
Instructions

The goal is to create a web application for generating Swedish-style crossword puzzles based on user 

preferences.

- Word List generating

  - Design and implement a tool obtaining words and their definitions from linked data.

  - Design and implement a tool fetching additional relevant information about the words: 

categorization, difficulty.

  - Discuss other possible word sources.

- Crossword generating

  - Research the NP-complete problem of crossword generating and existing solutions

  - Design and implement an algorithm for crossword generating from the obtained Word List. Allow 

parametrization by choice of preferred word categories.

- Web application

  - Design an architecture to interconnect all the parts.

  - Create a complete pipeline using the Word List and Crossword generating tools.

  - Implement and test the web application where a user requests a crossword and obtains the result.

Electronically approved by Ing. Jaroslav Kuchař, Ph.D. on 10 February 2021 in Prague.

Assignment of master’s thesis

Title: Crossword Generator using Web Data

Student: Bc. Adam Benda

Supervisor: Ing. Jaroslav Kuchař, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Web Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023





Master’s thesis

Crossword Generator using Web Data

Bc. Adam Benda

Department of Software Engineering
Supervisor: Ing. Jaroslav Kuchař, Ph.D.
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Abstrakt

V práci byl vyvinut software ke generováńı kř́ıžovek, který z propojených dat
projektu Wikidata źıskává slova s legendami a sématickou kategorizaćı. Je
implementována heuristika konstruuj́ıćı kř́ıžovky s modifikaćı, jenž umožňuje
upřednostňovat slova z kategoríı, které si zvolil uživatel. V práci je také vy-
tvořeno jednoduché webové uživatelské rozhrańı a všechny části procesu výroby
kř́ıžovky jsou propojeny.

Kĺıčová slova Propojená data, Znalostńı graf, Generováńı slovńıku, Gene-
rováńı kř́ıžovky, Kř́ıžovka, Konstrukce kř́ıžovky, Optimizačńı kombinatorický
problém

Abstract

This Thesis develops a Crossword Generation software, sourcing the list of
words and semantic word’s categorizations from Wikidata, the Linked Data
Knowledge Base. A crossword constructing heuristic is implemented and mod-
ified to prefer user-defined categories of words. A simple web-based user in-
terface is developed and the project parts are interconnected to form a full
stack automated crossword generator.
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Keywords Linked Data, Knowledge Base, Knowledge Graph, Wikidata,
Word List, Classification, Word Puzzle Generator, Clue, Crossword Construc-
tion, Optimization Combinatorial Problem
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Introduction

“A crossword is a word puzzle that usually takes the form of a square or a
rectangular grid of white- and black-shaded squares. The game’s goal is to
fill the white squares with letters, forming words or phrases, by solving clues,
which lead to the answers.” [2]

Crosswords are often present in newspapers or magazines as a re-
laxing activity, sometimes combined with other puzzles. The most important
property of the crossword is that the crossing words share letters, allowing the
solver to uncover additional letters of the words he is unsure of. The letters
are usually case-insensitive.

In this Thesis, I developed a set of programs automatizing the cross-
word generation process completely. The Crossword Generation can be parame-
trized with the preference of word categories. I believe this will allow the
generated crossword to come closer to the crossword crafted by a human in
terms of dramaturgical quality and playability — simply that the generated
crossword will be more fun to solve.

The ability to generate attractive crosswords automatically will allow
more people to enjoy the puzzle. It will allow teachers to create crosswords
with words relevant to the subject, it will allow crosswords with custom words
to be used as a gift or advertisement, and it will enable the crossword puzzle
to reach new markets. Solutions developed in this work might be adapted to
other languages with only a little effort.

Work structure

This Thesis is divided into three parts.
Word List Generation Chapter 2 discusses the possible word data

sources. I design and implement a program to obtain the words with their
definitions from Wikipedia dump and Wikidata database. Moreover, I catego-
rize obtained words based on the publicly available data to allow the resulting
crosswords to be customized based on given preferences.
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Introduction

Crossword generation Chapter 3 describes the problem of construct-
ing the crossword — placing suitable words to the grid so that all letters match.
The problem is NPC. I implement a well-known heuristic with a modification
to respect the user preferences.

Web Application Chapter 4 focuses on development of a user inter-
face. The user interface allows users to submit crossword requests and obtain
results constructed crosswords. This chapter also discusses the overall archi-
tecture of the application, its scalability, and deployment.
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Chapter 1
Business Analysis

1.0.1 Crossword Classification

1.0.1.1 Interlocking

The highest possible interlocking means that every single letter in every word
is shared with another word. This is a common property of the American-style
crosswords. The crossword is easier for the solver as they are able to fully fill
any unknown word if they are able to fill in the crossing words.

The Swedish-style and British-style grids are less dense than Amer-
ican style, with British style grids having “roughly half of the letters in each
word are crossed over with another word” [3]. This property can be easily
computed for a given grid and we may define

interlocking = number of crossing letters
number of letters (1.1)

which makes interlocking ∈ [0, 1].
The higher the interlocking, the easier is the task for a solver. With

interlocking = 1 it is enough to get the words from one direction, and the
crossword would be fully filled. The task is harder for the crossword creator
because the words must fully match in the second direction. We will discuss
this more in Chapter 3.

1.0.1.2 Clues

The clue should lead a Solver to fill in a proper word. Some of the common
types observed are:

• Semantic Superclass (e.g. “means of transport” → “CAR”)

• Part of speech (e.g. “verb” → “RUN”)

• Synonym (e.g. “incredible” → “AMAZING”)

3



1. Business Analysis

• Common algorithm (e.g. “2002 in latin” → “MMII”)

• Translation (e.g. “World in Spanish” → “MUNDO”)

• Obvious abbreviation (e.g. “United Nations, abbrev. → “UN”)

• Hidden abbreviation (e.g. “Abbrev. of a football association”→ “FIFA”)

• Knowledge fact (e.g. “Zola’s novel” → “NANA”)

• Knowledge fact about geography (e.g. “Lake in the Andas” → “TITI-
CACA”)

• Name of a famous person (e.g. “Name of di Caprio”→ “LEONARDO”)

• Fill-ins of common phrases (e.g. “Mamma ” → “MIA”)

• Other Wordplays (e.g. “music instrument without leading P”→ “IANO”)

• Compound clues (e.g. “Iran Iceland” → “IRIS” (using country codes))

• Image clues

The adoption of those clue types depends on the culture and current crossword
puzzle trends. Some of those types are completely unseen or deprecated in
some cultural contexts. Sometimes the usage of a specific clue type is seen as
an entirely new crossword type — for example, there seems to be an explicit
classification in British-style crosswords according to [4]:

• Quick crossword — You do not need any special knowledge or skills to
attempt a quick crossword.

• Cryptic crossword — Cryptic clues are written in the form of code —
they contain hidden instructions that tell the solver how to arrive at the
answer.

Another good example would be the image clue crosswords popular in chil-
dren’s magazines.

1.0.1.3 Grid Style

There are several common styles of the crossword grids and their visualization
— colors and clue placement.

• American grid — every single letter in every word is crossed over by
another word — interlocking = 1

• British grid — the grid is less dense, roughly half of the letters in each
word are crossed over with another word, no two-letter words are allowed

• Swedish-style grid — interlocking = 1, the clues are written in the
non-letter cells in the grid.

4



1.1. Problem Definition

1.0.1.4 Secret

The crossword might contain a secret message that the solver’s task is to
reveal. It might be placed into a crossword similarily to a normal word without
a clue (which is common to Swedish crosswords), or it might be by numbering
some of the letters in the crossword — after the crossword is filled, the secret
message can be read as the sequence of those numbered letters.

Again the existence of a secret highly depends on the culture. In
the Czech context, the placement of word-like secret phrases into Swedish
crosswords is very common. Sometimes the secret message can be the point
of a cartoon joke; sometimes, it can complete an attached cooking recipe.
Contests of sending the revealed secret are also popular. It is common for
a secret to be a multiword or a sentence with spaces and special characters
omitted (“FOREXAMPLETHIS”).

1.1 Problem Definition

1.1.1 Vision

The goal of my work is to create a crossword puzzle generator accessible as
a web application. The generator should not rely on an external or a user-
provided dictionary. Instead, it should obtain words and clues from the open
data sources — such as Wikipedia or Wikidata.

The use of Linked Data will allow us to generate clues from the
knowledge graph itself. The clues might then be adapted for different target
crossword styles and audiences. It should also allow for easy translations.

1.1.2 Constrains of this thesis

I will focus on getting to the minimum viable prototype of the whole pipeline.
Design choices will be made to support the project’s extensibility. I will per-
form the experiments on a Czech language Word List.

1.1.3 Business

Some of the newspaper or magazine crosswords are still constructed by people,
and it might produce the best results, as the joy for the solver relies heavily
on a cultural context, shared knowledge, unwritten rules, and dramaturgy.

However, crossword constructing is such time-consuming activity
that the professionals use at least specialized helper programs to find suit-
able combinations. As the demand for the crossword puzzles is still very high,
many of the crosswords published seem to be generated fully automatically or
with just a little contribution from the editor.

5



1. Business Analysis

1.1.3.1 Competition

According to the New York Times puzzle makers [5] there are several usable
programs suitable for augmented crossword design: commercial CrossFire [6]
and Crossword Compiler [7] and open-source Phil [8].

There is also a lot of free online services, their limitation being a
small or nonexistent dictionary. Usually they provide only low interlocking
crosswords.

6



Chapter 2
Word List Generation

2.1 Introduction

2.1.1 Problem Definition

2.1.1.1 List Of Words

A list of words is needed to construct a crossword. Words should contain
the permitted alphabet only. For our case, we forbid multiword phrases and
strings containing punctuation marks or numbers. Also, we look at the words
case-insensitely. We show that a rich word list is of crucial importance for
crossword generation as we measure in Chapter 3 so we will implement or
propose multiple data sources here.

2.1.1.2 Clues

Although a crossword can be generated without clues, it is essential for the
user experience and our business case to provide a well-defined clue to every
placed word. We have listed some of the common crossword clue types in
Section 1.0.1.2. For the prototype, only the Synonyms and Semantic Super-
classes will be used as those are most easily found as readable text. I will also
propose a way to generate clues out of linked data.

2.1.1.3 Categorization and Difficulty

This work’s novel approach to crossword solving is to allow the user to choose
the categories of words that they want to prioritize in the crossword construc-
tion process. I believe it is a way to imitate the human crossword maker’s
dramaturgy and consistency.

This can also enable us to create relevant classroom materials —
crosswords with most of the words relevant to the taught subject. Of course,
the ability to pick the word with the preferred category and following the
crossword constraints intensify the need for a rich Word List.

7



2. Word List Generation

2.1.2 Internationalization

Data sources that we use are multilingual. That does not mean that ev-
ery word or sentence exists in every language, but that the data are struc-
tured consistently among the language versions, and data extraction can be
parametrized by language.

The work uses Czech as the language for experiments. However,
the implementation tries to stay language independent. The tools developed
might be easily used for obtaining the word list in another language and
produce crosswords in virtually any language.

2.2 Analysis

2.2.1 Linked Data

The term Linked Data is used for “structured data interlinked with other
data so it becomes more useful through semantic queries”. [9] Linked Data use
URIs for naming of things. Various relations between the data are published
as (subject, predicate, object) triples. This data model is named RDF
and specified by W3C [10].

Graph Database software such as Apache Jena, Blazegraph, Eclipse
RDF4J, and OpenLink Virtuoso can be used to store and query millions of
triples. Those databases might be queried using SPARQL [11].

Linked Data published under permissive licenses are called Linked
Open Data (LOD). By reusing entity URIs from other LOD repositories or
by providing information about identities (owl:sameAs predicate), data from
multiple repositories can be interconnected. The term Knowledge Graph
is sometimes used for a Linked Data repository.

2.2.2 Knowledge Graphs

Most of the words in a crossword should be known to the person solving. As we
do not have any assumptions about user proficiency, the words should ideally
be commonly known. That is why I considered the crossdomain knowledge
graphs.

There are some proprietary Knowledge graphs — like Google Knowl-
edge Graph, WolframAlpha, or Facebook Graph but data gathering from these
is problematic, and the data license makes the data unusable.

Open knowledge graphs, on the other side, have permissive licenses
— either a CC0 or a CC-BY-SA and usually provide accessible endpoints
and even dumps of the whole database. The main active cross-domain open
knowledge graphs are DBpedia, Wikidata, and YAGO.
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2.3. Data Sources

2.2.2.1 DBpedia

DBpedia [12] was created in 2007, which makes it one of the oldest and most
respectable Linked Data sources. DBpedia extracts the structured texts in
the Wikipedia project into Linked Data.

2.2.2.2 Wikidata

Wikidata [13], established in 2012, is a collaboratively edited multilingual
knowledge graph. The primary use for data is in Wikimedia projects. Wikipedia
is becoming the source of the info-boxes found in Wikipedia articles, pushing
the Wikipedia editors to edit facts structurally in the Wikidata database.

2.2.2.3 YAGO

YAGO4 [14] combines data from Wikidata with widely used vocabulary Schema.org [15].
Yago additionally filters the data enforcing logical consistency. The previous
version, YAGO3, used DBpedia instead of Wikidata as a base.

2.2.3 Previous Work

The word clue list was obtained by [16] from Italian Wikipedia using Natural
Language Processing. [17] uses DBPedia structured data to categorize the
questions in DB-Quiz, a clone of the popular Czech TV game called AZ kv́ız.
Cloverquiz [18] developed a mobile game with multichoice questions based
on DBPedia categorization. Ferdinand Mütsch [19] constructs the questions
directly from the DBPedia facts but has a problem with latency as he generates
the questions on the fly.

2.3 Data Sources

2.3.1 Linked Data: Wikidata

2.3.1.1 About the Choice

After an analysis of the current state, I have chosen the Wikidata as a source
of the Linked Data used in this project for the following reasons:

• Wikidata contains more data than DBpedia — Wikidata 12bn [20], DB-
pedia 9.5bn [21] triples.

• Wikidata is the source of data for Wikipedia articles but it does not
limit itself on Wikipedia articles.

• Wikidata provides a single multi lingual database dump while DBPedia
can be replicated by running quite complicated Extraction process.
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• Wikidata’s license is more permissive (CC0) — that mean using of the
data does not need an attribution.

• The feedback of our users (incorrectness report or a label fix) might be
used to improve Wikidata.

2.3.1.2 Local Replication

Public SPARQL endpoint of Wikidata enforces limitations [22]: long-running
query is terminated 60s and one agent is allowed 60seconds of processing
time each 60seconds. For this reason a local replica of the wikidata database
has been created by following [23]. The system used was Ubuntu 20.10 [24]
running on AMD Ryzen 5600X with 64GB RAM and 2TB M.2 NVMe SSD
storage.

• Install Docker Engine [25]

• Pull the wikibase/wqds docker image [26, 27]

• Download the Wikidata TTL dump from the Wikimedia dump archive [28]

• Start the docker container with bind mount of the host machine directory
containing the dump

• Access the docker container using docker exec

• Inside the docker container run the munge.sh script. The script runs for
approximately 20 hours.

• Run the docker container with entrypoint runBlazegraph.sh

• Inside the container run /wdqs/loadData.sh script that would load the
munged data. This runs for several days.

The process of Wikidata import is machine-time consuming. I have also mea-
sured the disk writes — 18.1TB was written, using 1.4% of that particular SSD
TBW guarantee. The imported database uses 693GB of storage. The pro-
cess, however, can be scripted and run periodically (i.e., monthly). Original
author of [23] used Google cloud infrastructure, although no pricing estimate
is presented.

After the Local Replication finishes, running the docker container will
provide a sparql http service on localhost:9999/bigdata/namespace/wdq/sparql
usable to work with the local instance of Wikidata. The endpoint is limited
only by the available computer power and usable RAM. Tunning HEAP SIZE
environment variable and analyticMaxMemoryPerQuery might be necessary
for long queries to run properly.
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2.3.1.3 Clue Generation

For purposes of this work, the simple approach of using the strings obtained
from schema:description triplets seems to be satisfactory. The descriptions
are brief, syntactically correct, and often cover the most important features
about the subject — usually notable categorization, such as “French Town”,
“a kind of insect”, “sports contest”, etc. Another way the clues are obtained
is by multiple rdf:label and rdf:altLabel on the same subject. This is the
way to obtain the synonym clues, such as “bias”∼“systematic error”.

2.3.1.4 Categorization Use

Categorization structure can be found in the Wikipedia Knowledge Graph by
following triplets with following predicates:

• P1628 — Equivalent

• P31 — Instance of

• P279 — Subclass

• P361 — Part of

• P921 — Main subject

Yet, most of the category nodes cannot be used for this thesis objective as user
relatable thematic areas. The categories are either too wide (Q5 Human has
nine million instances linked) or too narrow. Many different categorization
concepts overlay in the graph, making it impossible to find the concept root
category. A machine learning solution for this problem using the Wikidata
graph along with another dataset was implemented, and it is described in
Section 2.3.5.

2.3.2 Wikipedia

Apart from Linked Data, Wikipedia itself has some use for this work:

• Wikidata does not contain links to Wikipedia articles, making it hard to
provide a link to the Wikipedia article when needed in the application

• The Wikipedia page metadata might be usable.

• The pageview statistic of the Wikipedia article might be obtained.

• We may expand our synonym list by using Wikipedia article redirects.

• Roughly 25% of the articles in the Czech Wikipedia do not have the
corresponding Wikidata entity. Hopefully, this ratio will decrease with
the Wikidata project growth.
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There are the downsides of fetching the Wikipedia articles:

• Probably it just duplicates DBpedia algorithms

• Wikitext parsing and NLP is needed to use any part of the article text.
It is language-dependent, and current implementation does fail a lot —
creating descriptions containing fragments of templates and thumbnails.

The number of suitable crossword words obtained by parsing Czech Wikipedia
is 105003. However, most of them were already retrieved from Wikidata. The
number of entirely new words is 16380, which is around 6% of the total word
count.

2.3.2.1 Parsing Wikipedia Article Dump

The pages-meta-current.xml is an xml structure where the Wikipedia Article
texts are saved. The file is distributed in the .bz2 archive, and the compressed
size for Czech cswiki is approximately 1GB. Stream parsing is possible to
avoid excessive RAM consumption.

An example function to count the xml articles using the bz2 and
lxml python libraries follows. The code for the actual parsing is a bit more
complicated — but basically it is a state automaton driven by the start and
end events invoked when xml stream reaches the opening or closing of a tag.

def clear_element(element):
element.clear()
while element.getprevious() is not None:

del element.getparent()[0]

pages_xml = bz2.open(’cswiki-20210201-pages-meta-current.xml.bz2’, ’r’)
cnt = 0
for event, element in etree.iterparse(pages_xml, events=["end"]):

if element.tag.endswith("page"):
page_count += 1

self.clear_lxml_element(element)
print(page_count)

Additional relevant dump files are:

• redirect.sql.gz — contains redirects between articles

• page props.sql.gz — maps from Wikipedia articles to Wikidata entities
(e.g. “Douglas Adams” → Q42)

Those are in gzipped sql format. After decompressing, I used a small transfor-
mation and was able to load them using Sqlite3 [29], which was then queried
by Python.
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2.3.3 Wikipedia Pageviews

The Wikimedia REST API [30] is used to fetch the number of page views of
Wikipedia Articles found in the previous section. The numbers can be used
to categorize words by the popularity. The problems here are that:

• This can be done only on the part of the words that were found as
Wikipedia articles (37% — 105003 out of 283415)

• The number of page views might give the only estimate of the word
popularity as a lot of other factors might affect the visitor rate — such as
the encyclopedic activity of corresponding subcommunity, article quality
(resulting in more search hits), etc.

2.3.4 Korpus.cz

The categorization is implemented by using KorpusDB [1]. Accessible via
undocumented public API, KorpusDB finds a lemma for a given string (a
crossword word) and provides:

• Frequency in whole corpus — usable to determine the word popularity

• Frequency distribution of the word among 34 genres

Figure 2.1: KorpusDB genres example. Source: KorpusDB [1]

The genre data are obtained using the corpus structure attributes [31].
That means every document in the corpus is tagged with the genres based on
its source (e.g., focused magazine, newspaper section). A single word genre
frequency distribution is then computed by averaging all word occurrences
sources distribution. The categorization is noisy, but the maximums seem
representative for words with enough (> 100) corpus occurrences. The main
data source is the Czech corpus SYNv8 containing over 8 million lemmas.

There are downsides to this:

• My current implementation of the search is unable to distinguish be-
tween homographs by the word meaning. Corpus lemmas are capable of
such distinction, so it might be possible at least to detect this problem.
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• Lot of words is not recognized in the corpus, or the occurrence is so rare
the categorization is not dependable. Out of the 283415 words, only
39223 was present in the corpus, 24740 of them with occurrence higher
than 100.

The data incompleteness will be addressed in Section 2.3.5. For the Wikidata
sourced words, we have corresponding multilingual Knowledge graph nodes,
so this categorization might be used for other languages as well.

2.3.5 Linked Data Benefit: Machine Learning

We have discussed that the naive algorithm for the categorization Section 2.3.1.4
is not suitable for the needs of this project. In the previous section, we were
able to fetch useful categorization information, but only about a fraction of
the words needed. With the assumption that there lies some information in
the Knowledge Graph structure, I performed an experiment in the machine
learning field.

We would be using the presumed coincidence of position within the
Wikidata Knowledge Graph structure with the categorization fetched from
the KorpusDB. As we were able to obtain the KorpusDB categorization only
for 10% of the words, the target of this is to derive the categorization for the
rest 90% of words from the known position in the Wikidata graph.

I filter the edges only to the list of predicates stated in Section 2.3.1.4
— Equivalent, Instance of, Subclass, Part of, and Main subject relations. The
distance between a node representing a word obtained from Wikidata and a
certain set of key nodes will be examined. My assumption is that some key
nodes will generally be nearer to the nodes categorized in a specific category
— and further from nodes not categorized in the category.
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2.3.5.1 Key Nodes Selection

Data: Words with known categorization and a graph node, List of
Categories, K, N

Result: Set of key nodes
KeyNodes = empty set
for Cat in Categories do

Words = words categorized in Cat
Neighbours = empty list
for Word in random sample of Words do

Node = graph node of Word
NodeNeighbours = nodes reachable from Node in <= K steps
Append NodeNeighbours to Neighbours

end
CategoryKeyNodes = find N elements with maximal occurance
in Neighbours

Append CategoryKeyNodes to KeyNodes
end
return KeyNodes

Algorithm 1: Choosing the key nodes
Suitable values K = 2, N = 3. Algorithm would generate at most

N · |Categories| key nodes.

2.3.5.2 Machine Learning Problem Definition

Categorization of a word is vector v of length = number of Categories.
vn quantifies the membership of the word into nth category. vn ∈ (0; 1).
categorization is normalized, meaning ∑|v|

n=1 vn = 1. Graph distance of a
word is vector w of length = number of KeyNodes. wn is the shortest path
distance between the word node and nth key node.

I will use the scikit learn framework [32]. The problem is multi-
class (classification into many categories), multioutput (as the output is fuzzy
membership ∈ (0; 1)) [33] regression. The number of algorithms supporting
this setup is very limited — I have tried the DecisionTreeRegressor with poor
results. Instead, the following tricks can be used to reduce the problem:

1. Instead of Categorization vector use only maximal value. This changes
the problem to classification — for a word with a given graph distance-
vector, we want to find one category where it suits the most.

2. We use the regression on each of the classes separately.

The first solution was tempting for KorpusDB data at first. The maximum
would filter out corpus noises — weak categories would be ignored. However,
it seemed to fail on words with two and more strong categories — the winner
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takes it all regardless of the closeness of the next competitor category. The
learning process was seriously tainted by that problem. Probably the approach
would work if there were less than 34 categories that KorpusDB provided. The
second solution has some problems too:

• the independency of the regressors returns a vector that is not normal-
ized

• the categories common among the words might get advantage

• learning result evaluating gets complicated

However, I like the versatility of the solution finally implemented.

2.3.5.3 Method Choice

Words with the known KorpusDB categorization were split into train and test
set by half. The Coefficient of determination R2 of the prediction provided
by the scikit-learn score method was used to evaluate the regressor quality.
I also experimented with selecting only the most popular words. This trick
filtered out the noise caused by uncommon words being incorrectly categorized
due to low occurance in corpus. The sweet spot for my data was identified as

Figure 2.2: Score of Bayessian ridge method based on subset of most popular
words
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selecting the 20% most popular words — roughly 8000. With the 20% most
popular words I did the comparsion of the various regresors methods provided
by scikit learn:

Figure 2.3: Score of various regressors in the KorpusDB categories

2.3.5.4 Performance

Theoretically, SPARQL might be used to query the node distances on the
specified edge list — especially with Property Paths [11]. In the case of Blaze-
graph running the Wikidata Knowledge Graph, I have tried and failed: either
the RAM was exhausted, or the computation did not finish in a reasonable
time.

I developed the following tricks:

• SPARQL queries must be reasonably simple. When I tried to fetch all
the connections in depth 2 the query failed for nodes close to nodes with
high degree (e.g., Human(Q5) node has degree 9 million) — blazegraph
consumed 64GB RAM and 200GB of the available swap, then crashed.

• SPARQL queries must not be too simple: querying the Knowledge
Graph for every node’s close neighbors separately had a big performance
overhead. I ended up setting to query the sparql endpoint to provide a
list of close neighbors for 100 nodes in batch.

• I have resigned on long paths: limiting the path length discovered be-
tween the word node and key node to k and treating everything longer
as a k+1. The shorter the paths between the word node and key nodes,
the more important the connection is.

The key nodes neighborhood limited with a certain depth(D) is fetched only
once. The in-memory graph is created with the NetworkX library [34], then
converted into a Pandas [35] Dataframe used as a graph distance matrix de-
scribing the distances between key nodes and all the neighboring nodes. This
dataframe occupies only a fraction of the space needed by the graph represen-
tation.
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Figure 2.4: Example Knowledge Graph containing Keynodes K1 and K2 and
wordnode W

Key nodes matrix for D = 1, K = 1:

A B C

K1 1 nan 1
K2 1 1 nan

For every Word Node we perform the neighborhood discovery —
gathering all nodes reachable in the distance K and turning them to a similar
distance matrix.

B C E

W 1 1 1

Now we select all the nodes found in both matrices and sum Word node
distance with every Key Node row.

B C

K1 nan 2
K2 2 nan

The minimum value of a row is the shortest distance to the corresponding Key
Node. The computation is performed by pandas, and it scales well. With this
algorithm, I am able to compute the shortest paths in the Wikidata Knowledge
Graph in 2s per word on average.

2.3.5.5 Extensibility

By this experiment, I have proved there is some information in the Wikidata
Knowledge Graph structure usable to complement a partial categorization.
I believe this process might be easily adapted and used with other sources
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of categorization. One such source would be a manual annotation of several
hundred or thousands of words. Such categorization might be costly in human
time but might be more suitable for the goal.

2.4 Other Data Sources Proposals

Currently implemented data sources described in the previous section are
Wikidata and Wikipedia Articles. Although Wikipedia is an excellent source
of knowledge, the word suitability for the crossword puzzle generation is lim-
ited — there is a lot of named entities that tend to be quite obscure and
unknown for the solver.

2.4.1 Wiktionary

In currently implemented word list verbs, adjectives and adverbs are missing
almost completely. When the words are present, the clues are quite mislead-
ing. The enhancement will be possible using the open multilingual dictionary
Wiktionary [36]. The words have a definition that might be used as a clue.
In inflectional languages there is also a lot of word forms connected with their
lemmas — base forms. However, Wiktionary is only loosely structured, so it
will need a lot of parsing.

2.4.2 Corpus

We have used a Czech Corpus for the categorization data. But with proper
tools, it might also be used as a word source - using the structure information
about the syntax (word category as a clue), colocation (most used phrases
containing the word), and synonyms. The downside of this data source is
that it would be separately developed for the various platforms of national
language corpora.

2.4.3 Open Street Map

Although a lot of the recognizable features are already obtained from Wiki-
data, acquiring the data from Open Street Map can benefit this project by
additional metadata and also by using the geographical features near the user,
like hometown streets or nearby lakes. The current project pipeline does not,
however, allow such user Word List customization, so this might be the wrong
way.

2.4.4 Abbreviation Generator

A lot of short words are needed for generating the crossword, so it is common
there are the abbreviations present in the crosswords (e.g., United States of
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America⇒ USA). Some abbreviations are covered by the current implementa-
tion as they are present in the Wikidata labels. However, it would be good to
provide a way to detect such cases (possibly adding (abbr.) hint to the clue).
Custom abbreviations could also be generated from the multiword phrases,
although the results might be surreal.

2.4.4.1 Generate Clues From Linked Data

I am not using the most exciting feature of Linked Data — the possibility to
generate custom clues from the graph structure. Such generation will probably
require templates mapping between SPARQL and natural language, and it will
be a topic of my following research.

2.5 Results

2.5.1 Exported Data Format

The output format of the Word List Generator depends on the Crossword
Generation application, so it will be discussed later in Section 4.2.2.

2.5.2 Obtained words

Figure 2.5: Lengths of words obtained from Czech Wikidata Articles
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Figure 2.6: Lengths of words obtained from Czech Wikidata
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Chapter 3
Crossword Generation

3.1 Analysis and Design

3.1.1 Formal Definition

Grid A is a boolean matrix of width n and height m. Crossword C is a matrix
of the same dimensions as its grid. The grid specifies where the letters from
an alphabet Σ will be placed in C. Every cell in crossword is either a letter
cell (Ci,j ∈ Σ) if Ai,j = true, or an empty cell (Ci,j = ε) if Ai,j = false.

A word space describes an area of a crossword and spans for two or
more cells of C either horizontally or vertically. Word space is constrained
by an empty cell or the matrix border. A word space can be identified by
the beginning (minimal) coordinates inside the crossword, direction (either
horizontal or vertical), and its length (number of cells covered).

We say the cells inside the word space area belong to the word space.
Cells belonging to the word space form a sequence starting at the beginning
coordinates of the word space. We may address the cell on beginning coor-
dinates as the first cell, next cell as the second cell, and so on. When a cell
belongs to two word spaces W and V . The cell is the shared cell of W and V .
Those word spaces are in relation cross: W � V

Constraints for a grid might be found in Engel2012 [37]. I have
adapted them to suit our definitions:

1. Each letter cell is to be part of at least one-word space.

2. Each word space has to span over at least two letter cells.

3. Each word space is to be enclosed in between two empty cells.

4. No two horizontal or two vertical word spaces may overlap.

When a grid satisfies those constraints, it is considered valid. For a
valid grid, the word spaces might be derived conclusively. The set of word
spaces derived from G is WordSpaces(G)
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Another common constraint of a Grid is that the crossword is a single
component. That means for every word space W , word space V there exists
some sequence of word spaces beginning with W and ending with V having
� relation between every two consecutive elements of the sequence.

3.1.2 Constructive Combinatorial Problem

Word is a finite sequence of the alphabet elements Word ∈ Σ∗. Word can be
filled into a word space if the word length equals word space length. Filling
a word into a word space means the word letters are assigned to respective
word space letter cells: The first cell of a word space gets assigned the first
letter of the word, and so on.

When a valid grid G and a set of words (Words ⊆ Σ∗) is given,
construct a function M : WordSpaces(G) 7→Words so that the words can be
filled into corresponding word spaces and every crossword letter cell has all
its assigned letters equal.

M goes from a finite domain into a finite codomain. Therefore the
number of possible functions is finite. That makes the problem combinatorial.
The number of possible combinations is upper bounded by |Words||WordSpaces(G)| [38]
The G and Words form the problem instance. Function M is a solution of
the problem when it satisfies the constraints. [39]

3.1.2.1 NP Complete

Engel et al., 2012 [37] proves that Crossword Construction is a NP-complete
problem. The proof is done by “reduction from the well-known NP-complete
problem 3SAT”. Another proof is in Peterson [40] by Exact Cover by 3-Sets
to Crossword Puzzle Construction reduction.

3.1.3 State of the Art

One of the oldest works on the Crossword Construction problem is Mazlack,
1976 [41]. It provides interesting performance-optimizing details. The method
he gets to work is a letter-by-letter filling. Ginsberg et al., 1990 [42] changes
this to a word-by-word approach and introduces a lookahead technique: the
list of possible word choices for every word space is maintained during the
search algorithm run.

Berghel, 1987 [43] gave a purely logical solution to the problem writ-
ten in Prolog. The solution is clear and elegant, however, the solution was not
practically used much because of performance issues — the heuristic can be
done only by the clause ordering and fails beyond the runtime adaptability (I
have experimented with the Prolog solution too).

Constraint Programming Lessons Learned from Crossword Puzzles(2001) [44]
gives a comprehensive comparison of seven data models used with eight back-
tracking algorithms with the following conclusion:
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1. the form of the CSP model is important

2. the choices of model, algorithm, and heuristic are interdependent, and
making these choices sequentially or assuming a level of independence
can lead to non-optimal choices

3. to solve a problem using constraint programming most efficiently, one
must simultaneously explore the space of models, algorithms, and heuris-
tics

Bonomo et al. [45] present a Genetic Algorithm enhanced with Wis-
dom of Artificial Crowds method. Using a Genetic algorithm or Simulated
annealing to solve the Crossword Constructing problem was out of the scope
of this thesis. However, I would very much like to expand the project in this
direction.

Another interesting approach is the reduction of crossword genera-
tion to some other well-known NPC problem that can be solved by specialized
optimized solvers. That’s what popular [5] online program Phil [8] is doing.
Phil is using a Glucose SAT solver [46] running inside the user’s browser
through the Web Assembly [47].

3.1.3.1 Variation: Unconstrained Variant

When the grid is not specified, and only the target crossword dimension is
given, the constructing algorithm may enlarge or shorten some word spaces
in order to be able to fill in the words. This is called the Unconstrained vari-
ant. The problem was first stated by Harris, 1990 [48] A heuristic algorithm
is in Kuzma, 2009 [49]. Engel et al., 2012 [37] proves the variant is NPC as
well and proposes a construction algorithm. Latest work in the field Agar-
wal et al., 2020 [50] provides an overview of the heuristic strategies on the
Unconstrained Crossword, along with detailed measurements.

3.1.3.2 Variation: Solving the Crossword

There is also a few works focused on solving the Crosswords: Littman et
al., 2002 [51] use a probabilistic method, Dr.Fill [52] works by converting the
Crosswords to Singly Weighted CSPs.

3.1.4 Optimization Combinatorial Problem

I want to propose an optimization variant of the Crossword Constructing
problem (CC): Weighted Crossword Construction (WCC).

When a valid gridG and a set of words with weights ({(word,weight); word ∈
Σ∗,weight ∈ R) is given, construct a function M : WordSpaces(G) 7→ Words
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so that the words can be filled into corresponding word spaces, every cross-
word letter cell has all its assigned letters equal and the sum of weights of the
words filled into the word spaces is maximal.

3.1.4.1 Problem is NPH

The weighted crossword construction is NP-hard. I will prove that using
definitions from [53].

A polynomial-time Turing reduction can be constructed between CC
and WCC: Given a WCC solver as an oraculum and any instance of CC
problem, the trivial weight 0 may be added to all the Words of CC instance.
Provided with that modified instance, the WCC oraculum returns an optimal
solution that is also an acceptable solution to CC.

That proves CC ≤ P
T WCC. Given that the Crossword Construction

is NP-complete, the Weighted Crossword Construction is NP-hard.
To my knowledge, this optimization problem has not been presented

among previous works on the crossword construction topic.

3.2 Realisation

3.2.1 Heuristics: Decision Problem

I have adapted a well known heuristic summarized by [54]. The algorithm
uses the lookahead technique described in [42]. The algorithm is implemented
in Python3.

Data: WordSpaces, Words
Result: WordSpaces filled in with Words
Fill in a random WordSpace with a random Word of the same length
for unfilled WordSpace from WordSpaces do

Rebuild the Search Structure for WordSpace
end
for unfilled WordSpace from WordSpaces sorted according to the
heuristic strategy do

if no best option for the WordSpace then
Backtrack = remove the Word fill from the WordSpace filled
previously

end
BestOption = best option for the WordSpace
Fill BestOption into the WordSpace
Rebuild the Search Structure for WordSpaces crossing
WordSpace

end
return filled WordSpaces

Algorithm 2: Heuristic for Constructing the Crossword Puzzle
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3.2.1.1 Heuristic Strategy

The sorting priority determines the sort order of the word spaces. The sort
order is crucial for the success of the heuristic. It must adapt to the fill
situation during the runtime as the word spaces constrains change based on
their crossing word spaces filling status.

But the criteria should be evaluated quickly. It might be better to
go with an approximation instead of recounting the possibilities.

I implemented a compromise. Every word space has counts of words
that can be filled in the neighbours after a specific letter is inserted. I have
named this structure a possibility matrix.

Figure 3.1: Crossword filling step example

Example for the situation shown in 3.1: We have WS1, WS2, WS3
unfilled, however some of their crossing letters are already set. Possibility
matrix of WS1:

A B C ... Z

cross1 30 42 60 ... 0
cross2 560 60 80 ... 20

That means that inserting a ’A’ into crossing1 would leave 30 possibilities
for WS2 - satisfied by four letter words with mask E.A.. Inserting ’Z’ into
crossing1 would lead us to unfeasible solution branch.

The possibility matrix has to be recounted every time the word space
is filled for the crossing word spaces - as their mask change. This causes the
backtracking of my algorithm to be quite slow.

I have reached the optimal heuristic strategies, using the different
aggregations on the possibility matrix. I have started with a simple 6x8
instance, filtered out 8 promising strategies based on the ratio of successful/un-
successful algorithm runs. The best strategies measured on 10x14 instance:

• Sort the word spaces by the minimal value of the mean candidate letter
(min-mean) ascending (58% success)
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• Sort the word spaces by the sum of the sum of all candidate letters
(sum-sum) in descending order (34% success)

• Sort the word spaces by the minimal value of the maximal candidate
letter (min-max) ascending (50% success)

The last round on 11x15 instance confirmed the results with min-max 10%
success rate, sum-sum 2%, min-mean 8%.

3.2.1.2 Best Option

find best options is called when the specific Word space is to be filled. It
does a similar computation as the possibility matrix recount, however does
return the actual set of words with the maximal value of the heuristic strategy
criterion. One word of this set is picked and returned as the best option.

3.2.1.3 Search Structure

To allow fast possibility matrix recount and find best option search a data
structure finding the set of words according to provided mask. Example of
the query: Find all words fitting the .A.D pattern.

A multi level dictionary is used with sets inside the nodes:

words structure[ word length ][ index of letter ][ letter ] (3.1)

The set intersection operation is used when performing a search.
.A.D∈ words structure[4][2][A] ∩ words structure[4][4][D].

A single retrival from the dict isO(1). Retrival count can be bounded
by a maximum word length and we may consider that a constant by not
allowing longer words than 20. The set intersection s ∩ t is average case
O(min(len(s), len(t)) according to ??. The set size is upper bounded by the
word list size - but actually the word list is divided into disjunct parts by the
word length observable in 2.5 and the letter frequency ??. That means the
worst-case scenario of the operation might be O(|Words|), but the average
case would be O(1).

Native Python structures dict and set are performing well in the
terms of speed. There is a room of improvement for the memory consumed
as the data structure has clearly big overhead - consumed memory is 25MiB
per 10′000 words Section 3.3.2

3.2.2 Heuristic: Optimization Problem

I have implemented an extension of the heuristic to prioritize the words based
on their weights during the search:
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• Adjust the algorithm first step: Fill in a random WordSpace with a
Word of the same length and maximal weight.

• Allow some randomization of the 3.2.1.1: the second best word space is
picked instead of the first with some small probability.

• Adjusting the best option : if more words are found sharing the same
maximal value of the heuristic strategic criterium pick the one with the
maximal weight.

The search algorithm is executed repeatedly for a constant amount of tries.
The best found solution is picked as a resulting crossword.

There are few advantages to this approach: The multiple search runs
may be trivially paralelized and the original heuristics was modified just a
slightly. Additionally, the most time consuming process of generating the
data structure 3.3.2 might run only once for all the search runs.

3.2.2.1 Improvements Proposal

The current heuristic might be improved by providing a feedback about the
problem instance difficulty. It might choose between the current suitable word
picking strategy and the strategy focused on maximalizing the weight. There
also exist advanced probabilistic techniques such as Genetic Algorithm or
Simulated Annealing that I would like to experiment with on this problem.

3.3 Results

3.3.1 Convergence

The heuristic backtracking is not very effective once the unfeasible branch is
entered and it is necessary to restart the search in that case. In 3.2 and 3.3
the sucess ratio number of solutions found

number of heuristic runs is observed. After reaching a word
list size treshold, the sucess ratio is increasing almost linearily. It seems that
for the 10x15 instance, the optimal word list size is more than 250′000 words.

3.3.2 Performance

The search structure described in construction time scales with the number
of words linearly; I have measured 25MiB of RAM used per 10′000 words —
using 604MiB for an entire word list. The time to build the search structure
scaled with the number of words as well - I have measured roughly 1second
per 10000 words for the data structure to be built.
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Figure 3.2: Heuristic success rate on a 6x8 instance

Figure 3.3: Heuristic success rate on a 10x15 instance
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Chapter 4
Web Application

In this chapter, I design a Web Application to interface the users. I also
describe the architectural perspective of the whole system, interconnecting
developed parts into a functional system.

4.1 User Interface

4.1.1 User Case Analysis

Solving Crossword puzzles is a popular leisure-time activity in Czech culture
— according to [55], the three most popular magazines have each reached
200’000 people, which counts for 2% of the population.

However, it is important to realize the demography of those potential
users: most of them are of senior age (older than 65 years). According to [56]
18% of 242 seniors likes to “solve crosswords, read books and magazines”. As
per [57] 37.5% of 40 surveyed seniors in Brno states crosswords are a significant
part of their activities.

4.1.1.1 Target Audience Scenarios

We can classify the potential users by the Reach of one Crossword and the
Medium type.

Single Consumer Multiple Consumers
Electronic Casual Web Game Embedded on Blog, Distant Teaching

Pen & Paper Printed on a home printer Published in a magazine

4.1.1.2 One Consumer — Electronic

In this scenario, the frontend has to provide interactive solving of the
Crossword. That means letter input optimized for the main mobile gam-
ing platforms. This approach should focus on attractiveness and usability.
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4. Web Application

It would be possible to use many techniques known from casual mobile and
web games — adjusting difficulty, achievements, a narrative story, interplays.
Main competitors would be casual mobile and web word games. The business
model of such project might be freemium. The demographics can negatively
affect this case’s userbase size. The seniors are typically not a good target
audience for the web and mobile gaming, often lacking the skills to use the
application and preferring analog over electronic devices.

4.1.1.3 One Consumer — Pen & Paper

The User in this scenario visits the frontend application to obtain a Crossword
to print on a printer at home or at work. The printing would occur through
the browser printing dialog. It is necessary to test the application against the
possible platforms and common printer types. The app should hint about the
print-out possibility to attract users. Printing on paper might be viewed as
unecological, yet it is still the most comfortable medium for Crosswords for
many users.

4.1.1.4 Multiple Consumers — Electronic

In this scenario, the User is creating a Crossword to share via electronic media.
The sharing may be through a link or via an embedded component (our html
code that the User inserts into his website). Many of this sharing will occur
on social networks. The need here is to optimize the sharing metadata (e.g.,
og:image) to make the social network previews attractive. This scenario also
depends on the interactive solving capabilities of the application.

4.1.1.5 Multiple Consumers — Pen & Paper

The User is a publisher of paper media, e.g., a local newspaper or a maga-
zine. In this scenario, perfect export to common print formats (PDF,
PostScript) is needed, as well as the ability to edit and fix the word descrip-
tions and inserting custom words relevant to the magazine scope. There might
be a benefit in providing an API for the publishers, as they can integrate our
product into their own pipelines. The obvious advantage of attracting this
kind of customer is their willingness to pay significant money if the applica-
tion meets their requirements.

4.1.1.6 Teacher

Outside of the reach/medium classification lies the group of users that are
educating someone and want to provide their pupils a fun way to remember
certain words. For success by this group, the main need is the ability to
own import words as well as good electronic or print sharing capabilities
discussed in previous scenarios.
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4.1.2 Design

4.1.2.1 Feature List

Based on those user case scenarios, we can create the application feature list.
Proposed feature groups are segmented into a sequence of milestones. The
first milestone in each feature group represents the minimum viable product.
The last milestone is usually the perfection far beyond this work scope. The
thick milestone is the current state of the presented application.

Feature Group Milestones
Word List Customization • One static Word List

• User preferences have effect
• Custom words

Print to paper • Default
• Printed page styled via CSS
• Optimized for multiple platforms and printer setups

Interactive solving • No interactivity
• Simple letters input
• Input optimized for different platforms

Game Elements • No game elements
• Leveling
• Story

Graphic Design • Basic Layout
• Carefully designed Visual identity (layout and colors)
• Custom Artwork

Sharing capabilities • None
• Sharing a crossword through link
• Sharing link optimized for social networks
• Embeddable HTML for use on external webs
• Custom mobile and social network application

Publisher integration • None
• Export to common print formats
• Fully editable crossword
• Schedule periodic crossword generation
• Well documented API

4.1.2.2 Frontend and Backend

The User interfacing web application features

• Visitors can Sign up to become Users

• Users are handled separately and securely
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• User can specify the size and shape of a new Crossword (the Grid)

• User can specify the word categorization preferences of a new Crossword

• User can request one or more Crosswords to be created

• User can see if the solution was found yet or the solution unfeasible

• User can see the Crossword as grid with placed word descriptions once
it is created

The user interfacing application seems pretty standard — comparable to a sim-
ple blog system or a tiny e-shop. There exist many frameworks in which the
Backend of this application might be created — Laravel (PHP), Rails (Ruby),
Express(Javascript), Flask(Python), ASP.NET(C#), or Spring(Java). Usu-
ally, an abstract layer of ORM is provided with connectors to the common
relational databases (MySQL, Postgres, MSSQL, Oracle, etc.). Such frame-
works usually come with some module ecosystem and development conven-
tions. Maintainability and extensibility is the goal of all these frameworks so
we may do the pick based on developer preferences.

The interesting part would be interfacing with the crossword-generating
workers. That will be discussed in the next section.

4.1.2.3 Workers

The process of Crossword Generating may be covered by the Consumer/Pro-
ducent pattern:

• Backend — the Producent of task that users place

• Crossword Generating worker — the Consumer of tasks that creates the
crossword

The workers might be accessing the Backend directly. But there are advan-
tages of adding another node in this chain: a separate queue service. The
advantages of such dissociation are:

• Simplifying the code of Backend

• Easing the load on Backend that would be caused by workers polling for
new tasks

• Out-of-the-box features such as multiple queues or task priority

We need the specific application choice to support both our Backend applica-
tion and the Workers programming language.
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4.1. User Interface

Figure 4.1: User Interfacing App Architecture

4.1.2.4 Architecture

4.1.3 Realisation

4.1.3.1 Frontend

The Frontend application is written in Javascript, using the Vue framework.
The Frontend is a Single Page Application, which means it operates in the
client’s web browser, seamlessly updating the application state based on the
interaction with the User and communication with the backend application by
asynchronous requests on REST API endnodes. frontend The main objective
of this is decoupling of Backend and Frontend — an alternative client may
be written (e.g., a native mobile application) and it allows the API to be
exposed for the publishers (after it is mature and properly documented). The
Publishers can then integrate without using the original Frontend application.

I have selected Vue framework because of its popularity and the reac-
tive concepts, which in my opinion, evolved from the older javascript frontend
frameworks (AngularJS, Angular, React, and others) to the state in which
they are quite handy and intuitive to use. [58] provides an in-depth compari-
son.
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4. Web Application

Figure 4.2: Frontend Crossword list

4.1.3.2 Backend

The Backend is written in Javascript using the Express [59] framework. It
uses Sequelize [60] for ORM. Backend authenticates and authorizes the user
session and provides the API endpoints to fetch and manipulate the data in
the manner of CRUD

4.1.3.3 Backend Data Model

• User — the application user authenticated by email and password
(stored hashed in database)

36



4.1. User Interface

Figure 4.3: Backend entity-relationship diagram

• Grid — the user-editable Crossword grid: specifying size of crossword
and word limits

• CategorizationPreference — user-specified vector of their interests
(target words categories)

• Task — In the created state it is the crossword demand specification.
After the Task is fulfilled by the Worker (the Crossword is created), the
Task contains the created crossword (list of words and descriptions with
their coordinates in the grid)

4.1.3.4 Working Queue

I have chosen the working server Faktory [61]. Other found solutions such as
Bull [62] have no Python bindings, so creating a wrapper would be needed.
After the User creates a Task through the Backend API, the Task is serialized
into JSON and uploaded into Faktory server. There it waits for being fetched
by the Worker program.
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4.1.4 Screenshots

Figure 4.4: Frontend Grid Designing
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Figure 4.5: Frontend Setting the Categorization
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Figure 4.6: Frontend Example of the generated Crossword

• Figure 4.2 shows the list of the Crosswords already generated, waiting
to be generated or failed.

• Figure 4.4 is the Grid design screen — user specifies the letter cell /
empty cell positions by clicking. The Grid size might be adjusted by the
sliders.

• On Figure 4.5 the user specifies the Crossword to be generated: chooses
a Grid and inputs categorization preferences by sliders.

• Figure 4.6 shows the generated crossword in the Czech language.

4.2 Application Architecture

4.2.1 Running Modes

Recaping the parts on the project:
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Part Complexity Interactivity
Word List Generation High None
Crossword Generation Medium Medium
Frontend and Backend interacting with User Small High

Figure 4.7: Diagram of the application parts

4.2.1.1 Word List Generation

Word list Generation can run at arbitrary times with intervals ranging from
days to months. Of course, the occasional words refreshing is beneficial for
our app — as more words can be produced and errors can be fixed in the
primary sources. But given the maturity of Wikidata and Wikipedia project,
it is unlikely that the word improvement per month would exceed 1% of our
vocabulary.

The cost for such refreshing is (if you consult Chapter 2) very costly
in terms of time, computing, and network resources — it means downloading
and parsing the whole Wikipedia dump and re-creating Wikidata database
(the process that took days). The current machine learning algorithm also
consumes a lot of memory (it was tested with 64GB RAM and failed on less).
The upside is there is no need for internet connection stability (apart from
downloading tens of gigabytes of data), and the process might be parallelized
and even paused. Running this process manually on a desktop computer
(with a fragment of the expense compared to any server hosting) is feasible.
Probably it can also benefit from services similar to Amazon EC2 Spot [63]
that uses the Cloud capacities when the capacities can be spared (off-hours)
instead of on-demand.
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4.2.1.2 Crossword Generation

This is the true friction point. As the problem is NPC, we are trading off
the generated crossword quality against the resources used. The amount of
resources needed varies greatly with different task specifications.

Also, there is a time constraint. We should deliver the tasks in a
reasonable time — failing to do so will cause the Users leave. The upside here
is that the tasks are completely independent, making them perfect adept for
parallelization and horizontal scaling - that means we can use multiple worker
machines in the case of higher demand and quickly free up the resources when
the demand drops. This makes it perfect adept for deploying on cloud services
similar to Amazon Lambda [64].

4.2.1.3 Frontend and Backend Interacting with User

The availability is critical for this part. Luckily the resource demands are not
so high; it is comparable with usual web applications. The needs are stacking
with the number of users and it is good to have it deployed on a scalable
infrastructure to be ready for the Slashdot effect.

4.2.2 Word List Data Structure

The Word List data structure contains list of words along with their clues and
categorizations. It is produced by the Word List Generator, and it is consumed
by the Crossword Generator. The production of the Word List happens once a
month or less frequently, as the source data does not change rapidly. Therefore
it is acceptable to have the process time- and resource-consuming.

The Word List gets consumed much more often — every time the
crossword is generated. This asymmetry causes my design of the Word List
structure to make it as close to the Crossword Generator needs as possible. I
have considered three solutions:

1. The Word List as a view to the Word List Generator database. I have
dismissed this possibility immediately as it would not account for the
asymmetry at all. Every single crossword generated would mean the
Crossword Generator would need to load a huge amount of data from
some remote database.

2. The Word List as a serialized Crossword Generator internal structure
Section 3.3.2. I have dismissed this because it would cause make the
development lot less flexible - after updating the Crossword Generator
internals, I would have to update the Word List.

3. The Word List as structured files — I considered the simplistic approach
of a CSV file, but ended up with a serialized Pandas [35] dataframe called
“pickle”.
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I wanted to keep the categorization expandable — so the information
about the words from different sources might be added easily. Therefore I
decided to put the categorization into separate data files joinable through
shared word id. Those files are serialized dataframes.

This separation also allows the weights of the words based on the
user preference vector to be computed effectively as a matrix multiplication
as described in ?? 4.2.2.1.1.

4.2.2.1 Crossword Generation Worker

I have implemented the Worker wrapper to the Crossword Generation pro-
gram. It gets tasks from a queue as discussed in Section 4.1.2.3.

Load the WordList
Load the Categorization
while true do

Wait for Task
TaskCategorizationScore = Matrix multiply
Categorization · Task.categorizationV ector
WordListWeighted = join(WordList,
TaskCategorizationScore) over wordid

Run WCC(Task.Grid, WordListWeighted )
end

Algorithm 3: Crossword Generation Worker
The Word List and Categorization is loaded, and the search structure

from 3.3.2 is generated only when the Worker starts. With the Task, a custom
User Preference vector comes. The individual word weights for this Task must
be computed. This can be expressed as matrix multiplication, and experiments
show it finishes in 0.1s even for our 230k Word List and 34 categories.

4.2.2.1.1 Example of the Individual Word Weights Computation
A Word List of length = 2:

word id word label text word description text
1 Acoustics science that deals with the study of sound
2 Earth third planet from the Sun in the Solar System

A simplified example of the KorpusDB categorization — MUS is the music
category, PHY physics, and BIO biology:

wordid MUS PHY BIO

1 0.5 0.45 0.05
2 0.1 0.7 0.2
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Task 1 comes with a User Preference vector:

MUS 0.8
PHY 0.1
BIO 0.1

The WordListWeighted gets computed:

(
0.5 0.45 0.05
0.1 0.7 0.2

)
·

0.8
0.1
0.1

 =
(

0.45
0.17

)

The resulting matrix is joined with the word list again:

word id word label text word description text word weight
1 Acoustics science that deals with the study of sound 0.45
2 Earth third planet from the Sun in the Solar System 0.17

It means that Acoustics will be preferred during the crossword filling WCC
algorithm run.

4.2.3 Deployment

As the application consists of interconnected services, I have provided a Dock-
erfile for Frontend, Backend, and Crossword Generator, making it possible to
build a docker [25] container.

After the containers are build, it is possible to run them using the
docker-compose tool that uses a configuration written in a YAML file to es-
tablish the connections between the services and their dependencies. Excerpt
from my docker-compose.yml:

version: ’3.6’
services:

faktory:
image: contribsys/faktory:latest
environment:

- FAKTORY_PASSWORD
command: ./faktory -b :7419 -w :7420

ports:
- "7419:7419"
- "127.0.0.1:7420:7420"

postgres:
image: postgres:13
environment:

- POSTGRES_USER: ${PGUSER:-postgres}
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- POSTGRES_PASSWORD: ${PGPASSWORD:-changeme}
expose:

- ’5432’
volumes:

- ./postgres-data:/var/lib/postgresql/data
crossword-web:

image: crossword-crossword-web:0.0.1
depends_on:
- postgres
- faktory
ports:

- ’127.0.0.1:3111:3111’ # crossword-web API
command: bash -c "yarn sequelize db:migrate && yarn start"

crossword-front:
image: crossword-crossword-front:0.0.1
ports:

- "127.0.0.1:3112:80"

Specifying the deployment schema with code allows it to be versioned with
a version control system such as GIT. Also, it enables the application to be
deployed automatically, making the development faster.

4.2.4 Improvements Proposal

Given the wide scope of this work, the software presented is a working proto-
type, and there is a lot of interesting areas to focus on next.

• Proper Usability Testing

• Focusing on the target audience
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Conclusion

As my Master’s work, I have created a fully automated Crossword Puzzle
Generator. It uses words, clues, and word categorization gathered from public
data sources to form a rich word list. Users can access the program through
a comfortable web interface that allows them to set their word categorization
preferences. User preference influences the crossword generation process. The
result is a Crossword adjusted to the User. This is a novel approach to the
Crossword Constructing problem.

In this Thesis, I analyzed the problem and divided it into three parts:
Word List Generator, Crossword Generator, and User Interface. I imple-
mented those three parts and structured them to interface with each other.
The result is a fully functional application deployed in the Czech language on
generator-krizovek.cz

In this Thesis, I formulated and analyzed the problems and described
my solutions and reasoning behind them. Also, I have proposed several di-
rections to take in this project evolution and possibilities of the following
research.
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Glossary

API Application Programming Interface . 13, 35, 36

CC-BY-SA Creative Commons license with Share-Alike and Attribution
terms . 8

CC0 Creative Commons CC0 license - license that waives the copyright so
the work is placed in the public domain as completely as possible . 8

CRUD create, read, update, and delete (CRUD) is a software architec-
tural style regarding the four basic operations of persistent storage.
(wikipedia) . 36

CSP Constraint Satisfaction Problem, . 25

CSV Comma Separated Values - a delimited text file that uses a comma to
separate values. (wikipedia) . 42

freemium Offering basic services for free while charging a premium for ad-
vanced or special features. (wiktionary) . 32

Genetic Algorithm Genetic Algorithm is a metaheuristic inspired by the
process of natural selection that belongs to the larger class of evolution-
ary algorithms. (wikipedia). 29

GIT GIT is software for tracking changes in any set of files, usually used
for coordinating work among programmers collaboratively developing
source code during software development (wikipedia). 45

homograph A word that is spelled the same as another word, usually having
a different etymology. (wiktionary) . 13
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Glossary

inflectional languages Languages in which words are derived from a base
form(lemma) by prefixes and suffixes. . 19

JSON JavaScript Object Notation; a data format used to represent struc-
tured data (wiktionary) . 37

NLP Nature Language Processing . 9, 12

NPC NP-complete problem, any of a class of computational problems for
which no efficient solution algorithm has been found. (britannica). 2,
24–26

NPH NP-hard problem - the class of problems at least as hard as the hardest
problems in NP. (Fǐser) . 26

ORM Object-Relational Mapping; a higher layer way to work with relational
database. . 34, 36

RDF Resource Description Framework, a W3C specification . 8

REST Representational state transfer; a software architectural style which
uses a subset of HTTP and a predefined set of stateless operations. .
13, 35

Simulated Annealing Simulated annealing is a probabilistic technique for
approximating the global optimum of a given function. (wikipedia). 29

Slashdot effect The Slashdot effect, also known as slashdotting, occurs when
a popular website links to a smaller website, causing a massive increase
in traffic (wikipedia) . 42

SPARQL SPARQL Protocol and RDF Query Language . 8, 17, 20

SSD Solid State Drive . 10

TBW Terabytes Written (or Total Bytes Written) - endurance metrics in
Solid State Drives . 10

URI Uniform Resource Identifier . 8

userbase The established group of users for a particular computer program,
technology, etc. (wiktionary) . 32

Web Assembly A binary instruction format for a stack-based virtual ma-
chine. Wasm is designed as a portable target for compilation of high-level
languages like C/C++/Rust, enabling deployment on the web for client
and server applications. (w3.org/wasm/). 25
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Glossary

YAML ”YAML Ain’t Markup Language”, a human-readable data-serialization
language. (wikipedia) . 44
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Appendix A
Contents of enclosed data

medium

crossword-gen.........................Crossword Generator in Python
crossword-compose...............................docker-compose files
plot scripts....................................scripts to create plots
thesis.....................................all source files of this thesis

DP Benda Adam 2021.pdf...................... thesis in PDF format
DP Benda Adam 2021.tex .............................. thesis source

crossword-front......................Frontend in Javascript with Vue
crossword-web.....................Backend in Javascript with Express
wordgen ............................... Word List Generator in Python
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