
value is to be converted due to the equation

roughness = 1− (
√
fbx_shininess/10)

which is based on the equation from the Blender import tool [Mon18a].
If the 3D tool environment was based on an empirical reflection model,
the computation is the same as for the Ns exponent from Wavefront
materials .

29

5. Converter Implementation and Functionality
. Specular color - The computation of the specular color differs for the

files exported from the empirical and PBR-based 3D tools as well. While
for the empirical conversion the application of the color is direct, for the
PBR the specular component is converted as

specular = fbx_specular ∗ 2.0

which is based on the Blender import tool [Mon18b] and only the factor
is used because the specular and diffuse colors are considered to be the
same.. Reflection color - This component is directly saved as metallic color.. Normal map - This component is directly saved as a normal map.. Bump map - This component is directly saved as a bump map.

Each of those properties can contain a texture attached as a source object. If
such a situation arises, the texture and value are multiplied except the bump
map and the normal map nodes. If there is a factor value related to each
of those components, the components are multiplied with that factor before
another operation starts.

5.4 Converter Usage

Before the conversion process starts, the Octane render must be loaded and
rendering must be running. If not, the materials that are made by the con-
verter might become empty. There is another condition that must be met and
that is to import textures before the conversion starts. Several formats enable
including a copy of textures into the file containing scene properties. Such
behavior can be seen in the FBX files and some 3D tools enable including
a texture copy to the FBX file. However, it is recommended to import the
textures beforehand to the project.

To start the conversion, a file with the extension .mtl or .fbx must be imported
to the Unity project. Then, all materials that are in the scene of the file are
converted to the Octane format. The conversion can cause an error message
"The asset at path has been scheduled for reimport during the Refresh loop and
Loading of it has been attempted. Doing this can lead to the AssetDatabase
returning two versions of the same asset. Please ensure that code which
attempts to reimport this asset does not run while the editor is Refreshing.
You can do so by checking the value of EditorApplication.isUpdating."
to be displayed in Unity. Those messages can be ignored, creating a copy

30

................................... 5.4. Converter Usage

of material is intentional behavior of the converter. However, after the con-
versions are finished, it is highly recommended to switch the converter off
before any further processing of the imported model/scene or before doing
any other activities that could cause model reimport.

The converter can be controlled by using a menu which can be found in
the Octane section in the top panel, which can be seen in Figure 5.4. There
the converter can be switched off/on, the converted formats available can be
selected, FBX log can be enabled and the selection of whether the imported
model is made in PBR or empirical environment. The log applies to the
last converted FBX file and shows materials included in the file and their
properties.

Figure 5.4: Menu used to operate the converter.

The converted materials are saved as new material files to the Assets/Materials/Converter
folder. If such a path does not exist, the converter creates this destination
folder.

The new materials can be further manually customized, see Figure 3.4.

31

32

Chapter 6

Testing

The testing was performed on several 3D models. The materials applied to
those models were gradually changed to determine the functionality of the
converter and to determine further progress.

6.1 Loading Material Files

This part of testing determined whether the goal of this project is achievable.
The testing was performed on simple Octane materials whose color values
were manually changed in a text editor.

The values were restored to their original value when the material was
being applied to a model and the rendering was switched on.

If the material was already applied to the model, the values were changed
and the re-importing of the material file was performed, the material did
not change. The same behavior was observed when the asset database was
refreshed.

Even though the material did change when the play button was clicked
on, when the shader was changed to PBR Override, or when some of the
scripts were saved, the reason for such behavior and the methods that started
it were not found.

33

6. Testing
The last part of this testing was to create a new file and save a copy of
another material to it. The result was an exact copy of the tested material
file. Later, due to the difficulties connected with the Octane script IDs, the
method was changed to only overwrite the Octane XML of the material file
with methods that are available through the Octane for the Unity plugin.

6.2 Conversion Testing

Conversion from Octane material to Octane material

To test the correctness of the converter, the first conversion tests were directed
towards the creation of an identical copy of the existing Octane material.
Those tests were performed to determine the correctness of the inner conver-
sion format and to determine its writing correctness.

Conversion from FBX and Wavefront materials to Octane materials

The converter was tested on several models due to the variation of available
materials. The models are shader ball [Mak15], a tree model [ztr], a pistol
model [alp] and basic geometry such as a plane.

Figure 6.1: Comparison between application of the original decal equation (on
the left) and the new version of the application of the decals (on the right).

Due to the testing, the decals were the one Wavefront statements which
application was entirely changed. The final result of such conversion can be
seen in Figure 6.1 in comparison with the result of the original method. Its
application process is described in the implementation part.

34

.................................. 6.2. Conversion Testing

The decal texture that was used is a rust texture [DTr].

Figure 6.2: Usage of an image map used for displacement (on the left), which
was the original usage, and for normals (on the right).

There exist errors that can be brought into the scene with the 3D models,
such as wrongly assigned texture. Those cases can result in a difference of
the required and the acquired shape and appearance of the model. Such a
case can be seen in Figure 6.2 where the originally written material contained
a statement used for the displacement texture map instead of the normal
texture map.

Some tests were created in order to determine whether the converter can

Figure 6.3: Test of multiple materials converted from one file.

convert multiple materials from one file. The result of multiple materials being
converted from one file can be seen in Figure 6.3, where different materials
are used for the leaves and for the trunk and branches.

35

6. Testing

Figure 6.4: Test of emission values.

This test in Figure 6.4 was performed on a Wavefront material that contained
emission values only. The emission consisted of a crate texture and a turquoise
color. The result was their mixture by multiplication.

Figure 6.5: Comparison of transparency of the converted material from Blender
(on the left), converted material from Maya (in the middle on the left), material
from Blender (in the middle on the right) and material from Maya (on the
right).

By using the shader balls in Figure 6.5, the materials with the transparency
value of 0.5 are being compared. Each of those materials has a black-white

36

.................................. 6.2. Conversion Testing

checker texture applied. The first two shader balls from the right are rendered
in Unity by using the Octane render, the third shader ball is rendered in
Blender Eevee render and the fourth one in the Maya Software render.

Figure 6.6: Comparison of materials between Unity standard material (top row),
converted material (second row), a material created manually in Octane (third
row) and Blender Principled BSDF material (fourth row).

The Figure 6.6 compares materials with different roughness values (smooth-
ness for the first row, which is computed as 1− roughness). The roughness
values are from the left to the right equal to 0.118, 0.529, 0.817 and 0.918.
Their original specular exponent values are 700, 200, 30 and 6.

The top three rows are rendered in Unity by the Octane render, the last row
is rendered in Blender by the Eevee render. Due to the size of the image, the
renders of the materials from Maya and their conversions are placed in the
next image.

37

6. Testing

Figure 6.7: Comparison of materials between Maya PhongE material with
raytracing enabled (first row) and disabled (second row), their conversion in
Octane (third row), the Maya Phong material with raytracing enabled (fourth
row) and disabled (fifth row) and their conversion in Octane (sixth row).

The comparison in Figure 6.7 is between materials created in Autodesk Maya
with their converted alternatives in Octane. The roughness values remain
the same as in the previous comparison, although the roughness values were
not exported with Maya PhongE materials. The converted materials were
rendered in Unity by the Octane render and those from Maya by the Maya
Software render. In Maya ambient light was used as well. The process of
computing roughness values is described in the implementation part.

38

Chapter 7

Conclusions

This thesis analyzed and described Octane and its material shader. The FBX
format and the Wavefront format, which were used as the input formats for
the conversion to the Octane PBR Override material, were described as well.

The converter was designed, implemented and its functionality was proven
with the testing of materials, which followed the implementation. Although the
converted materials were not entirely the same as their original, their similarity
was close enough to consider the conversion successful. The new converted
materials share the same folder, which is the Assets/Materials/Converter
folder, their name is supplemented by a prefix new_ and their shader is
changed to the PBR Override shader provided by Octane.

This conversion tool could be expanded on other 3D data formats in the
future by using the implemented methods in the converter, which are as
general as possible.

Because of its inability to assign the new materials to the models, the converter
can be combined with scripts and prefabs that assign materials by their name,
shader, or both to the 3D models.

39

40

Appendix A

Bibliography

[IPI13] Illumination 1: The Phong Illumination Model, Department
of Computer Science & The Oden Institute of Computational
Engineering and Sciences, 2013, Last visit: May 2021, [Lec-
ture]. Available at https://www.cs.utexas.edu/~bajaj/
graphics2012/cs354/lectures/lect14.pdf.

[WMT20] Wavefront material template library (mtl) file format, February
14 2020,
Last visit: May 2021 [Online]. Available at https:
//www.loc.gov/preservation/digital/formats/
fdd/fdd000508.shtml.

[ds13] dobkeratops & spol., openfbx, GitHub, March 13 2013,
Last visit: May 2021, GNU LESSER GENERAL PUBLIC LI-
CENSE Version 3, 29 June 2007, [Online project]. Available at
https://github.com/dobkeratops/openfbx.

[js18] jskorepa & spol., C++ Library for reading and writing FBX
files, GitHub, August 7 2018,
Last visit: May 2021, MIT License Copyright (c) 2017 Jakub
Skořepa, [Online project]. Available at https://github.com/
jskorepa/fbx/tree/master.

[hms19] hamish-milne & spol., FBX manipulation for .NET, GitHub,
July 31 2019,
Last visit: May 2021, GPL license - GNU GENERAL PUBLIC
LICENSE Version 3, 29 June 2007 / LGP license - GNU LESSER
GENERAL PUBLIC LICENSE Version 3, 29 June 2007, [Online

41

https://www.cs.utexas.edu/~bajaj/graphics2012/cs354/lectures/lect14.pdf
https://www.cs.utexas.edu/~bajaj/graphics2012/cs354/lectures/lect14.pdf
https://www.loc.gov/preservation/digital/formats/fdd/fdd000508.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000508.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000508.shtml
https://github.com/dobkeratops/openfbx
https://github.com/jskorepa/fbx/tree/master
https://github.com/jskorepa/fbx/tree/master

A. Bibliography.....................................
project]. Available at https://github.com/hamish-milne/
FbxWriter.

[ls20] libgdx & spol., fbx-conv, GitHub, March 8 2020,
Last visit: May 2021, Apache License Version 2.0, January 2004,
[Online project]. Available at https://github.com/libgdx/
fbx-conv.

[ns21] nem0 & spol., OpenFBX, GitHub, May 9 2021,
Last visit: May 2021, MIT License Copyright (c) 2017 Mikulas
Florek, [Online project]. Available at https://github.com/
nem0/OpenFBX.

[Aut] Autodesk, Autodesk help: FBX Scenes,
Last visit: May 2021, Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License, [Manual].
Available at https://help.autodesk.com/view/FBX/
2017/ENU/?guid=__files_GUID_4F644045_380D_4B75_
A2A3_D39DDE53BEDD_htm.

[BG18] C. Barton and A. Gessler, Python FBX reader API, Jan-
uary 24 2018, Last visit: May 2021, GNU General Public Li-
cense v2.0, [Online project]. Available at https://github.com/
ideasman42/pyfbx_i42.

[Bli77] J. F. Blinn, Models of light reflection for computer synthesized
pictures, SIGGRAPH Comput. Graph. 11 no. 2 (1977), 192–198,
[Article]. https://doi.org/10.1145/965141.563893.

[Bri10] A. Brito, Octane render: Fully gpu unbiased render engine,
(2010), Last visit: May 2021, [Article]. Available at https://
www.blender3darchitect.com/light-and-rendering/
octane-render-fully-gpu-unibased-render-engine/.

[CSD15] F. Christian Stehno, Caswal "Zeussy" Parker and
G. Davidson, IrrExt, Sourceforge, October 3 2015,
Last visit: May 2021, [Online project]. Available at
https://sourceforge.net/p/irrext/code/91/tree/
trunk/extensions/scene/IMeshLoader/fbx/.

[DR95] L. T. Diane Ramey, Linda Rose, MTL material format (Light-
wave, OBJ), 4,2 ed., October 1995, Last visit: May 2021, Copyright
1995 Alias|Wavefront, Inc. Available at http://paulbourke.
net/dataformats/mtl/.

[Eck18] D. J. Eck, Introduction to Computer Graphics, 1.2, Hobart
and William Smith Colleges, January 2018, Section 4.1 In-
troduction to Lighting. Available at http://math.hws.edu/
graphicsbook/c4/s1.html.

42

https://github.com/hamish-milne/FbxWriter
https://github.com/hamish-milne/FbxWriter
https://github.com/libgdx/fbx-conv
https://github.com/libgdx/fbx-conv
https://github.com/nem0/OpenFBX
https://github.com/nem0/OpenFBX
https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_4F644045_380D_4B75_A2A3_D39DDE53BEDD_htm
https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_4F644045_380D_4B75_A2A3_D39DDE53BEDD_htm
https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_4F644045_380D_4B75_A2A3_D39DDE53BEDD_htm
https://github.com/ideasman42/pyfbx_i42
https://github.com/ideasman42/pyfbx_i42
https://doi.org/10.1145/965141.563893
https://www.blender3darchitect.com/light-and-rendering/octane-render-fully-gpu-unibased-render-engine/
https://www.blender3darchitect.com/light-and-rendering/octane-render-fully-gpu-unibased-render-engine/
https://www.blender3darchitect.com/light-and-rendering/octane-render-fully-gpu-unibased-render-engine/
https://sourceforge.net/p/irrext/code/91/tree/trunk/extensions/scene/IMeshLoader/fbx/
https://sourceforge.net/p/irrext/code/91/tree/trunk/extensions/scene/IMeshLoader/fbx/
http://paulbourke.net/dataformats/mtl/
http://paulbourke.net/dataformats/mtl/
http://math.hws.edu/graphicsbook/c4/s1.html
http://math.hws.edu/graphicsbook/c4/s1.html

..................................... A. Bibliography

[Hou] B. Houston, Ben houston’s ultimate guide to 3d file for-
mats, Last visit: May 2021, COPYRIGHT © 2021 THREE-
KIT INC. Available at https://www.threekit.com/blog/
when-should-you-use-fbx-3d-file-format.

[Hou15] B. Houston, Extending wavefront mtl for physically-based ren-
dering, (2015). Available at http://exocortex.com/blog/
extending_wavefront_mtl_to_support_pbr.

[JrF05] J. S. Jiří Žára, Bedřich Beneš and P. Felkel, Moderní
počítačová grafika, 2, pp. 319–336, Computer Press, 2005, ISBN: 80-
251-0454-0. Available at https://dcgi.fel.cvut.cz/cgg/
ModerniPocitacovaGrafika/kniha.pdf.

[Kop14] S. J. Koppal, Lambertian Reflectance, computer vision: a
reference guide ed., pp. 441–443, Springer US, Boston, MA,
2014, ISBN: 978-0-387-31439-6. https://doi.org/10.1007/
978-0-387-31439-6_534.

[KE09] M. Kurt and D. Edwards, A survey of brdf models for computer
graphics, SIGGRAPH Comput. Graph. 43 no. 2 (2009), ISSN:
0097-8930, Last visit: May 2021. https://doi.org/10.1145/
1629216.1629222.

[Mic] Microsoft, XmlDocument class, Last visit: May 2021,
[Manual]. Available at https://docs.microsoft.
com/en-us/dotnet/api/system.xml.xmldocument?
redirectedfrom=MSDN&view=net-5.0.

[Mon18a] B. Montagne, Roughness conversion in Blender for FBX file
format, October 16 2018, commit: b3257c11365e, shininess,
from import_fbx.py, line 1340, Last visit: May 2021, [Online
project]. Available at https://developer.blender.org/
rBAb3257c11365e38436a86a73cf42a300a305c33aa.

[Mon18b] B. Montagne, Specular color conversion in Blender for FBX
file format, October 13 2018, commit: 94a1268efa6a, specular,
from import_fbx.py, line 1335, Last visit: May 2021, [Online
project]. Available at https://developer.blender.org/
rBA94a1268efa6a16b2e85b95a6ad145e3bbd63f018.

[Mon19] B. Montagne, Blender developer’s page, import of
the OBJ files, July 30 2019, commit: 27381001d7b9,
Ns exponent, line 361, Last visit: May 2021, [Online
project]. Available at https://developer.blender.org/
rBA27381001d7b9332eb669f1023f14b40d1f15f962.

[MU12] R. Montes and C. Ureña, An Overview of BRDF Models,
Tech. report, Dept. Lenguajes y Sistemas Informáticos Uni-
versity of Granada, February 2012, pp. 6–7, Last visit: May

43

https://www.threekit.com/blog/when-should-you-use-fbx-3d-file-format
https://www.threekit.com/blog/when-should-you-use-fbx-3d-file-format
http://exocortex.com/blog/extending_wavefront_mtl_to_support_pbr
http://exocortex.com/blog/extending_wavefront_mtl_to_support_pbr
https://dcgi.fel.cvut.cz/cgg/ModerniPocitacovaGrafika/kniha.pdf
https://dcgi.fel.cvut.cz/cgg/ModerniPocitacovaGrafika/kniha.pdf
https://doi.org/10.1007/978-0-387-31439-6_534
https://doi.org/10.1007/978-0-387-31439-6_534
https://doi.org/10.1145/1629216.1629222
https://doi.org/10.1145/1629216.1629222
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmldocument?redirectedfrom=MSDN&view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmldocument?redirectedfrom=MSDN&view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmldocument?redirectedfrom=MSDN&view=net-5.0
https://developer.blender.org/rBAb3257c11365e38436a86a73cf42a300a305c33aa
https://developer.blender.org/rBAb3257c11365e38436a86a73cf42a300a305c33aa
https://developer.blender.org/rBA94a1268efa6a16b2e85b95a6ad145e3bbd63f018
https://developer.blender.org/rBA94a1268efa6a16b2e85b95a6ad145e3bbd63f018
https://developer.blender.org/rBA27381001d7b9332eb669f1023f14b40d1f15f962
https://developer.blender.org/rBA27381001d7b9332eb669f1023f14b40d1f15f962

A. Bibliography.....................................
2021. Available at https://digibug.ugr.es/bitstream/
handle/10481/19751/rmontes_LSI-2012-001TR.pdf;
jsessionid=900B79928FE698AF941A00F265A6EF0B?
sequence=1.

[Nic16] C. Nichols, The truth about unbiased rendering, (2016), Last
visit: May 2021. Available at https://www.chaosgroup.com/
blog/the-truth-about-unbiased-rendering.

[Oto] Otoy Inc., Octane documentation: Unity® Standard
Material, Last visit: May 2021, [Manual]. Available at
https://docs.otoy.com/UnityH/UnityManual.htm#
Unity/UnityStandardMaterial.htm.

[PJH16] M. Pharr, W. Jakob, and G. Humphreys, Physically based ren-
dering: From theory to implementation, 3 ed., Elsevier, September
30 2016, ISBN: 978-0-12-800645-0, Section 8.4 Microfacet The-
ory. Available at https://www.pbr-book.org/3ed-2018/
Reflection_Models/Microfacet_Models.

[Scr15] Scratchpixel, Introduction to light, color and color space, Octo-
ber 8 2015, Conversion table CIE XYZ to sRGB, Last visit: May
2021, [Lecture]. Available at https://www.scratchapixel.
com/lessons/digital-imaging/colors/color-space.

[str13] stratified, Nodes and nodegraphs in lua, Lua Scripting (2013),
Last visit: May 2021. Available at https://render.otoy.
com/forum/viewtopic.php?f=73&t=37333.

[TON13] TON, Fbx binary file format specification, Blender
Developers Blog (2013), Last visit: May 2021. Avail-
able at https://code.blender.org/2013/08/
fbx-binary-file-format-specification/.

[TJL] R. Tunnel, J. Jaggo, and M. Luik, Computer graphics
learning materials, Last visit: May 2021. Available at https:
//cglearn.eu/pub/advanced-computer-graphics/
physically-based-shading.

[Unia] Unity Technologies, FBX SDK Developer’s Guide,
Last visit: May 2021, [Manual]. Available at https:
//docs.unity3d.com/Packages/com.unity.formats.
fbx@2.0/manual/devguide.html.

[Unib] Unity Technologies, Unity Documentation: 3D for-
mats, Last visit: May 2021, [Manual]. Available at
https://docs.unity3d.com/560/Documentation/
Manual/3D-formats.html.

44

https://digibug.ugr.es/bitstream/handle/10481/19751/rmontes_LSI-2012-001TR.pdf;jsessionid=900B79928FE698AF941A00F265A6EF0B?sequence=1
https://digibug.ugr.es/bitstream/handle/10481/19751/rmontes_LSI-2012-001TR.pdf;jsessionid=900B79928FE698AF941A00F265A6EF0B?sequence=1
https://digibug.ugr.es/bitstream/handle/10481/19751/rmontes_LSI-2012-001TR.pdf;jsessionid=900B79928FE698AF941A00F265A6EF0B?sequence=1
https://digibug.ugr.es/bitstream/handle/10481/19751/rmontes_LSI-2012-001TR.pdf;jsessionid=900B79928FE698AF941A00F265A6EF0B?sequence=1
https://www.chaosgroup.com/blog/the-truth-about-unbiased-rendering
https://www.chaosgroup.com/blog/the-truth-about-unbiased-rendering
https://docs.otoy.com/UnityH/UnityManual.htm#Unity/UnityStandardMaterial.htm
https://docs.otoy.com/UnityH/UnityManual.htm#Unity/UnityStandardMaterial.htm
https://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models
https://www.pbr-book.org/3ed-2018/Reflection_Models/Microfacet_Models
https://www.scratchapixel.com/lessons/digital-imaging/colors/color-space
https://www.scratchapixel.com/lessons/digital-imaging/colors/color-space
https://render.otoy.com/forum/viewtopic.php?f=73&t=37333
https://render.otoy.com/forum/viewtopic.php?f=73&t=37333
https://code.blender.org/2013/08/fbx-binary-file-format-specification/
https://code.blender.org/2013/08/fbx-binary-file-format-specification/
https://cglearn.eu/pub/advanced-computer-graphics/physically-based-shading
https://cglearn.eu/pub/advanced-computer-graphics/physically-based-shading
https://cglearn.eu/pub/advanced-computer-graphics/physically-based-shading
https://docs.unity3d.com/Packages/com.unity.formats.fbx@2.0/manual/devguide.html
https://docs.unity3d.com/Packages/com.unity.formats.fbx@2.0/manual/devguide.html
https://docs.unity3d.com/Packages/com.unity.formats.fbx@2.0/manual/devguide.html
https://docs.unity3d.com/560/Documentation/Manual/3D-formats.html
https://docs.unity3d.com/560/Documentation/Manual/3D-formats.html

..................................... A. Bibliography

[Unic] Unity Technologies, Unity Documentation: Asset Post-
processor, Last visit: May 2021, [Manual]. Available
at https://docs.unity3d.com/ScriptReference/
AssetPostprocessor.html.

[Unid] Unity Technologies, Unity Documentation: Scripted Importers,
Last visit: May 2021, [Manual]. Available at https://docs.
unity3d.com/Manual/ScriptedImporters.html.

[Uni21] Unity Technologies, About Autodesk® FBX® SDK for Unity,
March 12 2021, Last visit: May 2021, [Manual]. Available at
https://docs.unity3d.com/Packages/com.autodesk.
fbx@4.0/manual/index.html.

[vko21] vkovec, Enabling fbx sdk methods, April 12 2021,
post 20, Last visit: May 2021, [Online]. Avail-
able at https://forum.unity.com/threads/
autodesk-fbx-build-errors-for-windows.716867/.

[Whi19] J. While, FbxWrapper, Bitbucket, January 6 2019, Last visit:
May 2021, [Online project]. Available at https://bitbucket.
org/johnwhile/fbxwrapper/src/master/.

45

https://docs.unity3d.com/ScriptReference/AssetPostprocessor.html
https://docs.unity3d.com/ScriptReference/AssetPostprocessor.html
https://docs.unity3d.com/Manual/ScriptedImporters.html
https://docs.unity3d.com/Manual/ScriptedImporters.html
https://docs.unity3d.com/Packages/com.autodesk.fbx@4.0/manual/index.html
https://docs.unity3d.com/Packages/com.autodesk.fbx@4.0/manual/index.html
https://forum.unity.com/threads/autodesk-fbx-build-errors-for-windows.716867/
https://forum.unity.com/threads/autodesk-fbx-build-errors-for-windows.716867/
https://bitbucket.org/johnwhile/fbxwrapper/src/master/
https://bitbucket.org/johnwhile/fbxwrapper/src/master/

46

Appendix B

References of the External Files

[srcDTr] Dirt transparent rust - rusty roblox. Available at https:
//www.pngkey.com/detail/u2q8a9u2i1a9u2r5_
dirt-transparent-rust-rusty-roblox/.

[srcalp] alpenwolf, Colt python 8 inch free low-poly 3d model. Avail-
able at https://www.cgtrader.com/free-3d-models/
military/gun/colt-python-8-inch.

[srcJab14] Jaberwocky, Applying decals within octane, Sep 2014. Avail-
able at https://render.otoy.com/forum/download/
file.php?id=36351&mode=view.

[srcKim] M. Kim, Vectors used in reflection models, Dept. of
Computer Science University of Seoul. Available at
http://www.minho-kim.com/courses/13fa71033/
data/redbook-07.pdf.

[srcMak15] M. Makin, Shader ball, Mar 2015. Available at https://
github.com/derkreature/ShaderBall.

[srcOto] I. Otoy, Octane render for unity. Avail-
able at https://assetstore.unity.
com/packages/tools/integration/
octanerender-for-unity-installer-scene-105646.

[srcRai] Rainwarrior commonswiki(based on copyright claims),
Comparison between blinn-phong and phong reflection mod-
els, CC BY-SA 3.0. Available at https://en.wikipedia.
org/wiki/Blinn%E2%80%93Phong_reflection_model#
/media/File:Blinn_phong_comparison.png.

47

https://www.pngkey.com/detail/u2q8a9u2i1a9u2r5_dirt-transparent-rust-rusty-roblox/
https://www.pngkey.com/detail/u2q8a9u2i1a9u2r5_dirt-transparent-rust-rusty-roblox/
https://www.pngkey.com/detail/u2q8a9u2i1a9u2r5_dirt-transparent-rust-rusty-roblox/
https://www.cgtrader.com/free-3d-models/military/gun/colt-python-8-inch
https://www.cgtrader.com/free-3d-models/military/gun/colt-python-8-inch
https://render.otoy.com/forum/download/file.php?id=36351&mode=view
https://render.otoy.com/forum/download/file.php?id=36351&mode=view
http://www.minho-kim.com/courses/13fa71033/data/redbook-07.pdf
http://www.minho-kim.com/courses/13fa71033/data/redbook-07.pdf
https://github.com/derkreature/ShaderBall
https://github.com/derkreature/ShaderBall
https://assetstore.unity.com/packages/tools/integration/octanerender-for-unity-installer-scene-105646
https://assetstore.unity.com/packages/tools/integration/octanerender-for-unity-installer-scene-105646
https://assetstore.unity.com/packages/tools/integration/octanerender-for-unity-installer-scene-105646
https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_reflection_model#/media/File:Blinn_phong_comparison.png
https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_reflection_model#/media/File:Blinn_phong_comparison.png
https://en.wikipedia.org/wiki/Blinn%E2%80%93Phong_reflection_model#/media/File:Blinn_phong_comparison.png

B. References of the External Files.............................
[srcSmi] B. Smith, Physically based rendering: From theory to imple-

mentation, CC BY-SA 3.0. Available at https://commons.
wikimedia.org/w/index.php?curid=1030364.

[srcztr] ztrztr, midpoly tree pack 002 free 3d model. Avail-
able at https://www.cgtrader.com/free-3d-models/
exterior/landscape/midpoly-tree-pack-002.

48

https://commons.wikimedia.org/w/index.php?curid=1030364
https://commons.wikimedia.org/w/index.php?curid=1030364
https://www.cgtrader.com/free-3d-models/exterior/landscape/midpoly-tree-pack-002
https://www.cgtrader.com/free-3d-models/exterior/landscape/midpoly-tree-pack-002

Appendix C

Octane Material Node Types

49

NT_UNKNOWN 0

NT_GEO_MESH 1

NT_MAT_MAP 2

NT_GEO_GROUP 3

NT_GEO_PLACEMENT 4

NT_GEO_SCATTER 5

NT_FLOAT 6

_NT_FLOAT2 7

_NT_FLOAT3 8

NT_INT 9

_NT_INT2 10

NT_BOOL 11

NT_IMAGE_RESOLUTION 12

NT_CAM_THINLENS 13

NT_ENV_DAYLIGHT 14

NT_IMAGER_CAMERA 15

NT_MAT_GLOSSY 16

NT_MAT_DIFFUSE 17

NT_MAT_SPECULAR 18

NT_MAT_MIX 19

NT_MAT_PORTAL 20

_NT_CAMERARESPONSE 21

NT_TEX_TURBULENCE 22

NT_KERN_PMC 23

NT_KERN_DIRECTLIGHTING 24

NT_KERN_PATHTRACING 25

NT_KERN_INFO 26

NT_TRANSFORM_3D 27

NT_TRANSFORM_SCALE 28

NT_TRANSFORM_ROTATION 29

NT_SUN_DIRECTION 30

NT_TEX_FLOAT 31

NT_TEX_GAUSSIANSPECTRUM 32

NT_TEX_RGB 33

NT_TEX_IMAGE 34

NT_TEX_ALPHAIMAGE 35

NT_TEX_FLOATIMAGE 36

NT_ENV_TEXTURE 37

NT_TEX_MIX 38

NT_TEX_MULTIPLY 39

NT_TEX_COSINEMIX 40

NT_TEX_CLAMP 41

NT_TEX_SAWWAVE 42

NT_TEX_TRIANGLEWAVE 43

NT_TEX_SINEWAVE 44

NT_TEX_CHECKS 45

NT_TEX_INVERT 46

NT_TEX_MARBLE 47

NT_TEX_RGFRACTAL 48

NT_TEX_GRADIENT 49

NT_TEX_FALLOFF 50

NT_TEX_COLORCORRECTION 51

NT_EMIS_BLACKBODY 53

NT_EMIS_TEXTURE 54

NT_LOCAL_APP_PREFS 55

NT_RENDERTARGET 56

NT_ENUM 57

NT_MED_ABSORPTION 58

NT_MED_SCATTERING 59

NT_PHASE_SCHLICK 60

NT_POSTPROCESSING 61

NT_CAM_PANORAMIC 62

NT_TEX_DIRT 63

NT_OBJECTLAYER_MAP 64

NT_OBJECTLAYER 65

NT_TRANSFORM_2D 66

NT_TRANSFORM_VALUE 67

NT_ANNOTATION 68

NT_KERN_MATPREVIEW 69

NT_PROJECT_SETTINGS 70

_NT_REMOTE_APP_PREFS 71

NT_SPLIT_PANE 72

NT_WORK_PANE 73

NT_PROJ_CYLINDRICAL 74

NT_PROJ_LINEAR 75

NT_PROJ_PERSPECTIVE 76

NT_PROJ_SPHERICAL 77

NT_PROJ_UVW 78

NT_PROJ_BOX 79

NT_DISPLACEMENT 80

NT_TEX_RANDOMCOLOR 81

NT_IMPORT_ALEMBIC_PREFS 82

NT_IMPORT_OBJ_PREFS 83

NT_STRING 84

NT_PROGRAMMABLE_GRAPH_INPUT 85

NT_RENDER_PASSES 86

NT_TEX_NOISE 87

NT_FILE 88

NT_TEX_SIDE 89

NT_RENDER_LAYER 90

NT_GEO_VOLUME 91

NT_ORC_VERSION 92

NT_IMPORT_VDB_PREFS 93

NT_CAM_BAKING 94

NT_VOLUME_RAMP 95

NT_VERTEX_DISPLACEMENT 97

NT_MED_VOLUME 98

NT_ANIMATION_SETTINGS 99

NT_FILM_SETTINGS 100

NT_DIRECTORY 101

NT_GEO_JOINT 102

NT_LUT_CUSTOM 103

NT_TEX_W 104

NT_RENDER_JOB_GROUP 105

NT_TEX_ADD 106

NT_TEX_COMPARE 107

NT_TEX_SUBTRACT 108

NT_TEX_TRIPLANAR 109

NT_GEO_PLANE 110

NT_PROJ_TRIPLANAR 111

NT_IMPORT_IMAGE_PREFS 112

NT_TEX_INSTANCE_COLOR 113

NT_TEX_INSTANCE_RANGE 114

NT_TEX_BAKED_IMAGE 115

NT_MAT_OSL 116

NT_TEX_OSL 117

NT_TEX_UVW_TRANSFORM 118

NT_IMPORT_FBX_PREFS 119

NT_MAT_METAL 120

NT_MAT_TOON 121

NT_TOON_RAMP 122

NT_TOON_POINT_LIGHT 123

NT_TOON_DIRECTIONAL_LIGHT 124

NT_PROJ_OSL 125

NT_CAM_OSL 126

NT_PROJ_OSL_UV 127

NT_CAM_OSL_BAKING 128

NT_ENV_PLANETARY 129

	Introduction
	Materials in Computer Graphics
	Empirical illumination Models
	Lambertian reflection model
	Phong reflection model
	Blinn-Phong reflection model

	PBR (Physically Based Rendering) models
	Torrance-Sparrow reflection model
	Cook-Torrance reflection model

	Material formats
	Wavefront Format
	FBX Format
	Octane PBR Override
	Loading Octane in Unity
	PBR Override material

	Converter Specification
	Reloading Octane Materials
	Conversion Tool
	Material Reading

	Converter Implementation and Functionality
	Converter Structure
	Wavefront Material Reading
	FBX Reading
	Converter Usage

	Testing
	Loading Material Files
	Conversion Testing

	Conclusions
	Bibliography
	References of the External Files
	Octane Material Node Types

