
Instructions

The aim of the thesis is to develop a tool to improve the evolvability of study materials at the Faculty of

Information Technology with the application of Normalized Systems theory principles.

Steps:

- Acquaint yourself with the Normalized Systems theory

- Acquaint yourself with the current approaches for creating study materials at our Faculty

- Analyze the requirements for the tool

- Design a solution

- Implement a software prototype solution

- Test and document your solution

 

[1] https://www.uantwerpen.be/en/

[2] https://ds-wizard.org/

Electronically approved by Ing. Michal Valenta, Ph.D. on 22 September 2020 in Prague.

Assignment of master’s thesis

Title: Development of a Tool for Creating Evolvable Study Materials

Student: Bc. Svetlana Ekimova

Supervisor: Ing. Vojtěch Knaisl

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

Master’s thesis

Development of a Tool for Creating
Evolvable Study Materials

Bc. Svetlana Ekimova

Department of Software Engineering
Supervisor: Ing. Vojtěch Knaisl

May 5, 2021

Acknowledgements

I would like to thank my supervisor, Ing. Vojtěch Knaisl, for his help, time and
advice he gave me while I was writing this thesis. I would also like to thank Ing.
Tomáš Kalvoda, Ph.D. and doc. Ing. Štěpán Starosta, Ph.D., for providing
the information I needed to design the solution and for the willingness to
participate in the testing of the thesis product. A special thanks is for Ing.
Tomáš Kalvoda, Ph.D. for cooperating in the design of the tool and creating
the input files for it.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 5, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Svetlana Ekimova. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Ekimova, Svetlana. Development of a Tool for Creating Evolvable Study Ma-
terials. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2021.

Abstrakt

Tato práce se zabývá problematikou údržby studijních materiálů, které vzni-
kají na Katedře aplikované matematiky na FIT ČVUT. Jejím cílem je najít
řešení, jak zvýšit evolvabilitu dokumentů, které jsou poskytovány studentům
jako studijní skripta, a jiných podpůrných materiálů pro výuku matematických
předmětů na fakultě. Řešení je navrženo s použitím principů Teorie normalizo-
vaných systémů. Koncový produkt je prototypem nástroje, který má pomoct
vyřešit hlavní problém současného přístupu ke správě studijních materiálů,
konkrétně inkonzistencím v obsahu mezi jednotlivými typy materiálů.

Klíčová slova evolvabilita, evolvabilní systémy, evolvabilní dokumenty, mo-
dularita, teorie normalizovaných systémů, studijní materiály

Abstract

This thesis addresses the problematics of study materials management. It
focuses on the study materials created at the Department of Applied Mathe-
matics at FIT CTU and its aim is to come up with a solution, how to improve
the evolvability of documents distributed to students as lecture scripts and
other supporting materials for teaching mathematics subjects at the faculty.

vii

The solution is constructed based on the Normalized Systems theory prin-
ciples. The end product is a prototype of a tool that should help to solve
the main issue of the current approach to the study materials management,
namely the inconsistencies in the content between the different study material
types.

Keywords evolvability, evolvable systems, evolvable documents, modular-
ity, normalized systems theory, study materials

viii

Contents

Introduction 1

1 Normalized Systems Theory 3
1.1 The Concept of System Evolvability 3
1.2 Modularity and its Relationship with Evolvability 4
1.3 NST Applications outside Software Systems Domain 5

1.3.1 Document Evolvability 6
1.3.2 Implication for the Tool Implementation 7

2 Current Approaches to Create Study Materials at FIT CTU 9
2.1 WooWoo Documents . 9
2.2 FIT Template . 10

3 Analysis and Design 13
3.1 The General Idea behind the Tool 13
3.2 Tool Requirements . 14

3.2.1 Tool Input and Output 15
3.2.2 Functional Requirements 16
3.2.3 Non-Functional Requirements 17

3.3 Use Cases . 18
3.3.1 UC1: Upload a new relationship list 18
3.3.2 UC2: Display objects 19
3.3.3 UC3: Search for an object 19
3.3.4 UC4: Check for potential additional changes 19
3.3.5 UC5: Confirm that relationships are checked 20
3.3.6 UC6: Delete an object 20

3.4 Use Case Mapping . 21
3.5 Domain Model . 21
3.6 State Machine . 22
3.7 Activity Diagrams . 22

ix

3.7.1 JSON Relationship List Upload 23
3.7.2 Search and Delete an Object 24

4 User Interface Design 27

5 Implementation 31
5.1 Implementation Language and Frameworks 31
5.2 Architecture . 31

5.2.1 Model . 33
5.2.2 View . 33
5.2.3 Controller . 33

5.3 Objects Factory . 34
5.4 Configuration and Logging . 34
5.5 Persisted Objects File Format 34
5.6 Graphical User Interface . 36

5.6.1 Welcome Screen . 36
5.6.2 Upload Screen . 36
5.6.3 Main Screen . 37
5.6.4 Delete Screen . 38

6 Testing 41
6.1 Compatibility Testing . 41

6.1.1 Results . 42
6.2 Unit Testing . 42

6.2.1 Results . 42
6.3 System Testing . 42

6.3.1 Functional Requirements Coverage 43
6.3.2 Non-Functional Requirements Coverage 45
6.3.3 Results . 45

6.4 Usability Testing . 45
6.4.1 Results . 47

Conclusion 49

Bibliography 51

A Acronyms 53

B Contents of enclosed CD 55

x

List of Figures

3.1 Use case diagram . 18
3.2 Domain Model . 21
3.3 Object state machine . 23
3.4 Activity Diagram – Upload a JSON list 25
3.5 Activity Diagram – Search and delete an object 26

4.1 Wireframe – Welcome Window . 27
4.2 Wireframe – Upload Window . 28
4.3 Wireframe – Main Window . 28
4.4 Wireframe – Delete Window . 29

5.1 Class diagram . 32
5.2 Welcome screen . 36
5.3 Upload screen . 37
5.4 Upload screen – invalid file . 37
5.5 Main screen with uploaded data 38
5.6 Delete screen . 39

6.1 Unit testing results . 43

xi

List of Tables

3.1 Use Case Mapping . 21

xiii

Introduction

Evolvability is a term that is being used across different disciplines and de-
scribes, in rough words, the ability of an entity (a population, a system, etc.)
to cope with the changing environment and to adapt to it. In software engi-
neering, a system being evolvable means that it is flexible in terms of intro-
ducing updates and improvements – these changes are neither expensive nor
time-consuming, even if the system is big and complex. The question, how
to create evolvable software systems, is the subject of the Normalized systems
theory. This theory proposes principles of evolvability and modularity, that
can be applied in the process of software development, but also in other do-
mains. An example of such a domain can be the creation and maintenance of
text documents.

The idea that led to the origin of this thesis emerged from the Department
of Applied Mathematics of the Faculty of Information Technology at the Czech
Technical University: the study materials, which are created for mathemat-
ics subjects there, are being distributed to students in different formats that
complement each other, and it is sometimes difficult to keep the contents of
these formats in a consistent form.

The aim of this thesis is to develop a tool, which would help to improve
maintaining the study materials at the faculty, make them more evolvable.
This should be done by applying the principles of the Normalized systems
theory, which are described in the first chapter of the thesis.

The second chapter presents the approaches of how the study materials
for mathematics subjects at FIT CTU are created. These approaches are
analyzed in chapter three, which also defines the requirements for the tool to
be developed, and proposes the tool’s design by creating use cases, a domain
model, a state machine and activity diagrams.

The design of the user interface is developed in the forth chapter, followed
by the implementation (chapter five) and testing (chapter six).

The tool shall serve as a prototype and implement a fundamental idea
for the improvement of the study materials’ evolvability, so that it would be

1

Introduction

possible to expand its functionality in the future. Based on the results of the
tool testing, further steps to be taken for the tool expansion will be discussed
in chapter eight.

2

Chapter 1
Normalized Systems Theory

Normalized Systems Theory (NST) is a discipline that focuses on the ques-
tion, how to design and develop complex systems to make them evolvable and
flexible. NST was created by H. Mannaert, J. Verelst and P. De Bruyn at the
University of Antwerp and its main application domain is currently the devel-
opment of complex software systems – for example, information systems for
business organizations. The Normalized Systems Theory book [1] describes
in detail the theoretical background, the principles, and the possible practical
usage of the theory. The key concepts from the book are presented in this
chapter.

1.1 The Concept of System Evolvability

Before starting to explore what evolvable systems are, it is necessary to define
what evolvability itself does mean. Evolvability is a term that comes from
biology and describes "the ability of a population to produce variants fitter
than any yet existing" [2]. The concept of system evolvability is being devel-
oped since the 1990s and is being applied, inter alia, in the domain of software
engineering.

One of the most significant problems with complex software systems is
the need to maintain them: it is sometimes required to implement a new
feature or replace an obsolete framework with a modern one. Because of the
complexity, such improvements may require an enormous amount not only
of time, but also money. The theory of system evolvability tries to invent
the means how to solve this problem and develop complex systems in a way
that would guarantee the efficiency of their maintenance. There are several
definitions of system evolvability, which are summed up in a study by Borches
and Bonnema [2], and the common trait of all these definitions is mentioning
the ability of a system to deal with changes – in other words, systems should
be adaptable. As an example, a simple but apposite definition by Rowe and

3

1. Normalized Systems Theory

Leaney [3] can be cited: "System evolvability is a system’s ability to withstand
changes in its requirements, environment and implementation technologies".

1.2 Modularity and its Relationship with
Evolvability

As the authors of NST point out, business organizations, which are nowadays
fully dependent on software and information systems, are "in need of evolvable
software systems" [1, p. 126], and the proposed solution to system evolvability
is based on modularity.

Modularity is a concept of decomposing systems into modules – either in
a hierarchical or recursive way [1, p. 22]. Modern software systems are built
with respect to modularity principles: classes and data structures, methods
or functions, libraries and packages are all examples of the modular approach
to developing a software system. The hierarchical structure is most obvious in
the concept of inheritance, which is one of the basic features of object-oriented
programming.

Although introducing modularity principles to a system’s design is sup-
posed to be the way of how to improve the evolvability of a system, it is not
always the case. Changes that are being applied to a system over time usually
lead to the increasing complexity of the system. This process is known as
Lehman’s law: a system that is being continually changed becomes more and
more degraded, which leads to a decrease in its evolvability [1, p. 127].

There are two main rules which are used to design modular systems: low
coupling and high cohesion. Low coupling is a concept of keeping inter-
modular dependencies as low as possible. The high cohesion rule is about
intra-modular dependencies and it tells that elements of a single module should
be related.

Violating these rules may lead to the occurrence of so-called ripple ef-
fects. It means that additional modifications have to be made to a system as
the cause of other modifications – for example, adding a new parameter to a
method would cause the necessity of updating all places in the code where this
method is called. Combinations of such changes in modules performed due
to ripple effects are known as combinatorial effects [1, p. 327]. Combinatorial
effects are then the cause of what is described above as Lehman’s law: main-
taining and evolving a system becomes more demanding. The bigger a system
is, the more time it will require to implement a change. On the contrary, in
a system that is free from combinatorial effects, implementing a change will
take the same amount of time no matter how big the system is.

Normalized Systems Theory tries to come up with a proposition, how
to design modular software systems that are free from combinatorial effects
and thus remain evolvable over time. It works with four design theorems

4

1.3. NST Applications outside Software Systems Domain

which ought to ensure the two rules of modularity (i.e. low coupling and high
cohesion) and provide the stability of a software system:

• separation of concerns,

• data version transparency,

• action version transparency,

• separation of states.

Although these theorems are associated primarily with software engineering,
the ideas behind them are generic enough to be utilized in other domains.

Separation of concerns theorem says that to ensure the stability of a soft-
ware system, each function can only have one task. In other words, the pro-
cessing modules of a system should have only one responsibility, or concern.

Data version transparency is a principle of keeping data structures trans-
parent: if a data structure has several versions, the difference between these
versions should not affect the way of how the data structure is passed to and
processed by a function.

A similar description can be used for the Action version transparency
theorem: a change in a processing function should not affect how this function
is called by other functions.

Applying the Separation of states principle implies that state keeping has
to be ensured when calling a processing function in another function. State
keeping means that states should be stored in separate data structures, so
that functions can access them when necessary.

The last term that should be mentioned in the context of systems modular-
ity is cross-cutting concerns. Cross-cutting concerns are additional function-
alities of a system that cut across the primary functional structure [1, p. 329].
In a software system, these can be for example access controls implemented
in several different functional modules of a system.

1.3 NST Applications outside Software Systems
Domain

The authors of NST suggest that the principles of evolvable modularity have
potential outside information or other software systems’ domain. As an exam-
ple, they give both physical artifacts (like roads and houses built from blocks
or modular transport architectures) and conceptual domains (accounting and
pedagogical systems, electronic or paper documents). As the aim of this thesis
is to improve the evolvability of study materials, we will take a closer look at
treating electronic documents as modular structures in this section.

5

1. Normalized Systems Theory

1.3.1 Document Evolvability

The current approach for managing different versions of a single electronic
document is to store them in document management systems. In these sys-
tems, each document version is kept as a whole document, and it is basically
an opposite to the principle of version control systems used to manage source
codes (e.g. git), where single text lines serve as modules. Both approaches do
not correspond with logical document structures, as almost every text docu-
ment consists "naturally" of modules – which typically are chapters, sections,
paragraphs or blocks of source code.

Managing documents as one single module is the source of ripple effects.
Imagine a study text which is distributed as a PDF file, a web page and a
presentation at the same time: when a definition present in this study text
has to be updated, this must be done at three places, because the text of
the definition is "hard-coded" in each version of the study text separately.
However, if the definition were kept in an independent "reference" document
and referred to from the PDF, the web page and the presentation, the change
in the definition would require only an update of this single "reference".

There are, nevertheless, examples of module-oriented approaches in the
area of text documents. One of such examples is the LATEX system, which
enables to include .tex documents into other ("higher level") .tex documents or
use different layouts and styles for the same text content. Although LATEX has
certain limitations regarding the modularity of created entities, the authors of
NST see a potential of this system for improving the evolvability of documents
[1, p. 471].

The cross-cutting concerns in the domain of modular documents may be,
for example, references from modules to other modules (like sections, figures
or bibliographic entries), or connections between text modules and their prop-
erties (like language or style). Such cross-cutting concerns should be indepen-
dent, which means that changes in features provided by one concern would
not affect the functionality granted by other concerns.

G. Oorts [4] defines evolvable documents as "documents that do not hinder
or limit the application of changes made to their structure or content". He
explains that cross-cutting concerns should be encapsulated in documents in
the same way as they are encapsulated in software systems: there should be
no dependencies between them and they should not affect or be affected by
the base text modules [5].

There are further studies on the document evolvability – for example, [6]
and [7], which propose that the key, how to keep documents evolvable, are the
principles of modularity, separation of concerns and low coupling.

6

1.3. NST Applications outside Software Systems Domain

1.3.2 Implication for the Tool Implementation

To sum up the information provided in this chapter, a solution that is based
on the principles of modularity and the encapsulation of the cross-cutting
concerns should be proposed to comply with the aim of this thesis.

7

Chapter 2
Current Approaches to Create

Study Materials at FIT CTU

The following chapter describes the state of the art of how study materials
at the Department of Applied Mathematics at FIT CTU are created. There
are several types of study texts which are distributed to students mostly in a
digital format: each subject has either its own presentation slides, which serve
as the basis for lectures, or textbooks (scripts); most of the subjects have both.
Besides the scripts and the presentations, which are typically available as PDF
documents, some of the subjects offer exercises in the MARAST system [8]
and youtube videos with recorded lectures.

In this thesis, the focus will be set on text materials, primarily on the
scripts. Generally, LATEX is commonly used. While presentation slides are
generated from .tex files, the source files for creating the PDF scripts are in a
special WooWoo document format, to which the following section is dedicated.

2.1 WooWoo Documents

WooWoo documents are text files with a .woo extension. These files serve
as input for a special program1, which processes them and generates a text
output in the given format (PDF or HTML). Universal WooWoo format has an
abstract structure, which can be specified by templates. The "FIT template"
is the realization used at FIT CTU.

The following description of the WooWoo format is based on the WooWoo
Specs [9] and deals with the general document structure. For the detailed
syntax description, refer to [9].

Each WooWoo document, regardless of template specifications, consists of
document parts with a type, a title and optional meta-blocks. The structure
is hierarchical: document parts can contain sub-parts and so on.

1The program is called WooWoo and is developed by Ing. Tomáš Kalvoda, Ph.D.

9

2. Current Approaches to Create Study Materials at FIT CTU

Document parts are further split into blocks (text-blocks) and objects.
Each part is separated by at least two empty lines. WooWoo objects have
a type, optional meta-blocks and a body. The body of an object is made of
blocks. Blocks, which are consistently indented lines of text that may have
so-called inner environments and be combined with outer environments, can
thus be a part of an object or a stand-alone element in a document.

Inner environments serve to annotate small parts of the text (e.g. refer-
ences or footnotes) and are written directly in text-blocks. Outer environ-
ments, on the contrary, resemble with their structure WooWoo objects and
are suitable for larger parts of a text, like for example equations.

2.2 FIT Template
The FIT template defines the following document parts:

• Chapters

• Sections

• Subsections

with one obligatory meta-data field label.
Object types specified by the template are currently ten:

• Definition

• Theorem

• Lemma

• Proof

• Corollary

• Remark

• Example

• Question

• Figure

• Table

Meta-data fields for most of the objects are label, title and index.
The FIT template defines further a range of inner and outer environments,

as for example .cite, which is used to refer to external sources, or .footnote
to create a footnote (inner environments), .equation to write mathematical
equations or .caption to create a caption for the Figure and Table objects
(outer environments).

An example of a FIT template chapter follows:

10

2.2. FIT Template

. Chapter T i t l e o f the chapter
l a b e l : chapter_label_1

. Sec t i on T i t l e o f the s e c t i o n
l a b e l : s ect ion_labe l_1

This i s the beg inning o f a block .
In the FIT template , such b locks are cons ide r ed to be
paragraphs o f t ex t .
Here i s the end o f the block , another b lock i s in
. r e f e r e n c e : subsect ion_labe l_1 .

. D e f i n i t i o n :
l a b e l : example_de f in i t ion
t i t l e : An example o f a De f i n i t i o n ob j e c t
index : d e f i n i t i o n ! example

This i s a De f i n i t i o n ob j e c t .
The l i n e s with in ob j e c t s are c o n s i s t e n t l y indented .
Index f i e l d i s used to bu i ld an index o f not ions .

. Subsect ion T i t l e o f the subs e c t i on
l a b e l : subsect ion_labe l_1

This b lock has an inner environment " some text " . quoted
which puts quotat ion marks around the words [some text] .

. Example :

This i s an Example ob j e c t . The ob j e c t has no metadata
f i e l d s , as they are op t i ona l .

. enumerate :

∗ Item
∗ Another item

Above i s an example o f " enumerate " outer environment ,
which c r e a t e s enumerated l i s t s .

11

Chapter 3
Analysis and Design

The aim of the tool which is subject to this thesis is to improve the evolv-
ability of the study materials created for the mathematics subjects at FIT
CTU. As mentioned in the previous chapter, these materials include not only
scripts and presentations, but also video recordings of lectures and tutorials
as well as exercises available through the MARAST web pages. The first part
of this chapter analyzes the problems of the current approach and defines
requirements for the tool. In the second part of the chapter, use cases, ac-
tivity diagrams, an object state machine and a domain model of the tool are
discussed.

The following section presents the problem identification and general tool
requirements that arose from the discussion with Ing. Tomáš Kalvoda, Ph.D.
and doc. Ing. Štěpán Starosta, Ph.D. from the Department of Applied Math-
ematics.

3.1 The General Idea behind the Tool
The problem with the current approach is that it is hard to maintain the study
materials in a consistent form. For example, when a definition of a term is
changed, this change might require updates in other entities, like exercises
or figures, which refer to the term. However, to perform such additional
updates, one has to search through the materials for the references to the
changed definition. If an exercise that should be updated were accidentally
left out, this would create an inconsistency between the definition and the
exercise.

This is an evolvability obstacle that must be distinguished from the one
described in section 1.3: it is not about how to avoid modifying the same def-
inition at three different places, but how to determine, where changes caused
by another change have to be made. Although there is a certain duplication
of study materials (for example, presentation texts are often identical – or at
least very similar – with significant parts of textbooks), it is not required to

13

3. Analysis and Design

unify such identical parts throughout all the types of study materials. On
the contrary, it is sometimes desired to have the same content in a slightly
modified form depending on where this content is placed (a presentation, a
script, etc.) – for example, due to stylistic reasons.

The general idea of the tool to be developed is that it should be able to
bind objects2 present in study texts with references to them. This should be
done on two levels:

1. the level of a single document (e.g. scripts for a subject),

2. the level of all study materials created for a subject – and possibly other
subjects, so that one would be able to track references from subject A
to an object in subject B.

The tool must be able to store the relations between objects (i.e. which
objects refer to a particular object, or which objects a particular object points
to) and track changes made to objects. When a change to an object is detected,
the tool must point the user to all the objects that might be affected by this
change.

3.2 Tool Requirements
The tool to be developed is a prototype and will focus on the relations between
objects on the level of a single document. However, the tool shall be designed
in a way that it would be possible to extend the functionality to the inter-
subject level and to support different types of study materials. The type
that has been chosen as the basis for the prototype are text scripts – for the
following reasons:

• among all the study material types, it has the richest structure in terms
of the number of objects and references between them;

• the source files for the scripts are in the WooWoo format, which has a
naturally modular structure (with modules being WooWoo objects and
text-blocks);

• a further advantage of WooWoo files is that the program processing them
and outputting PDF or HTML documents is capable of generating a list
of relations that can be found within the produced document – this list
will be described later in the section.

The idea applied on WooWoo documents can easily be transferred to LATEX
documents, which are used to create presentation slides, as these documents
can be split into modules that would correspond with the WooWoo objects
and blocks.

2"Objects" denote in this thesis entities like definitions, theorems, examples, etc.: they
correspond with WooWoo objects defined by the FIT template – see section 2.2.

14

3.2. Tool Requirements

3.2.1 Tool Input and Output

As mentioned earlier, the WooWoo program can generate a list of object
relationships – this is done based on the .reference inner environment. The
list is in JSON format [10] – it is a JSON array with a data key containing
JSON objects with the following structure:

{
"title": "Study Subject Name",
"code": "BI-SSN",
"timestamp": "2021-05-04 12:01:02 +0200",
"data": [

{
"type": "Definition",
"label": "definition_1",
"title": "Example of a Definition",
"filename": "file_1.woo",
"line": 10,
"hash": 098765432109876543,
"points_to": [

],
"referenced_by": [

"Example.1.123456789012345678"
],
"content": "This is a definition."

},
{

"type": "Example",
"label": "Example.1.123456789012345678",
"title": "",
"filename": "file_2.woo",
"line": 22,
"hash": 123456789012345678,
"points_to": [

"definition_1",
"Example.2.567890123456789012"

],
"referenced_by": [

"Example.3.789012345678901234"
],
"content": "This is an example."

}
]

}

15

3. Analysis and Design

In the above example, there are two JSON objects that represent two
WooWoo objects in a study text: the first one is a Definition object and the
second one is an Example object, which is reflected in the JSON object’s
element with the key type. The currently supported types are: Definition,
Theorem, Lemma, Corollary, Proof, Example, Remark and Paragraph (which
stands for the WooWoo text-block).

The key label corresponds with the meta-data field label defined by the
WooWoo FIT template. If this field is not present, the label value is generated
as [ObjectType.Index.Hash] – as shown in the Example object.

The key title corresponds with the meta-data field title. If this field is not
present, the value is an empty string.

The filename element value contains the name of the file, and line is the
line number in the file, where the object is to be found.

hash is a hash value of the WooWoo object contents – this value shall serve
to determine, whether the object has been modified.

The points_to array is a list of object labels that the object refers to.
In the given example, "definition_1" does not refer to any object, and "Ex-
ample.1.123456789012345678" refers to the Definition "definition_1" and an
Example "Example.2.567890123456789012".

The referenced_by array is a list of object labels that refer to the object. In
the example, "definition_1" is referenced by "Example.1.123456789012345678",
which is referenced by "Example.3.789012345678901234".

Text contents of the object are stored under the content key.
Besides the data JSON array, there are also "global" title, code and times-

tamp key-value pairs in the JSON file. title is the name of the subject, for
which the study text is created, and code is its faculty code. timestamp is the
date when the JSON list was generated, in a (yyyy-MM-dd HH:mm:ss Z) date
format.

The input for the tool shall thus be a JSON file with a relationship list as
described above.

The output will be a list of changed objects together with their relation-
ships – i.e. those objects which reference the modified object.

3.2.2 Functional Requirements

This section defines functional requirements that the tool must meet.

Func-01: Input Data Format
The tool shall be able to process JSON relationship lists generated by the
WooWoo program and store the contents of such lists in its internal object
representation.

Func-02: Object Persistence
The tool shall store objects parsed from the input JSON relationship list, if

16

3.2. Tool Requirements

they are not already present in the tool’s database. Objects shall be uniquely
identified by the label, which shall be identical with the label value of the
JSON object.

Func-03: Object Presentation
The tool shall display objects from its database to the user.

Func-04: Object Search
The tool shall support searching for objects by their label and title.

Func-05: Object Versions Comparison
The tool shall compare the hash of the object processed as input against the
hash of the internally stored object with the same label, if such is present. If
the hash values differ, the tool shall consider the object as "modified".

Func-06: Changes Presentation
The tool shall present to the user the objects that have been marked as "mod-
ified" together with a list of objects that reference the changed object. The
presented information about the objects shall contain, at a minimum, the fol-
lowing: object type, label and title (if not empty) as well as the name of the
file where the object is placed.

Func-07: Changes Confirmation
The user shall be able to confirm that they have checked the objects related
to the "modified" object and want to proceed.

Func-08: Object Deletion
The user shall be able to delete objects from the tool’s database.

3.2.3 Non-Functional Requirements

In this section, non-functional requirements for the tool are determined.

Nonfunc-01: Target platform
The tool shall run on desktop and laptop devices with installed JVM.

Nonfunc-02: User Interface
The tool shall support graphical user interface.

Nonfunc-03: Logging
The tool shall log important events, warnings and errors, and store the log file
in the tool’s working directory.

17

3. Analysis and Design

3.3 Use Cases

The section defines the use cases that are summarized in the Use Case diagram
in the figure 3.1.

Figure 3.1: Use case diagram

3.3.1 UC1: Upload a new relationship list

The use case enables the user to upload JSON relationship lists generated by
the WooWoo program into the tool.

Actors: User

Precondition: A new JSON relationship list exists. This can be a com-
pletely new list (e.g. for a newly added subject) or a list generated after
certain changes to source files have been performed.

Basic Flow:
1. The user uploads a JSON relationship list.
2. The tool processes the list and stores its contents.

18

3.3. Use Cases

3. The tool notifies the user that the list has been uploaded.

Post-condition: Objects from the uploaded relationship list are stored in
the tool’s database.

3.3.2 UC2: Display objects

The use case enables the user to display objects from the tool’s database.

Actors: User

Precondition: There are objects persisted in the tool’s database.

Basic Flow:
1. The user displays the list of object labels.
2. The user selects a label from the list.
3. The tool displays the object’s data – such as type, title, filename, contents
and relationship lists.

3.3.3 UC3: Search for an object

The use case enables the user to search for objects in the tool’s database by
their label or title.

Actors: User

Basic Flow:
1. The user chooses if the search shall be performed by label or by title.
2. The user enters the label (title) of the object that they want to search for.
3. The tool displays the found object(s) to the user.

Alternative Flow:
3.1. There are no objects meeting the search criteria in the tool’s database –
the tool displays a message that no objects were found.

3.3.4 UC4: Check for potential additional changes

The use case enables the user to check if objects referring to a modified object
have to be changed as well.

Actors: User

Precondition: A JSON relationship list has been generated after some changes
to source files have been made, and this list is uploaded into the tool (see UC1).

19

3. Analysis and Design

Basic Flow:
1. The tool detects a change in an object and marks it as "modified".
2. The tool notifies the user of a change in the object and shows them object
relationships that might be impacted by the change.
3. The user checks the relationships and performs updates if necessary.

Post-condition: The contents of the changed object and its relationships
are in a consistent state.

3.3.5 UC5: Confirm that relationships are checked

The use case enables the user to confirm that they have checked the relation-
ships of a modified object and made necessary updates.

Actors: User

Precondition: The user has checked the relationships of the modified ob-
ject presented by the tool.

Basic Flow:
1. The tool prompts the user to confirm that they have checked the relation-
ships.
2. The user confirms the relationships are checked.
3. The tool marks the object as "checked".

Post-condition: The tool no longer notifies the user about the modified
object, if it has been confirmed as "checked".

3.3.6 UC6: Delete an object

The use case enables the user to delete an object that is no longer present in
study materials.

Actors: User

Precondition: The object to delete exists in the tool’s database.

Basic Flow:
1. The user selects the object from the list of stored objects.
2. The user clicks on the delete button.
3. The tool asks to confirm the deletion.
4. The user confirms the deletion.

20

3.4. Use Case Mapping

Alternative Flow:
1.1. The user searches for the object by label or title.

Post-condition: The object is deleted from the tool’s database.

3.4 Use Case Mapping

Table 3.1 summarizes the mapping of the use cases to the functional require-
ments listed in the section 3.2.2.

UC1 UC2 UC3 UC4 UC5 UC6
Func-01 +
Func-02 +
Func-03 +
Func-04 +
Func-05 +
Func-06 +
Func-07 +
Func-08 +

Table 3.1: Use Case Mapping

3.5 Domain Model

This section explains the design of the domain model, which is shown on the
figure 3.2.

Figure 3.2: Domain Model

21

3. Analysis and Design

GeneralObject is an abstract entity with four attributes: label, title, subject
and state. The attributes label and title shall be mandatory for every object
stored by the tool – so that the user can search for objects based on these
attributes. The title attribute may be an empty string, whereas label cannot
be empty. Every GeneralObject instance comes from a specific study subject,
which is reflected by the subject attribute. The state attribute keeps the
current state of the object. Each GeneralObject may point to or be referenced
by any other GeneralObjects.

TextObject represents an object in a text document, i.e. a WooWoo or
a LATEX source file. The attributes type, hash, filename, line and content
correspond with the key-value pairs of objects in a JSON relationship list.
These attributes are considered text-document specific, and thus are not a
part of the abstract GeneralObject.

In the future, the model shall be extended to contain entities like Maras-
tObject for exercises from the MARAST system and VideoObject for video
recordings of lectures – these entities are grayed out, as they are not in the
scope of the tool prototype.

3.6 State Machine

Figure 3.3 shows the possible states of GeneralObject entities (further refer-
enced simply as objects). When a new object is parsed from a JSON relation-
ship list and saved to the tool’s database, it is in the stored state.

If an object parsed from a JSON relationship list is already stored and a
change in the object’s contents is detected, the object transfers to the modified
state. The user is notified about modified objects and should check their
relationships.

After the user has checked the relationships and performed necessary
changes, they confirm this, and the object moves to the checked state.

When the user finishes checking the objects, they save the changes, and
the checked objects move back to the stored state. If there are any modified
objects left upon saving the changes, these objects remain in the modified
state.

If the user wants to delete an object from the tool’s database and the
object’s "referenced by" list is not empty, the object is not removed from the
database right away, but moved to the deleted state. After all references to
the deleted object have been removed, the object is erased from the database.

3.7 Activity Diagrams

In this section, two workflows are presented. They describe the process of how
objects are uploaded into the tool from a JSON relationship list and how the
user can search for an object and delete it.

22

3.7. Activity Diagrams

Figure 3.3: Object state machine

3.7.1 JSON Relationship List Upload

The first workflow, uploading a JSON relationship list, can be seen in figure
3.4.

In this workflow, the user first generates a JSON relationship list and
uploads it into the tool. The tool parses single objects from the list. The first
expansion region3 describes actions and states of each parsed object.

If the parsed object is not yet in the tool’s database, the object is stored
and the tool proceeds to parsing another object.

If the parsed object is already in the database and its contents have not
changed, no actions to the object are taken.

If the object’s contents are different from the ones stored in the database,
the object is marked as modified and the user is notified that they should
check the object’s relationships. The user can either skip checking the object
– then it remains in the modified state, or check it and perform necessary
updates to its relationships.

After the user has checked the object, they confirm it and the object moves
to the checked state. It remains in this state until the user finishes working

3Expansion regions execute actions over a collection of values. The iterative mode means
that the actions are performed in an iterative way[11].

23

3. Analysis and Design

with the tool and saves the performed changes. Upon saving the changes, the
checked objects transfer to the stored state and their contents are updated in
the tool’s database, as shown in the second expansion region.

3.7.2 Search and Delete an Object

The second workflow in figure 3.5 describes object search and deletion.
The user can choose whether they want to search by label or title, then

they enter the keyword they want to search for. If no results in the database
match the keyword, a "No results found" message is displayed.

If an object is found and the user wants to delete it, and the object’s
"referenced by" list is empty, the object is removed from the database. If the
"referenced by" list is not empty, the object is moved to the deleted state.
The user can then change the objects that reference the deleted object and
re-upload an up-to-date JSON relationship list, so that the deleted object’s
references are updated. A deleted object with an empty "referenced by" list is
erased from the database.

24

3.7. Activity Diagrams

Figure 3.4: Activity Diagram – Upload a JSON list
25

3. Analysis and Design

Figure 3.5: Activity Diagram – Search and delete an object

26

Chapter 4
User Interface Design

The tool shall support Graphical User Interface. The chapter presents the
graphical design of the tool.

Figure 4.1 shows a Welcome Window wireframe. This is the first window
that shall be displayed when the tool is started. The user can choose from
two actions: either upload a JSON relationship list or go to the Main Window
and browse the stored objects.

Figure 4.1: Wireframe – Welcome Window

If the user chooses to upload a JSON list, the Upload Window (see figure
4.2) is displayed. The user can then choose the path to upload the JSON list
from. After the list has been uploaded, the Main Window is displayed.

The Main Window is shown in figure 4.3. It is divided into two parts:
the left part is the list of the stored objects, the right part contains a search

27

4. User Interface Design

Figure 4.2: Wireframe – Upload Window

panel and a text panel where the contents of a selected or found object are
displayed.

Figure 4.3: Wireframe – Main Window

The objects in the list are represented by a string <label> (<title>), or
just <label>, if the object’s title is empty. They can be selected by clicking
on them – then the object’s contents are displayed in the text panel. If an
object is selected in the list, the Delete Object button becomes enabled and
the user can delete the selected object.

28

The state of an object is reflected by its color in the object list:

• black color means the object is stored;

• blue color means the object is modified;

• green color means the object is checked;

• gray color means the object is deleted.

If an object is in the modified state, a checkbox right from its label in
the object list is enabled. The user selects the objects they have checked
(meaning they have controlled and updated their relationships) by clicking on
the checkbox. They confirm checking the object(s) by clicking the Confirm
Checking button. After the user has finished controlling the objects, they click
on Save Changes button.

To search for an object, the user shall choose from the label/title options
and enter the keyword they want to search for. If an object is found, it will
be displayed in the text panel.

When the user clicks on the Delete Object button, a confirmation prompt
(figure 4.4) is shown.

Figure 4.4: Wireframe – Delete Window

29

Chapter 5
Implementation

The chapter provides the details of how the tool, called RefTool, was imple-
mented.

5.1 Implementation Language and Frameworks

The tool source code is written in Java using a JDK version 14. To define the
tool’s dependencies, build and deploy the tool, Gradle Build Tool v7.0 [12]
was used.

Following plugins and dependencies are defined in the build.gradle file:

• org.openjfx.javafxplugin for the JavaFX plugin required to run the
tool’s UI [13].

• com.google.code.gson for the Gson library that is used to convert Java
objects to JSON objects and vice versa [14].

• junit for the JUnit test framework which enables developers to create
and run unit tests [15].

5.2 Architecture

The tool’s architecture follows the Model-View-Controller design pattern. When
the tool is launched, an instance of the Tool class extending the JavaFX Ap-
plication class is created. In the overridden Application::init() method, the
ToolModel is initialized and the data from the object’s persistent storage are
loaded.

Figure 5.1 shows the class diagram (generated by IntelliJ IDEA IDE; most
of the dependencies are not shown for the sake of simplicity).

31

5. Implementation

Figure
5.1:

C
lass

diagram

32

5.2. Architecture

5.2.1 Model

The ToolModel class is a singleton implementing an IObservable interface to
notify classes in the View layer (that implement an IObserver interface) about
the changes in the Model – these notifications follow the Observer behavioral
design pattern. The ToolModel is responsible for transforming instances of
GeneralObject class children into JSON objects and backwards, loading the
JSON objects into and from the tool’s persistent storage, saving user changes
and deleting objects. It also provides an API to list objects, perform searching
by label and title in the list of objects or filter objects by state.

GeneralObject is an abstract class representing all the stored objects. In
the current tool prototype, its only child is the TextObject class which stores
objects parsed from WooWoo-generated JSON files. GeneralObject defines
methods to get an object description or location, update object’s contents or
transform object’s attributes into JSON data – all based on the object’s real
class. It is further responsible for listing object’s relationships and checking
the state of an object.

5.2.2 View

There are four View classes in the tool that correspond with the application
windows as they were proposed in the User Interface design: WelcomeView,
UploadView, MainView and DeleteView. The View classes define the scene
layout using JavaFX UI elements. The UI elements handle user actions by
passing them to Controller classes.

The MainView class, which serves to display object data to the user, re-
sponds to changes in the Model by updating the UI elements representing the
objects.

5.2.3 Controller

Each View class has a Controller class associated with it. When a user action
is registered and an action on the tool model’s data needs to be performed,
this is handled by a Controller.

UploadViewController validates the input of the Path-to-Json-File bar and
passes data to a factory that creates an object.

MainViewController triggers object’s state changes and handles saving the
changes.

DeleteViewController calls Model methods that delete the selected object
or all objects based on which user action was performed.

33

5. Implementation

5.3 Objects Factory

The ObjectsFactory class serves to implement the Factory creational design
pattern. It provides methods to create instances of GeneralObject child classes
from the data saved in the tool’s persistent storage and from the data parsed
from a JSON input file.

5.4 Configuration and Logging

The ToolConfiguration class is used to store tool configuration data, like the
path to the file with saved objects and the log file.

ToolLogger is a class that sets up a java.util.logging.Logger instance
and provides simple methods to log Info, Warning and Error messages into
the log file.

5.5 Persisted Objects File Format

The tool’s "database" is a JSON file with a root element representing the data
that was saved by the user. It contains three elements:

• a JSON object jsonPath with the path to the last uploaded JSON input
file;

• a JSON object timestamp with the timestamp from the last uploaded
JSON input file;

• a JSON array objects with saved object data.

Comparing to the JSON objects of the JSON input file, the tool’s internal
JSON objects several additional values:

• class, which is the object’s class in the tool implementation;

• subject, which is the study subject that the object is parsed from;

• state, which is the object’s state upon saving the changes;

• previousContent, which is the object’s previous content. It is an empty
string unless the object is modified.

An example snippet from the file follows:

34

5.5. Persisted Objects File Format

{
"jsonPath": "/home/user/bi-zma.json",
"timestamp": "2021-04-30 14:37:14 +0200",
"objects": [

{
"class": "TextObject",
"subject": "Základy matematické analýzy (BI-ZMA)",
"label": "Theorem.22.-4268866053640503722",
"title": "Vlastnosti obecné mocniny",
"state": "Stored",
"textObjectType": "Theorem",
"filename": "03-rady.woo",
"line": 777,
"hash": 4268866053640503722,
"content": "(Text of the theorem)",
"previousContent": "",
"points_to": [],
"referenced_by": []

},
{

"class": "TextObject",
"subject": "Základy matematické analýzy (BI-ZMA)",
"label": "def_limita_posloupnosti",
"title": "Limita posloupnosti",
"state": "Deleted",
"textObjectType": "Definition",
"filename": "02-posloupnosti.woo",
"line": 407,
"hash": 4045706248800058517,
"content": "(Text of the definition)",
"previousContent": "",
"points_to": [],
"referenced_by": [

"veta_jednoznacnost_limity",
"paragraph.491.3439574107469921445",
"paragraph.490.-4185148331242362374",
"Proof.6.2283156093901435788",
"paragraph.337.-2325975530685237404",
"paragraph.226.-3807412196376826373"

]
}

]
}

35

5. Implementation

5.6 Graphical User Interface

This section describes the UI control elements and their purpose. It can also
serve as a user guide that explains how to work with the RefTool.

5.6.1 Welcome Screen

When the tool is started, the user sees the Welcome screen (figure 5.2). It
prompts the user to choose an action that they want to perform: either upload
a new file with a JSON relationship list ("Upload JSON list" button) or go to
the main screen to work with the tool’s persisted objects ("Browse / Search
objects" button).

Figure 5.2: Welcome screen

5.6.2 Upload Screen

If the user clicks on the "Upload JSON list" button, the Upload screen (figure
5.3) is displayed. The screen provides a text field for entering the path to a
JSON file to be uploaded and a button to select the file from the file system
("Select JSON"). To upload the selected file, the user should click the "Upload"
button. The tool parses the given JSON file and transits to the Main screen.

If the "Cancel" button is clicked, the application returns to the Welcome
screen.

If an invalid path is chosen or the selected file is not a JSON file, an error
message (figure 5.4) is displayed.

36

5.6. Graphical User Interface

Figure 5.3: Upload screen

Figure 5.4: Upload screen – invalid file

5.6.3 Main Screen

The Main screen (figure 5.5) is divided into four areas: the top panel, the
object list on the left side, the object field on the right side and the bottom
panel with buttons.

The top panel serves to filter and search objects. On the left side, there
is a "filter" drop-down menu that enables the user to filter the object list by
state. On the right side, there is a search bar with radio buttons to choose
searching by label or by title and a text field to enter a keyword to search for.

The left panel with the object list displays all objects stored in the tool’s
"database" in the format "label (title)" or "label" (if no title is present). The
user can click on the object to display its contents in the object field. The ob-
ject states are distinguished by colour: black objects are in the stored (neutral)
state, blue objects are modified, green objects are checked and gray objects
are deleted.

If an object is in the modified state and the user wants to mark it as
checked, a checkbox on the left side of the object should be clicked. If the user

37

5. Implementation

Figure 5.5: Main screen with uploaded data

has checked several objects, they mark all these objects with checkbox ticks.
Modified objects that have been checked transit to the checked state after the
user clicks the "Confirm checking" button.

If an object is selected, the "Delete object" button becomes displayed. This
button serves to notify the tool that the object has been removed from the
source texts and shall no longer be stored. There are two options: if the
deleted object has no "referenced by" relationships, the object is deleted from
the tool’s "database" right away, otherwise it transits to the deleted state. This
is to notify the user that there might be obsolete references to the removed
object in the source texts that should be checked.

The "Delete all objects" button clears the whole object list.
If the user clicks the "Upload new JSON list" button, the Upload screen is

displayed and the user can upload a new JSON file.
When the user finishes working with the tool, they should save their

changes by clicking the "Save changes" button – otherwise, they would not
be written into the "database". If the user wants to close the program without
saving the changes, a warning message is displayed.

5.6.4 Delete Screen

The Delete screen (figure 5.6)is to confirm the action when the user clicks
on the "Delete object" or "Delete all objects" button. If the user cancels the

38

5.6. Graphical User Interface

action, the application returns to the Main screen.

Figure 5.6: Delete screen

39

Chapter 6
Testing

The implemented tool was tested to identify issues and bugs. Following test
types were performed4:

• Compatibility testing to verify that the application can run on different
operating systems;

• Unit testing to verify the correct behaviour of the implemented methods;

• System testing to verify that the tool meets the defined requirements;

• Usability testing to verify that the tool’s UI is easy to operate.

Test setup, procedures and results of the executed tests are described in
the following sections.

6.1 Compatibility Testing
The tool requires a Java SDK of version at least 14 and a JavaFX distribution
to run the UI components. If the following requirements are met, the tool
shall be able to run on any desktop operating system.

The tool was run on the following OS versions:

• Ubuntu 20.04.2;

• Linux Mint 19 Cinnamon;

• Windows 10 Home Edition.

On each system, the environment variable JAVA_HOME was set to point to
a Java SDK that meets the tool requirements. Used JDKs:

4For a precise test types definition, refer to [16].

41

6. Testing

• OpenJDK 15 [17]

• JavaFX 11.0.2 [13]

To run the tool, the launch script distributed together with the tool bina-
ries (reftool for Unix-like systems and reftool.bat for Windows OS) was exe-
cuted.

6.1.1 Results

The tool was successfully launched on both Linux operating systems. The
launching on Windows OS resulted in an exception caused by inability to find
a Java class used by JavaFX. To fix the issue, a JDK distributed together
with JavaFX was used instead of the initial OpenJDK 15 + JavaFX 11 setup:
Zulu OpenJDK Java package "JDK FX" of version 15 [18]. After performing
this change, the launch script was able to start the tool.

Except for the mentionedWindows JavaFX issue, no anomalies were found.
Compatibility test passed.

6.2 Unit Testing

Unit tests to verify the expected method behaviour were created and run with
usage of the JUnit [15] framework.

The tests cover:

• the tool configuration setup;

• the ToolModel class methods used to list objects and to filter objects by
state, label and title;

• the GeneralObject and TextObject class methods used to create objects,
get their contents and modify them.

6.2.1 Results

All tests passed, as the execution summary in figure 6.1 shows.

6.3 System Testing

Verification that the tool meets the requirements defined in sections 3.2.2 and
3.2.3 was performed.

42

6.3. System Testing

Figure 6.1: Unit testing results

6.3.1 Functional Requirements Coverage

Func Test Case 01: Input Data Format
- Started the tool and uploaded a JSON relationship list generated as the
WooWoo program output.
- Verified that the tool displays the objects parsed from the JSON relationship
list.
- Saved changes and exited the tool.
- Verified that a file $(HOME)/reftool/tooldata/objects.json was created and
contains the parsed objects.

Func Test Case 02: Object Persistence
- Started the tool and uploaded a new JSON relationship list with the same
contents as in TC 01 except for one newly added object.
- Verified that each object has a label presented to the user in the object’s list.
- Verified that the newly added object is displayed by the tool.
- Verified that the previously added objects are not duplicated.
- Saved changes and exited the tool.
- Verified that the contents of the reftool/tooldata/objects.json were updated
with the new object.

Func Test Case 03: Object Presentation
- Started the tool and navigated to the Main Window.
- Verified that the objects displayed in the tool’s object list correspond in their
contents with the ones stored in reftool/tooldata/objects.json.

Func Test Case 04: Object Search
- Selected "label" radio button in the search panel and typed "Definition" into
the keyword bar.
- Verified that the tool filters the displayed objects to the ones that contain
the "Definition" word in their label.

43

6. Testing

- Typed "thm" into the keyword bar.
- Verified that the tool filters the displayed objects to the ones that contain
the "thm" string in their label.
- Selected "title" radio button in the search panel and typed "li" into the key-
word bar.
- Verified that the tool filters the displayed objects to the ones that contain
the "li" string in their title.

Func Test Case 05: Object Versions Comparison
- Uploaded a new JSON file based on the original JSON relationship list, but
with several objects having their hash value changed.
- Verified that the objects with the updated hash changed their colour to blue.
- Set filter to display the Modified objects.
- Verified that only the objects with the updated hash are displayed.

Func Test Case 06: Changes Presentation
- Selected one of the Modified objects that has a non-empty "points_to" list.
- Verified that the "points_to" list is displayed and contains information about
the objects pointing to the selected object.
- Selected one of the Modified objects that has a non-empty "referenced_by"
list.
- Verified that the "referenced_by" list is displayed and contains information
about the objects pointing to the selected object.

Func Test Case 07: Changes Confirmation
- Selected an object from the Modified list.
- Clicked the checkbox button next to the object to indicate that the object
was checked.
- Clicked the "Confirm checking" button to confirm checking the object.
- Verified that the object moved from "Modified" to "Checked" state.

Func Test Case 08: Object Deletion
- Selected an object without "referenced by" relationships from the objects list.
- Clicked on the "Delete object" button.
- Confirmed the deletion.
- Verified that the object is no longer in the database.
- Selected an object with "referenced by" relationships from the objects list.
- Clicked on the "Delete object" button.
- Confirmed the deletion.
- Verified that the object was moved to the Deleted state.

44

6.4. Usability Testing

6.3.2 Non-Functional Requirements Coverage

Non-Func Test Case 01: Target Platform
- The coverage of this requirement was performed as part of the Compatibility
testing.

Non-Func Test Case 02: User Interface
- Verified that upon launching the tool, an instance of the class extending the
JavaFX Application class [13] is created and the tool’s UI is displayed.

Non-Func Test Case 03: Logging
- Verified that the tool logs messages of the Info, Warning and Error level into
the tool’s log file reftool/ref_tool_log.log

6.3.3 Results

All tests verifying the coverage of the functional and non-functional require-
ments passed.

6.4 Usability Testing
To test the usability of the tool and its interface, Ing. T. Kalvoda, Ph.D. and
doc. Ing. Š. Starosta, Ph.D. were asked to execute a simple usage scenario.
The test scenario steps are as follows:

1. Run the RefTool.

2. Upload bi-zma.json into the RefTool.

3. Display the object with the label "Definition.30.".

4. Search for the object with the label "thm_odhad_zdola".

5. Search for the object(s) that have title containing the word "funkce".

6. Upload bi-zma_upd.json into the RefTool.

7. Display objects in the Modified state.

8. Mark any Modified object as Checked and confirm checking.

9. Display objects in the Checked state.

10. Delete the object "Example.1.".

11. Delete the object "defi_inverze".

12. Display objects in the Deleted state.

45

6. Testing

13. Delete all objects.

14. Save changes and exit the RefTool.

The tool was distributed to the testers together with bi-zma.json and bi-
zma_upd.json files. The bi-zma.json file contains the original version of the
JSON list generated by the WooWoo program from BI-ZMA subject scripts;
bi-zma_upd.json is an updated version of the original file, which has four
objects with modified hash – this should simulate a scenario when the user
changes these objects, re-generates the JSON relationship list and uploads it
into the tool.

After performing the test scenario steps, the testers were asked to answer
following questions:

A) Evaluate on scale 1–5 (1 = excellent, 5 = bad/faulty) and give the reason
for the mark:

1. Simplicity of the interface (is it intuitive?);

2. Tool usage convenience (uploading files, searching, deleting);

3. Displayed object information (clarity, completeness).

B) Provide any remarks you might have on how to improve the tool.

The answers to the questionnaire are cited below.

Ing. T. Kalvoda, Ph.D.:
A1)
Given Mark: 3
Commentary: I was a little bit unsure about what each button (at the bottom
of the window) does, and I understood the meaning of the colours in retro-
spect. The "state" of an object could be written somewhere in words.

A2)
Given Mark: 2
Commentary: It seemed good to me. The only thing, when uploading the sec-
ond file, it could remember the directory from where the first file was uploaded.

A3)
Given Mark: 3
Commentary: I would add the information about the state of the object (I
could maybe miss it), and I would probably graphically modify the description
in the right part of the window a little bit (for example some parts in bold –
title, label?), to distinguish them from the remaining plain content.

46

6.4. Usability Testing

It would also be fine to display the changes, I didn’t notice them there. Mean-
ing how the new and the old version differ.

B)
(No commentary provided.)

doc. Ing. Š. Starosta, Ph.D.:
A1)
Given Mark: 2
Commentary: Names of some buttons are slightly confusing and do not cor-
respond with what one would intuitively expect. For example, "Upload JSON
list" confuses with the word "list". "Deleted" are not all deleted objects, but
only the ones that are referenced. In the main window, the data items are not
graphically distinguished, so for example "Previous contents" may be "hidden"
in the preceding "Contents", that may also have empty lines.

A2)
Given Mark: 1
Commentary: I didn’t know, how exactly the tool usage is intended to be,
so I wasn’t sure about the purpose of some behaviour; however, the whole
functionality didn’t have any issues. A checkbox is next to every object; I
didn’t have trouble understanding that it is a control element, but I can also
imagine that someone would not notice it.

A3)
Given Mark: 2
Commentary: After the file is uploaded, there is no sign of its version + ver-
sion of the previous data state which is being compared against.

B)
It would be useful to show data versions (previous and current) and highlight
item titles within the object data text field (i.e. graphically separate Type,
File, Contents, Previous contents, etc.).

6.4.1 Results

The testers did not seem to have any significant troubles with executing the
given test scenario. The user interface can be evaluated as overall intuitive,
with the exception of some control elements – like for example "Delete" button,
which has a specific functionality based on objects’ contents, or checkboxes,
which serve solely to mark the objects that have been checked (but not to select
objects to perform a display/delete action). Such issues may be eliminated by
providing a user guide for the tool, where the purpose of each control element

47

6. Testing

will be explained.
The identified usability issues are following:

• Version identification of the previous/current JSON input file. This can
be fixed by adding the timestamp value from the JSON input file into
the UI (in the tested tool version, it is logged into the log file).

• Displayed object’s contents graphical presentation. In the current ver-
sion, it is in plain text. A fix is to add a graphical markup to visually
separate data items from each other.

• After the user has confirmed checking, the list refreshes to display all
objects, which seems to be an action that the user does not expect. A
fix is to display the list with the filter that was set before the Confirm
action.

48

Conclusion

The aim of the developed tool prototype was to provide a solution to im-
prove the evolvability of study materials created at the Department of Ap-
plied Mathematics at FIT CTU. The original idea that led to the topic of this
thesis was inspired by the Normalized Systems theory and the possibility of
its application in the document management domain.

The current state of the art of how the study materials are managed causes
inconsistency in different study materials types, which are primarily study
texts, presentation slides, online exercises and video recordings of lectures.
There are many references between different "objects" (meaning definitions,
theorems, exercises, paragraphs of text, figures, etc.) within one type of a
study material as well as across all types. For example, a definition presented
in a text script may be referred by a theorem in the same script, used by
an online exercise and mentioned in a video lecture at the same time. Such
references may be taken as cross-cutting concerns as they are defined by the
NST and they cause so-called ripple effects: a change in a definition may cause
the necessity of updating theorems, exercises and other entities that refer to
this definition.

An obstacle for improving the state of the art and providing a way how to
increase the evolvability of study materials was the fact that there are estab-
lished ways and tools for creating and managing study texts (like WooWoo [9]
and LATEX), and the teachers would most probably not want to learn how to
handle another tool, so the possible solution was to provide a means to track
the ripple effects instead of avoiding them.

The analysis of the problem and the tool requirements were defined in
cooperation with Ing. Tomáš Kalvoda, Ph.D. and doc. Ing. Štěpán Starosta,
Ph.D. from the Department of Applied Mathematics. The solution is based on
the modular structure of source files from which study texts and presentations
are generated: definitions, theorems, tables, text paragraphs, etc. are treated
as separate modules, or "objects". The WooWoo program, which is responsible
for generating PDF files with text scripts, can track the references between

49

Conclusion

such objects and generate a list of objects containing their "relationships", i.e.
objects that the particular object points to and objects that the particular
object is referenced by.

The developed tool (RefTool) is a UI desktop application that takes this
list of objects as input and provides information about each object and its
relationships in a human-readable way. When the user performs changes to
an object, the tool detects a change and marks the object as modified. This is
to signal the user that he should check the relationships of such an object to
verify that the change did not cause any ripple effects, or, if it did, to perform
necessary changes on affected objects.

Because the tool is a prototype, the current functionality is limited to the
level of text scripts and a single subject. However, the tool was designed
in a way that it could be extended to support other formats, such as online
exercises and videos, and track references between different study subjects. An
essential condition for this is to create a RefTool extension (an application or
a framework) that would generate a list of objects similar to the one generated
by the WooWoo program for text scripts from web pages with exercises and
video playlists.

The RefTool was tested in terms of meeting the defined requirements and
usability. No major issues were found, but the presentation of object data
requires a better graphical adaptation (currently it is displayed in plain text),
which shall be a part of future tool upgrades.

To make a conclusion, the principles of the NST, which lead to evolvability
improvement, have not been strictly applied: although the developed tool
is working with the modularity principle, it does not enforce encapsulating
single modules of text documents and does not solve the problem of ripple
effects. Instead, it creates a possibility to track the emerging ripple effects,
so that users (authors of study materials) can eliminate inconsistencies in
document contents. A possible improvement would be the automation of the
process when the user checks modules that have been identified by the tool as
affected by a change in another module. This could be done by using Artificial
Intelligence or Natural Language Processing algorithms.

50

Bibliography

[1] Mannaert, H.; Verelst, J.; et al. Normalized Systems Theory. From Foun-
dations for Evolvable Software Toward a General Theory for Evolvable
Design. Koppa, 2016, ISBN 9789077160091.

[2] Borches, P.; Bonnema, G. On the Origin of Evolvable Sys-
tems: Evolvability or Extinction. In Proceedings of the TMCE,
volume 2, April 2008, [Cited 2021-04-30]. Available from:
https://www.researchgate.net/publication/229012738_On_the_
Origin_of_Evolvable_Systems_Evolvability_or_Extinction

[3] Rowe, D.; Leaney, J. Evaluating evolvability of computer based sys-
tems architectures – an ontological approach. In Proceedings Interna-
tional Conference and Workshop on Engineering of Computer-Based
Systems, March 1997, [Cited 2021-04-30]. Available from: https://
ieeexplore.ieee.org/document/581903

[4] Oorts, G. Design of modular structures for evolvable and versatile
document management based on normalized systems theory. Disser-
tation thesis, 2019, [Cited 2021-05-04]. Available from: https://
repository.uantwerpen.be/docstore/d:irua:1845

[5] Oorts, G.; Mannaert, H.; et al. Exploring Design Aspects of Mod-
ular and Evolvable Document Management. April 2017, ISBN
978-3-319-57954-2, pp. 126–140, [Cited 2021-05-04]. Available from:
https://www.researchgate.net/publication/316205800_Exploring_
Design_Aspects_of_Modular_and_Evolvable_Document_Management

[6] Suchánek, M.; Pergl, R. Evolvable Documents – an Initial
Conceptualization. 2018, [Cited 2021-05-04]. Available from:
https://www.thinkmind.org/download.php?articleid=patterns_
2018_4_10_78002

51

https://www.researchgate.net/publication/229012738_On_the_Origin_of_Evolvable_Systems_Evolvability_or_Extinction
https://www.researchgate.net/publication/229012738_On_the_Origin_of_Evolvable_Systems_Evolvability_or_Extinction
https://ieeexplore.ieee.org/document/581903
https://ieeexplore.ieee.org/document/581903
https://repository.uantwerpen.be/docstore/d:irua:1845
https://repository.uantwerpen.be/docstore/d:irua:1845
https://www.researchgate.net/publication/316205800_Exploring_Design_Aspects_of_Modular_and_Evolvable_Document_Management
https://www.researchgate.net/publication/316205800_Exploring_Design_Aspects_of_Modular_and_Evolvable_Document_Management
https://www.thinkmind.org/download.php?articleid=patterns_2018_4_10_78002
https://www.thinkmind.org/download.php?articleid=patterns_2018_4_10_78002

Bibliography

[7] Knaisl, V. Proposing an Architecture of an Intelligent Evolvable Doc-
ument Generation System Based on the Normalized Systems Theory.
In Enterprise and Organizational Modeling and Simulation, 2019, pp.
70–81, [Cited 2021-05-04]. Available from: https://link.springer.com/
chapter/10.1007%2F978-3-030-35646-0_6

[8] Kalvoda, T.; Klouda, K. MARAST. 2012, [Cited 2021-04-30]. Available
from: https://marast.fit.cvut.cz

[9] Kalvoda, T. WooWoo Specs, May 2021, [Cited 2021-05-04]. Avail-
able from: https://kam.fit.cvut.cz/deploy/woowoo-specs/woowoo-
specs.pdf

[10] ECMA-404. The JSON data interchange syntax. December 2017, [Cited
2021-04-30]. Available from: https://www.ecma-international.org/
publications-and-standards/standards/ecma-404/

[11] Unified Modeling Language. December 2017, [Cited 2021-04-30]. Avail-
able from: https://www.omg.org/spec/UML/2.5.1/PDF

[12] Gradle Build Tool. [Cited 2021-05-04]. Available from: https://
gradle.org

[13] Gluon. JavaFX. [Cited 2021-05-04]. Available from: https://
gluonhq.com/products/javafx/

[14] Gson. [Cited 2021-05-04]. Available from: https://github.com/google/
gson

[15] JUnit. JUnit 4. [Cited 2021-05-04]. Available from: https://junit.org/
junit4/

[16] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, 1990: pp. 1–84, [Cited 2021-05-04]. Available from: https:
//ieeexplore.ieee.org/document/159342

[17] OpenJDK. JDK 15. [Cited 2021-05-04]. Available from: https://
openjdk.java.net/projects/jdk/15/

[18] Azul. Zulu Builds for OpenJDK. [Cited 2021-05-04]. Available from:
https://www.azul.com/downloads/zulu-community/?package=jdk

52

https://link.springer.com/chapter/10.1007%2F978-3-030-35646-0_6
https://link.springer.com/chapter/10.1007%2F978-3-030-35646-0_6
https://marast.fit.cvut.cz
https://kam.fit.cvut.cz/deploy/woowoo-specs/woowoo-specs.pdf
https://kam.fit.cvut.cz/deploy/woowoo-specs/woowoo-specs.pdf
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.omg.org/spec/UML/2.5.1/PDF
https://gradle.org
https://gradle.org
https://gluonhq.com/products/javafx/
https://gluonhq.com/products/javafx/
https://github.com/google/gson
https://github.com/google/gson
https://junit.org/junit4/
https://junit.org/junit4/
https://ieeexplore.ieee.org/document/159342
https://ieeexplore.ieee.org/document/159342
https://openjdk.java.net/projects/jdk/15/
https://openjdk.java.net/projects/jdk/15/
https://www.azul.com/downloads/zulu-community/?package=jdk

Appendix A
Acronyms

FIT CTU Faculty of Information Technology of Czech Technical University

JDK Java Development Kit

JVM Java Virtual Machine

NST Normalized Systems Theory

OS Operation System

SDK Software Development Kit

UI User Interface

53

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
distributions..........................the directory with executables
sources the directory of source codes

src............................the directory of the Java source code
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
MasterThesis.pdf....................the thesis text in PDF format

55

