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Abstract

There are two types of agents in Stackelberg games called leader and follower, which makes
them asymmetrical. The leader has to commit to a strategy before the game begins. The
follower observes the leader’s strategy before he commits to his own. This work aims to
re-implement the existing algorithm for finding Stackelberg equilibria in a programming
language Julia, and extend it for computing Stackelberg equilibria in games with partially
imperfect information.

Keywords: Game theory, Stackelberg games, Stackelberg equilibrium, Dynamic pro-
gramming, Imperfect information.

Abstrakt

Stackelbergovy hry jsou asymetrické, protože v nich existuj́ı dva typy agent̊u - leader a
follower. Leader se muśı před začátkem hry zavázat k určité strategii. Follower pak může
jeho strategii pozorovat předt́ım, než urč́ı svou vlastńı. Tato práce má za ćıl reimplemento-
vat existuj́ıćı algoritmus pro hledáńı equilibríı ve Stackelbergových hrách v programovaćım
jazyce Julia, a následně ho rozš́ı̌rit pro hry s neúplnou informaćı.

Keywords: Teorie her, Stackelbergovy hry, Stackelbergovo equilibrium, Dynamické pro-
gramováńı, Neúplná informace.
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Chapter 1

Introduction

Game theory is one of the key topics in computer science. There is a lot of real-life appli-

cations, from simple games like Rock paper scissors to various scientific fields, including

economy [1], biology [2] or security [3].

The game theory studies situations where multiple subjects (called agents) interact

with each other. We are often interested in finding states where all of the agents are

content with the status quo. These states are called equilibria.

According to the number of agents or whether they have the same role in the game,

the games can be divided into various categories. In this work, we will restrict ourselves

to Stackelberg games. These games are asymmetrical, meaning that different agents have

different options on how to act. More specifically, in Stackelberg games, one agent (called

leader) commits himself to some strategy. The rest of the agents (called followers) will

observe that strategy before committing themselves. We will be interested in finding

Stackelberg equilibria (SE) [4] in these games.

The games can be further divided into games with perfect and imperfect information.

In games with perfect information, each player always knows which state he is located

in. On the contrary, there can be some degree of uncertainty in games with imperfect

information, represented with information sets. Intuitively, the player can not distinguish

between game nodes located in one information set. In this work, we will restrict to games

where follower always has perfect information (each follower’s information set contains

only one node). Furthermore, we will restrict to games with perfect recall, which means

that the leader can remember which actions he has already taken in the game. This

stetting may, for example, apply in security tasks [5], where it is reasonable to assume
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that the attacker has a perfect information. The perfect recall is also a logical assumption

in real-world applications.

This work will first describe an existing algorithm for finding Stackelberg equilibria,

which will be used as a baseline. This algorithm finds the equilibria by constructing and

solving a single mixed-integer linear program (MILP). However, this algorithm does not

apply to large games. The size of the game tree grows exponentially with its depth, which

results in huge demands on memory.

This work aims to devise and implement a more scalable algorithm for computing

Stackelberg equilibria in games with imperfect information. The new algorithm will be

using dynamic programming (DP). The dynamic programming is based on solving only

small segments of the game one by one, which reduces the demands on the memory, and

thus the MILP-based algorithms can never be successfully applied to games with very

long (or even infinite) horizon.

1.1 Outline

In the second chapter, we will focus on some of the main concepts from the game theory.

We will introduce the normal form representation as a basic game representation and the

extensive form representation, which will be mostly used in this work. We will further

introduce the Stackelberg games and Stackelberg equilibria, which is the main topic of

this work.

In chapter three, we will introduce two algorithms for finding Stackelberg equilibria

in extensive form games. The first one will be based on solving one mixed-integer linear

program (MILP). The second one will be using dynamic programming (DP).

In the fourth chapter, we will extend the existing DP algorithm to be able to find

Stackelberg equilibria in games with imperfect information. We will also introduce another

baseline MILP algorithm.

In the fifth chapter, we will benchmark the two algorithms for finding Stackelberg

equilibria in games with imperfect information.



Chapter 2

Game Theory

Game theory is a mathematical study with numerous areas of application, including com-

puter science [6], biology [2] or economy [1]. It concerns the interaction of two or more

independent agents. In this work, we will only consider self-interested agents, which

means that their only aim is to maximize their own profit. The agent’s profit will be

quantified with a utility function, which is a mapping from the states of the game to some

real values. In the game theory, agents impact each other with their actions, so they have

to consider each other’s expected behavior in the game. [7]

2.1 Normal Form

The normal form is probably the best known way to represent a game. The formal

definition [7] follows:

Definition 2.1.1 (Normal-form games). A normal-form game is a tuple (N,A, u), where:

• N is a finite set of n players;

• A is a Cartesian product of actions available to each agent (player’s i actions are

denoted as Ai). Each vector a = (a1, ..., an) ∈ A is called action profile;

• u is a set of utility functions (u1, ..., un), where ui : A 7→ R, is the utility function of

player i.

The normal form can be represented with n-dimensional matrix, where n is the number

of agents. For two player games with players i, j, each row corresponds to player i actions,
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and each column corresponds to player j actions. For ax ∈ Ai and ay ∈ Aj, the cell with

indices (i, j) corresponds to the outcome in that action profile.

2.1.1 Strategies in Normal Form Games

One way how an agent can play is to select one single action deterministically. This is

called a pure strategy. If each agent chooses a pure strategy, we call it a pure strategy

profile. In that case, each agent’s payoff is defined by his utility function.

There is also another type of strategy, called mixed strategy. In a mixed strategy,

the player can randomize, and his strategy is a probability distribution over his actions.

Similarly to the pure strategy case, the mixed strategy profile is a Cartesian product of

each player’s mixed strategy. We can denote the probability that action ai will be played

in mixed strategy profile Si as si(ai) ∈ 〈0, 1〉. The set of actions (an | si(an) > 0) is called

support of strategy profile si.

In a mixed strategy profile, we introduce expected utility to express the payoff of an

individual player.

Definition 2.1.2 (Expected utility). For player i in a mixed strategy profile s = (s1, ..., sn),

the expected utility is defined as

ui(s) =
∑
a∈A

ui(a)
n∏
i=1

sj(aj)

Informally speaking, the expected utility is a sum of utilities of all possible action

profiles, multiplied by the probability that this action profile will occur.[7]

2.1.2 Best Response

In a normal form game (N,A, u), we will define s−i = (s1, ..., si−1, si+1, ..., sn) as a strategy

profile of all agents except of agent i. If player i could observe s−i, his decision making

would be straightforward - he could calculate exactly which strategy si would provide him

the biggest payoff. That strategy is called best response. Formally, we define player’s i

best response to the strategy profile s−i as a strategy s∗i ∈ Si such that player’s i utility

ui(s
∗
i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si. [7]
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2.1.3 Minmax strategy

In a two-player game where N = (i,−i), the minmax strategy of player i denoted as si

is defined as arg minsi maxs−i
u−i(si, s−i). It is such a strategy that minimizes players −i

maximum payoff. If player i plays the minmax strategy, he is not interested in maximizing

his own payoff. His only aim is to punish the player −i. [7]

2.2 Extensive Form games

Even though the normal form is the basic way to represent the game and any game

can be represented in a normal form, in this work, we will mostly be using a different

representation called extensive form, which is an effective way to represent sequential

games. Informally speaking, games in the extensive form are trees with utility values

stored in their leaves. The nodes of the tree represent choices of agents, and the edges

correspond to the possible actions.

2.2.1 Extensive form with perfect information

This section will introduce a special case of two-player games in extensive form with

perfect information and concurrent moves, which means that agents know which state

they are in, and the players act simultaneously in each node. In the following section, we

will extend this definition to games with imperfect information.

Definition 2.2.1 (Extensive-form games with perfect information). The game in exten-

sive form is a tuple G = (N,A,H,Z, χ, ρ, σ, u) [7], where

• N is a set of n players (in this work always two);

• A is a set of actions;

• H is a set of non-terminal nodes;

• Z is a set of terminal nodes;

• ρ : H 7→ N is a mapping from non-terminal nodes to players. It determines which

players can act in given node;

• χ is a mapping from H to the set of possible actions;



• σ : H × A 7→ H ∪ Z is a mapping from non-terminal nodes and action to the

successor (non-terminal or terminal) nodes;

• u = (u1, ...un), where ui : Z 7→ R is an utility function of player i.

Extensive form games with concurrent moves

Extensive form is often used to represent games where agents act separately, and each

node is mapped to only one of the agents - agent 1 acts in the root (he chooses one of the

successor nodes), agent 2 acts in that chosen node, etc. However, in this work, we will

consider a slightly different type of extensive form with concurrent moves, which means

that agents do not act separately. As we mentioned before, in this work, we will restrict

to two-player games, and both of them will participate in each move. A successor node

reached from node n by an action profile (al, af ) is denoted as q(n, al, af ). [8]

N1

N2

a, c

N3

a, d

N4

b, c

N5

b, d

Figure 2.1: Extensive-form game with concurrent moves

c d

a q(n, a, c) = N2 q(n, a, d) = N3

b q(n, b, c) = N4 q(n, b, d) = N5

Table 2.1: Node of an extensive form game

2.2.2 Extensive form with imperfect information

In the games with concurrent moves, both the leader and the follower know which node

they are located in. On the contrary, in games with imperfect information, the players only

have the information about which information set they are located in. The game nodes

are partitioned into these information sets. If two nodes belong to the same information

set, the player can not distinguish between them.

The formal definition follows. [7]
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Definition 2.2.2 (Sequential-form games with imperfect information). The extensive-

form imperfect-information game is a tuple (N,A,H,Z, χ, ρ, σ, u, I), where:

• (N,A,H,Z, χ, ρ, σ, u, I) is a perfect-information game in extensive form from defi-

nition 2.2.1; and

• I = (I1, ..., In), where Ii = (Ii,1, ..., Ii,ki) is a set of equivalence classes on h ∈ H (non-

terminal nodes), where ρ(h) = i (player i can act in that node), with the property

that ρ(h) = ρ(h′) (the same players can act in both h and h′) and χ(h) = χ(h′)

(the available actions are the same in h and h′) whenever there exists a j for which

h ∈ I(i, j) and h′ ∈ I(i, j).

Note that each player has its own information sets. It means that one player could

be able to distinguish between two given nodes that are indistinguishable for the other

player. In this work, we will restrict to the games where the follower can distinguish

between any two nodes, i.e., all of his information sets contain only one node.

2.2.3 Strategies in games with imperfect information

In the games with concurrent moves, the player’s i strategy in node n, i ∈ ρ(n), was a

probability distribution over all available actions from that node.

In imperfect-information games, player i can not distinguish between nodes from the

same information set. By definition, the set of available actions is the same for each

game node from one information set. We will define the mixed strategy in a game with

imperfect information as a probability distribution in each information set over all actions

available in that set.

Perfect recall

The imperfect-information games with perfect recall are a subset of games with imperfect

information. In the general imperfect-information games, there are no restrictions about

which nodes can belong to which information sets. On the other hand, in games with

perfect recall, players can remember which actions they have taken so far.

We will use the notation seqi(n), where i is a player and n is a game node, to denote

the sequence of actions player i has to perform to reach node n. In games with perfect

recall, a node n1 can not be in the same information set as a node n2 if seqi(n1) 6= seqi(n2).



It also means that for any two nodes n1 and n2 belonging to the same (player’s i)

information set Ii, seqi(n1) = seqi(n2). That is why we can overload the notation -

seqi(Ii1) denotes the sequence that player i has to take to reach the information set Ii1 .

Note that two nodes, n1, n2, where seqi(n1) = seqi(n2), do not necessarily need to

belong to the same information set. The perfect recall is rather the minimal knowledge

that both players surely have.

In this work, we will restrict to games with perfect recall.

2.3 Stackelberg games

In Stackelberg games, the roles of players are not symmetrical. Generally, there is one

leader and n − 1 followers in n-player Stackelberg game, even though we will restrict to

two-player games with one leader and one follower in this work. The role of the leader is

to commit to some strategy s1 ∈ S1. The follower will then observe the leader’s strategy

before choosing his strategy s2 ∈ S2.

2.3.1 Stackelberg equilibrium

Stackleberg equilibrium (SE) is a solution concept in Stackleberg games. Two strategies

are in Stackleberg equilibrium if two conditions hold:

• the follower’s strategy s2 is a pure best response to the leaders strategy s1, and

• the leader’s expected utility is the maximum possible, considering that the follower’s

strategy will be the best response, i.e. ∀s′1 ∈ S1; ∀s′2 ∈ S2 such that s′2 is a best

response to s′1, it holds that u1(s1, s2) ≥ u1(s′1, s
′
2) [9]

In this work, we will restrict to a strong Stackelberg equilibrium. It means that if a

follower has two or more possible best responses providing him the same payoff, he will

choose the one which provides the maximal payoff to the leader. The leader is aware of

this follower’s behavior.

The follower’s role is quite straightforward because he is only aiming to maximize his

own payoff. On the other hand, the leader has to consider both players’ payoffs. Since

he is self-interested, his only aim is to maximize his own payoff, but he has to take into
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account that after making a commitment to some strategy, the follower will be free to

maximize his own payoff. We will demonstrate this on an example in 2.2.

Leader
Follower

C D

A (2, 0) (0, 1)

B (0, 1) (-1, -1)

Table 2.2: Stackleberg game

In this simple Stackelberg game, the leader’s payoff would be maximal with a pure

strategy profile (A,C). However, if he committed himself to a pure strategy A, the

follower’s best response would be D, decreasing the leader’s payoff to 0. The leader’s

expected utility can’t be greater than 0 as long as the follower’s best response is D. For

that reason, the leader has to commit to such a strategy that makes C a follower’s best

response. This constraint can be expressed with an inequation:

sl(A)uf (A,C) + sl(B)uf (B,C) ≥ sl(A)uf (A,D) + sl(B)uf (B,D)

In this case, if sl(A) = 2/3 and sl(B) = 1/3, the left side is equal to the right side

and both C and D are follower’s best responses. Since the strong Stackleberg equilibrium

holds, the follower will play a pure strategy C, providing leader’s expected utility ul = 4/3.

2.3.2 Stackleberg equilibrium in imperfect-information games

In concurrent-moves games, the leader was able to commit to a different strategy in each

game node. That allowed him to discourage the follower from going into nodes which did

not benefit him - he simply committed to the minmax strategy in those nodes.

In games with imperfect information, the leader’s strategy has to be the same for all

nodes from a given information set. For that reason, the same strategy, which is supposed

to bring him the best possible utility in one node, must also work as the punishment

strategy in the other nodes in order to prevent the follower from going into that nodes.





Chapter 3

Computing SE in concurrent-moves

games

This chapter will introduce two algorithms for finding strong Stackelberg equilibrium in

two-player, sequential form games with concurrent moves and perfect information. The

first algorithm constructs a single mixed-integer linear program (MILP) [8], while the

second one is based on linear programming [10].

3.1 MILP algorithm

First, we will introduce the mixed integer linear program:

Sets
N set of players (lower index l denoting leader, f denoting follower)

H set of non-terminal game nodes (r denotes the root node)

Z set of terminal game nodes

Ai(n) set of actions of player i in node n

q(n) set of successor nodes of node n ∈ H

Variables

11



p(n) n ∈ H ∪ Z probability of node n being reached during the game

vi(n) i ∈ N ;n ∈ H ∪ Z player’s i expected utility in node n

Ui(n) i ∈ N ;n ∈ Z player’s i utility in terminal node n

M(n) n ∈ H ∪ Z follower’s minmax utility in node n

q(n, al, af ) n ∈ H ∪ Z; ai ∈ Ai(n) node reached from node n by action profile (al, af )

b(n, af ) n ∈ H ∪ Z; a ∈ Af (n) binary variable assigned to each follower’s action in each node

max
p,v

∑
n∈Z

p(n)Ul(n) (3.1)

Subject to:

0 ≤ p(n) ≤ 1 ∀n ∈ H ∪ Z (3.2)

p(r) = 1 (3.3)

vf (n) = p(n)Uf (n) ∀n ∈ Z (3.4)

p(n) =
∑

n′∈q(n)

p(n′) ∀n ∈ H (3.5)

vf (n) =
∑

n′∈q(n)

vf (n
′) ∀n ∈ H (3.6)

∑
al∈Al(n)

vf (q(n, al, af1)) ≥
∑

al∈Al(n)

p(q(n, al, af1))M(q(n, al, af2))

∀n ∈ H; af1 , af2 ∈ Af (n)

(3.7)

b(n, af ) ∈ 0, 1

∀n ∈ H; af ∈ Af (n)
(3.8)

p(q(n, al, af )) ≤ b(n, af )

∀n ∈ H; al ∈ Al(n); af ∈ Af (n)
(3.9)

∑
af∈Af (n)

b(n, af ) = 1 ∀n ∈ H (3.10)

The objective function (3.1) is maximizing the utility of the leader, expressed as a

sum of the leader’s utility in individual terminal nodes, multiplied by the probability of

reaching those nodes in the game. The constraint (3.2) states that the probability of

reaching some node can not be less than 0 and greater than 1, and (3.3) assigns the 1

probability of reaching the root node, i.e., the root is certainly reached in every game.

Constraint (3.4) defines a follower’s expected utility in terminal node n as a product of

utility value of n, and the probability of reaching it. The follower always prefers nodes
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with higher value vf . In (3.5), the probability of reaching node n ∈ H is equal to the sum

of probabilities of reaching its successor nodes. It means that the probability of reaching a

node n’ is not greater than the probability of reaching its predecessor. The next constraint

states the same thing about the follower’s expected utility. Constraint (3.7) ensures that

the follower always plays his best response. The leader can force the follower to play

certain action, denoted as af1 , by playing a minmax strategy in all the nodes except the

one he wants to get in. The left side of the inequation is a sum of follower’s expected utility

after playing af1 (note that the expected utility is already multiplied by the probability

in (3.4)). The right side is the sum of the follower’s minmax utilities in node reached

by action profile (al, af2), multiplied by the probability of leader’s actions al (note that

leaders strategy is fixed). The constraint states that the left side is greater or equal to

the right side, so af1 is the best response. The last three constraints introduce the binary

variables to ensure that follower’s plays pure responses. (3.8) assigns a binary variable to

each follower’s action in each node. The next constraint (3.9) states that the probability

of reaching a successor of node n with action profile (al, af ) (q(n, al, af )) is less or equal

to the binary variable b(n, af ), i.e. if b(n, af ) = 0, the node q(n, al, af ) can’t be reached.

The last constraint, (3.10), ensures that exactly one binary variable assigned to node n is

equal to one.

3.1.1 Algorithm for adding binary variables iteratively

The linear program can be simplified by leaving out the binary variables. [11] It is

presumable that the follower’s strategy in most of the nodes will be pure even without

them. After solving the LP without binary variables, it is necessary to check the follower’s

strategy and the binary variables to the nodes where the strategy is not pure, then solve



the LP again.

Algorithm 1: Iterative MILP algorithm

Input: GameTree

Result: LeadersMaximalExpectedUtility

1 LP = formLPwithoutBinaryVariables(GameTree)

2 done = False

3 while (!done) do

4 done = True

5 solve(LP )

6 Q = queue

7 Q.push(GameTree.root)

8 while (!Q.isempty) do

9 N = Q.pop

10 if N .isTerminal then

11 Continue

12 end

13 if (followerStrategyInNodeIsMixed(N)) then

14 addBinaryConstraint(N , LP )

15 done = False

16 end

17 Q.push(N.succesors)

18 end

19 end

3.2 Dynamic programming algorithm

The main disadvantage of the MILP (mixed-integer linear program) algorithm is that it

needs to work with the whole game tree at the same time. In this chapter, we introduce

another algorithm based on dynamic programming (DP). This algorithm can traverse the

game tree with a depth-first-search (DFS). It starts with the leaves of the game tree and

propagates all the necessary information to the predecessor nodes.
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3.2.1 Best response facets

As we mentioned before, in a Stackelberg equilibrium, the follower always plays the best

response to the leader’s (generally mixed) strategy. We will use the game from 2.2 as an

example. In figure 3.1, the horizontal axis represents the probability of a leader’s actions

in his mixed strategy sl (0 stands for pure strategy A; 1 means pure B). The vertical axis

represents the follower’s payoff. The red and blue lines stand for follower’s actions. The

best response is such an action that brings the follower maximum payoff. Informally, one

follower’s action is the best response in case that it is plotted above the other action,

which means that it brings the follower a better payoff for a given leader’s strategy. The

leader’s expected utility after the follower’s best response is plotted with the green lines.

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

Probability of B

F
ol

lo
w

er
’s
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ay

off

Extreme point
C
D

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

Probability of B

L
ea

d
er

’s
p
ay

off
Leader’s utility

Figure 3.1: Example of creating facets

In the graph, we can see that the segments of the leader’s utility function corresponding

to the same best response are linear. We will call the points where the best response

changes, together with points corresponding to the leader’s pure strategy, extreme points.

The extreme points are marked with black points. Those parts of the follower’s utility

function corresponding to his best response will be called facets. The extreme points

mark borders of the facets. In this case, since we are searching for a strong Stackelberg

equilibrium, the leader can maximize his expected utility by committing himself to such a

strategy that assigns probability 1
3

to action A and 2
3

to B, i.e., the strategy corresponding

to the middle extreme point. For each facet, we have to maintain the information about

both leader’s and follower’s expected utility in its extreme points, together with the

strategies corresponding to those points, in order to be able to reconstruct the strategy

throughout the game tree.

This idea can be extended to games with more than two leader’s actions by adding more



dimensions. Instead of one single axis, the leader’s actions will form a leader’s simplex.

In the sequence-form games, the leaves will be represented with one single extreme point.

However, in the dynamic approach, we can’t work directly with the expected utility

values in the non-terminal nodes. Instead, we have to consider all the facets from the

child nodes (except of those removed by the pruning algorithm, introduced in the following

section). For a node n ∈ H, we denote the set of leader’s actions Al(n), and the set of

follower’s action Af (n). The set of all facets from child node q(n, al, af ) will be denoted

F (al, af ) for al ∈ Al(n) and af ∈ Af (n). For a fixed follower’s action af1 ∈ Af and

all leader’s actions al ∈ Al, we introduce a set denoted with s(af1), containing exactly

one facet from each set F (al, af1). One facet from F (al, af1) is denoted with f(al, af1),

and E(f(al, af1)) is a set of all extreme points from that facet. A set of all possible

combinations of facets will be denoted S(af1). From each set s(af1) ∈ S(af1), a new

facet will be constructed. We will introduce a linear program to form these new facets.

Variables M(n) denotes follower’s utility after leader plays a minmax strategy, and Uf (e)

denotes follower’s utility in the extreme point e. The probability of leader’s action al

being played is denoted with p(al). We will also introduce new variables c(e), defined for

each extreme point e from each facet f ∈ s(af ). They form a probability distribution over

all extreme points of a facet, multiplied by the probability that the game node containing

that facet will be reached, i.e. they form a probability distribution over all extreme points

from each facet f ∈ s(af ). The LP for a fixed follower’s action af1 has the following form

[10]:

0 ≤ p(al) ≤ 1 ∀al ∈ Al(n) (3.11)∑
al∈Al(n)

p(al) = 1 (3.12)

0 ≤ c(e) ≤ 1 ∀al ∈ Al(n); e ∈ E(f(al, af1))

(3.13)

p(al) =
∑

e∈E(f(al,af1 ))

c(e) ∀al ∈ Al (3.14)

∑
al∈Al(n)

∑
e∈E(f(al,af1 ))

c(e)Uf (e) ≥
∑

al∈Al(n)

p(al)M(q(n, al, af )) ∀af ∈ Af (n) (3.15)

Note that this LP has no objective function because our aim is to find a polytope

defined by the constraints. Constraints (3.11) and (3.12) says that p is a probability
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distribution. Constraints (3.13) and (3.14) says that c is a probability distribution over

extreme points of a given facet. The meaning of the last constraint (3.15) is similar to the

constraint (3.7) from the previous MILP. It ensures that the fixed follower’s action af1 is

the best response - follower’s utility if the extreme points e ∈ E(al, af1) must be greater

or equal to his minmax utility in the rest of the nodes. This constraint can make the

whole LP infeasible. In that case, no new extreme points are generated because af1 can’t

be the best response to any leader’s mixed strategy profile. In case that it is feasible, it

forms a polytope, which we will use as the new facet.

3.2.2 Extreme point pruning

As we mentioned before, we will not need to hold all of the facets. The facets are

being used to hold information about leader’s and follower’s expected utilities. For a

node n and a fixed follower’s action af1 ∈ Af (n), we denote a set of all extreme points

E(f(al, af1)),∀al ∈ Al(n) as D.

For this section, we will introduce a new kind of two-dimensional facets f ′ [10]. For

each extreme point e ∈ D, we will only be interested in the leader’s and follower’s utility

in this point, Ul and Uf (we are not interested in leader’s strategy). The facet f ′ is a

convex hull of all points (Ul(e), Uf (e)), ∀e ∈ D.

We can prune all the points (Ul(e), Uf (e)) from facet f ′ that can be expressed as a

convex combination of some other points from that facet. It means that only the set of

generators of the convex hull will remain.

Although we need to keep the information about the whole range of follower’s possible

outcome, in case of the leader, we only need to keep those points which brings him the best

outcome. Let us consider two points p1 = (Ul1 , Uf ), p2 = (Ul2 , Uf ), where p1 corresponds

to an extreme point, while p2 may correspond to a convex combination of some extreme

points, Ul2 ≥ Ul1 and Uf is fixed. We can prune the extreme point corresponding to p1

because it wouldn’t bring the leader any advantage - he would always prefer p2.

After this pruning, we will be left with the upper envelope of the initial facet. The

pruning is visualized in 3.2.2.
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Figure 3.2: Example of pruning
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Algorithm 2: Algorithm using dynamic programming
Input: RootOfGameTree

Result: LeadersUtility

1 processedRoot = DFS(RootOfGameTree)

2 utility = getLeaderUtility(getBestExtremePoint(processedRoot))

3 return utility

4

5 Function DFS (Node N):

6 foreach successor ∈ N.succesors do

7 DFS(successor)

8 end

9 ProcessNode(N)

10 return N .facets

11 Function ProcessNode (Node N):

12 if N .isTerminal then

13 E = createExtremePoint(leaderUtility, followerUtility)

14 N .createFacet(E)

15 else

16 A = N .followerActions

17 foreach current follower action ∈ A do

18 F = []

19 S = N .successorsOfAction(current follower action)

20 foreach successor ∈ S do

21 F .addFacetSet(successor.facets)

22 end

23 C = getCombinationsFromEachSet(F )

24 foreach combination ∈ C do

25 LP = createLPfromFacets(combination)

26 polytope = transformToPolytope(LP )

27 vertices = getVertices(polytope)

28 E = []

29 foreach vertex ∈ vertices do

30 NewExtremePoint = convertVertexToExtremePoint(vertex)

31 E.add(NewExtremePoint)

32 end

33 points.fillUtilityValues()

34 N .createFacet(E)

35 end

36 prunePoints(N)

37 removeEmptyFacets(N)

38 end

39 end

40 end



The algorithm gets the root of the game as an argument in line 1. It traverses the

tree with DFS (line 5), which means that each node is processed (line 9) after all of it’s

successors are processed (line 6).

If the current node N is terminal (line 12), it will be represented with a single facet

(line 14) with one extreme point (line 13). If the node N is not terminal, we will

collect all follower’s actions in that node into set A (line 16). We will then iterate

over all of these actions (line 17). We will introduce a set S (line 19), containing all

nodes which can be reached with the current follower’s action and some leader’s action

(q(N, al, current follower action) ∀al ∈ Al(N)). We will also introduce an empty set

F (line 19). For each node in S, we will collect all facets from that node into an set,

and add that set into F (line 21). Now, the set F contains multiple sets of facets from

succeeding nodes.

We have to consider each possible combination of facets from these sets. For example, if

the set F contained three sets of facets, (f1, f2), (f3, f4), (f5, f6), the possible combinations

would be [f1, f3, f5], [f1, f3, f6], [f1, f4, f5], etc. We will collect all these combinations into

set C (line 23).

We will now iterate over these combinations from C. A new facet will be formed for

each of these combinations. For each of these combinations, we will construct an LP from

3.2.1 (line 25). The LP can be then transformed into a polytope (line 26). The vertices

of the polytope correspond to the extreme points of the new facet - we can convert each

vertex to a new extreme point (line 30) because the coordinates of the vertices correspond

to the utility values of the extreme points. The facet is then formed from these points

(line 34).

After all facets corresponding to some follower’s action are formed, the pruning is

applied (line 36) and empty facets are removed (37).

3.2.3 Heuristic pruning

The aforementioned pruning technique keeps all the information necessary to determine

exactly the leader’s best strategy. However, most of the information will most likely be

still unused. We can go further with the pruning and keep only a certain number of

extreme points with the highest leader’s expected utility. Let us consider the example

from 3.2.2. If we used the heuristic pruning technique and decided to keep a single point,

we would be left with the point with coordinates (2, 3). If we decided to keep two of them,
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we would be left with (2, 3) and (5, 2.5).

This approach gives us the lower bound on the leader’s expected utility in the whole

game [10].





Chapter 4

Computing SE in

imperfect-information games

In the Stackelberg games, the leader has to commit to some strategy before the start of

the game. The follower observes that commitment and plays his best response.

In perfect-information games, the leader was able to commit to a different strategy

in each game node. That allowed him to discourage the follower from going into nodes

which did not benefit him - he simply committed to the minmax strategy in those nodes.

In games with imperfect information, the leader’s strategy has to be the same for all

nodes from a given information set. For that reason, the same strategy, which is supposed

to bring him the best possible utility in one node, must also work as the punishment

strategy in the other nodes in order to prevent the follower from going into that nodes.

We will demonstrate this on an example in section 4.2.1.

In this chapter, we will introduce two algorithms for computing Stackelberg equilibria

in games with imperfect information. The first is an existing algorithm, which computes

one mixed-integer linear program (MILP) to solve the Stackelberg game. The second one

uses dynamic programming. It is based on the same idea as the DP algorithm from the

previous chapter. The second algorithm is the main aim of this work.

23



4.1 MILP algorithm for imperfect-information games

This section will introduce an existing algorithm for finding Stackelberg equilibria in

games with imperfect information. We will use it as a baseline algorithm. Unlike the

MILP algorithm from the previous section, this one is solved only once.

Sets
N set of players

Z set of terminal game nodes

Ai(Ii) set of actions of player i in information set Ii

Ii set of player’s i information sets

Variables
p(n) n ∈ H ∪ Z probability of node n being reached during the game

ui(n) i ∈ N ;n ∈ H ∪ Z player’s i expected utility in node n

ui(σl, σf ) i ∈ N ;σi ∈ Σi player’s i expected utility in a node reached by given

sequences, defined to 0 if the node is not terminal

ri(σi) i ∈ N ;σi ∈ Σi probability of player’s i sequence

sσi i ∈ N ;σi ∈ Σi slack variable associated with sequence sigmai

seqi(Ii) i ∈ N ; Ii ∈ Ii sequence needed to reach info. set Ii

infi(σi) i ∈ N ;σi ∈ Σi information set in which last action of σi was played

vIi i ∈ N ; Ii ∈ Ii player’s i expected utility in info. set Ii

max
p,r,v,s

∑
z∈Z

p(z)u1(z) (4.1)
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Subject to:

ri(∅) = 1 ∀i ∈ N (4.2)

ri(σi) =
∑

a∈Ai(Ii)

ri(σia) ∀i ∈ N ;∀Ii ∈ Ii;σi = seqi(Ii)

(4.3)

0 ≤ sσ2 ≤ (1− r2(σ2)) ·M ∀σ2 ∈ Σ2 (4.4)

0 ≤ p(z) ≤ r1(seq1(z)) ∀z ∈ Z (4.5)

0 ≤ p(z) ≤ r2(seq2(z)) ∀z ∈ Z (4.6)∑
z∈Z

p(z) = 1 (4.7)

r2(σ2) ∈ 0, 1 ∀σ2 ∈ Σ2 (4.8)

0 ≤ r1(σ1) ≤ 1 ∀σ1 ∈ Σ1 (4.9)

vinf2(σ2) = sσ2 +
∑

I′∈I2:seq2(I′)=σ2

VI′ +
∑
σ1∈Σ1

r1(σ1)u2(σ1, σ2) ∀σ2 ∈ Σ2 (4.10)

The objective function, which we intend to maximize, is the sum of the leader’s utility

values in leaf nodes, multiplied by the probability of reaching them. The constraint (4.2)

states that the empty sequence will be played with probability 1 for each player, and the

following constraint (4.3) ensures that the probability of any sequence is equal to the sum

of probabilities of all sequences, which extend the original one with one additional action.

The constraint (4.4) introduces the slack variables. One slack variable is defined for each

follower’s possible sequence, and the intuition behind them is that they are equal to 0

in the case that the corresponding sequence is really played in the game. The M in the

equation stands for an arbitrary great number. The constraints (4.5) and (4.6) ensures

that the probability of reaching some terminal node is not higher than the probability of

the sequence leading to that node, both for the leader and the follower, and the following

constraint (4.7) ensures that the sum of probabilities of terminal nodes is equal to one,

i.e., one of them will be certainly reached. Constraint (4.8) defines the probabilities of

the follower’s sequences to be binary - the follower can not randomize. The leader is

able to randomize, and constraint (4.9) ensures that the probability of any of his possible

sequences is greater than 0 and less than 1.

The last constraint, (4.10), ensures that the follower always plays his best response.

The left-hand side of the equation is the follower’s expected utility in the information set,

in which the last action of the current sequence was played. The right-hand side of the

constraint can be divided into three parts. The first one is the slack variable, corresponding



to the current follower’s sequence. As we mentioned before, if that sequence is played,

the variable is equal to 0. The next one is the sum of expected utilities in the follower’s

information sets, which can be reached with the current sequence (those are the succeeding

information sets). The third part is the sum of utilities in all terminal nodes, which can

be reached with the current follower’s sequence and any leader’s sequence. The intuition

behind this constraint is that the follower’s expected utility of the current information

set is constant, and it is equal to the payoff accomplished by playing the best response.

For the best response, the slack variable is equal to 0. For the other possible sequences,

the slack variable is greater than 0 to fill the gap. The constraint (4.4) ensures that the

sequence with a non-zero slack variable can not be played. Thus only the best response

will be played.

4.2 Dynamic algorithm for imperfect-information games

In this section, we will introduce an algorithm for finding Stackelberg equilibria in imperfect-

information games using dynamic programming. This algorithm is the main aim of this

work. We will restrict to two-player games (one leader and one follower) with perfect

recall. Furthermore, the follower will always have the perfect information.

This algorithm is based on a similar idea as the aforementioned DP algorithm for

perfect-information games. It traverses the game tree with depth-first search, starting

with leaves and propagating the necessary information to the predecessor nodes.

4.2.1 Sub-tree representation in games with imperfect informa-

tion

In the previous part of this work, we used the leader’s simplex to represent the leader’s

possible strategies in a given sub-game. Each vertex of the leader’s simplex represented

one leader’s action. Each point from the convex hull of these vertices represented some

leader’s mixed strategy in a given game node.

We also used facets to represent follower’s actions. There is always at least one fol-

lower’s best response to each leader’s strategy. Each of the follower’s facets represented

one action in the current sub-game. In the case with perfect information, we were able to

determine whether the action is the best response to some leader’s strategy. It was also

possible to keep only those sections of facets, which represented the best response, and
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omit the rest without losing any information important for finding Stackelberg equilib-

rium.

In games with imperfect information, we can not make this assumption because the

leader has to commit to one strategy for the whole information set, not only for one node.

We will illustrate this in the following example.
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Figure 4.1: Stackelberg game

The sequence-form game from Figure 4.1 represents a simple Stackelberg game with

imperfect information. Leader’s game nodes are divided into three information sets - Il1 ,

Il2 and Il3 . Follower always has imperfect information.

First, suppose that leader commits to the action a in the root node, so we will consider

only the information set Il3 . First, we will consider the node F4 and the corresponding

sub-tree. In this sub-tree, the follower’s action s is the best response to any leader’s

strategy. For that reason, from the perspective of this sub-tree, the leader’s best option

is to commit to the pure strategy c.

However, the nodes L7 and L8 belong to the same information set as the nodes L5

and L6, so the leader has to commit to the same strategy in all of these nodes. Since the

follower is able to observe the commitment, he can decide in which sub-tree (F4 or F5)

he can obtain a better expected payoff and go to that sub-tree by playing o or p in F1.



If the leader’s strategy was pure c, the follower’s best response would be the sequence

(p, u), which would bring the leader payoff equal to 0. For that reason, the leader has to

commit to such a mixed strategy which makes the follower prefer the sub-tree F4. In this

particular case, it would be a strategy in which c is played with probability 2/3 and d with

probability 1/3 in the information set Il3 , and follower’s best response to this strategy

would be the sequence (o, q). The facets from this information set are depicted in Figure

4.2
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Figure 4.2: Facets in Il3

Now, we will consider the whole game tree. In the left sub-tree, the leader aimed to

discourage the follower from playing action p by committing to an appropriate strategy in

the information set Il3 . However, if we consider the whole tree, the leader is also able to

influence follower’s best response from predecessor nodes. If the aim is to discourage the

follower from playing the action p, the leader can assign a non-zero probability to action

b in Il1 . Because follower’s payoff reached by playing action p in the root is very small,

the leader is now able to assign a higher probability to action c in the information set

Il3 without changing follower’s best response (follower does not want to risk getting to

the right-most leaf node). For that reason, we have to keep the whole facet for action s,

not only the section which corresponds to the best response from the perspective of the

sub-tree.

We have to modify the concept of facets and leader’s simplex for the imperfect-

information games, which will now be a treeplex - a special kind of polytope [12]. In

perfect-information games, each vertex represented one leader’s action in a given node.

In games with imperfect information, each vertex will represent one leader’s possible

commitment across all his information sets in a given sub-tree. For example, in the game

from Figure 4.1, the polytope in the root node will have 8 vertices because there are three

leader’s information sets, each with two available actions. There will be one vertex for
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commitment a in Il1 , e in Il2 and c in Il3 , another vertex for a in Il1 , e in Il2 and d in Il3 ,

etc. The polytope has a form of a cube, where one axis represents the commitment in

node Il1 , the second axis represents the commitment in Il2 , and the third axis represents

the commitment in Il3 . It is depicted in Figure 4.3.

a, c, e b, c, e

b, d, ea, d, e

a, c, f b, c, f

b, d, fa, d, f

Il1

Il2

Il3

Figure 4.3: Leader’s polytope in the root

Facets will now represent possible follower’s sequences in a given sub-tree (in perfect-

information games, each facet represented only one follower’s action from a given node).

In the root node, there will be facets for sequences (o, q, u), (p, s), etc. Note that we have

to include both q and u into one facet, even though they will never occur at the same

time because the leader can commit to such a mixed strategy, which makes both of these

actions reachable. On the other hand, we do not have to include, for example, o and u

into one facet because once o is played, u is not reachable in the game.

Utility values for these facets are defined on the whole leader’s polytope. The whole

game can now be represented with a single leader’s polytope, containing all leader’s pos-

sibilities and a facet for each follower’s possible response. That is all we need to find

the equilibrium in the game. However, the number of facets and extreme points grows

exponentially with the number of game nodes. For that reason, we will also introduce a

pruning technique, which will enable us to omit some facets.

4.2.2 Finding Stackelberg equilibria using the DP algorithm

The algorithm traverses the game tree with a depth-first search (DFS). The DFS will

enable us to construct the final leader’s polytope from the bottom of the tree up to the



root. It will also enable us to apply the pruning technique in each sub-tree.

We will construct the polytope in each node we come across and then merge them

in the predecessor nodes. Let us consider two sub-trees, each containing one leader’s

information set, I1 and I2. There are two possible leader’s action in each of these sets, a

and b in I1, and c and d in I2. The leader’s polytopes in these sub-trees will have a form

of a line segment, where each vertex represents one leader’s action. By merging these

polytopes, we form a new square-shaped polytope. One vertex represnts the commitment

to action a in I1 and b in I2, another represents a in I1 and c in I2, etc.

a b
I1 c

d
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a, c b, c

b, da, d

I1

I2

Figure 4.4: Example of merging leader’s polytopes

Once we have constructed the polytope for the root, we use an LP to find the Stack-

elberg equilibrium. The LP is computed for each follower’s possible sequence (facet) in

the node, and the main idea is that it decides whether the current sequence is the best

response to some leader’s strategy (some segment of leader’s polytope). If so, we can then

find a point on the facet, which provides the best payoff to the leader, and save the result

as a potential leader’s best utility. After computing the LP for each facet, we can choose

the highest value from the stored results.

Unlike the perfect-information case, all facets from one node contain the same extreme

points. For that reason, we can denote the set of extreme points in node n as E(n), and

player’s i utility on facet f in extreme point e as Ui(e, f). The LP, computed for facet f1

from node n, has the following form:

Variables
c(e) probability of the extreme point e from leader’s polytope

Ui(e, f) player’s i payoff in extreme point e and facet f

E(n) set of extreme points in leader’s polytope from node n

max
∑
e∈E(n)

c(e)Ul(e, f1) (4.11)
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0 ≤ c(e) ≤ 1 ∀e ∈ E(n) (4.12)∑
e∈E(n)

c(e) = 1 (4.13)

∑
e∈E(n)

Uf (f1, e)c(e) ≥
∑
e∈E(n)

Uf (f, e)c(e) ∀f ∈ F (n) (4.14)

This algorithm basically transforms the extensive-form game into a normal form. How-

ever, the pruning significantly decreases the size of the resulting game.

4.2.3 Facet pruning technique

As we mentioned before, it is possible to omit some facets, which will certainly not be

played, because follower always has a better option. For example, let us consider the game

from Figure 4.1. In the sub-tree corresponding to the node F4, follower has two actions

available - s and t. However, the action t never provides him better payoff then action s

(t never is the best response). Since follower has the perfect information, once he enters

this sub-tree, he has no reason to play t. Because of that, we can omit the corresponding

facet.

Generally, the facets in imperfect-information games do not represent single actions

but rather the whole sequences. Once we omit the facet corresponding to t, we do not

have to consider any sequence which contains that action. This significantly reduces the

number of facets in the whole game.

As we mentioned before, with the DP algorithm, we traverse the game tree with DFS.

In each node, we merge the leader’s polytopes and create the new facets. After that, we

can run the LP from the previous chapter in that node (once for every facet). For now,

we are not interested in the objective value. Our aim is to find out whether the given

facet is the best response to some leader’s strategy. If so, the LP is feasible, and we have

to keep the whole facet. Otherwise, we can omit the whole facet because the follower has

no reason to play the corresponding sequence.

Heuristic pruning

If we are interested in the exact result, we have to keep all facets that can be the best

response to some segment of the leader’s polytope. However, we can also compute the



lower estimation on the leader’s expected utility by applying a heuristic pruning.

The heuristic pruning only keeps h facets with the highest leader’s expected utility

value, and the rest is discarded. Leader’s utility is computed with the LP from 4.2.2 for

each sub-tree we come across with the depth-first search. This significantly reduces the
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number of facets in the game, which decreases the duration of the algorithm.

Algorithm 3: DP algorithm for imperfect-information games
Input: Root

1 utility = DFS(Root)

2 return utility

3 Function DFS (Node N):

4 foreach successor ∈ N.successors do

5 DFS(successor)

6 end

7 ProcessNode(N)

8 retval = Pruning(N)

9 return retval

10 Function ProcessNode (Node N):

11 if N .isTerminal then

12 E = createExtremePoint(N.leaderUtility, N.followerUtility)

13 N .addFacet(generateFacet(E))

14 else

15 polytope = mergePolytopes(N.successors)

16 foreach current follower action ∈ N .followerActions do

17 F = []

18 foreach successor ∈ N .successorsOfAction(current follower action) do

19 F .addFacetSet(successor.facets)

20 end

21 foreach combination ∈ getCombinationsFromEachSet(F ) do

22 new facet = generateFacet()

23 follower sequence = []

24 follower sequence.add(current follower action)

25 foreach old facet ∈ combination do

26 follower sequence.add(old facet.followerActions)

27 foreach old point ∈ old facet.extremePoints do

28 foreach v ∈ polytope.vertices do

29 if old point.leaderCommitment ⊂ v.leaderCommitment then

30 new point = createExtremePoint()

31 new point.utilityValues = old point.utilityValues

32 new point.leaderCommitment = v.leaderCommitment

33 new facet.addPoint(new point)

34 end

35 end

36 end

37 end

38 new facet.followerSequence = follower sequence

39 N .addFacet(new facet)

40 end

41 end

42 end

43 end



Algorithm 4: Pruning

1 Function Pruning (Node N):

2 best utility = − inf

3 foreach facet ∈ N .facets do

4 LP = CreateLPforFacet(facet, N .facets)

5 if LP .infeasible then

6 N .facets.remove(facet)

7 else

8 if LP .objectiveValue ≥ best utility then

9 best utility = LP .objectiveValue

10 end

11 end

12 end

13 return best utility

4.2.4 Example of the DP algorithm

In this section, we will demonstrate the DP algorithm on the game from Figure 4.1.

As we mentioned before, the algorithm traverses the game tree with DFS (line 3).

Processing the leaf nodes is trivial (lines 11), so we start with the node F4. There is only

one leader’s information set with actions c and d in this sub-tree, which means that the

leader’s polytope has a form of a line segment because it is formed by merging two points

(line 15). One vertex represents action c, and the other represents d. We will denote

these extreme points ec and ed. Follower also has two possible sequences (in this case only

single actions), s and t, so there will be two facets, each containing both ec and ed (line

21). We will denote these facets with fs and ft. The utilities of these points are captured

in table 4.1.

E. points
Facets

fs ft

ec (4, 2) (5, 1)

ed (2, 2) (5, 0)

Table 4.1: Sub-tree in F4

After applying the pruning technique (line 8), which utilizes the LP 4.2.2, we can omit

the facet ft, because it never is the best response (line 5).

The LP for facet ft follows:
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max c(ec) · 5 + c(ed) · 5 (4.15)

0 ≤ c(ec) ≤ 1 (4.16)

0 ≤ c(ed) ≤ 1 (4.17)

c(ec) + c(ed) = 1 (4.18)

c(ec) · 1 + c(ed) · 0 ≥ c(ec) · 2 + c(ed) · 2 (4.19)

The last constraint is apparently infeasible for non-negative probabilities c.

We will apply the same approach in the nodes F5 (table 4.2) and F3 (table 4.3). No

facet in these nodes can be pruned, all of them could be a best response (line 7).

E. points
Facets

fu fv

ec (0, 3) (2, 1)

ed (3, 0) (1, 2)

Table 4.2: Sub-tree in F5

E. points
Facets

fq fr

ee (2, 4) (5, 2)

ef (3, 1) (0, 3)

Table 4.3: Sub-tree in F3

Now, we can move to the root node. From the perspective of the root, there are three

different information sets, each with two actions - one corresponding to the information

set Il1 , second one corresponds to Il2 , and the third one to Il3 . Note that leader’s polytopes

from nodes F4 and F5 are the same, so merging them does not increase the dimension of

the resulting polytope. The final leader’s polytope is depicted in Figure 4.3.

We also have to find all possible follower’s sequences (line 23). The two follower’s

actions in the root are o and p. We will start (line 16) with o: by playing o in the root,

follower can get into sub-trees in F3 (with facets fq and fr) and F4 (with facet fs, we



have pruned ft). The follower does not know which of these nodes he will get into, so he

has to consider all the possible combinations and form a facet for each of them (line 23).

There will be facet for combinations (o, q, s), (o, q, t) (line 25). Now, we will use the same

approach to find the facets for those combinations, which contain action p. We will get

combinations (p, u) and (p, v).

A new facet will be created for each of these combinations (line 22), and each of these

facets will contain all the extreme points from the leader’s polytope. The values of the

extreme points in different facets are captured in table 4.4.

E. points
Facets

f(o,q,s) f(o,q,t) f(p,u) f(p,v)

ea,c,e (4, 2) (5, 1) (0, 3) (2, 1)

ea,c,f (4, 2) (4, 2) (0, 3) (2, 1)

ea,d,e (2, 2) (5, 0) (3, 0) (1, 2)

ea,d,f (2, 2) (5, 0) (3, 0) (1, 2)

eb,c,e (2, 4) (5, 2) (0, -5) (0, -5)

eb,c,f (3, 1) (0, 3) (0, -5) (0, -5)

eb,d,e (2, 4) (5, 2) (0, -5) (0, -5)

eb,d,f (3, 1) (0, 3) (0, -5) (0, -5)

Table 4.4: Facets in the root

Now, we have to apply the LP to each facet (line 3). The LP (line 4) compares the

given facet with each other facet to find out whether the given facet is the best response

to at least some segment of the leader’s polytope.

In this game, leader can obtain the maximum payoff by committing to a mixed strat-

egy, which assigns probability 0.88 to the extreme point ea,c,f , and 0.06 to both eb,d,e and

eb,d,f . Follower’s best response to this strategy is to play o in the root, r in F3 and s in

F4. This provides a payoff of 3.82 to the leader and 2.06 to the follower.



Chapter 5

Experiments

This chapter will benchmark the two algorithms for finding Stackelberg equilibria in games

with imperfect information.

5.1 Experiment settings

We will be using randomly generated trees. Follower’s utility Uf in each leaf is randomly

generated integer in a range from -50 to 50. Leader’s utility Ul is then computed as

Ul = (−2 · Uf ) + r where r is a random number in range from -10 to 10. We are using

this method to avoid leaf nodes, which would benefit both the leader and the follower.

The tree will be generated regarding several parameters - depth, number of each

player’s actions in each node, and the rate of uncertainty. The rate of uncertainty refers

to the probability that two nodes with the same leader’s sequence belong to the same

information set. If it is equal to 0, the leader has perfect information. The game tree

parameters will be specified with a triplet x, y, z, where x is the depth, y is the number

of actions, and z is the uncertainty.

5.2 Results

Table 5.1 captures the average duration of the algorithms on ten runs for each class of the

game tree. The results are presented in a format X, Y , where X stands for the average

duration in seconds, and Y stands for the standard deviation. The third, fourth and
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fifth column captures the duration of the DP algorithm with heuristic pruning, where

h facets are kept in each node. The duration of the DP algorithm grows significantly

faster with the size of the game, and the DP algorithm is outperformed by the MILP.

However, because the MILP algorithm works with the whole game tree at the same time,

it would not cope with large game trees - in this sense, the DP algorithm is more scalable

than the MILP algorithm. The heuristic pruning significantly decreases the duration for

larger games, but it does not influence the duration for smaller games. For example, the

duration of games with depth three is not influenced by the heuristic pruning with h = 3

and h = 5. The reason is that the number of facets in non-root nodes is never higher

than 3.

Param.
Algo.

MILP DP DP, h = 1 DP, h = 3 DP, h = 5

3, 2, 1 0.008, 0.001 0.054, 0.085 0.032, 0.022 0.040, 0.044 0.03, 0.007

3, 2, 0.5 0.008, 0.001 0.047, 0.045 0.027, 0.009 0.042, 0.046 0.033, 0.007

3, 3, 1 0.075, 0.009 1.41, 0.873 0.521, 0.284 1.89, 0.913 1.51, 0.361

3, 3, 0.5 0.071, 0.009 52.2, 122 4.55, 4.72 66.1, 97.3 54.1, 73.8

4, 2, 1 0.073, 0.008 2.98, 2.02 0.334, 0.15 1.91, 1.60 2.34, 1.23

Table 5.1: Average duration on 10 runs in seconds and the standard deviation

However, the heuristic pruning influences the results of the algorithm. Table 5.2

captures the precision after keeping 1, 3 and 5 facets in every node on 4 classes of games

in 50 runs. The precision is presented in format X, Y . X stands for the percentage of

test cases, for which the heuristic pruning did not influence the result. Y stands for the

average difference of the leader’s expected utility computed after pruning from the correct

result (leader’s utility is in a range from -110 to 110). The number of facets we keep clearly

increases the precision in Y . For smaller games, the results do not differ much, but the

difference grows with the size of the game.

For the game with parameters 3, 3, 0.5, we will inspect what influences the duration of

the computation. Figure 5.1 depicts the dependence of the duration of the DP algorithm

on the duration of the MILP algorithm for the same game. For 40 test cases, there is no

apparent correlation.

Figure 5.2 shows the dependence on the number of extreme points in the leader’s

polytope in the root node. The dependence here is clear. The duration strongly depends
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Parameters
Algorithm

h = 1 h = 3 h = 5

3, 2, 1 0.44, 12.1 0.52, 8.8 0.44, 6.9

3, 2, 0.5 0.4, 14.2 0.3, 11.3 0.32, 9.2

3, 3, 1 0.06, 27.2 0.06, 16.5 0.06, 15.3

3, 3, 0.5 0.05, 35.9 0, 20 0.02, 15.5

Table 5.2: Accuracy of the heuristic pruning

Figure 5.1: Dependence of DP time on MILP time

on the number of extreme points. The number of extreme points grows with the number

of information sets in the game. That is why games with higher uncertainty are calculated

faster than those with lower uncertainty.

Figure 5.3 shows the dependence on the number of facets in the root node. There

is also a correlation. We can see that most of the points are located along three lines.

These lines correspond to the dimensions of the leader’s polytope. In Figure 5.2, we could

see that the most common dimensions are 6, 7, and 8. The left-most line corresponds to

dimension 6, etc.



Figure 5.2: Dependence of DP time on the dimension of leader’s polytope

Figure 5.3: Dependence of DP time on number of facets



Chapter 6

Conclusion

Stackelberg equilibria is an important solution concept in the game theory. In Stackelberg

games, there are two types of players - leader and follower. The leader’s role is to commit

to some strategy. The follower then observes the strategy. In Stackelberg equilibria,

the leader commits to such a strategy, which provides him the highest possible expected

utility, assuming that the follower will play his best response to that strategy.

The goal of this work was to devise and implement an algorithm for finding Stackelberg

equilibria in extensive-form games with partially imperfect information. This algorithm

extends an existing algorithm for finding Stackelberg equilibria in games with concurrent

moves.

The algorithm is based on the idea of dynamic programming (DP), which means that

it is not solving the whole game tree all at once. Instead, it is solving individual sub-trees

separately, keeping only the necessary information. This opens a possibility for designing

a scalable algorithm for games with a long (or even infinite) horizon.

We also have implemented an existing algorithm for finding Stackelberg equilibria,

based on solving a single mixed-integer linear program for the whole game. We were

using it as a baseline algorithm.

We benchmarked these two algorithms on randomly generated games. Both of the

algorithms provided correct results. The baseline algorithm outperformed the new DP-

based algorithm in terms of the duration of the computations. However, the advantage

of the DP algorithm is in the potential scalability - the baseline algorithm does not apply

to large games because of the necessity to work with the whole game tree at once, which

results in huge demands on memory. Since it is the first DP algorithm for finding SE
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in extensive-form games with imperfect information, the scalability is not optimal yet.

Further optimization may be a subject of future work.

We also have introduced a heuristic pruning technique for the DP algorithm. It pro-

vides a lower estimation of the leader’s expected utility and decreases the duration of the

computation.
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