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Abstract

The main interest of this bachelor the-
sis is the automatic following of a vehi-
cle on the F1/10 platform. Two means
of target localization were described and
implemented. Two variants of the algo-
rithm (to generate trajectory) for vehicle
following were implemented, tested, and
compared. Both variants of the trajectory
following algorithm were merged with an
obstacle-avoiding algorithm. The result
is a system for vehicle following capable
of avoiding obstacles.

Keywords: F1/10 car model, ROS, car
detection, car following
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Abstrakt

Hlavnim zdjmem této bakalarské prace
je automatické sledovani vozidla na plat-
formé F1/10. Byly popsdny a implemento-
vany dva zpusoby lokalizace objektu. Dvé
varianty algoritmu, ktery generuje trajek-
torii, byly implementovany, testovany a
porovnany. Obé varianty byly spojeny s
algoritmem pro vyhybani prekazek. Vy-
sledkem je systém pro sledovani vozidla
schopny vyhybat se prekdzkam.

Kli¢ova slova: F1/10 model auta, ROS,
detekce auta, sledovani auta

Preklad nazvu: Automatické sledovani

vozidla na platformé F1/10
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Chapter 1

Introduction

The automobile industry is slowly and surely evolving, replacing obsolete
parts and methods with new ones. One of these obsolete parts may in the
near future be the driver.

Automated driving currently gains increased popularity, powered by the
dream of self-driving cars. Even though self-driving cars exist, the idea of
each vehicle’s automatization is still a few years away.

One of the primary abilities of an automated car is to follow another object
without human interaction. The automatic following is the topic of this thesis.

In Chapter |2, we delve into the theoretical background of the automated
following. The description of the used vehicle and its system is situated in
Chapter Chapter 4] proposes the implementation. We present and we
evaluate the experiments on F1/10 platform in Chapter . We conclude this
thesis in Chapter |6






Chapter 2
Background

Following a vehicle without any human interaction is not an easy task. To
follow a vehicle, the car needs to automatically perceive the environment,
compute its trajectory with speeds and curvatures that are realistic and
achievable, and follow the trajectory as accurately as possible.

In the following sections, we describe the theory we use to localize the
followed vehicle, compute the correct trajectory, and ensure that our car stays
on the computed trajectory.

. PN Target localization

The first task to be accomplished is the target localization — the localization
of the vehicle to follow. Commercial vehicles often use a combination of
radar, LIDAR, and camera to perceive the surrounding area. This work will
minimalize that by leaving out the radar component, similar to Kumar et

al. [4].

B 2.1.1 KCF with LIDAR

To find the target on the camera footage, we need a tracker. The chosen
tracker must be fast and computationally undemanding but at the same time
accurate. A good combination of those traits is Kernelized Correlation Filter
(KCF).

KCF is a tracker that compares received image with the image of the
tracked object, and finds the most similar one. Its main benefits are the low
computational requirements, the speed, and that it requires only one image
of the tracked object. KCF package we use [I1] returns the pixel position of
the tracked object.

Before calculating the angle between the target and the car’s axis, to receive
a more accurate estimation of the angle, we need to calibrate the camera and
undistort the image.

B Distortion

There are two main distortion types:



2. Background

® Radial distortion. This distortion causes straight lines to appear
curved; it becomes more prominent farther the point is from the center.
The radial distortion can usually be classified as either barrel distortion
or pincushion distortion, as shown in Figure 2.1, Radial distortion can
be represented as follows:

Tdistorted = & (1 + k1r? + kor* + k37"6> (2.1)

Ydistorted = Y (1 + k17’2 + k27’4 + k37"6) (22)

k1, ko, and k3 are coefficients obtained from camera calibration, r is the
distance of the point from the center, x is the undistorted x-coordinate,
and y is the undistorted y-coordinate.

(a) : Barrel distortion vi- (b) : Pincushion distortion
sual example [12] visual example [13]

Figure 2.1: Radial distortion types

® Tangential distortion. This distortion causes some points to appear
closer than expected. Tangential distortion can be represented as follows:

Tdistorted = T + {21)156,0 + D2 (7’2 + 21:2)} (2.3)

Yaistortea = Y + |2powy + p1 (17 + 247 | (24)

p1 and po are coefficients obtained from camera calibration, r is the
distance of the point from the center, x is the undistorted x-coordinate,
and y is the undistorted y-coordinate.

B Camera calibration

To calibrate the camera, we require calibration tools and a calibrating object
— a chessboard. Its straight edges and right angles are perfect for measuring
distortions. The calibration is a process during which the chessboard is
rotated, and the calibration tools measure the distances of chessboard fields
and compute the camera’s distortions.

The result of the camera calibration is its camera matrix K and its distortion
coefficients k1, ko, k3, p1, and po.



2.2. Next position calculation

B Calculating the angle

With the camera calibrated, we now rectify the error caused by distortion.
We use equations [2.1| —[2.4] to get the undistorted point. The angle « is then
calculated using the formulas below.

x 0
v=K1|y v= |0
1 1

o =cos ! (uv) (2.5)

[[ll[v]]

B Target’s position

We use LIDAR (laser imaging, detection, and ranging) to compute the distance
to the target. The principle of the LIDAR is that the LIDAR targets the
object with a laser pulse, measures the time it takes the pulse to reflect and
return back to the sensor, and computes the distance from the measurement.

Thanks to the angle « calculated from the camera, we can select only those
rays that hold the distance d of the target. The relative coordinates of the
target are calculated as follows:

[x} 4 [CF)S a] (2.6)
Y sin «

The combination of LIDAR and the camera creates a sensor fusion capable
of reliably detecting the target and pinning his position on the map.

Il 2.1.2 LIDAR only

The second approach we suggest in this work is excluding the camera and
tracking the target purely with LIDAR. To achieve the level of precision and
accuracy to localize a moving target with just LIDAR, an algorithm capable
of finding an object in LIDAR data must be implemented. A viable algorithm
to use is obstacle detector package [10].

The obstacle detection algorithm merges LIDAR points into obstacles by
interpolating them with lines and circles. If this algorithm can interpolate
these points with a line, it is taken as a wall and is ignored. Points interpolated
with a circle are designated as obstacles, thus are candidates to be the target.

B 22 Next position calculation

The second task is to compute the advised position of the ego car — the
following vehicle our algorithm runs on. The algorithm to succeed in this
task must be simple, flexible, and computationally undemanding. Muller et
al. [0] offer an insight into following the car using predictions and scouting the

5



2. Background

track ahead with tentacles. Wei et al. [3] deals with adaptive cruise control
and keeping a safe distance in front of the ego car. Chew et al. [9] present
the idea of the virtual link. The virtual link offers a lot of flexibility and
reliability, as a concept of a link connecting a car and a trailer is widely used
in cargo transportation. This thesis describes the algorithm for the next
position calculation based on the virtual link theory.

For the purpose of the ego car, we can simplify and distribute the trailers
into two types; the direct-hooked trailer and the off-hooked trailer. The
former has only one solid rod. This approach is less difficult to understand
and compute, as there is practically just one variable to work with. The latter
approach is computationally more complicated but offers a smaller tracking
error.

B 2.2.1 Direct-hooked trailer

The direct-hooked trailer features only one solid rod of length [,, as in
Figure 2.2. There is practically no angular computations as there is just one
crucial angle . The new position Y7 can be calculated using equation 2.7,
where X7 is the position of the ego car.

sin o

Vi=X1— 1y lcos 0‘] (2.7)

-
-~
o=
~

Ry RN

Figure 2.2: Direct-hooked trailer

As depicted in Figure 2.2 when the target drives along a circular trajectory
with radius Ra, the ego car follows along a similar trajectory with radius R,

where R; < Ro. The tracking error € is equal to the difference between Ro
and R;.

B 2.2.2 Extension to Direct-hooked trailer

To create a non-linear trajectory, we require more points than two. We
improve the initial concept by adding additional points. We call these points

6



2.2. Next position calculation

curvature points, we can see curvature points ¢, and cp2 in Figure 2.3,

cosf —sin@] [1] \V X12 - Y()2 =l (2.8)

Cplzyb-f—

sinf  cos6 | |0 r1
Y, —
cpr = Y1 — — (2.9)
Ly
5/1 :Xl—i(Xl—Czﬂ) (2.10)

/Y2 2

Equation 2.8| gives us the first curvature point c,1, where Yy and 6 describe
the ego car’s position and orientation, respectively, X is the target’s position,
l, is the length of the link, and 7 is a constant determining how far the ¢,
lies from the target. The curvature point cp,1 resembles the orientation of the
ego car. Its purpose is to force the trajectory to begin in the same direction
as the target car is facing.

Figure 2.3: Direct-hooked trailer computed points

The second curvature point ¢, is given by Equation 2.9, where Y7 is the
advised position of the ego car, and ro is a constant determining how far the
cp2 lies from the ego car’s advised position. cpz compels the ego car to arrive
at the advised position from the correct direction.

Using Equation [2.10, we compute the ego car’s advised position Y7.

7
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B 2.2.3 Off-hooked trailer

The off-hooked variant has two solid rods connected with a joint. This method
offers more complex computations with smaller and less significant errors. In
Figure [2.4] we can see that using this method, the ego car follows the target
on the same radius R.

Vi = X1 — Ly [COS O‘] — o [COS'V] (2.11)

sin v sin y

The Equation |2.11] computes the advised position Y7, where X7 is the position
of the target, [, is the length of the link connecting the ego car and the
joint, l,9 is the length of the link connecting the joint and the target, « is
the angle determining the target’s orientation, and -y is the angle describing
the ego car’s orientation. Figure [2.11] visualizes the off-hooked trailer and the
parameters in Equation 2.11. In Figure 2.11, Z resembles the position of the
joint.

-
-~
A™==-
~

Figure 2.4: Off-hooked trailer

B 2.2.4 Extension to Off-hooked trailer

Similarly, as for the direct-hooked trailer variant, we add one or two curvature
points; we can see curvature points ¢,1 and cp2 in Figure 2.5, This extension
differs from the direct-hooked extension only in replacing the target’s position
X, with the joint position Z.

The position of the joint depends on the orientation of the target. If the
target is in motion, the target’s heading can be computed using its last and
current position. The joint position can be calculated using Equation [2.12

X1 — Xy
d = 120
[ X1 — Xol|
7= X1 —lyad (2.12)

where X7 — X is the direction of travel of the target, X; the current position
of the target, and l,o is the length of the link connecting the joint and the
target.



2.2. Next position calculation

If the target is stationary and the orientation is unknown, we assume the
orientation is the same as the vector from the ego car to the target. In other
words, when the target is stationary, the joint is on the line connecting the
ego car Yy and the target X;. In these circumstances, the position of the
joint Z is calculated using Equation [2.13

X1 —Y
d= 10
X1 — Yol
Z=Xi —lwd (2.13)

where Yy is the position of the ego car, X is the position of the target, and
ly2 is the length of the link connecting the joint and the target.

TERT

Ybl‘ 19

Figure 2.5: Off-hooked trailer new position

The curvature points and the advised position can be calculated using
Equations |2.14] — 2.16

cp1=Y0+

cos —sin@] [11 \ 7Z? — Y(? =l (2.14)

sinf cos@ | |0 1
Y —
=Y, — P (2.15)
r2
I
Yi=27-— %(z—cpl) (2.16)

where Yj is the ego car’s position, 0 its orientation, Z current position of the
joint, l,1 link connecting the ego car to the joint, l,2 connecting joint and the

9



2. Background

target, and constants 1 and ro determining how prominent and influential
are cp1 and cpo.

N 23 Trajectory creation

In this section, we describe the theory behind trajectory creation.

The trajectory is a set of consecutive points in time, where each point carries
information about position, curvature, and velocity in the given position.

The motion of the ego car should be smooth to avoid wear and jerkiness.
To achieve such motion, we require more points than those we compute in
the virtual link algorithm. We interpolate these points with a Bézier curve
and use it to calculate the trajectory points.

The input to an interpolating algorithm is Bezier curve defined by points
Py, ..., P,, where the n is the order (e.g., n = 1 for linear, n = 2 for quadratic,
...). Py is the starting point and P, is the ending point. The rest of the points
determine the curvatures. The parameter ¢ ranges from 0 to 1, determining
which point on the curve we want to calculate.

Bézier curves can be defined for any degree n. The virtual link algorithms
described in Section 2 and Section 3 generate three or four points. Therefore,
we will limit ourselves to the quadratic Bézier curve and the cubic Bézier
curve. We can map mathematical points Py to P, to their values assigned
in Section 2 and Section 3. Py is the ego car position Y7, P; to P,_1 are the
curvature points ¢,,, in our case c¢p1 and c¢p2. P, is then the advised position
of the ego car.

Quadratic Cubic

5 5

4 A 4 4 ®
31 34

> >

2 2

1+1e® 14@

0 1 0 -

0 2 4 0 2 4
X X

Figure 2.6: Comparison between quadratic and cubic Bézier curve

10



2.3. Trajectory creation

B 2.3.1 Quadratic Bézier curve
The quadratic Bézier curve is made of three points, i.e. n=2, where P; defines

the initial orientation of the ego car. Any point on the curve can be calculated
using Equation [2.17.

B(t) = (1 —t)*Py +2(1 — t)tP, + t* P (2.17)

To calculate a curvature in a point on a curve, we need its first and second
derivatives with respect to t.

B'(t) =2(1 —t)(P, — Py) + 2t(P2 — P) (2.18)

B//(t) = 2(P2 — 2P + P()) (2.19)

B 2.3.2 Cubic Bézier curve
The cubic Bézier curve is made of four points, i.e. n=3. In cubic variant, P

defines the end orientation of the ego car. Any point on the curve can be
calculated using Equation [2.20.

B(t) = (1 —1t)*Py+3(1 — t)%tP; + 3(1 — t)t* Py + t*P3 (2.20)

To calculate a curvature in a point on a curve, we need its first and second
derivatives with respect to t.

B'(t) =3(1 —t)2(Py — Py) + 6(1 — t)t(Py — Py) + 3t*(Ps — P;)  (2.21)

B"(t) =6(1 —t)(Py — 2P, + Py) + 6t(P3s — 2P, + P) (2.22)

B 2.3.3 Curvatures

Each point of the trajectory must contain the trajectory’s curvature. The
curvature K of any trajectory is equal to the inverse value of the radius of the
circular arc, which best approximates the curve at that point. This radius R
can be computed using first and second derivatives. We derivate the Bezier
curve B(t), which means we derivate with respect to the parameter ¢t. For
simplification, x = z(t) and y = y(¢).

R= (2.23)

K=— (2.24)
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B 2.3.4 Velocities

To calculate velocities, we propose a model that operates in two modes; the
cruise mode and the normal mode.

The cruise mode activates when the target is stationary. Its purpose is to
drive to the target with maximal precision at low speeds. This speed is set at
one meter per second.

The normal mode is activated when the target is moving. In determining
whether we need to increase or decrease the speed, we calculate the current
distance d. between the current ego car’s position and the advised ego car’s
position and compare it with its previous value d;. At the end of the procedure,
d; becomes d..

d. =|Y0—Y1] (2.25)

Yp is the current position of the ego car and Y; its next advised position, v is
the ego car’s current velocity.

B First case is that d. = 0. The velocity of the ego car is set to zero, and
the ego car stops.

B If d. > d;, the ego car increases its velocity by a parameter vge,. This
parameter is set for testing at vgeyq = 0.1.

® If d. < d;, we need to examine whether the ego car is close to the target
or not. If the condition in Equation [2.26|is true, then we decrease the
speed by the parameter of vp,qke, computed in Equation [2.27, Otherwise,
we speed up by a parameter of vz, to catch up to the target.

d, < 0.1v° (2.26)
Ubrake = 3U2vdelta (227)

B In the last case, the distance is the same, and the ego car keeps its
velocity.

B 24 Trajectory following

To follow the created trajectory, we use the pure pursuit algorithm [2]. The
pure pursuit algorithm creates an imaginary point in front of the ego car,
which it follows. This trajectory tracking algorithm offers sufficient tracking
capabilities while also requiring only basic information about the track — the
position, the curvature, and the velocity.

To avoid obstacles, we switch to follow the gap algorithm [§]. As the name
suggests, follow the gap searches for the largest gap in front of the ego car.

12



Chapter 3
Platform F1/10

The theory described in Chapter 2 is designed to be implemented on the
F1/10 platform. The F1/10 vehicles are RC-based models that are in a 1:10
ratio with ordinary cars. It is safer and cheaper to develop and test new
algorithms and control methods on this platform instead of on regular cars.

In this chapter, we describe the hardware and software of the car we use in
this thesis.

B 3.1 F1/10 competition

Having been built for the F1/10 competition [6], in order to understand
why was the car built this way, it might be usefull to glance over the F1/10
competition first.

F1/10 competition is a bit more than just a competition. It includes
education, research, develepoment, and of course the race itself. The goal is
to create an autonomous vehicle that is safe and push it to its racing limits.

Safety. There are two main rules established to ensure the safety of all
the competitors and the car itself. First, the car has to have an emergency
disconnect switch, that would remove all the power from the engine. Effectiv-
elly this is a big red stop button. Second, the car must possess the ability to
switch from the autonomous mode to the manual mode at any time.

Communication. As a theme of the whole competition suggests, the
vehicle has to be fully autonomous and self-contained. This means no trans-
mitters nor any communication is allowed. The only exception is WiFi, but
this too cannot be used for controling the vehicle. For navigation, the car
may effectively use only components that are part of the vehicle. More-
over, cooperation amongst different vehicles or track modification is strictly
prohibited.

Physical parameters. Before the competition, vehicles are subjected
for a series of tests, that will determine, whether the vehicle is acknowledged
as a race worthy, and be granted a race license plate (RCL). First, the car
must fit inside a box, which parameters are announced before the competition.
This also applies for the vehicle’s weight. Second, the vehicle is prohibited to
include any parts, which sole purpose is to inflict damage or deceive another
car.

13



3. Platform F1/10

Sensors. Each team has to choose a sensor configuration using just the
following: at most 2 cameras, 1 LIDAR, and 1 IMU. Having Wifi is obligatory.

Computation. NVIDIA Jetson TK1 or anything of a lower spec must
be used for planning and perception. A team can choose between MBed or
Teensy for the car control.

Chassis. The car must be a Traxxas Rally 1/10 with any suspesion.

. 3.2 Hardware

The car that is used for the purpose of testing the ability to follow another
vehicle is a third-generation car developed by the team at CIIRC, each
generation slightly better than the previouse one. Hardware list of this
vehicle can be seen in Table

Vehicle Part || Part Model
CPU nVidia Jetson TX2 on Orbitty Carrier
Chassis Traxxas Slash 1:10 4WD VXL TQi TSM OBA RTR
Engine Velineon 3500
Engine CPU Teensy 3.1
Controller VESC
Transceiver B3-STX Delluxe 2.4GHz F.H.S.S.
Batteries LiPo 3S, LiPo 2S
LiDAR Hokuyo UST-10LX
Camera, AUSDOM AF640

Table 3.1: Hardware list

Figure 3.1: Ego car

14



3.2. Hardware

Requirements for the F1/10 competition (Subsection 3.1) clearly restrict
the chassis’ selection; however, after some debate with the organizers, the
exception to use the model mentioned in Table 3.1 has been made. Concerning
batteries, LiPo 2S is used to power the engine, LiPo 3S to power the CPU.

B 3.2.1 Engine

We use brushless motor that is highly optimized for the F1/10 cars. It uses
neodymium magnets to have a massive torque. The motor can achieve up
to 50000 RPM. Because of the absence of any brushes or a commutator,
this particular motor’s maintenance is effortless. Control over the brushless
motor is established by an open-source motor controller VESC. VESC uses
pulse-width modification (PWM), received from Teensy, to control the motor.

B 3.2.2 LiDAR

One of the main sensors used in algorithms for navigation is LiDAR. The choice
of the model (Hokuyo UST-10LX) complies with the rules (Subsection 3.1)).
The LIDAR works on the principle of firing laser pulse and receiving the
reflected light. From this reflected light, it measures the distance of the
object from the sensor. This particular LIDAR works on a 40 Hz frequency,
which fulfills its job without any complications. Even though LiDARs used
in modern civilian cars can often scan a 3D space, LIDAR used on described
platform limits its view to a 2D plane, which is an allowed simplification
for the F1/10 cars. Its 270 degrees field of view with 0.25 degrees angular
resolution guarantees that all objects in front of the vehicle up to a distance
of 10 meters will be spotted. The LIDAR communicates with the car via the
Ethernet interface.

Figure 3.2: Hokuyo UST-10LX
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3. Platform F1/10

B 3.2.3 Camera

The camera ranks amongst the essential sensors for environment perception.
The camera model available for the car’s sensor composition is AUSDOM
AF640. This particular full HD camera offers a decent view range thanks to
its 90 degrees diagonal view angle.

Figure 3.3: Ausdom AF640

. 3.3 Software

The hardware setup is only half of the car. To control it, we need optimally
working software. The most critical piece of software is a communication
system, which enables the communication between sensors and various algo-
rithms. A well-known communication framework in robotics is ROS [7].

B 33.1 ROS

ROS is a communication system for a robot. Its idea is to enable communica-
tion between different packages containing robot’s algorithms.

Each running program is called a node. ROS has its own master node
labeled ROSCore. Nodes communicate with each other by subscribing to a
topic — a data flow of messages, where a message is a piece of data formatted
in a specific way. Nodes can either subscribe to a topic (receive messages) or
to publish a topic (send messages).

For user readability and better code distribution, groups of nodes are
contained in packages. Each package has its own name and list of dependencies.
Nodes can be written in C++ or Python.

In order to ensure the proper functionality of F1/10 simulators, the distri-
bution used in our car is ROS Kinetic.

B RviZ

RVIZ is a 3D visualization tool for ROS applications. It can visualize the
robot’s position, its sensor data, or the result of its computations. We use
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3.3. Software

this software component to visualize the racetrack, the target, and the ego
car.

B 3.3.2 Car’'s Operating System

ROS currently operates only on Linux-based platforms, primarily tested on
Ubuntu and Mac OS. We use Ubuntu (free and open-source operating system)
as the operating system for the car. The advantage is the vast selection of
Ubuntu-supported packages. Using ROS Kinetic, Ubuntu 16.04 is the Ubuntu
version running on the car.

B 3.3.3 Architecture

A simple architecture of ROS packages was established based on Behere et
al. [1]. The main idea is to split the whole environment into three modules:
Perception, Decision and Control, and Vehicle Platform.

B Perception

The first layer is called Perception. The main goal is to understand the
environment. This module takes raw sensor data as an input and returns a
structured information about the environment (e.g. position on the map),
which is then used in another module. Perception has been split into three
blocks.

Sensors. The first block is responsible for gathering data from the sensors,
and converting them into ROS messages. Each sensor type has its own ROS
package.

Preprocessing. The second block is used to adjust or slightly alter the
data coming from the first block. Its main goal is to precompute or clean
input data, to make the following computations simpler.

Recognition. The final block takes raw or preprocessed data, and creates
structured objects that can be used in the Decision and Control module.

B Decision and Control

The second module evaluates the input data from the Perception module and,
through various algorithms, computes the best decision for the car to make.
This decision is then pushed into the Vehicle Platform module.

B Vehicle Platform

The Vehicle Platform module is responsible for the low-level control of the car.
As stated in Subsection |3.2.1, both-the motor and the servo-are controlled
via PWM signals. The parameters of the PWM signals may differ in different
vehicles, so the Vehicle Platform module is designed to solve this issue
of hardware dependancy. The emergency stop demanded by the rules is
implemented in this module.
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Chapter 4

Implementation

In this section, we discuss the implementation. We glance over programming
languages. Then we move on to the target localization and the trajectory
planning. We finish this chapter by discussing the implementation of avoiding
obstacles while following the target.

B a1 Programming language

ROS currently supports only Python and C++4. The main advantage of
Python is its versatility and readability. The weakness of Python compared
to C++ is its speed and performance. Therefore, in parts where speed is
essential, C++ is preferred.

B a2 Target localization

The first task is to localize the target, as described in Section According
to the architecture established in Section target localization is part of
the Perception module.

B 4.2.1 KCF with LIDAR

The target’s position is obtained by the camera and LIDAR. The idea is to
find the target on a camera image using the KCF, calculate the angle between
the ego car’s axis and the target, and finally measure the distance using
LIDAR. By the approach described above, we obtain the relative position of
the target to the ego car.

B Target’s position in the camera image

First, we need to determine where on the camera footage the target is. This
is done using KCF mentioned in Section [2.1, We updated the implementation
from [11] to make the output compatible with ROS. The tracker is written
in C++ to ensure its high computation speed. The return value is the ROS
message of type Point which consists of x and y coordinates in pixels.
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4. Implementation

Figure 4.1: Localization using KCF

B Camera calibration

For camera calibration, we use OpenCV tools. OpenCV requires us to input
the camera image, chessboard size, and the length of one chessboard field.
When measuring the size of the chessboard, what we are looking for is the
number of intersections. Our chessboard size is 8x6, and the length of one
field is 28.6 mm.

The result of the camera calibration is its camera matrix K and its distortion
coeflicients k1,k2,k3,p1, and po. For our case, those parameters are as follows:

fo 0 ¢ 510.752 0 296.879

K=10 f, ¢, =| 0  512.582 233.267 (4.1)
0 0 1 0 0 1
ki = 0.022255
ky = —0.173634
ks = —0.012291
p1 = —0.000857
pa = 0.009136 (4.2)

B Calculating the angle

With the camera calibrated and the target position in the image undistorted,
we compute the angle between the ego car’s axis and the target’s position.
Angle between the target and the ego car, computed by Equation is
not oriented; we know only its absolute value. To overcome this issue and
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4.3. Next position calculation

determine the orientation of the angle, we use the pixel’s x coordinate. If the
pixel is on the right side of the image, the angle is negative; otherwise, it is
positive.

B Target’s position

We use LIDAR to get the distance from ego car to target. We use the
computed angle between the target and ego car to select only the LIDAR
rays that points to the target. To decrease the influence of noise and sensor
inaccuracy, we found empirically that the average value of five rays suits well
relatively to target size and average distance.

To project these coordinates to the real world, we need to know the ego
car’s position and orientation computed in Section |4.2.3|

Bl 4.2.2 LIDAR only

We use the obstacle detector ROS package [10]. This algorithm groups points
found by LIDAR into lines or circles. To find the circle that is most likely
the target, we filter out circles with a speed of less than 0.2m/s and order
these moving circles by their ascending distance from the target’s last known
position. If we found no moving circles, we order them by their angle between
the circle and the target’s last known position instead. If the distance between
the first circle and the target’s last known position is less than 60 cm and the
angle between these positions is less than 180 degrees, the circle is proclaimed
as the target.

If the distance is greater than 60 cm or the angle is greater than 180 degrees,
the ego car slowly drives into the last position of the target and stops. During
its movement, the ego car scans the area to detect new circles to re-find the
target.

B 4.2.3 Ego car’s position and orientation

The ego car’s current position and orientation are provided by odometry.
Odometry returns a pose that contains a position in Euclidean space and
orientation given by quaternion g. We can compute Yaw angle from the
quaternion by the Equation |4.3.

0 = atan2(2q2qy + 2quwdz, 4o + 42 — 42 — ¢2) (4.3)

B 43 Next position calculation

The computation of the next position is a part of the Decision and Control
module.

To calculate the next position of the ego car, we use the algorithm described
in Section [2.2. Our goal is to implement the direct-hooked (Section 2.2.2) and
the off-hooked (Section [2.2.4]) virtual link to compare their tracking errors
and efficiency.
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B 4.3.1 Preparation and simplification

We assume that the vector going from the last position of the target to its
current position has the orientation as the target’s heading.

B 4.3.2 Direct-hooked trailer

The direct-hooked virtual link connects the target and the ego car directly.
The next advised position lies on the circle with a center at the target’s
position X7 and of a radius [, and on the line between the X; and the first
curvature point cp1, as shown in Figure 2.3l To ensure the ego car does
not lose track of the target and does not hit it while braking, the length
of the link is set to 0.75m. The process of computing the advised ego car
position and curvature points using the direct-hooked algorithm can be seen
in Algorithm [1l

Algorithm 1 Direct-hooked trailer — compute advised position

1: procedure DIRECT-HOOKED POINTS COMPUTATION(Y(,X71,l,,0,71,72)
2 if distance(Xy, Yp) < [, then

3 Stop the ego car

4: end if

5: ¢p1 < First curvature point given by Equation 2.8

6 if distance (X1, ¢p1) < I, then

7 Stop the ego car

8 end if

9: Y1 < Advised position given by Equation [2.10

10: cp2 < Second curvature point given by Equation 2.9
11: return c,1, ¢2, V1

12: end procedure

The values of r; and ry influence the curvature of the trajectory. If the
values are too low, the ego car never turns. If the values are too high, the
curvature points lose their purpose. To ensure that the ego car turns reliably,
we choose 1 = 5 and ro = 5.

B 4.3.3 Off-hooked trailer

The off-hooked virtual link connects the target and the ego car through a
joint. The next advised position Y7 lies on the line from the first curvature
point ¢y to the joint position Z. The distance between Z and Y7 is l,;.

In calculating the curvature points and the advised position, we implement
Equations [2.14] - 2.16| and merge them with conditions ensuring the car stops
when necessary. The process of computing the advised ego car position and
curvature points using the off-hooked algorithm can be seen in Algorithm |2l
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4.4. Trajectory creation

Algorithm 2 Off-hooked trailer — compute advised position

1. procedure OFF-HOOKED POINTS COMPUTATION(Z,Yy,X1,l,1,0,m1,72)
2 if distance(Z, Yy) < l,; then

3 Stop the ego car

4: end if

5: cp1 < First curvature point given by Equation 2.14

6 if distance (Z, ¢p1) < ly1 then

7 Stop the ego car

8 end if

9: Y1 «+ Advised position given by Equation [2.16

10: cp2 < Second curvature point given by Equation 2.15
11: return c,1, ¢p2, Y1

12: end procedure

For minimal tracking error, the links should be of equal length, as proposed
by Chew et al. [9]. If the link is too long, the ego car may easily lose the
target. On the other hand, if the link is too short, there is a high possibility
of a collision. We choose each link to have half a meter, or rather [,; = 0.5m
and [,o = 0.5m.

We choose 1 = 5 and ro = 5, although, in this variation, we feel comfortable
submitting a lower value.

. 4.4 Trajectory creation

The result of the virtual link algorithm is three or four points. If we choose
three points, the maximum order of interpolation curve is two (quadratic
curve). Four points offer the maximum order of three (cubic curve).

Cubic curve points

X

Figure 4.2: Points on cubic Bézier curve
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4. Implementation

For implementation, we decided to use the cubic curve. It offers an arrival
with a smaller heading difference.

The number of points received from interpolation is nearly infinite, but as
we work with short trajectories, we empirically found that eleven points in
total suffice, as is shown in Figure [4.2.

. 4.5 Obstacle avoidance

After computing the points of the trajectory, the points need to be examined,
whether there is no obstacle in the way. Using the LIDAR, we check the
surroundings for obstacles. To be as efficient as possible, we scan the area of
180 degrees in front of the ego car, and we consider only every fifth ray. We
calculate the distance between each of the trajectory points and the point
found by LIDAR as an obstacle. If there is a distance that is less than 20
cm (the padding we chose according to the size of the car), the Follow the
gap algorithm is activated. Once there are no distances less than 20 cm, the
Follow the gap algorithm is deactivated.
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Chapter 5

Experiments

This chapter describes the experiments conducted with the implemented
algorithms, and visualizes and analyzes the results.

B 51 Target localization

We have implemented both the camera with LIDAR variant and the LIDAR
only variant to accomplish the target localization. Testing showed that we
can’t use the camera, as it creates a delay of 2 to 4 seconds. This amount of
delay makes the ego car uncontrollable. Therefore, we use LIDAR only for
target localization in the following tests.

Figure 5.1: The detection of the target using LIDAR is visualized using RVIZ on
the map of the racetrack. The ego car’s position and orientation are represented
by the blue car, the red arrow represents the target’s position.

Figure |5.1| represents the localization of the target on our racetrack using
LIDAR only. During testing, the target is frequently lost. We solve this
problem by re-finding the target using the approach described in Section [4.2.2
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5. Experiments

B 5.2 Target following

We have prepared two scenarios in which we showcase and compare both
algorithms. The first scenario is the following of the target on a straight line.
We expect minimal errors from this experiment, as there are no turns to lose
the car in or to develop a deviation from the target’s trajectory.

The second scenario is the one lap of our lab’s racetrack. The vehicles
are driving in a clockwise direction. In this experiment, we anticipate more
severe deviations from the target’s trajectory; eventual obstacles are handled
by the follow the gap algorithm (Section 4.5).

In the following sections, we compare the direct-hooked and off-hooked
algorithms in their abilities to follow a target. We first present the trajectories
the ego car and the target followed. Next, we compare the velocities of the
target and the ego car. Then we discuss the distances measured between
the ego-car and the target. Finally, we present the tracking errors of both
algorithms.

Bl 5.2.1 Experiments in a straight line

We begin our experiments by driving in a straight line. The racetrack for this
experiment is a straight line 7 m long. The starting position of the target is
0.6 m ahead of the ego car.

At first, we log the positions of the target and the ego car on the map and
recreate the trajectories of both vehicles.

5 5
4 4
E3 E3
72 >2
1 E A S Target 1
—— Ego car

0 ! ! ‘ ; 0

0 2 4 6 0 2 4 6

x [m] x [m]
(a) : Direct-hooked trailer (b) : Off-hooked trailer

Figure 5.2: Positions of the target (red dotted line) and the ego car (green line)
in a straight line.

In Figure [5.2, we can see the comaparison of positions in a straight line
driving. The ego car’s start is at the origin — the intersection of the x-axis
and the y-axis. The localization error rises when the target suddenly stops;
this is visible at the end of the target’s line of movement in both figures.

The next important aspect of the vehicle following is the ego car’s and
target’s velocity. We have implemented a straightforward incrementing model
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5.2. Target following

to ensure the ego car catches up with the target in the shortest possible time,
so we expect a noticeable difference between the velocities.

N

=

speed [m/s]
speed [m/s]

0
0 2 4 6 8 10
time [s] time [s]
(a) : Direct-hooked trailer (b) : Off-hooked trailer

Figure 5.3: The estimated speed of the target (red dotted line) and the actual
speed of the ego car (green line) in a straight line.

Figure |5.3| depicts the comparison of velocities of the off-hooked and the
direct-hooked variant in a straight line driving. We presume the target’s speed
is based on its position. This means the inaccuracy of target localization
influences the values of the target’s speed. In the direct-hooked variant, the
target reaches lower speeds than in the off-hooked variant. Therefore, the
target takes longer to reach the 7-meter mark. Consequently, the ego car
accelerates to higher speeds, and it takes less time to reach the target.

In Figure [5.4, we can see the measurement of the distance between the
target and the ego car. In the straight line, the distance should be 0.75 meters
for the direct-hooked trailer and 1 meter for the off-hooked trailer, as those
are the values assigned to the links.

6 6
5 5
E4 Ea4
(V] (V]
3 o3
© ©
82 )
© ©
1 1
0 0 2 4 6 8 10 0 0 2 4 6 8 10
time [s] time [s]
(a) : Direct-hooked trailer (b) : Off-hooked trailer

Figure 5.4: Distance between the target and the ego car during driving in a
straight line.

In Figure 5.4, we can see the distance the off-hooked and the direct-hooked
variant keep between the target and the ego car. The zero on the x-axis in
Figure [5.4) indicates the moment when the ego car receives the first impulse to
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move. The distance corresponds to the conclusion we made for the velocities.
Finally, in Figure |5.5| we can see the tracking error.

0.08 0.08
—0.06 — 0.06
E £
50.04 50.04
©0.02 ?0.02

0.00 0.00

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 7.5 10.0
time [s] time [s]
(a) : Direct-hooked trailer (b) : Off-hooked trailer

Figure 5.5: Tracking errors during driving in a straight line.

The starting point of the graphs in Figure [5.5| is when the ego car reaches
the target’s starting position. The tracking error is influenced by the odometry
error and the target localization error. Both variants end up similarly, as
is visible in the positions shown in Figure|5.2. The tracking error does not
exceed 8 centimeters, which is acceptable concerning all the added errors.

B 5.2.2 Experiments on a racetrack

In this experiment, we expect the variants to behave differently; in particular,
we expect the off-hooked variant to have smaller tracking errors.

........ Target * Target's start -~ Target e Target's start
—— Egocar ¢ Ego car's start —— Egocar ¢ Ego car's start
6

4+
E |
21}

0 2 4 6 8 -2 0 2 4 6 8

x [m] x [m]
(a) : Direct-hooked trailer (b) : Off-hooked trailer

Figure 5.6: Positions of the target (red dotted line) and the ego car (green line)
on a racetrack.

In Figure |5.6| we can see that the off-hooked variant follows the target more
tightly than the other variant.
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Figure 5.7: The estimated speed of the target (red dotted line) and the actual
speed of the ego car (green line) on a racetrack.

In Figure 5.7, we can see the velocities of the target and the ego car. The
ego car’s speed successfully tracks the target’s speed. Spikes of the ego car’s
velocity curve that seem out of place are caused by switching on follow the

gap algorithm. This irregularity can be seen, for instance, in Figure 5.7| (a)
in the eleventh second.
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Figure 5.8: Distance between the target and the ego car during driving on a
racetrack.

Figure |5.8| depicts that the distance between the target and the ego car is
not constant. The distance increases when the ego car needs to adjust its
speed quickly. The ego car is then able to decrease the distance with time.

Recall the racetrack in Figure 5.6, in Figure [5.9, we can see that the
direct-hooked variant has a significant tracking error for the whole duration
of the lap. The off-hooked variant cuts steep corners, but the tracking error
is significantly lower in less complicated turns.
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Figure 5.9: Tracking errors during driving on a racetrack.
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Chapter 6

Conclusion

In this thesis, we described the implementation of two localization algo-
rithms and two trajectory planning algorithms. We merged these algorithms
with the algorithm capable of avoiding static obstacles. We tested these
implementations on the F1/10 platform.

The target localization using the camera created uncontrollable delays.
Therefore, we used the LIDAR only method, which is capable of reliably
localizing the target and re-finding it if lost.

The both trajectory planning algorithms perform well, but the tracking
error of the off-hooked variant is smaller by approximately 30% compared to
direct-hooked variant. In experiments on racetrack, cutting corners by the
direct-hooked algorithm is compensated by the obstacle avoidance algorithm.

We discovered two areas where discussed improvements would be a major
upgrade to this work; the target localization and the velocity planner. The
obstacle detector package is made for tracking cones on the road but not for
tracking moving vehicles. Replacing the obstacle detector package with a
specialized algorithm would significantly improve the target localization.

To improve velocity planner, a more advanced and elaborate velocity model
would ensure the car accelerates faster and keeps the distance constant with
minimal deviancy. This would help the ego car to keep the distance between
itself and the target constant.
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