
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Thesis

Single-Vehicle DARP Optimization for Ridesharing
Using Operational Research Methods

Pavel Martinec

Supervisor: Ing. David Fiedler

Study Programme: Open Informatics

Field of Study: Artificial Intelligence and Computer Science

May, 2021

ii

iii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483734Personal ID number:Martinec PavelStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Single-Vehicle DARP Optimization for Ridesharing Using Operational Research Methods

Bachelor’s thesis title in Czech:

Optimalizace single-vehicle DARP pro sdílení jízd pomocí technik operační analýzy

Guidelines:
1. Analyze the operational research technics for dial-a-ride problem (DARP) and vehicle routing problem with time windows.
2. Based on your analysis, choose an exact method or technique that promises to solve the single-vehicle DARP (SVDARP)
efficiently.
3. Implement the proposed method in the DARP benchmark framework.
4. Compare your solution to a baseline backtracking solution.
5. Measure the efficiency for a ridesharing algorithm that uses SVDARP as a subproblem: the vehicle-group assignment
method.

Bibliography / sources:
[1] S. C. Ho, W. Y. Szeto, Y.-H. Kuo, J. M. Y. Leung, M. Petering, and T. W. H. Tou, ‘A survey of dial-a-ride problems:
Literature review and recent developments’, Transportation Research Part B: Methodological, vol. 111, pp. 395–421, May
2018, doi: 10.1016/j.trb.2018.02.001.
[2] J.-F. Cordeau and G. Laporte, ‘The dial-a-ride problem: models and algorithms’, Ann Oper Res, vol. 153, no. 1, pp.
29–46, Sep. 2007, doi: 10.1007/s10479-007-0170-8.
[3] J.-F. Cordeau, ‘A Branch-and-Cut Algorithm for the Dial-a-Ride Problem’, Operations Research, vol. 54, no. 3, pp.
573–586, Jun. 2006, doi: 10.1287/opre.1060.0283.
[4] S. Ropke, J.-F. Cordeau, and G. Laporte, ‘Models and branch-and-cut algorithms for pickup and delivery problems with
time windows’, Networks, vol. 49, no. 4, pp. 258–272, 2007, doi: 10.1002/net.20177.

Name and workplace of bachelor’s thesis supervisor:

Ing. David Fiedler, Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 06.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. David Fiedler
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

v

Aknowledgements

I would like to thank my supervisor Ing. David Fiedler, for his help, valuable
advice, and comments throughout my bachelor’s thesis. I would also like to thank
my family for their support, especially my girlfriend, who has always been my
support during writing.

vi

vii

Declaration

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university
theses.

In Prague, May 2021 .

viii

Abstract

This bachelor thesis deals with the acceleration of single-vehicle dial-a-ride problem
(SVDARP) method using operational research techniques. Our motivation was to
speed up SVDARP algorithm in cases, where SVDARP occurs as a subproblem
of more complex algorithms, in order to speed up these algorithms. A key aspect
also was to focus on instances with large number of requests, where the SVDARP
algorithm using backtracking runs slow. The aim was to analyze current research
in the area of the dial-a-ride problem (DARP), and based on this analysis propose
an exact method adapted to solve SVDARP. We selected a three-index formulation
of the DARP, which we modified for the SVDARP problem and then solved using
branch-and-cut method. Subsequently, we implemented the formulation with all
the improvements (arc elimination, time-window tightening, own cutting planes in
branch-and-cut algorithm). The result of our work is the implemented SVDARP
algorithm and its comparison with the original method using backtracking. Our
approach speeds up the SVDARP calculation for instances with more than 12 re-
quests. We found out that a greater improvement comes with larger instances
compared to the original algorithm using backtracking.

Keywords: SVDARP, ridesharing, three-index formulation

ix

x

xi

Abstrakt

Tato bakalářská práce se zabývá zrychleńım metody SVDARP za pomoćı technik
operačńı analýzy. Motivaćı práce bylo zrychleńı SVDARP algoritmu v př́ıpadech,
kde se vyskytuje jako subproblém komplexněǰśıch algoritmů, abychom tyto al-
goritmy zrychlili. Kĺıčovým aspektem bylo též zaměřeńı na instance s větš́ım
počtem žádost́ı o přepravu, kde SVDARP algoritmus použ́ıvaj́ıćı backtracking
pracuje pomalu. Ćılem bylo zanalyzovat aktuálńı výzkum v problematice řešeńı
problému DARP a na základě této analýzy navrhnout exaktńı metodu, kterou lze
upravit pro řešeńı SVDARP. Na základě analýzy jsme vybrali tř́ıindexovou formu-
laci problému DARP, kterou jsme upravili pro řešeńı SVDARP a následně řešili
pomoćı branch-and-cut metody. Formulaci jsme poté implementovali se všemi
vylepšeńımi (eliminace hran, zúžeńı časových oken, vlastńı řezné roviny v branch-
and-cut algoritmu). Výsledkem práce je tak implementovaný SVDARP algoritmus
a jeho následné porovnáńı s p̊uvodńı metodou využ́ıvaj́ıćı backtracking. Naš́ım
př́ıstupem se podařilo zrychlit výpočet SVDARP u instanćı s v́ıce jak 12 žádostmi
o přepravu. Zjistili jsme, že s větš́ımi instancemi přicháźı i větš́ı zrychleńı oproti
p̊uvodńımu algoritmu využ́ıvaj́ıćı backtracking.

Kĺıčová slova: SVDARP, ridesharing, tř́ıindexová formulace

xii

Contents

1 Introduction 1

2 DARP Solution Methods 3

2.1 DARP . 3

2.1.1 SVDARP . 4

2.2 Exact Algorithms . 4

2.2.1 Branch-and-bound . 4

2.2.2 Branch-and-cut . 5

2.2.3 Branch-and-price . 5

2.2.4 Branch-and-price-and-cut 5

2.3 Heuristics and Metaheuristics Algorithms 6

2.3.1 Insertion Heuristics . 6

2.3.2 Tabu Search . 6

2.3.3 Variable Neighborhood Search 7

2.3.4 (Adaptive) Large Neighborhood Search 7

2.3.5 Genetic Algorithms . 7

2.3.6 Hybrid Algorithms . 8

3 Methodology 9

3.1 Backtracking Algorithm . 9

3.2 Three-index Formulation . 9

3.2.1 Single-vehicle Three-index Formulation 11

3.3 Valid Inequalities . 12

3.3.1 Bounds on Time and Load Variables 12

3.3.2 Subtour Elimination Constraints 13

3.3.3 Capacity Constraints . 13

3.3.4 Precedence Constraints . 13

3.3.5 Generalized Order Constraints 14

3.3.6 Infeasible Path Constraints 14

3.4 Preprocessing Steps . 14

3.4.1 Time Window Tightening 14

3.4.2 Arc Elimination . 15

3.5 Initial Pool of Inequalities . 15

xiii

xiv CONTENTS

3.6 Separation Heuristics . 17
3.6.1 Subtour Elimination Constraints 17
3.6.2 Capacity Constraints . 17
3.6.3 Generalized Order Constraints 18
3.6.4 Infeasible Path Inequalities 18

4 Implementation 19
4.1 Auxiliary Programs . 20

5 Results 23
5.1 Stand Alone SVDARP . 23

5.1.1 Instances . 23
5.1.2 Comparison . 24
5.1.3 Discussion . 27

5.2 SVDARP in VGA . 28
5.2.1 Instances . 28
5.2.2 Comparison . 28
5.2.3 Discussion . 29

6 Conclusion 31

List of Figures

4.1 DARP benchmark software diagram showing the evaluation of VGA
or SVDARP algorithm. 20

4.2 Methodology sections mapped to implemented SVDARP classes and
methods. 21

5.1 Runtime of different SVDARP implementation on the instance group
from the first dataset. 25

5.2 Effects of preprocessing steps on the feasible groups 26
5.3 Effects of preprocessing steps on the infeasible groups 26

xv

xvi LIST OF FIGURES

List of Tables

5.1 Runtime (miliseconds) and speedup of new SVDARP implementa-
tions compared to the original algorithm on the first dataset. . . . 24

5.2 Runtime (miliseconds) and speedup of SVDARP implementations
compared to the original algorithm on the second dataset. 27

5.3 Runtime (miliseconds) and speedup of new SVDARP implementa-
tions in VGA algorithm compared to the original algorithm on the
DARP instances. 29

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Transport in large cities has recently become an increasingly discussed topic. Politi-
cians and the general public are increasing the requirements on public transport,
especially regarding comfort, accessibility, and environmental issues. It is impossi-
ble not to notice the low occupancy of passenger vehicles during morning or evening
traffic jams, where there are usually only one or two people in a car. We can eas-
ily deduce that some of them have almost the same route. A possible solution
to this trend may be mobility-on-demand (MoD) transport solutions, which takes
an imaginary place between public and passenger transport. MoD is a system of
on-demand transportation services. This system involves passenger mobility and
goods delivery, in order to optimize cost, journey time and other attributes. When
we consider the passenger services, MoD includes carsharing, bikesharing, rideshar-
ing and other shared means of transport [1]. One of the benefits of MoD is greater
travel comfort, as it offers pickup and transport to a specific location outside es-
tablished routes and public transport stops. In our work we focus on ridesharing.
This way of transportation improves the efficiency and consequently, is more cost-
efficient compared to transportation by private car. However, compared to public
transport, it is less ecological and it is not so cost-efficient.

As mentioned by Ho et al. [2], the first use of DAR (dial-a-ride) service was
provided in 1970 in the USA in Mansfield. The service found application mainly
for disabled people, who could use it to transport to the hospital for a medical
examination, a store, or a nearest public transport stop. Another possibility of
using the DAR mode of transport is to replace public transport in less busy times
when it is not worthwhile for carriers to provide services, or in less populated areas,
where public transport also does not pay off [2].

SVDARP is a problem we need to solve in MoD systems without ridesharing,
but also, it appears as a subproblem of a more complex ridesharing algorithms.
The primary motivation of this work is to speed up the calculation of the SVDARP
in order to speed up those complex algorithms. We also focus on big instances,
where the SVDARP algorithm using backtracking is slow.

1

2 CHAPTER 1. INTRODUCTION

In the Chapter 2, we formulate dial-a-ride problem (DARP) and single-vehicle
DARP (SVDARP), which are problems associated with ridesharing. We also
present different techniques of solving DARP. Based on the literature research,
we selected a specific solution – three-index formulation. Chapter 3 describes the
three-index formulation and also introduces techniques to optimize it. The theo-
retical part is followed by Chapter 4 about implementation. In the Chapter 5 we
compare and evaluate our implemented SVDARP algorithms with the SVDARP
algorithm using backtracking.

Chapter 2

DARP Solution Methods

In this chapter, we introduce the problem of DARP and SVDARP. Furthermore,
we outline the methods by which we can solve these problems.

2.1 DARP

Dial-a-ride problem (DARP) is a generalization of other vehicle routing problems
like Pickup and Delivery Vehicle Routing problems (PDVRP) and the Vehicle
Routing Problem with Time Windows (VRPTW). The main difference between
DARP and other routing problems is the emphasis on passanger transportation
and their comfort [3]. It is critical to consider that we plan a customer’s route
because the time of planned journey should be appropriate, and at the same time,
we should not transport customers without any intermediate stop due to loss of
efficiency [4].

DARP is a mathematical problem that deals with providing door-to-door trans-
portation for people. This problem assumes that a set of users will create requests
specifying the location from which they want to travel and their destination. These
requests also specifies the pickup and drop-off times in time intervals called time
windows. We also specify the service time (time needed for pickup/drop-off cus-
tomer) and maximum travel time for each user. The maximum length of the entire
journey, the vehicle’s capacity, the starting and destination locations of the vehicle
are specified for each vehicle [5].

We can solve DARP in two modes, static or dynamic. In the case of static,
we know all requests before we plan the route. In the case of dynamic mode, we
obtain requests during the route, and the planning is adjusted in real-time to meet
all conditions [6].

We can also divide DARP into other categories; it can be deterministic or
stochastics. In deterministic DARP, we know information with certainty when we
make a decision. In a stochastic DARP, we assume some degree of uncertainty.

3

4 CHAPTER 2. DARP SOLUTION METHODS

Information may be uncertain or unknown, but we know the probability and dis-
tribution of possible values in decision time. This uncertainty may relate, for
example, to predict future requests or to possible delays due to congestion [2].

2.1.1 SVDARP

Single-vehicle DARP is one of the simplified versions of DARP. As the name sug-
gests, this version only deals with the DARP solution for one vehicle. All other
DARP conditions remain the same. We still try to plan the optimal route based on
previously known data from users, i.e., their location, pickup and drop-off times
specified by time windows, service duration. We also get data specified for the
whole SVDARP problem: maximum ride time, maximum capacity of the vehicle,
the maximum length of the entire journey, start and final location of the vehicle.

SVDARP is a problem we need to solve in MoD systems without ridesharing,
but also, it appears as a subproblem of a more complex ridesharing algorithms.
The primary motivation of this work is to speed up the calculation of the SVDARP
solution so that the whole algorithm for solving DARP runs faster.

In some algorithms for solving DARP, SVDARP occurs as a subproblem. Our
goal is to speed up the SVDARP algorithm so that the whole algorithm for solving
DARP runs faster.

2.2 Exact Algorithms

Exact methods are mainly based on branch-and-bound algorithms, and they try
to solve primarily deterministic and static problems. A disadvantage of exact
algorithms is that they can solve only a limited instance size in a reasonable amount
of computional time [2].

2.2.1 Branch-and-bound

The branch-and-bound (B&B) is a name for the algorithm that allows us to find
exact solutions for some NP-hard problems. B&B also helps us solve integer pro-
gramming problems.

Using branching, we divide a master problem into a set of subproblems which
are solved separately. The solution of each subproblem is upper bound for all
branches of this subproblem. If explored subproblem cannot produce a better
solution than the current best solution, we discard the subproblem’s whole branch.
We recursively apply branching and bounding for all subproblems. When the tree
search is complete, best solution is returned [7, 8].

When solving integer programming problems, we relax integrality constraints,
and then we solve LP relaxation of the problem. In branching, we introduce
additional constraints of subproblems to reduce the feasible area of the problem
and keep all optimal integral solutions [8].

2.2. EXACT ALGORITHMS 5

2.2.2 Branch-and-cut

Branch-and-cut (B&C) is a method that combines two algorithms, previously de-
fined B&B algorithm and cutting planes algorithm. Using the cutting planes al-
gorithm, we add cutting planes to subproblems generated by the B&B method in
order to strengthen the LP relaxation of the problem. And therefore in B&C, we
improve the LP relaxation by removing an optimal solution of LP relaxation to
better approximate the integer programming problem [9].

The first branch and cut algorithm for DARP was introduced in 2006 [6].
In this work, the authors presented the three-index formulation for DARP and
algorithms for eliminating unnecessary edges and narrowing time windows. This
work also presents new valid inequalities for DARP and valid inequalities previously
introduced for similar problems (traveling salesman, the vehicle routing, pickup,
and delivery problems). These inequalities for similar problems are still applicable
to the DARP algorithm [6].

Another article focused on the branch and cut algorithm was published a year
later, in 2007. In this article, the authors present a two-index formulation together
with its valid inequalities. This two-index formulation proved to be more efficient
than the already mentioned three-index formulation, which enabled solving bigger
instances [10].

2.2.3 Branch-and-price

Branch-and-price (B&P) algorithms are based on column generation, but also on
B&B. This technique allows us to manage larger instances of mixed-integer linear
programming (MILP) compared to B&B method. In the branch and price algo-
rithm, we divide the problem into a master problem and a pricing subproblem.
The master problem tries to reduce the complexity by excluding the columns from
the LP relaxation. Subsequently, when we solve the pricing subproblem at each
node of the B&B tree, it generates new columns, which can be added to the master
problem. With this step, we reduce the B&B tree and improve the LP relaxation
[2].

One of the works dealing with the branch and price algorithm in DARP is
work by Parragh et al. [11]. Using this algorithm, the authors managed to solve
instances with a maximum size of 40 requests [11].

2.2.4 Branch-and-price-and-cut

Branch-and-price-and-cut (B&P&C) algorithm combines the advantages of both
previous methods. When executing the procedure, this algorithm adds cutting
planes to LP relaxations. The algorithm also creates problems of significantly
smaller size through the columns generated by the subproblem solution [2].

6 CHAPTER 2. DARP SOLUTION METHODS

In 2014, the most efficient exact algorithm was introduced in [12]. It introduced
a column generation algorithm, which can handle both dynamic and ordinary time
windows. In the branch-and-cut part, the authors of this work used the presented
valid inequalities from [6] and [10]. This algorithm was able to solve all instances
from the dataset presented in [6]. This dataset contains instances for 2 to 8 vehicles,
and the largest instance has 96 requests. At the same time, this algorithm was
able to solve these instances one order of magnitude faster than previous exact
approaches based on B&C or B&P&C [12].

2.3 Heuristics and Metaheuristics Algorithms

Unlike exact methods, heuristic and metaheuristic methods can find an optimal so-
lution, but it is not guaranteed. Thanks to this relaxation, they are faster and able
to solve much bigger instances, and consequently, meet real applications’ needs.
According to [13], metaheuristics is a general algorithm that can be applied to var-
ious optimization problems, while heuristics is an algorithm for solving a specific
problem.

2.3.1 Insertion Heuristics

One of the first insertion heuristics was described by the authors of [14]. This
algorithm consists of two steps: finding a possible customer assignment to the
vehicle and subsequent optimization, which tries to minimize the cost of serving
the customer with this vehicle. It sequentially tries to assign requests among all
possible insertion among all vehicles to satisfy the requests and secure the smallest
price increase. The authors, using this method, were able to find solutions to
problems that had up to 2500 requests, which served 30 cars [14].

Nowadays, this heuristics is constantly improved and widely used. Newer and
more advanced versions of this heuristics can be found in the articles [15] and [16].
The authors of these articles were able to speed up this algorithm so that they
solved a large number of instances.

As mentioned in [2], insertion heuristics can be very useful in solving dynamic
DARP because they can quickly find a possible solution. There is also mentioned,
that insertion heuristics are often used as an algorithm for computing n initial
solutions for other heuristics methods.

2.3.2 Tabu Search

Tabu search is a metaheuristics that allows local search algorithms to leave the
local optimum during the search. The main element of this metaheuristics is the
so-called taboo list of a certain length, on which it writes the last visited positions.
As long as these positions are on the list, the algorithm excludes them from the

2.3. HEURISTICS AND METAHEURISTICS ALGORITHMS 7

search. This limitation allows us to make moves that will not improve the current
solution, but we can escape from the local optimum and find a better solution [17].

One of the first articles about tabu search for DARP solutions is [4]. The
authors were able to solve instances that have up to 395 requests using this meta-
heuristics. As the authors mention in their conclusion, this algorithm is also very
flexible, and it can be easily extended to solve a problem with many depots or with
multiple vehicle types.

2.3.3 Variable Neighborhood Search

Variable neighborhood search is another metaheuristics improving local search.
The main idea of this metaheuristics is to regularly change the neighborhood,
which ensures that we find a local minimum, but also that we can escape from this
local minimum [18].

The first variable neighborhood search algorithm for DARP was introduced in
2010. Using this approach, the authors of this work were able to find a better
solution for 16 of the 20 instances [19]. Calculations were performed on instances
from the article [4].

2.3.4 (Adaptive) Large Neighborhood Search

Another way to solve the DARP problem is a large neighborhood search. This is
a metaheuristics based on two methods: destroy and repair. Firstly we destroy
part of the solution, secondly, we use the repair method to insert the destroyed
nodes so that we get the best possible resulting solution [20].

Adaptive large neighborhood search is an extension of the large neighborhood
search heuristics, in which we can use multiple destroy and repair methods. Each
of these methods has a weight that changes dynamically during the algorithm [20].

In 2019 an adaptive large neighborhood search metaheuristics for DARP was
introduced. That is not the first usage of large neighborhood search in DARP.
However, it outperformed all previously created algorithms on the instances pre-
sented in [4]. The authors of this work followed on previously presented works,
which they managed to improve [21].

2.3.5 Genetic Algorithms

Genetic algorithms are metaheuristics that are based on evolution. At the begin-
ning of the algorithm, we generate initial population. We randomly select individ-
uals using a probability that depends on the individual member’s quality from this
population. Then we randomly apply crossover operations to get offspring. We
may also add a mutation phase during crossing. We then use the resulting solu-
tions to repeat this process of evolution until we have a good enough population
[22].

8 CHAPTER 2. DARP SOLUTION METHODS

Related work to genetic algorithms in DARP is [23], where the authors created
a model of a genetic algorithm based on a general model. Another work dealing
with this topic is [24], where authors propose another genetic algorithm model.

2.3.6 Hybrid Algorithms

The number of algorithms that use more than one method to solve DARP has
increased in recent years. We call such algorithms hybrid algorithms. We can
divide hybrid algorithms into several categories depending on the methods used in
the algorithm. We can have a hybrid algorithm consisting of multiple metaheuristic
algorithms and a combination of an exact algorithm and metaheuristics. The later
approach Parragh et al. introduce in [11], where the problem is solved using the
branch and price algorithm, but the subproblems are then solved using the variable
neighborhood search.

Chapter 3

Methodology

This work aims to find the fastest possible exact algorithm for solving SVDARP.

First, we introduce a mathematical formulation for solving DARP: its original
version and the version for SVDARP. Subsequently, we present individual valid
inequalities that apply to this formulation. In the next section 3.2, we focus on
preprocessing possibilities to simplify the created model as much as possible. The
last two sections deal with the search of violated valid inequalities and their appli-
cation, i.e., the addition of cutting planes.

3.1 Backtracking Algorithm

In this section, we introduce the backtracking algorithm for the SVDARP. This
algorithm is already implemented and our goal was to replace it with a faster
algorithm.

The backtracking is a recursive algorithm using a depth-first search. In each
node, we try to add requests to the current plan so that all constraints of the
DARP algorithm are met. If we are in a node, in which it is no longer possible
to add another request to the plan, we return to the node one level higher and
we change its value. We recursively repeat this operation until we find a solution.
Normally, the algorithm searches this tree until it finds a solution. In our case, the
algorithm is still searching to find the best solution.

3.2 Three-index Formulation

In this section, we present a mathematical three-index formulation of the DARP
as it was introduced in [3]. It is a MIP (mixed-integer program) which allow us to
solve DARP using MIP solvers.

As in the work [3] and [6], let n be the total number of requests. DARP is
formulated on a complete directed graph G = (V,A), where V = P∪D∪{0, 2n+1}.

9

10 CHAPTER 3. METHODOLOGY

P = {1, ..., n} is a set of pickup nodes, D = {n+1, ..., 2n} is a set of drop-off nodes,
0 represents a start depot and 2n+ 1 represents a destination depot. Each request
consists of the pickup node i and the drop-off node n+i, where i ∈ P and n+i ∈ D.
K denotes the set of vehicles. Each vehicle k ∈ K has a maximum route duration
Tk and a maximum capacity Qk. With each node i ∈ V is coupled a time window
[ei, li] , where ei is the earliest arrival time and li is the latest arrival time. For each
node i ∈ V is also defined a service duration di > 0, d0 = d2n+1 = 0 and a load
qi, so that q0 = qn+1 = 0 and qi = qn+i ∀i ∈ {1...n}. With each arc(i, j) ∈ V is
associated the travel time tij and a routing cost cij . L is the maximum ride time
of user.

We have a three-index binary variable xkij . If xkij = 1, arc(i, j) is passed by

a vehicle k ∈ K. Let uki be the variable representing the start of the service at
node i ∈ V for the vehicle k ∈ K, rki is a variable of the ride time of the user
i in the vehicle k ∈ K and wki is a variable defining the number of customers in
the vehicle k ∈ K after visiting the node i ∈ V . Variables rki and wki are integer
variables, uki is a continuos variable. Minimize∑

k∈K

∑
i∈V

∑
j∈V

ckijx
k
ij (3.1)

subject to: ∑
k∈K

∑
j∈V

xkij = 1 (i ∈ P), (3.2)

∑
i∈V

xk0i =
∑
i∈V

xki,2n+1 = 1 (k ∈ K), (3.3)∑
j∈V

xkij −
∑
j∈V

xkn+i,j = 0 (i ∈ P, k ∈ K), (3.4)

∑
j∈V

xkji −
∑
j∈V

xkij = 0 (i ∈ P ∪D, k ∈ K), (3.5)

ukj ≥ (uki + di + tij)x
k
ij (i, j ∈ V, k ∈ K), (3.6)

wkj ≥ (wki + qj)x
k
ij (i, j ∈ V, k ∈ K), (3.7)

rki = ukn+i − (uki + di) (i ∈ P, k ∈ K), (3.8)

uk2n+1 − uk0 ≤ Tk (k ∈ K), (3.9)

ei ≤ uki ≤ li (i ∈ V, k ∈ K), (3.10)

ti,n+i ≤ rki ≤ L (i ∈ P, k ∈ K), (3.11)

max{0, qi} ≤ wki ≤ min{Qk, Qk + qi} (i ∈ V, k ∈ K). (3.12)

Objective (3.1) is to minimize the price of serving all requests for transporta-
tion. Constraint (3.2) ensures that each request is served by exactly one vehicle,
constraint (3.3) then guarantees that each vehicle starts and ends at a given depot.
Constraint (3.4) tells us that if we start processing a request, we must complete

3.2. THREE-INDEX FORMULATION 11

it, while constraint (3.5) guarantees that if we get into a node, we also leave it.
Constraint (3.5) does not apply to the depot nodes. Constraint (3.6) ensures that
values of service start variable are correct in each node, constraint (3.7) then de-
termines the number of people in the vehicle. Constraint (3.8) ensures that the
variable ri, which is the total time that the customer i spends in the car, has the
correct value. Constraint (3.9) guarantees that the transport time does not exceed
the maximum travel time of the vehicle, while constraint (3.10) guarantees that
the customer is picked up and dropped off in the time window he has specified.
Constraint (3.11) ensures that the customer’s transport does not take longer than
the specified maximum ride time of the user. Constraint (3.12) guarantees that
the number of people does not exceed the maximum capacity of the vehicle and
does not drop below 0.

During the implementation of the three-index formulation itself, we identified
an error in the mathematical formulation. In the work [3] constraint defined as
rki ≥ ukn+i− (uki +di), where rki is the travel time of the user i in the vehicle k, uki is
the time of an arrival to the start node of the user i, ukn+i is the time of arriving in
the end node of the user i and di is the customer service duration, was incorrectly
stated. In this constraint, the operator greaterthan is incorrectly specified; in its
place should be the operator equal. This error was corrected by reading [6] where
this constraint is given correctly.

3.2.1 Single-vehicle Three-index Formulation

This work aims to speed up the calculation of the route for one vehicle. The
original formulation considers one or more vehicles, but can be simplified to work
with only one vehicle. To obtain the formulation for SVDARP, we have to omit
the set of all vehicles K from the original formulation. We can also change the
indexing of variables because our formulation considers only one vehicle. Except
for this change, all constraints remain the same and apply to the single-vehicle
formulation. Minimize∑

i∈V

∑
j∈V

cijxij (3.13)

subject to:∑
j∈V

xij = 1 (i ∈ P), (3.14)

∑
i∈V

x0i =
∑
i∈V

xi,2n+1 = 1 (3.15)∑
j∈V

xij −
∑
j∈V

xn+i,j = 0 (i ∈ P), (3.16)

∑
j∈V

xji −
∑
j∈V

xij = 0 (i ∈ P ∪D), (3.17)

12 CHAPTER 3. METHODOLOGY

uj ≥ (ui + di + tij)xij (i, j ∈ V), (3.18)

wj ≥ (wi + qj)xij (i, j ∈ V), (3.19)

ri = un+i − (ui + di) (i ∈ P), (3.20)

u2n+1 − u0 ≤ T (3.21)

ei ≤ ui ≤ li (i ∈ V), (3.22)

ti,n+i ≤ ri ≤ L (i ∈ P), (3.23)

max{0, qi} ≤ wi ≤ min{Q,Q+ qi} (i ∈ V). (3.24)

3.3 Valid Inequalities

In this section, we introduce valid inequalities. Valid inequality is a constraint
introduced for a specific problem. Its purpose is to reduce the feasible area of this
problem and at the same time, not to eliminate any integer solution. We do not
need them for the three-index formulation itself, but these inequalities can enhance
its LP-relaxation as a result of the reduced feasible area [6].

To describe these inequalities, we need to introduce additional sets and func-
tions. We define S̄ = {i ∈ V | i /∈ S}, where S ⊆ V . We also define δ(S) =
δ+(S) ∪ δ−(S), where δ+(S) = {(i, j) ∈ A | i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈
A | i /∈ S, j ∈ S}. We also introduce x(S) =

∑
i,j∈S xij [6].

3.3.1 Bounds on Time and Load Variables

We can strengthen ui variables as follows [6]:

ui ≥ ei +
∑

j∈V \{i}

max{0, ej − ei + dj + tij}xji, (3.25)

ui ≤ li −
∑

j∈V \{i}

max{0, li − lj + di + tij}xij . (3.26)

We can also strengthen the bounds to load variables wi [6]:

wi ≥ max{0, qi}+
∑

j∈V \{i}

max{0, qj}xji, (3.27)

wi ≤ min{Q,Q+ qi}−
(
Q− max

j∈V \{i}
{qj} − qi

)
x0i−

∑
j∈V \{i}

max{0, qj}xij . (3.28)

3.3. VALID INEQUALITIES 13

3.3.2 Subtour Elimination Constraints

To define subtour elimination constraints, we need to introduce additional sets.
Let π(S) = {i ∈ P | n+ i ∈ S} and σ(S) = {n+ i ∈ D | i ∈ S}, where S ⊆ P ∪D.
π can be denoted as set of ancestors, σ as a set of successors [6].

For S ⊆ P ∪D we define the so-called successor inequality (3.29) and also the
so-called predecessor inequality (3.30) [6]:

x(S) +
∑

i∈S̄∩σ(S)

∑
j∈S

xij +
∑

i∈S̄\σ(s)

∑
j∈S∩σ(S)

xij ≤ |S| − 1, (3.29)

x(S) +
∑
i∈S

∑
j∈S̄∩π(S)

xij +
∑

i∈S∩π(S)

∑
j∈S̄\π(s)

xij ≤ |S| − 1. (3.30)

For the set S ⊆ P ∪D, where S = {i1, i2, ..., ih} the following two inequalities
are valid for DARP [6]:

h−1∑
j=1

xij ,ij+1 +xih,i1 +2
h−1∑
j=2

xij ,i1 +
h−1∑
j=3

j−1∑
l=2

xij ,il +
∑

n+ip∈S̄∩σ(S)

xn+ip,i1 ≤ h−1, (3.31)

h−1∑
j=1

xij ,ij+1 + xih,i1 + 2
h∑
j=3

xi1,ij +
h∑
j=4

j−1∑
l=3

xij ,il +
∑

ip∈S̄∩π(S)

xi1,ip ≤ h− 1. (3.32)

3.3.3 Capacity Constraints

In capacity constraints, we limit the set S only to S ⊆ P or S ⊆ D. Valid
inequality is x(δ(S)) ≥ 2R(S), where R(S) is the minimum number of vehicles
needed to serve all nodes in the set S. The calculation of R(S) is demanding and
therefore we replace it by the approximation dq(S)/Qe, where q(S) =

∣∣∑
i∈S qi

∣∣
[6].

3.3.4 Precedence Constraints

If we have a set S = {0, n+ i} for at least one i ∈ P , it holds that node i must be
visited before node n+ i , then x(S) ≤ |S| − 2 and at the same time x(δ(S)) ≥ 3.
Same statement also applies to S = {i, 2n+ 1} for at least one i ∈ P [6].

14 CHAPTER 3. METHODOLOGY

3.3.5 Generalized Order Constraints

Let us have the sets U1, . . . , Um ⊂ V , which are disjunct to each other. Next,
we have i1, . . . , im ∈ P and it holds that 0, 2n + 1 /∈ Ul and il, n + il+1 ∈ U1 for
l = 1, . . . ,m where im+1 = i1. The following inequalities are valid for DARP [6]:

m∑
l=1

x(U1) ≤
m∑
l=1

|Ul| −m− 1 (3.33)

m∑
l=1

x(U1) +

m−1∑
l=2

xi1,il

m∑
l=3

xi1,n+il ≤
m∑
l=1

|Ul| −m− 1 (3.34)

m∑
l=1

x(U1) +

m−2∑
l=2

xn+i1,il

m−1∑
l=2

xn+i1,n+il ≤
m∑
l=1

|Ul| −m− 1 (3.35)

3.3.6 Infeasible Path Constraints

Triangular inequality is not guaranteed in general DARP, but in this constraint we
assume that the triangular inequality holds for travel times. This means that the
inequality cannot be always used. For any oriented path P = {i, k1, k2, ..., kp, n+i},
for which ti,k1 +dk1 + tk1,k2+dk2+···+tkp,n+i>L is an inequality (3.36) valid for DARP
[6].

xi,k1 +

p−1∑
h=1

xkh,kh+1
+ xkp,n+i ≤ p− 1 (3.36)

3.4 Preprocessing Steps

This section introduces ways how to easily reduce the time it takes to resolve
a three-index formulation using preprocessing steps. These are mainly a time
window tightening and an arc elimination.

3.4.1 Time Window Tightening

Using time window tightening, we can narrow the time windows of pickup and
drop-off nodes so they are as small as possible and thus we reduce the complexity
of the problem.

We can divide transport requests into two groups. In one group, a passenger
travels from home to his destination. The passenger, therefore, specifies the time
window in which he wants to get to the destination. In the case of a second group,
a passenger returns home from his current destination, so it is important for him
the time window in which he will be picked up from the destination [6].

3.5. INITIAL POOL OF INEQUALITIES 15

If the passenger travels from home to the specific destination, we can set ei =
max{0, en+i − L − di} and li = min{ln+i − ti,n+i − di, T} in the start node. In
the other case, when the passenger returns home, we can set the end node to
en+i = max{0, ei + di + ti,n+i} and ln+i = min{li + di + L, T} [6].

We can also narrow the time windows directly in the nodes that represent
the depot. For the start and end depot we can use the same formulation for
the minimum and maximum time, namely e0 = e2n+1 = mini∈P∪D{ei − t0i},
l0 = l2n+1 = maxi∈P∪D{li + di + ti,2n+1} [6].

3.4.2 Arc Elimination

Three-index formulation is defined on a complete graph. However, we can exclude
some edges from the graph because we know they do not belong to the feasible
solution [6].

We can remove all the edges leading to themselves (arc(i, i) i ∈ V). Fur-
thermore, we can remove all edges leading from a drop-off node to a pickup
node between nodes of the same request (arc(n + i, i) ∀ i ∈ P). Unneces-
sary edges are also those that lead from the initial depot to any drop-off node
(arc(0, n + i) for i ∈ P) as well as all edges leading from any pickup node to the
end depot (arc(i, 2n+ 1) for i ∈ P) [6].

We can also remove all edges that cannot be traversed without violating the
time window range of the start and end node (arc(i, j) with i, j ∈ V and ei +
di + tij > lj). In the same way, we can remove the edge leading from the pickup
node of the last customer to the pickup location of another customer. Also we can
remove the edge leading from this customer to the drop-off node of the currently
transported customer. In both cases, we can remove the edges under the condi-
tion of exceeding the maximum travel time of the already transported customer
(arcs(i, j) and (j, n+ i) where i ∈ P, j ∈ V if tij + dj + tj,n+j > L) [6].

There are also other elimination rules. These rules were first introduced in [25]
and they mainly use a combination of time windows and pairing constraints. If the
path P = {j, i, n + j, n + i} is infeasible, then we can exclude arc = (i, n + j). If
the path P = {i, n+ i, j, n+ j} is infeasible, then we can exclude arc = (n+ i, j).
Furthermore, we can eliminate arc = (i, j) if the paths P1 = {i, j, n+ i, n+ j} and
P2 = {i, j, n+ j, n+ i} are infeasible, as well as we can exclude arc = (n+ i, n+ j)
if the paths P1 = {i, j, n+ i, n+ j} and P2 = {j, i, n+ i, n+ j} are infeasible [6].

3.5 Initial Pool of Inequalities

The authors of the work [6] introduced the initial pool of inequalities. These
inequalities are checked for each node in the B&B tree. If an inequality is violated,
it is added as a cutting plane, so we achieve better LP-relaxation. The authors
have chosen these constraints so the time required for processing one node does

16 CHAPTER 3. METHODOLOGY

not increase significantly, and at the same time, the number of constraints in the
pool is not too large [6].

To the initial pool of inequalities, we add all bounds on time and load variables
valid inequalities that can be generated based on the current data and inequalities
presented in section 3.3.1. For all i, j ∈ P ∪D [6].

We will also add simple variants of the subtour elimination constraints pre-
sented in section 3.3.2 to the initial pool of inequalities. These inequalities prevent
the solution from being split into several independent routes. Inequality (3.29)
generates these cases for each pair of i, j ∈ P [6]:

� S = {i, j} ⇒ xij + xji + xn+i,j + xn+j,i ≤ 1,

� S = {i, n+ j} ⇒ xi,n+j + xn+j,i + xn+i,n+j ≤ 1,

� S = {i, n+ i, j} ⇒ xij + xji + xi,n+i + xj,n+i + xn+i,j + xn+j,i + xn+j,n+i ≤ 2.

Inequality (3.30) then provides these cases for each pair of i, j ∈ P [6]:

� S = {n+ i, n+ j} ⇒ xn+i,n+j + xn+j,n+i + xn+i,j + xn+j,i ≤ 1,

� S = {i, n+ j} ⇒ xi,n+j + xn+j,i + xij ≤ 1,

� S = {i, n+ i, n+ j} ⇒ xi,n+j + xn+j,i + xi,n+i + xn+j,n+i + xn+i,n+j + xij +
xn+i,j ≤ 2.

Inequalities (3.31) and (3.32) generate the following constraints [6]:

� S = {n+ i, j, n+ i} ⇒ xn+i,j + 2xj,n+i + xji + xi,n+i + xn+j,n+i ≤ 2,

� S = {i, n+ i, n+ j} ⇒ xi,n+i + xn+i,n+j + xn+j,i + 2xi,n+j + xij ≤ 2.

For the subset S = {i, j, n+ i, n+ j} we also generate an inequality for all i, j ∈ P
where x(S) ≤ 3 [6].

Precedence inequalities generated from section 3.3.4 are also added to the initial
pool of inequalities. These constraints specify that some nodes cannot be visited
before visiting another node. Precedence inequalities generate following constraints
for i, j ∈ P [6]:

� S = {0, i, n+ j} ⇒ x0i + xi,n+j + xn+j,i ≤ 1,

� S = {i, n+ j, 2n+ 1} ⇒ xi,n+j + xn+j,i + xn+j,2n+1 ≤ 1,

� S = {0, i, n+i, n+j} ⇒ x0i+xi,n+i+xi,n+j+xn+j,i+xn+i,n+j+xn+j,n+i ≤ 2,

� S = {i, j, n+ j, 2n+ 1} ⇒ xij +xji +xi,n+j +xn+j,i +xj,n+j +xn+j,2n+1 ≤ 2.

3.6. SEPARATION HEURISTICS 17

To our initial pool of inequalities we also include a generalized order inequlity,
which is generated from the constraints from section 3.3.5, for i, j ∈ P [6]:

� xi,n+j + xn+j,i + xn+i,j + xj,n+i ≤ 1.

We also check infeasible path constraint which are defined in section 3.3.6 for
each pair of request. These inequalities are part of the initial pool of inequalities.
If the inequality tij + dj + tj,n+jdn+j + tn+j,n+j > L is true, then we generate the
following constraint where i, j ∈ P [6]:

� xij + xj,n+j + xn+j,n+i ≤ 1.

3.6 Separation Heuristics

This section describes the separation heuristics that we use to identify other vi-
olated inequalities. We identify these inequalities using various heuristics to find
other violated inequalities that allow us to add our own cutting plane. Therefore,
we improve the current LP-relaxation. This heuristics consists of the following
heuristics that are executed sequentially.

3.6.1 Subtour Elimination Constraints

To find the violation of inequality (3.29), we use tabu search heuristics and the
fact that 2x(S) + x(δ(S)) = 2 |S| is a feasible integer solution. Using the equation

x(δ(S))− 2
∑

i∈S̄∩σ(S)

∑
j∈S

xij − 2
∑

i∈S̄\σ(S)

∑
j∈S∩σ(S)

xij < 2 (3.37)

we can find sets S that violate inequality (3.29). In the case of tabu search, we
start the search with an empty set S. In each iteration, we add or remove a node so
that the left side of (3.37) is as small as possible. If we remove the node, we must
not insert it again for a certain number of iterations. We perform this iteration
25 times in our implementation. For each set S, we check whether inequality (3.31)
is not violated. For (3.31) is i1 node with the largest outgoing flow. We apply the
same procedure for inequality (3.30) together with (3.32) where node with the
largest incoming flow is i1 [6].

3.6.2 Capacity Constraints

To find sets S such that q(S) > Q and at the same time x(δ(S)) < 4, we use the
tabu search. We start with a random subset of S ⊆ P or S ⊆ D. In each iteration,
we add or remove a node with S to minimize the value of x(δ(S)) and at the same
time satisfy the condition q(S) > Q. Tabu search runs for 25 iterations [6].

18 CHAPTER 3. METHODOLOGY

3.6.3 Generalized Order Constraints

We use a simple heuristics to identify inequality violations of (3.33). We focus only
on the special case where m = 2 and |U1| = |U2| = 3. Firstly, we create subsets
where U1 = {i, n+ j} and U2 = {j, n+ i} for all i, j ∈ P . Secondly, we try to find
nodes k1 and k2 so that the values of x(U1) and x(U2) are maximal. Finally, we
check whether the inequality is not violated [6].

We also use heuristics to identify the violation of inequality (3.34) and (3.35).
We use a special case where m = 3 and |U1| = |U2| = 2. For each i ∈ P , we find
j ∈ P , which maximizes xi,n+j + xn+j,i + xij in the case of (3.34). In the case of
(3.35) we find j ∈ P for each i ∈ P , which maximizes xi,n+j +xn+j,i +xn+i,n+j . In
both cases, we look for k ∈ P for which the left side of the inequality is maximal
[6].

3.6.4 Infeasible Path Inequalities

We use path-construction heuristics to find violated inequalities. We apply this
heuristics to each user i ∈ P . The heuristics starts at node i and looks for another
node at each step to maximize the xkj ,kl values, where kj is the current node and
kl is the next node in path. The heuristics may end in three ways: when a cycle is
detected, when we reach the node n+ i, or the node 2n+ 1. If the heuristics ends
in node 2n+ 1, we check the path to see if it does not violate inequality (3.36) [6].

Chapter 4

Implementation

The main goal of this work is to speed up the calculation of the optimal solution
for SVDARP. Finding the optimal route for one vehicle is a crucial element of the
vehicle group assignment (VGA) algorithm [26]. This algorithm finds the optimal
solution by generating all possible groups of requests. The VGA algorithm then
optimally assigns these groups to individual vehicles. Our implemented SVDARP
algorithm can also be used to solve these request groups.

At the beginning of the implementation, we had DARP benchmark software1.
The purpose of this program is to create a unified interface for running and ex-
porting the results of various methods that can be used to solve DARP. Currently,
this program can solve DARP using insertion heuristics and VGA. There is also
special runner for SVDARP, which we used to test our and backtracking SVDARP
independently. The VGA method is important for our implementation, because
our goal is to speed up SVDARP, which is solved as a subproblem in VGA method.
Whole DARP benchmark software is written in C++ and uses Gurobi Optimizer
as an integer-linear programming (ILP) solver.

In the Figure 4.1 we see a simplified illustration of the DARP benchmark using
the VGA method or the SVDARP algorithm independently. In the DARP benchmark

class, based on the input arguments, the algorithm selects a solution using VGA solver

or SVDARP Runner. It can solve both of these problems using our implemented algo-
rithm in the Single vehicle DARP optimized ILP class or the original algorithm
in the Single vehicle DARP optimized class.

After studying current researches about solving DARP, we decided to imple-
ment the three-index formulation for DARP as described in Chapter 3.

The implementation consists of two classes: Single vehicle DARP optimized ILP

and SVDARP Callback. In the Single vehicle DARP optimized ILP class the im-
plementation of the three-index formulation is located. This class has the same
public methods as the original backtracking class Single vehicle DARP optimized.

1https://gitlab.fel.cvut.cz/fiedlda1/darp-benchmark/-/tree/threeIndexFormulation

19

https://gitlab.fel.cvut.cz/fiedlda1/darp-benchmark/-/tree/threeIndexFormulation

20 CHAPTER 4. IMPLEMENTATION

Figure 4.1: DARP benchmark software diagram showing the evaluation of VGA
or SVDARP algorithm.

In this class, there are also all supporting methods for the proper creation of
the formulation, methods for time-window tightening, and methods for arc elim-
ination. The SVDARP Callback class inherits from the GRBCallback class. The
GRBCallback class allows us to add our cuts to the currently solved problem. The
SVDARP Callback class contains all the methods for finding violated inequalities
and adding own cutting planes as we describe in Section 3.5 and 3.6.

In the Figure 4.2 we see an illustration of the implementation of sections from
the Chapter 3 converted to individual methods in our implementation.

4.1 Auxiliary Programs

We also created other utilities for creating and processing data. In the VGA solver

class, we created the save request group method. This method is used in com-
pute groups for vehicle method, which generates all possible groups of SVDARP
requests. Our method saves the created SVDARP instances to a disk. Therefore,
we can create a large number of test instances of the SVDARP algorithm.

We also created two simple python scripts. The first script repeatedly allows
us to run our chosen version of the program with all the parameters. We created
the method to run one instance, the method to run all instances in file and the
method to run instances in multiple files. The script has not input arguments from
the command line. However, we created blocks of code in the main method that

4.1. AUXILIARY PROGRAMS 21

Figure 4.2: Methodology sections mapped to implemented SVDARP classes and
methods.

allow us to run the evaluation of all instances at once. Using this script, we can
process a large number of input instances automatically.

The second script allows us to process all the outputs from individual calls
and unify this data into one JSON file. We use this JSON file in this script to
automatically create all the tables and figures that are in this thesis.

22 CHAPTER 4. IMPLEMENTATION

Chapter 5

Results

In this chapter we compare the performance of our implemented algorithms for
SVDARP calculation with the original algorithm using backtracking. We always
compare 3 versions of the SVDARP algorithm: the original version which used
backtracking (BCK), three-index formulation with all preprocessing procedures
(TIF) and three-index formulation with all preprocessing procedures and with own
cuts (TIFOC).

We test the implementation of SVDARP methods directly on the instances we
created for SVDARP, but also in the VGA method which can process standard
instances for DARP.

5.1 Stand Alone SVDARP

In this section, we perform a comparison of stand alone SVDARP algorithms,
which are not used as a subproblem of another algorithm.

5.1.1 Instances

We use two sets of instances to test SVDARP algorithms. The first set contains
instance groups. Each group has 100 instances with the same request size. For
each request size (5-15), we have a group of feasible and infeasible instances. To
generate these instances, we used a VGA solver, which creates instances of various
sizes within its functionality. We also created an additional code that saved these
instances. We saved all generated instances and then reduced their number using
the modulo function so that we have 100 instances for each group. The second
set consists of individual instances. In this set, we have a total of 28 instances
containing request size between 5 to 18; for each size from this interval, there
are always two instances in the set. These instances are obtained from already
solved DARP instances, which were presented in [4]. These solved instances have
24-144 requests and to process them, we need 3-13 vehicles. We took a plan for

23

24 CHAPTER 5. RESULTS

an individual vehicles from each solution we had available and created an instance
from it that we know is feasible for the SVDARP algorithm.

5.1.2 Comparison

In Table 5.1 we see a comparison of the runtime of individual SVDARP algorithms
on the first set of instances. In the columns, there is the average runtime of
all instances in the group. For the methods TIF and TIFOC, we also present
a comparison using a speedup. Their speedup was calculated as a proportion of
values of BCK method and TIF and TIFOC methods. The names of the request
groups refer to their instance sizes. When this name contains only a number, the
instances in the group are feasible. The groups with infeasible instances are marked
with “ inf”.

Request
group

BCK
mean

TIF
mean

TIF
speedup

TIFOC
mean

TIFOC
speedup

05 0.12 10.80 0.01 12.60 0.01
05 inf 0.09 10.05 0.01 12.75 0.01
06 0.68 10.96 0.06 13.31 0.05
06 inf 1.92 9.41 0.20 11.01 0.17
07 1.68 12.26 0.14 15.63 0.11
07 inf 1.42 12.49 0.11 14.33 0.10
08 2.84 16.82 0.17 18.63 0.15
08 inf 2.04 10.47 0.19 14.65 0.14
09 6.28 14.41 0.44 17.73 0.35
09 inf 5.21 13.00 0.40 15.91 0.33
10 11.98 18.37 0.65 21.90 0.55
10 inf 8.15 13.05 0.62 18.65 0.44
11 18.47 17.78 1.04 24.97 0.74
11 inf 15.00 16.57 0.91 18.07 0.83
12 36.76 20.95 1.75 32.49 1.13
12 inf 30.14 17.57 1.72 18.93 1.59
13 64.91 21.11 3.07 35.54 1.83
13 inf 47.60 14.95 3.18 18.53 2.57
14 99.35 27.85 3.57 43.70 2.27
14 inf 66.19 15.14 4.37 20.45 3.24
15 157.57 29.36 5.37 52.99 2.97
15 inf 107.17 15.62 6.86 21.28 5.04

Table 5.1: Runtime (miliseconds) and speedup of new SVDARP implementations
compared to the original algorithm on the first dataset.

Figure 5.1 shows a comparison of the runtime of instance groups from the first
dataset.

5.1. STAND ALONE SVDARP 25

Figure 5.1: Runtime of different SVDARP implementation on the instance group
from the first dataset.

In Figures 5.2 and 5.3 we compare the effect of individual preprocessing steps on
TIF. We use other versions of the SVDARP algorithm, namely: three-index formu-
lation with time windows (TIFTW), three-index formulation with arc elimination
(TIFAE) and three-index formulation with no preprocessing procedures (TIFNO).
Figure 5.2 compare effect of preprocessing steps on feasible groups, Figure 5.3
on infeasible groups. We compare the implementation of TIFNO with TIFTW,
TIFAE, and TIF. We run these implementations on first dataset. We calculate the
average runtime of each request group for each preprocessing method.

26 CHAPTER 5. RESULTS

Figure 5.2: Effects of preprocessing steps on the feasible groups

Figure 5.3: Effects of preprocessing steps on the infeasible groups

In Table 5.2, we see the runtime on the instances from the second set. We
ran all instances five times and then averaged the results. Again, we compare the
original algorithm with the implementation of TIF and TIFOC. As in the previous
case, we also calculate a speedup over the original implementation.

5.1. STAND ALONE SVDARP 27

Instance
name

Request
count

BCK
mean

TIF
mean

TIF
speedup

TIFOC
mean

TIFOC
speedup

pr06.v2 10 1.6 15.2 0.11 12.4 0.13
pr15.v11 10 1.0 21.0 0.05 32.2 0.03
pr13.v5 12 7.8 55.9 0.14 110.4 0.07
pr19.v2 12 70.4 334.2 0.21 591.2 0.12
pr03.v1 14 12.2 203.8 0.06 1,312.3 0.01
pr17.v2 14 262.4 455.8 0.58 4,275.4 0.06
pr05.v10 16 439.8 52.3 8.41 408.0 1.08
pr17.v3 16 680.2 356.1 1.91 1,821.0 0.37
pr04.v3 18 73.2 86.3 0.85 149.3 0.49
pr17.v4 18 13,157.0 632.4 20.80 108,685.3 0.12
pr02.v5 20 5,597.0 97.2 57.58 70.6 79.28
pr12.v1 20 24,630.0 300.0 82.10 4,487.1 5.49
pr05.v1 22 2,076.0 314.0 6.61 1,339.9 1.55
pr20.v5 22 40,313.0 136.7 294.90 278.8 144.59
pr08.v3 24 566.4 54.2 10.45 92.3 6.14
pr12.v3 24 1,303,429.8 755.7 1724.80 31,449.6 41.45
pr01.v3 26 13,522.4 134.0 100.91 294.7 45.89
pr20.v2 26 980,286.8 190.1 5156.69 590.9 1658.97
pr03.v3 28 79,409.8 591.1 134.34 11,169.7 7.11
pr09.v6 28 124,205.0 606.9 204.65 15,616.9 7.95
pr05.v6 30 1,096,380.4 555.5 1973.68 6,573.6 166.79
pr06.v3 30 120,542.4 387.4 311.16 7,206.5 16.73
pr06.v5 32 221,016.6 547.7 403.54 9,606.3 23.01
pr10.v4 32 66,134.0 704.9 93.82 15,637.3 4.23
pr19.v1 34 - 4944.1 - 91547.4 -
pr20.v8 34 - 12358.7 - 59712.3 -
pr16.v2 36 - 7170.2 - 43811.3 -
pr16.v4 36 - 24357.4 - 34515.8 -

Table 5.2: Runtime (miliseconds) and speedup of SVDARP implementations com-
pared to the original algorithm on the second dataset.

5.1.3 Discussion

From Figure 5.1 and the Table 5.1 it is obvious that we managed to accelerate
the SVDARP algorithm using three-index formulation, but only for instances that
have 12 or more requests. In our opinion, this is due to the fact that it always takes
some minimal time to create and solve the ILP problem. The observation confirms
the assumption that the solution time of instances using TIF for groups up to
10 requests takes a very similar time. The graphs also show that TIFOC is slower
than TIF. This situation is probably caused by the overhead that accompanies

28 CHAPTER 5. RESULTS

finding and creating our cuts. We can read from the table and graphs that the
average time to solve infeasible instances is less than the average time to solve
feasible instances.

From Figures 5.2 and 5.3 it can be read that the individual preprocessing
procedures do not have a significant influence on the overall acceleration of the
calculation. However, an implementation that includes time window tightening
and arc elimination is 29 % faster than versions without any preprocessing. We
can also notice that these steps speed up solving infeasible instances more than
feasible.

From Table 5.2, where we have a comparison of instances from the second set,
we can read that the time required to solve an instance depends not only on the
size of the instance but also on the complexity of the instance. This situation can
be seen, for example, on instances of size 12, where it takes much time for BCK to
solve one instance of this size, while the other instance of size 12 is solved faster
than some instances of smaller size. As in the first dataset, we can say that the
BCK is more suitable for smaller instances, approximately up to 8 requests. At
the same time we can say that TOFOC is slower than the version without its own
cuts.

5.2 SVDARP in VGA

In this section, we test our SVDARP implementations in the VGA method. In
the VGA method, SVDARP is repeatedly called on both large and small instances
and also both on feasible and infeasible instances, which tests whether the use of
our SVDARP algorithm is more advantageous overall.

5.2.1 Instances

As a test set, we use instances for DARP, which were introduced in [6]. From this
set, we select only instances with a smaller number of requests (a2-16, a2-20, a3-18,
a4-16) so that we can solve them with our algorithms. This dataset also contains
even larger instances, but we were unable to solve any of them within the 3-hours
time limit.

5.2.2 Comparison

In Table 5.3 we see a comparison of SVDARP algorithms when called from the
VGA method. We run all algorithms five times on each instance and the table
shows the average of all evaluations. For the new SVDARP algorithms, we also
present the acceleration compared to the original method.

5.2. SVDARP IN VGA 29

Instance
name

Request
count

BCK
mean

TIF
mean

TIF
speedup

TIFOC
mean

TIFOC
speedup

a2-16 16 22,124 29,275 0.76 28,722 0.77
a2-20 20 6,941,211 1,648,283 4.21 1,724,930 4.02
a3-18 18 29,427 38,432 0.77 39,322 0.75
a4-16 16 1,018 5,461 0.19 5,592 0.18

Table 5.3: Runtime (miliseconds) and speedup of new SVDARP implementations
in VGA algorithm compared to the original algorithm on the DARP instances.

5.2.3 Discussion

From Table 5.3 we can read that for instances with less than 20 requests, the use
of new implementations using ILP does not pay off. The results from the previous
section explain this behavior. In the case of instances with a request size smaller
than 20, the VGA method mainly solves problems of a size up to 12 requests, in
which is faster the SVDARP method using backtracking. In the case of instances
with 20 or more requests, the advantage of the algorithm using TIF shows the
benefit, because the method has to deal with larger requests. We should also note
that if we look at the time difference for instance a2-16, the BCK algorithm runs for
about 22.1 seconds, while for the TIF algorithm, it takes about 29.3 seconds to solve
the instance, which makes a difference of 7.2 seconds. However, for instance a2-20,
the BCK algorithm solves the instance under 2 hours, while the TIF algorithm
solves the instance in less than 30 minutes, making a difference of more than
1.5 hours. Thus, we can say that SVDARP implementation using TIF is more
advantageous in absolute numbers.

30 CHAPTER 5. RESULTS

Chapter 6

Conclusion

This bachelor thesis focuses on finding and implementing an efficient exact algo-
rithm for solving single-vehicle dial-a-ride problem (SVDARP). Our main motiva-
tion was to speed up the SVDARP algorithm, so that we could achieve speedup
of runtime in the complex algorithms, where SVDARP is solved as a subproblem.
The key part of the speedup was the acceleration of instances with large number
of requests, where the previous algorithm was slow. We introduced a modified
version of the three-index formulation for SVDARP. This version is based on the
three-index formulation for dial-a-ride problem (DARP) presented in [6].

In the first part, we introduced DARP and SVDARP and we made an intro-
duction into methods that can be used to solve these problems. Subsequently, we
presented our exact method for solving SVDARP based on the DARP solution
method from [6]. This method uses a three-index formulation, which can be solved
using the branch-and-cut (B&C) algorithm. It also contains optimizations such as
identifying and removing unnecessary edges, time windows tightening, identifying
violated valid inequalities, and adding custom cuts. In the implementation chap-
ter, we introduced the classes in which our implementation is located. We also
presented utilities created to run our implementation and data processing easily.
We found out that our method is more convenient for SVDARP if the instance
has approximately 12 or more requests. We also found out that custom cuts do
not improve the speed of the instance evaluation, as it was slower than the ver-
sion without custom cuts. When solving DARP instances using a VGA algorithm
which contains SVDARP as a subproblem, we found out that our implementation
might be faster for datasets that have 20 or more requests.

The goals of this work can be considered as fulfilled. We managed to find and
implement an efficient algorithm for the SVDARP. With help of our implemented
algorithm, we can effectively solve larger instances where the algorithm based on
backtracking was slow.

We see a possible extension of this work in an implementation of the exact
algorithm B&P&C according to [12]. The algorithm in the mentioned work is the

31

32 CHAPTER 6. CONCLUSION

fastest exact algorithm for DARP introduced so far. To implement this algorithm,
our work can be extended by the B&P part.

Bibliography

[1] Susan Shaheen and Adam Cohen. Mobility on Demand (MOD) and Mobility
as a Service (MaaS) How Are They Similar and Different?, March 2019.

[2] Sin C. Ho, W.Y. Szeto, Yong-Hong Kuo, Janny M.Y. Leung, Matthew Pe-
tering, and Terence W.H. Tou. A survey of dial-a-ride problems: Literature
review and recent developments. Transportation Research Part B: Method-
ological, 111:395–421, May 2018.

[3] Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: mod-
els and algorithms. Annals of Operations Research, 153(1):29–46, September
2007.

[4] Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for
the static multi-vehicle dial-a-ride problem. Transportation Research Part
B: Methodological, 37(6):579–594, 2003.

[5] Karl Doerner and Juan José Salazar González. Chapter 7: Pickup-and-
Delivery Problems for People Transportation. In Vehicle Routing: Problems,
Methods, and Applications, Second Edition, pages 193–212. SIAM - Society
for Industrial and Applied Mathematics, 2nd revised ed. edition edition, 2014.

[6] Jean-François Cordeau. A Branch-and-Cut Algorithm for the Dial-a-Ride
Problem. Operations Research, 54(3):573–586, 2006. Publisher: INFORMS.

[7] L. G. Mitten. Branch-and-Bound Methods: General Formulation and Prop-
erties. Operations Research, 18(1):24–34, 1970. Publisher: INFORMS.

[8] David R. Morrison, Sheldon H. Jacobson, Jason J. Sauppe, and Edward C.
Sewell. Branch-and-bound algorithms: A survey of recent advances in search-
ing, branching, and pruning. Discrete Optimization, 19:79–102, 2016.

[9] John E. Mitchell. BRANCH-AND-CUT ALGORITHMS FOR INTEGER
PROGRAMMING, August 2001.

[10] Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and
branch-and-cut algorithms for pickup and delivery problems with time win-
dows. Networks, 49(4):258–272, 2007. Publisher: John Wiley & Sons, Ltd.

33

34 BIBLIOGRAPHY

[11] Sophie N. Parragh, Jorge Pinho de Sousa, and Bernardo Almada-Lobo. The
Dial-a-Ride Problem with Split Requests and Profits. Transportation Science,
49(2):311–334, 2014. Publisher: INFORMS.

[12] Timo Gschwind and Stefan Irnich. Effective Handling of Dynamic Time Win-
dows and Its Application to Solving the Dial-a-Ride Problem. Transportation
Science, 49(2):335–354, September 2014. Publisher: INFORMS.

[13] El-Ghazali Talbi. Metaheuristics: from design to implementation, volume 74.
John Wiley & Sons, 2009.

[14] Jang-Jei Jaw, Amedeo R. Odoni, Harilaos N. Psaraftis, and Nigel H.M. Wil-
son. A heuristic algorithm for the multi-vehicle advance request dial-a-ride
problem with time windows. Transportation Research Part B: Methodological,
20(3):243–257, 1986.

[15] Ying Luo and Paul Schonfeld. A rejected-reinsertion heuristic for the
static Dial-A-Ride Problem. Transportation Research Part B: Methodologi-
cal, 41(7):736–755, August 2007.

[16] Lauri Häme. An adaptive insertion algorithm for the single-vehicle dial-a-
ride problem with narrow time windows. European Journal of Operational
Research, 209(1):11–22, 2011.

[17] Michel Gendreau. An Introduction to Tabu Search. In Fred Glover and
Gary A. Kochenberger, editors, Handbook of Metaheuristics, pages 37–54.
Springer US, Boston, MA, 2003.

[18] Pierre Hansen and Nenad Mladenović. Variable Neighborhood Search. In
Edmund K. Burke and Graham Kendall, editors, Search Methodologies: In-
troductory Tutorials in Optimization and Decision Support Techniques, pages
313–337. Springer US, Boston, MA, 2014.

[19] Sophie N. Parragh, Karl F. Doerner, and Richard F. Hartl. Variable neighbor-
hood search for the dial-a-ride problem. Computers & Operations Research,
37(6):1129–1138, 2010.

[20] David Pisinger and Stefan Ropke. Large Neighborhood Search. In Michel
Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics, pages
399–419. Springer US, Boston, MA, 2010.

[21] Timo Gschwind and Michael Drexl. Adaptive Large Neighborhood Search
with a Constant-Time Feasibility Test for the Dial-a-Ride Problem. Trans-
portation Science, 53(2):480–491, January 2019. Publisher: INFORMS.

[22] Wonjae Lee and Hak-Young Kim. Genetic algorithm implementation in
Python. In Fourth Annual ACIS International Conference on Computer and

BIBLIOGRAPHY 35

Information Science (ICIS’05), pages 8–11, July 2005. Journal Abbreviation:
Fourth Annual ACIS International Conference on Computer and Information
Science (ICIS’05).

[23] Claudio Cubillos, Enrique Urra, and Nibaldo Rodŕıguez. Application of Ge-
netic Algorithms for the DARPTW Problem. INTERNATIONAL JOURNAL
OF COMPUTERS COMMUNICATIONS & CONTROL; Vol 4 No 2 (2009):
International Journal of Computers Communications & Control (June), 2009.

[24] R M Jorgensen, J Larsen, and K B Bergvinsdottir. Solving the Dial-a-Ride
problem using genetic algorithms. Journal of the Operational Research Society,
58(10):1321–1331, 2007. Publisher: Taylor & Francis.

[25] Yvan Dumas, Jacques Desrosiers, and François Soumis. The pickup and deliv-
ery problem with time windows. European Journal of Operational Research,
54(1):7–22, September 1991.

[26] Michal Čáp and Javier Alonso Mora. Multi-objective analysis of ridesharing in
automated mobility-on-demand. Proceedings of RSS 2018: Robotics-Science
and Systems XIV, 2018.

	Introduction
	DARP Solution Methods
	DARP
	SVDARP

	Exact Algorithms
	Branch-and-bound
	Branch-and-cut
	Branch-and-price
	Branch-and-price-and-cut

	Heuristics and Metaheuristics Algorithms
	Insertion Heuristics
	Tabu Search
	Variable Neighborhood Search
	(Adaptive) Large Neighborhood Search
	Genetic Algorithms
	Hybrid Algorithms

	Methodology
	Backtracking Algorithm
	Three-index Formulation
	Single-vehicle Three-index Formulation

	Valid Inequalities
	Bounds on Time and Load Variables
	Subtour Elimination Constraints
	Capacity Constraints
	Precedence Constraints
	Generalized Order Constraints
	Infeasible Path Constraints

	Preprocessing Steps
	Time Window Tightening
	Arc Elimination

	Initial Pool of Inequalities
	Separation Heuristics
	Subtour Elimination Constraints
	Capacity Constraints
	Generalized Order Constraints
	Infeasible Path Inequalities

	Implementation
	Auxiliary Programs

	Results
	Stand Alone SVDARP
	Instances
	Comparison
	Discussion

	SVDARP in VGA
	Instances
	Comparison
	Discussion

	Conclusion

