

Master’s thesis

A Tool for Digitalizing Handwritten Chess
Notation Sheets

Bc. Jana Mař́ıková

Department of Applied Mathematics
Supervisor: Ing. Karel Klouda, Ph.D.

May 6, 2021

Acknowledgements

I would like to express gratitude to my supervisor Ing. Karel Klouda, Ph.D.
for his motivation and advice. His guidance helped me in both implementing
solution and writing this thesis. Last but not least, I would like to thank my
family for their support during my study.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
c© 2021 Jana Mař́ıková. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mař́ıková, Jana. A Tool for Digitalizing Handwritten Chess Notation Sheets.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021. Also available from: 〈http://marikja7.pythonanywhere.com/〉.

http://marikja7.pythonanywhere.com/

Abstrakt

Tato práce se zabývá implementaćı nástroje na konverzi šachového partiáře do
digitálńı podoby za pomoci OCR a technik strojového učeńı. Šachový partiář
je dokument, do kterého zapisuje hráč své a soupeřovy tahy v pr̊uběhu partie.
Nejdř́ıve je popsána šachová terminologie a prozkoumána existuj́ıćı řešeńı.
Poté jsou prozkoumány metody obecného OCR systému a na závěr je popsáno
implentované řešeńı společně s jeho vyhodnoceńım.

Kĺıčová slova OCR, šachy, šachový partiář, PGN, algebraická notace, CNN

Abstract

This thesis aims to create a tool that would automate converting a photo of
a chess score sheet into digitalized form with the help of OCR and machine
learning techniques. The score sheet is a paper document where players write
down their and opponents’ moves. First of all, the chess terminology and ex-
isting solutions are introduced. Then the description of a general OCR system
is stated, and, finally, the implementation of the system and its evaluation are
given.

Keywords OCR, chess, score sheet, PGN, algebraic notation, CNN

vii

Contents

Introduction 1

1 Short Introduction to Chess 3
1.1 Algebraic Notation . 3
1.2 Score sheet . 5
1.3 PGN format . 6

2 Existing Solutions 7
2.1 Checklist Based Convertor . 7
2.2 Reine . 8
2.3 CheSScan . 9
2.4 Summary . 10

3 OCR 11
3.1 Introduction to OCR . 11
3.2 Image Acquisition . 13
3.3 Preprocessing . 14

3.3.1 Image Binarization . 14
3.3.2 Noise Reduction . 15
3.3.3 Skeletonization . 16
3.3.4 Region of Interest . 16

3.4 Segmentation . 17
3.4.1 Holistic . 18
3.4.2 Explicit Segmentation 18
3.4.3 Implicit Segmentation 19

3.5 Feature Extraction . 20
3.5.1 Statistical . 20
3.5.2 Structural . 20
3.5.3 Global Transformations and Moments 20

3.6 Character Classification . 21

ix

3.6.1 Support Vector Machines (SVM) 21
3.6.2 K-Nearest Neighbors (K-NN) 21
3.6.3 Random Forests (RF) 21
3.6.4 Convolution Neural Networks (CNN) 22
3.6.5 Comparison of Classification Methods 23

3.7 Postprocessing . 24
3.7.1 Manual Error Correction 24
3.7.2 Lexicon-Based Error Correction 24
3.7.3 Context-Based Error Correction 24

3.8 Existing OCR Systems . 24

4 Implementation 27
4.1 Technology . 27

4.1.1 Flask . 27
4.1.2 React . 27
4.1.3 PostgreSQL . 27
4.1.4 Libraries . 28
4.1.5 Pythonanywhere . 28

4.2 System Functionality . 29
4.3 Score Sheet Conversion Process 30

4.3.1 Preprocessing . 31
4.3.2 Move Segmentation . 34
4.3.3 Character Segmentation 35
4.3.4 Character Classification 37
4.3.5 Game Creation . 40

5 Evaluation 45
5.1 Dataset . 45
5.2 Move Segmentation . 46
5.3 Character Segmentation . 47
5.4 Character Classification . 48
5.5 Move Prediction . 50
5.6 Time Complexity . 52
5.7 Possible Improvements . 52

Conclusion 55

Bibliography 57

A Examples from dataset 63

B Model Comparison 69

C PGN game statistic 75

x

D Examples of application 77

E Acronyms 81

F Contents of enclosed CD 83

xi

List of Figures

1.1 Squares . 4
1.2 Chess pieces . 4
1.3 Score sheets . 5
1.4 Example of the PGN format . 6

2.1 Example of required score sheet . 7
2.2 Reine score sheet . 8
2.3 Score sheet converted into PGN . 8
2.4 CheSScan . 9

3.1 OCR division . 12
3.2 Different types of the image . 13
3.3 Image binarization . 14
3.4 Skeletonization . 16
3.5 Division of character segmentation 17
3.6 Vertical projection . 18
3.7 Connected components . 19
3.8 Classification methods . 21
3.9 A neuron . 22
3.10 Comparison of classification methods 23

4.1 System overview . 29
4.2 Score Sheet Conversion Process . 30
4.3 Implemented steps of preprocessing 31
4.4 Perspective transformation . 32
4.5 Move segmentation – score sheet A 34
4.6 Character segmentation – score sheet A 35
4.7 Character segmentation – score sheet B 36
4.8 LeNet-5 architecture . 37

5.1 Predicted game length subtracted from PGN game length 46

xiii

5.2 Move length . 47
5.3 Character classification . 48
5.4 Confution matrix for char prediction 49
5.5 Move prediction . 50
5.6 Levenshtein distance between the actual move and first-guess move 51
5.7 Time complexity . 51

A.1 Category A – score sheet A . 64
A.2 Moves from PGN corresponding with examples from Category A

(score sheet A) and Category L . 64
A.3 Category A – score sheet B . 65
A.4 Moves from PGN corresponding with examples from Category A

(score sheet B) . 65
A.5 Category B . 66
A.6 Category C . 67
A.7 Category L . 68

B.1 Customized LeNet-5 model summary 70
B.2 LeNet-5 . 71
B.3 Customized LeNet-5 . 72
B.4 AlexNet . 73

C.1 Average length of move in game . 75
C.2 Length of move in game . 76
C.3 Distribution of characters in games 76

D.1 Template upload . 77
D.2 Template upload – rotation . 78
D.3 Template upload – move area selection 78
D.4 Template select . 79
D.5 Game conversion . 79

xiv

List of Tables

4.1 Character classification – score sheet A 38
4.2 Character classification – score sheet B 39
4.3 Candidate moves – score sheet B 39
4.4 Candidate moves – score sheet A 41
4.5 Game creation – score sheet A . 42
4.6 Game correction – score sheet B 43

xv

Introduction

There are about fifty official chess tournaments every year in the Czech Repub-
lic. Players are obligated to write down their and opponents’ moves into the
paper document called a score sheet. The tournament organizers are bound
to transcribe these score sheets into the computer and send them to Czech
Chess Organization.

Official reasons aside, the players themselves also benefit from writing
down their games being able to analyze them later.

Nowadays, the transcription into the computer is usually done with the
help of some chess program which offers the graphical interface with a chess-
board. The user is moving pieces, and the program is storing the moves in the
standardized system called algebraic notation. These programs are usually
not free.

Although there is a lot of chess software for chess players to improve their
skills, only a few are created to help with converting paper score sheets into
a digitalized form.

The goal of this thesis is to create program which would help with digital-
izing score sheets by implementing a Character Recognition System (OCR).
The OCR is a technology that converts images of handwritten or printed text
into the text as represented in a given system.

The thesis consists of five sections. The basic chess terms necessary for
proper understanding of this thesis are introduced in Section 1. Investigation
of existing solutions follows in Section 2. The theoretical background and cur-
rent state-of-art of Optical Character Recognition are described in Section 3.
Finally, the implementation of the system is introduced in Section 4, and in
Section 5, the implemented system is evaluated, and possible improvements
suggested.

1

Chapter 1
Short Introduction to Chess

Basic terms and standards from chess tournaments, relevant for understanding
this thesis’s idea, are introduced in this chapter.

First of all, the system used to record chess moves, so-called algebraic no-
tation, are presented in Section 1.1. Score sheets that serve for chess notation
recording are described in Section 1.2. Finally, the PGN format is explained
in Section 1.3.

1.1 Algebraic Notation

Almost every player must write down their and opponent’s moves in a standard
chess tournament. It serves several purposes:

• Disputes – Some rules depend on the number of moves or repetitions
of the same position. In disputes during the game, a referee can look
into a notation and restore the game.

• Administration – In the vast majority of standard chess tournaments,
a team that organizes the tournament must transcript all games and
send them in the form of PGN files to the Czech Chess Organization
FIDE (the world international chess organization).

• Analysis – The overwhelming majority of players store their games in
a chess database to replay and analyze them later to learn from their
mistakes.

Over time, various approaches to record moves have been used, but the only
one that lasts is the syntax system called algebraic notation, which has become
standard.

In general algebraic notation describes a piece that moves and a square
where to move. Every piece has its letter abbreviation, which usually repre-
sents the first letter of its name capitalized. In chess, a pawn is not understood

3

1. Short Introduction to Chess

Figure 1.1: Squares

ENG CZ
K – King K – Král
Q – Queen D – Dáma
R – Rook V – Věž
B – Bishop S – Střelec
N – Knight J – Jezdec

Figure 1.2: Chess pieces

as a piece, so when a pawn is moving, a letter abbreviation is omitted, and
only the target square is noted. Piece names and letters representing them
are listed in Table 1.2 in Czech and English. Square coordinates consist of a
lowercase letter from a to h representing a column and a number from 1 to 8
representing a row. Examples of square coordinates are shown in Figure 1.1.
For example, move Bf6 means that bishop goes to square f6.

There are some more complex moves, which can be broken down into the
following categories:

• Captures – When there is an opponent piece on the target square
symbol x is added after the piece letter. For example Bxf6 means that
bishop captures an opponent piece at square f6. When a pawn captures
a piece, a column letter is written instead of a piece letter. For example
exd4 means that pawn from column e captures an opponent piece at
square d4.

• Ambiguity – When two (or more) identical pieces can move to the same
target square, it is necessary to distinguish between them by adding a
column letter or a row digit to specify the origin of the piece that moves.
This letter/digit is added right after the piece letter. For example Jbd7
means that knight from column b moves to d7 square.

• Castling – There are also some special moves such as O-O for the king-
side castling and O-O-O for the queenside castling.

• Special symbols – According to FIDE rules, it is mandatory to note a
check with + symbol and checkmate with # or ++ symbols [1], but a lot
of players do not do that.

4

1.2. Score sheet

Figure 1.3: Score sheets

1.2 Score sheet

A score sheet is a form used by players to write down their and opponents
moves, usually in algebraic notation. The score sheet is usually in paper form,
there are also electronic score sheets, but there are quite expensive and not
approved by FIDE, which means that these score sheets can not be used in
official chess tournaments. The format of the score sheet is not defined by
any standard, so nearly every chess club or chess tournament presents its own
version. However every score sheet must store a similar set of information.
Hence the score sheet generally consists of:

• Header part – This part contains relevant information about players
as their names and ratings, game data such as a tournament name, a
round, a desk, and a date of the game.

• Moves part – This part contains cells with numbers. A number is a
move number. Moves are written into the cells. A white piece move is
recorded into the left-hand side cell, a black piece move is recorded into
the right-hand cell (with the same number).

The result is written down below the moves, and both players must sign both
score sheets, indicating the result of the game when the game is finished.
Finally, the score sheet is handed over to an arbiter.

In Figure 1.3 some commonly used score sheets in Czech Republic are
shown. Score sheets from other countries differ by a logo, number of moves
per score sheet page, position of the move number (sometimes separates white
and black moves) but the basic format of the moves part is always very similar.

5

1. Short Introduction to Chess

Figure 1.4: Example of the PGN format

1.3 PGN format

The abbreviation PGN stands for Portable Game Notation. It is the standard
format for storing chess games in ASCII text files. The vast majority of
chess software recognizes this format. The PGN format is also a standard
way to publish chess games in books and also on the Internet (see The Week
in Chess1). A chess tournament organizer must use this format to publish
all played games. Abbreviations of chess pieces are different for different
languages, so also the PGN format differs for different languages. A chess
game in the PGN format is shown in Figure 1.4 in English.

1https://theweekinchess.com/

6

https://theweekinchess.com/

Chapter 2
Existing Solutions

In this chapter, existing solutions are described and reviewed to see whether
a new solution can bring additional value to players and/or organizers of
tournaments. Criteria like functionality and useability are used for evaluation.

2.1 Checklist Based Convertor

This application2 requires a special score sheet with preprinted symbols as
seen in the demo example3 and in Figure 2.1, where the example score sheet
is shown. The pre-printed symbols are suitable for English notation. A user
is assumed to mark off the symbols that appear in a move. The application
provides a command-line interface. The only functionality that offers is to
upload one score sheet. The PGN file is automatically downloaded after the
score sheet upload, with no option to correct misclassified moves.

Figure 2.1: Example of required score sheet

2https://1drv.ms/u/s!AkjJO15BouadhTLLJOQKoDYbCVr6
3https://www.youtube.com/watch?v=nc2n-UjrzpY

7

https://1drv.ms/u/s!AkjJO15BouadhTLLJOQKoDYbCVr6
https://www.youtube.com/watch?v=nc2n-UjrzpY

2. Existing Solutions

Figure 2.2: Reine score sheet
Figure 2.3: Score sheet con-
verted into PGN

2.2 Reine

The idea of converting score sheets to digital form using Optical Recognition
System was mentioned for the first time in a medium post by Marek Smigielski
in May 2017 [2]. He did not finish the implementation of his idea, but he
published source code on GitHub4. The source code makes clear that it is
suitable only for a specific type of a score sheet.

Reine5 is a free web application created two years later with published
source code6. It is inspired by Smigielski’s work, especially by the used score
sheet. The main disadvantage of this application is that a user is assumed to
use a provided score sheet. This score sheet has special symbols in corners
to better deal with perspective transformation and a separate cell for every
letter, see Figure 2.2, and it provides bad results when characters do not fit the
cells. Therefore, the application is not suitable for a general chess tournament
when players are in time press and want to write down their moves as quickly
as possible. The requirement to use a specific and actually unusual form of
the score sheet is also very limiting.

4https://github.com/smigielski/pgn-reader-poc
5https://www.reinechess.com/
6https://github.com/Messier-16/Reine-Chess-Scoresheet-Scanner

8

https://github.com/smigielski/pgn-reader-poc
https://www.reinechess.com/
https://github.com/Messier-16/Reine-Chess-Scoresheet-Scanner

2.3. CheSScan

Figure 2.4: CheSScan

2.3 CheSScan

CheSScan7 is a mobile application for Android and iOs which allows user to
load the score sheet photo and it returns possible moves, which can be then
downloaded as the PGN or replayed on the board. When some moves are
not recognized correctly, three other possible moves to change the move are
offered. Moves can also be changed by moving pieces on the board. CheSScan
also offers to analyze the game by Arasan Chess8. Arasan Chess is an open-
source chess engine that shows the best moves in position and the position
evaluation.

The additional functionality that CheSScan offers are to load a photo of
the board from a book or a screen and transform it into the FEN format which
is standard for storing chess positions in chess programs.

The description does not specify suitability for various notation languages.
Performed tests indicate that only English notation is supported in the current
version.

Another disadvantage is that the application accepts only one score sheet.
There are two situations when the user wants to convert multiple score sheets
for one game. The same score sheets (score sheets from both players) for
a higher quality of conversion or the case when the game was longer than
supported by the score sheet and the game must be recorded on multiple
score sheets. None of these options is supported.

In Figure 2.4 the examples from the CheSScan are shown.

7https://chesscan.com/
8https://www.arasanchess.org/index.shtml

9

https://chesscan.com/
https://www.arasanchess.org/index.shtml

2. Existing Solutions

2.4 Summary

Although there are numerous chess applications for game analysis, player
training, and chess games databases, only three applications for converting
chess score sheets were found. This fact itself sufficiently illustrates the com-
plexity of the problem.

Two of the score sheet processing applications require a special score sheet
to simplify the problem. The special score sheet is, in general, not suitable
for chess tournaments, and only a few players will use them as expected. One
of the score sheet processing applications (Reine) is no longer available as
of 3/10/2021. Therefore, the only suitable application is CheSScan, but the
usability of this application is limited by chess notation language (English).

The existence of a single usable application and in fact the application
that is usable only in English-speaking countries make sufficient space for a
new application. The analysis shows that such an application cannot rely on a
specific score sheet format and must and able to process score sheets currently
used in chess tournaments.

10

Chapter 3
OCR

Various approaches and current state-of-art in Optical Character Recognition
are presented in this chapter. The overall introduction to OCR is described
in Section 3.1. The individual steps that the general OCR system consists of
are introduced in Sections 3.2 – 3.7. At the end of this chapter in Section 5.7
the existing OCR systems are explored.

3.1 Introduction to OCR

OCR stands for Optical Character Recognition. OCR is a technology that
converts images of handwritten or printed text into the text as represented in
a given system. It was originally meant to be used only for a printed text,
nowadays it can be used for a handwritten text as well. [3]

The research went in many directions during past years. This section is
based on [4] and discusses different types of OCR systems that emerged as an
outcome of this research. These systems can be categorized based on image
acquisition mode, character connectivity, and font restrictions.

Based on the type of input the systems can be categorized as:

• Machine printed character recognition systems – Systems that are
used for the recognition of a text written by a computer. The complexity
of a machine printed text recognition is given by a huge number of fonts
that can be used.

• Handwriting recognition systems – Systems that are used for the
recognition of handwritten texts.

11

3. OCR

Figure 3.1: OCR division

Character Recognition of handwritten text is a complex problem as it must
deal with different styles of writing and different pen movements. There are
also two types of handwritten style:

• Cursive handwritten – A style of handwriting with rounded letters
that are joined together.

• Print-script handwritten – A style of handwriting that uses simple
unjoined letters resembling printed lettering.

Handwriting recognition systems can be further divided into subcategories
based on the time they access an input (time when the system starts to process
the input):

• Online – Online Character Recognition system processes the text in
real-time while a user is writing a character. They are less complex as
they can benefit from temporal or time-based information as a speed,
velocity, or writing direction.

• Offline – Offline Character Recognition system operates on static data.
The input is usually given in form of the image containing text.

The division of OCR is shown in Figure 3.1. The basic stages of offline hand-
written print script input document OCR based on [4] are described in the
following sections.

12

3.2. Image Acquisition

(a) Black-and-white (b) Grayscale (c) Colored [5]

Figure 3.2: Different types of the image

3.2 Image Acquisition

Image acquisition is the first step of any OCR system when the digital image
of the document with a text is obtained. In offline OCR systems, the two most
common ways to acquire digital images are with a digital camera or a scanner.

From a mathematical point of view, a digital image P is a two-dimensional
matrix of intensity values pij usually referred to as pixels. The pixel is a
shortage for picture element and is assumed to be square with sides of length
one, with the pixel with value pij centered at the point (i, j).

There are three basic types of image based on color [6], these types of
images are shown in Figure 3.2:

• Black-and-white – The simplest form of an image where pij is a sin-
gle value from the set {0, 1} where 1 represents the white color and 0
represents the black color.

• Grayscale – The value pij is an integer with a value between 0 and 255
denoting shade of gray.

• Colored – Each pi,j is a vector of three or more values. Most of the
colors can be generated by red, green, and blue. The most common
format is the RGB color model where each pi,j is a vector of three values,
pij = (rij , gij , bij), that denotes the amount of red, green and blue at
the point (i, j).

One of the advantages when representing an image as a two-dimensional ma-
trix is the possibility to manipulate the image by performing mathematical
operations. Some basic operations for increasing the quality of the image is
discussed in the next section.

13

3. OCR

(a) Simple (b) Adaptive (c) Otsu

Figure 3.3: Image binarization

3.3 Preprocessing

The success rate of OCR is in correlation with the image quality. The purpose
of image preprocessing is to remove non-relevant parts and improve the quality.

Image preprocessing is highly dependent on a type of input document,
the purpose of character recognition, and the chosen algorithm for character
segmentation and classification. Here only the preprocessing steps relevant to
the expected input are described.

3.3.1 Image Binarization

Image binarization is a conversion of an image into a black-and-white form,
also called a binary image. This step is required to unite different colors of
pen used for writing. The most common binarization techniques are: [7]

• Simple Thresholding – Pixels are compared to a global threshold T :

px,y =
{

1, If px,y ≥ T
0, otherwise

• Adaptive Thresholding – The image is divided into smaller regions,
and for every region, a local threshold is computed. The different meth-
ods can be used for calculating the local threshold. For example, the
mean of neighborhood area can be used.

• Otsu Binarization – Automatically determines an optimal global thresh-
old value from the image histogram. A detailed description of the Otsu
method is in [8].

The resulting binary images for these techniques are shown in Figure 3.3.

14

3.3. Preprocessing

3.3.2 Noise Reduction

Noise refers to unwanted pixel patterns or errors in the pixel values which
negatively affects the output [9]. The goal of the noise reduction process is to
remove these patterns and correct errors in pixel values.

Based on the characteristics, noise can be divided into following cate-
gories: [10]

• Ruled Line Noise – Some documents contain lines and boxes which
need to be removed. Several problems with line removal occur – lines
can be broken, have different thicknesses, and be crooked when a camera
acquires the image. To crooked lines noise is also referred to as Stroke
Like Pattern Noise. Some letters contain a straight line (5, 7, 1, . . .)
that should not be removed.

• Marginal Noise – Dark shadows that appear in the vertical or hor-
izontal margins of an image are called marginal noise. It is often the
result of scanning a thick document.

• Salt And Pepper Noise – This noise usually consists of a small group
of pixels. It is often caused by the bad quality of acquisition media or
by dirt on the document.

• Background Noise – This category comprises uneven contrast, show-
through effects, interfering strokes, and background spots. The degra-
dation of a document can cause this type of noise.

Based on the type of noise, three main approaches can be used for noise
removal, according to [11]. The approaches are following:

• Filtering (masks, Gaussian filter, etc) – Each pixel px,y is calculated
based on its neighbors and used filter.

• Morphological Operations (erosion, dilation, etc.) – Morphological
transformations are simple operations based on the binary image form.
It expects two inputs – the original image and the structuring element
or kernel, which decides the nature of the operation. Two basic mor-
phological operators are erosion and dilation. A detailed explanation of
morphological operation is in [12].

• Component Labelling – This technique groups pixels based on pixel
connectivity. For a detailed explanation of pixel connectivity, see [13].
Components with a sum of pixels below a chosen threshold are removed.

15

3. OCR

(a) Original image (b) Skeletonized image

Figure 3.4: Skeletonization

3.3.3 Skeletonization

Every person has a different style of writing, so different widths of stroke oc-
cur. To make the width of the stroke uniform, skeletonization can be used.
Skeletonization is the result of thinning and it returns binary image eroded
to its innermost level. The skeleton of the image should reflect the struc-
ture of an object’s shape. There are two types of skeletonization algorithms
based on [14]:

• Iterative – Removing the contour pixels iteratively till a width of one
pixel is reached.

• Non-iterative – Produce a skeleton directly without investigating all
of the individual pixels.

An example of skeletonization can be seen in Figure 3.4.

3.3.4 Region of Interest

Region of Interest (ROI) represents the relevant parts of the image. In the
OCR system, the ROI are usually text areas. According to [15], ROI methods
are based on:

• Templates – Defines a set of locations where information can be re-
trieved for a specific document layout.

• Extraction Rules – ROI are determined by some general knowledge
of document such as the rectangular shape, color of borders, etc.

• Machine Learning – A model that can recognize text areas is created.
This method works well especially for machine printed text as can be
seen in the study [16].

16

3.4. Segmentation

Figure 3.5: Division of character segmentation

3.4 Segmentation

There are three levels of segmentation in the general OCR: [17]

• Lines – Separation of individual lines from document. The most com-
mon approach for line segmentation is Horizontal projection where the
peaks in projection indicate the line. [18]

• Words – Words segmentation tries to parse concatenated text to in-
fer where word breaks exist. Vertical projection is often used for this
process, where the trough indicates breakpoints.

• Characters – Character segmentation is a process that tries to decom-
pose an image of a sequence of characters into individual symbols or the
smallest units of a language.

In the context of this work, words are represented by moves and every move is
in a different cell. The only relevant segmentation is character segmentation
in this case. Different techniques of character segmentation are introduced in
this section.

There is no united division of segmentation approaches. In studies dealing
with segmentation, the division is usually based on the stage of recognition
included in the process. The division chosen in this work was based on [19]
and [20]. The authors divided segmentation approaches into three pure cat-
egories – holistic, implicit, and explicit as shown in Figure 3.5. The authors
also suggest that there is a fourth category called hybrid that combines at
least two of the techniques from the pure approaches.

17

3. OCR

(a) Original image (b) Histogram (c) PSC

Figure 3.6: Vertical projection

3.4.1 Holistic

Holistic also known as the segmentation-free approach is based on segmenting
words and then classifying the whole word as a unit. This approach is usually
restricted to a predefined lexicon and requires a huge dataset of words in that
specific lexicon as training on word samples is required. Thus this approach is
more suitable for OCR with a statically predefined lexicon, which is not likely
to be changed, e.g., bank cheque recognition. [17]

The holistic recognition can also be used for online handwritten OCR for
a personal computer or notepad, when recognition can be fine-tuned due to
personal handwriting style.

In studies dealing with OCR, the holistic approach is more often used for
cursive Arabic texts than texts in the Latin alphabet as can be seen in [21]
and [22].

3.4.2 Explicit Segmentation

Explicit segmentation is also called recognition-free segmentation. The word
is segmented into individual characters which are then classified – the segmen-
tation process and the classification process do not interact. [17]

The most common techniques from the recognition-free family are intro-
duced in this section. These methods are not stand-alone and usually must
be combined or supplemented for better performance.

These methods often seek to find dissection of the image. Dissection in
this context is the decomposition of the image based on some general features
of the character such as width, height, number of pixels, etc.

The most common methods from explicit segmentation are:

• White space and pitch – In machine printing, characters are often
separated by vertical columns of white pixels and each character has a
fixed width. Fix width and height can be forced by creating a separate
cell for every character in a handwritten case. [20] Thus, white spaces
and pitch provide a basis for estimating segmentation points.

18

3.4. Segmentation

Figure 3.7: Connected components

• Vertical histogram – The vertical histogram approach seeks to find
PSC (Potential Segmentation Column). Vertical histogram, also called
vertical projection or projection analysis, is a simple process of counting
black pixels in each column. PSC are columns where the sum of black
pixels is below some defined threshold. This technique can detect white
spaces and slightly touching chars.
This approach is useful mainly in good quality machine printing. There
are some downsides of this approach when using handwritten text –
when a word is slanted, or characters are overlapped, this approach gives
inaccurate results. The example of the Vertical Histogram approach can
be seen in Figure 3.6. PSC are indicated by blue color. The threshold
value for PSC was set on one in this case.

• Connected component – The connected component method deter-
mines the connected black region called component. This method pro-
vides good results when dealing with printed characters. When used
in handwritten text recognition, this method is often supplemented by
some splitting and merging techniques to avoid over-segmenting and pre-
segmenting. [20] Examples of image processed by connected component
analysis is in Figure 3.7.

3.4.3 Implicit Segmentation

Implicit segmentation also called recognition-based, is based on segmentation
and recognition at the same stage of OCR. Image is split into many overlap-
ping sub-images independent of the content – in contrast to the recognition-
free approach, which determines sub-images based on their features. Then
the system searches the sub-image for components that match classes in its
alphabet. [23]

The most common method in implicit segmentation is based on HMM
(Hidden Markov Models). For a detailed explanation of the HMM and how
works in the segmentation process see [24].

19

3. OCR

3.5 Feature Extraction

The feature extraction reduces dimensionality by extracting the most relevant
information from the image. The output of the feature extraction stage is
a feature vector. The form of the vector depends on the method used for
classification. However, the goal is the same – extract a set of features to
maximize the recognition rate with the least possible number of elements.
Feature extraction methods are based on three types of features which are
described in the following subsections. [25]

3.5.1 Statistical

The features are derived from the statistical distributions of pixels from an
image. The most common methods in this category are:

• Zoning – The character image is divided into n×m zones of predefined
size. Local characteristics such as pixel density, number of vertical lines,
etc., are extracted from each zone to a feature vector.

• Projection Histograms – The image of a character can be represented
as a 1D signal by projection histogram. Projection histograms count
the number of pixels in each column and row of a character image. The
drawback of this method is the dependence on a slant of the character
and noise.

• Profiles – Feature vector consist of number of pixels between the bound-
ing box of the character and the character.

3.5.2 Structural

The structural method identifies structural features of a character as topolog-
ical and geometric properties of the character. Structural features can be, for
example, the number of vertical lines, number of horizontal lines, endpoints,
crosspoints, etc.

3.5.3 Global Transformations and Moments

Methods from this class are often based on the Fourier Transformation of the
contour of the image. The first n coefficients of the Fourier Transformation are
considered to be an n-dimensional feature vector that represents the character.
For detailed explanation of Global Transformations and Moments see [26].

20

3.6. Character Classification

SVM K-NN RF

Figure 3.8: Classification methods

3.6 Character Classification

Basic methods for multiclass classification based on learning from examples
are described in this section.

3.6.1 Support Vector Machines (SVM)

SVM is a supervised learning algorithm. The SVM’s objective is to find a
hyperplane in an n-dimensional space that maximizes the separation between
two classes. The same principle is utilized for multiclass classification after
breaking down the multiclassification problem into multiple binary classifi-
cation problems. A detailed description of the SVM method can be found
in [27].

3.6.2 K-Nearest Neighbors (K-NN)

K-NN is a non-parametric supervised machine learning algorithm used for
both classification and regression. The K-NN algorithm assumes that data
from one class exist in close proximity. It means that a distance between two
points from the same class is usually smaller than a distance between two
points belonging to different classes. The distance is usually measured by
Euclidean or Hamilton distance. [28]

3.6.3 Random Forests (RF)

Random forests, also called random decision forests, uses multiple (usually a
large number of) decision trees trained on different parts of the same training
set. The classification of a sample is given by votes of individual decision trees.
A decision tree is a tree-like model with decision rules in nodes. [29]

21

3. OCR

Figure 3.9: A neuron

3.6.4 Convolution Neural Networks (CNN)

Neutral Network (NN) imitates processes in a brain by modeling the biological
neural system. The smallest unit of the brain is a neuron as it is in NN. The
NN neuron can be represented by

yk = ϕ

 m∑
j=0

wkjxj + b

 ,
where wkj are parameters and ϕ is an activation function.

Every activation function (or non-linearity) takes a single number and per-
forms a mathematical operation on it. There are several activation functions
used in practice:

• Sigmoid – σ(x) = 1/(1 + e−x),

• Tanh – tanh(x),

• ReLU – max(0, x).

The overview of other activation functions and their comparison can be seen
in [30]. Models are organized into distinct layers of neurons, where neurons
are put together into an acyclic graph.

Convolutional Neural Network is a type of NNs, where images on the input
are assumed. The following layers are used to build CNN. [31]

• Convolutional layer – This type of layer detects features in image
based on a given filter.

• Pooling layer – The goal of this type of layer is to reduce the spatial
size of the representation by some defined pooling operation.

• Fully-Connected layer – All neurons from the previous layer co-create
the input to neurons of the next layer, and neurons in one layer are not
connected.

A detailed explanation of Convolution Neural Networks can be found in [32].

22

3.6. Character Classification

Figure 3.10: Comparison of classification methods

3.6.5 Comparison of Classification Methods

The comparison of models based on the mentioned methods are introduced
in this section. All models were trained on the MNIST dataset [33], which
is a handwritten digit dataset. MNIST contains 60.000 training samples and
10.000 testing samples with a shape 28× 28.

• SVM – The implementation of the SVM model from [34] was considered.
The preprocessing steps deskewing and normalization between 0-1 were
implemented. Two models were tested – linear with 91% accuracy and
non-linear (RBF kernel, C = 1, default value of gamma) with 93%
accuracy.

• K-NN – The implemented K-NN model from [35] was considered. The
best accuracy of 98% was obtained with k = 11.

• RF – The RF model’s accuracy with fine-tuned parameters was around 93%
as proposed in [36].

• CNN – The CNN model’s accuracy depends mainly on the model ar-
chitecture (types and number of layers, activation function, etc.). The
proposed CNN architecture is discussed in Section 4.3.4. The best-found
accuracy obtained by the CNN model was around 99%. [37]

The comparison of methods in terms of accuracy can be seen in Figure 3.10.

23

3. OCR

3.7 Postprocessing

The goal of postprocessing is to find and correct errors in predicted words.
Several postprocessing methods based on [38] are introduced in this section.

3.7.1 Manual Error Correction

The resulting output of the OCR system is corrected by humans, also known
as proofreading.

One of the Manual Error Correction applications was Project Gutenberg,
the volunteering project to digitalize books. Several people did proofreading
and correcting of OCR errors several times.

3.7.2 Lexicon-Based Error Correction

This method uses the comparison of words in the lexicon with predicted words
and computes distance. The distance can be measured by: [39]

• Levenshtein Distance (LD) – The minimum number of operation
(deletion, insertion, and substitution) required to transform from word a
to word b.

• Longest Common Subsequence Distance (LCSD) – Similar to
Levenshtein distance but does not include substitution operation. Sub-
stitution must be replaced by delete and insert operation.

The drawback of Lexicon-Based methods is the need to compare each word
in a document with each word in the provided lexicon which can be compu-
tationally costly.

3.7.3 Context-Based Error Correction

Context-Based Error Correction techniques are based on statistical language
modeling and word n-grams. In general, the likelihood that a word sequence
appears is counted. For the detailed explanation, see [40].

3.8 Existing OCR Systems

The area of application of the OCR systems is significant. Besides the clas-
sical text documents, there are more specific applications as automatic num-
ber plate recognition, traffic sight recognition, passport recognition, defeating
CAPTCHA anti-bot systems, and many more.

The wide usage of OCR and its application in specific areas imply many
existing OCR systems. The leading open-source OCR system is currently the
Tesseract developed by HP which is now partially funded by Google under

24

3.8. Existing OCR Systems

the Apache license. The System is intended for machine print documents and
can be trained on different types of fonts as proposed in [41].

Despite the good accuracy rate in recognition of machine-printed text, the
system provides poor results for handwritten ones as shown in [42].

25

Chapter 4
Implementation

This chapter describes the implemented system. The used technology is in-
troduced in Section 4.1, and the implemented stages of the proposed OCR
system are detailed in Section 4.2.

4.1 Technology

The final system was developed as a frontend-backend web application. The
frontend was created in React. The backend was developed in Flask, and
PostgreSQL was chosen for the database. The final application was deployed
on pythonanywhere.com platform.

4.1.1 Flask

The Flask is a lightweight WSGI web framework written in Python. [43]
WSGI stands for Web Server Gateway Interface. It is a specification that
defines how web applications can be bound together and how a web server
communicates with web applications to process a request. [44]

4.1.2 React

React is a declarative and flexible javascript library for building a user inter-
face. The complex UI is composed of small and isolated pieces of code called
components. [45]

4.1.3 PostgreSQL

PostgreSQL is an open-source object-relational database witch supports both
SQL (relational) and JSON (non-relational) querying. One of advantages of
using PostgreSQL is high scalability in the quantity of data it can handle and
the number of concurrent users it can accommodate. [46]

27

pythonanywhere.com

4. Implementation

4.1.4 Libraries

Some of the most essential used libraries and APIs are described bellow:

• OpenCV – Stands for Open Source Computer Vision Library, and it is
an open-source computer vision and machine learning software library
with Python and C/C++ interface. The library provides more than
2500 optimized algorithms which can be used for face detection, identify
objects, classify human actions in videos, and many more. [47]

• Scikit-image – Python open-source library for image processing. The
OpenCV does not provide all practical algorithms such as Sauvola Thresh-
olding. Therefore Scikit-image was used as a supplement to the OpenCV
library.

• TensorFlow – The most common library in the development of Deep
Learning models. It was created by Google, it is open-source, and it
provides APIs in majority of programming languages including Python
and C/C++. [48]

• Keras – High-level library written in Python running on top of Tensor-
Flow. Keras is used to build neural networks without worrying about
the mathematical aspects of tensor algebra, numerical techniques, and
optimization methods. [48]

• Python-chess – Python chess library which provides valid move gen-
eration, move validation, and support for standard formats as PGN and
FEN. It also includes the stockfish chess engine interface with an esti-
mated rating of about 3516 (the strongest human chess player has a 2847
rating). [49]

• Tinypng – A library that provides API for compression of images in the
format of jpg and png without the quality loss. Tinypng uses the tech-
nique of quantization which reduces the number of colors by combining
similar colors. [50]

4.1.5 Pythonanywhere

The application was deployed on pythonanywhere9 which is an online IDE
and web hosting service based on Python with support for PostgreSQL and
MySQL. [51]

The major drawback of the pythonanywhere is an incompatibility with
the latest version of Tensorflow (r2.4). The version of Python, Keras, and
TensorFlow have to be downgraded to solve this issue.

9http://marikja7.pythonanywhere.com/

28

http://marikja7.pythonanywhere.com/

4.2. System Functionality

Figure 4.1: System overview

4.2 System Functionality

The system was implemented to fulfill the following functional requirements:

• Score sheet upload – User can upload one photo or scan of a score
sheet.

• Replay game – After the score sheet is uploaded, the system displays
the chessboard along with the game in English algebraic notation. User
can replayed the game on the chessboard.

• Correct move – The user is allowed to correct misclassified moves. The
game is recomputed and returned after that.

• Download PGN file – The user can download the game in PGN for-
mat.

The overview of implemented system is shown in Figure 4.1.

29

4. Implementation

Figure 4.2: Score Sheet Conversion Process

4.3 Score Sheet Conversion Process

The user is expected to manage two main steps to obtain the score sheet in
digitalized form:

• Template upload – For the ROI extraction, the template method was
used. This method firstly requires uploading an empty score sheet. The
user has to rotate the template and select the area with moves. A box
detection algorithm similar to the one introduced in [45] is applied to de-
termine cells designated for writing moves. The template upload process
examples from the application are shown in Figures D.1, D.2, and D.3.

• Score sheet upload – The central part of the OCR starts after the score
sheet upload. The individual steps of the score sheet upload process are
described in this section.

The activity diagram describing required user actions to obtain the converted
score sheet is in Figure 4.2.

For a better insight into the functionality of implemented OCR system,
two model score sheets are used to show the impact of individual steps of the
OCR system. The term score sheet A is used for the score sheet shown in
Figure A.1, the second score sheet in Figure A.3 is labeled as score sheet B.

30

4.3. Score Sheet Conversion Process

(a) Perspective transformation (b) Sauvola Thresholding

(c) Lines removal (d) Lines repair

Figure 4.3: Implemented steps of preprocessing

4.3.1 Preprocessing

The steps involved in preprocessing stage are derivated from the expected
appearance of the score sheet. The application can use different forms of
score sheet as long as some requirements are fulfilled. The typical format of
the score sheet expected as the input is described in Section 1.2.

The preprocessing stage consists of four steps – perspective transformation,
binarization, line removal and line repair. Each of these steps is described in
this section in detail.

The example of output from each preprocessing step is shown in Figure 4.3.
The final outcome of this step is shown in Figure 4.3d. These outputs corre-
sponds with score sheet A used as an input.

31

4. Implementation

Figure 4.4: Perspective transformation

Perspective transformation
Users are allowed to upload not only scanned score sheet, but also a photo
of the score sheet. The photo can be taken from different angles; therefore,
the score sheet’s perspective transformation must be applied. The perspective
transformation consists of the following steps:

• The key points features detection – The key points need to be
detected on both the score sheet and the selected template. For the
detection of the key points, a SIFT (scale-invariant feature transform)
algorithm was used. For a detailed explanation of how SIFT works,
see [52]. The drawback of SIFT is time complexity. The fastest alterna-
tive is ORB (Oriented FAST and Rotated BRIEF). However, it provided
significantly worse results than SIFT when tested on score sheets.

• The key points features comparison – The template and score
sheet’s key points are compared by FLANN (Fast Library for Approxi-
mate Nearest Neighbors). It contains optimized algorithms for fast near-
est neighbor search in large datasets and high dimensional features. For
FLANN explanation, see [53].

• Homography matrix – A homography relates to any two images of the

32

4.3. Score Sheet Conversion Process

same planar surface in space. The homography matrixH is a 3×3 matrix
that maps the point (x1, y1) in one image to the corresponding point
(x2, y2) in another image. At least four corresponding points between
them must be known to calculate the homography between two images.
[54] These points are obtained by SIFT algorithm from the previous
step.

• Points transformation – Points from the uploaded score sheet are
recomputed by the Homography matrix to their new location:

x1
y1
1

 = H

x2
y2
1

 .

Key points counted by SIFT, matching points and corners of the score sheet
calculated by the Homography matrix can be seen in Figure 4.4.

Binarization
Sauvola thresholding is used as it provides the best results along with Otsu bi-
narization supplemented by component labeling noise removal. In the Sauvola
Thresholding, several thresholds T (x, y) are calculated for every pixel by

T (x, y) = m(x, y)
[
1 + k

(
δ(x, y)
R

− 1
)]

,

where m(x, y) and δ(x, y) are mean and standard deviation of the pixels within
a window of size w × w given as a parameter, R is the maximum value of
the standard deviation, and k is a bias which takes positive value in the
range 〈0.2, 0.5〉. [55]

Lines removal and repair
The lines removal and repair step aims to remove and repair vertical and hor-
izontal lines that create the table. The first step of this process is to define a
vertical and horizontal kernel. Lines are detected by morphological operation
closing using the defined kernels.

The detected contours are filled with white color (or the color chosen for
the background). After this step, gaps in letters that go down below the line
can occur. The kernel with opposite aspect ratios for closing is defined to fill
these gaps.

33

4. Implementation

Figure 4.5: Move segmentation – score sheet A

4.3.2 Move Segmentation

Move cells are computed and stored in the format of left upper coordinates,
width, and height after the template upload, as mentioned in Section 4.2. Af-
ter the score sheet upload, these cells are restored and scaled by the formulas:

xscale = score sheet width
template width , yscale = score sheet height

template height

to match the score sheet size.
Possible use of cursive letters going below the line is taking in consideration

and therefore bigger area is extracted. For the purpose of this thesis the
following terms are defined:

• Valid move area – The area that corresponds with the exact cell in-
tended for the player to write a move.

• Extracted move area – The area that is extracted in the system and
then processed by the character segmentation step. The extracted area
is in shape of width = cell.width∗xscale and height = cell.height∗ 3

2∗yscale.

The critical step in the move segmentation stage is to detect the end of the
game. Players make this task difficult by writing the result right below the
moves and not leaving empty cells between the moves and the game’s result.
The extracted move area is considered a move when the sum of the black
pixels is greater than some chosen cell area percentage.

The result of the move segmentation is in Figure 4.5. Moves considered
valid are bordered with blue color.

34

4.3. Score Sheet Conversion Process

Figure 4.6: Character segmentation – score sheet A

4.3.3 Character Segmentation

One of the advantages of working with algebraic notation instead of general
text is word length and lexicon restriction. Chess moves can contain two to
five chars.

The Kaggle dataset [56] which contains 3.5 million chess games in PGN
format was used to evaluate PGN characteristics such as the summary of
move lengths in games, the average move lengths and the distribution of chars,
digits, and symbols. The statistics based on these characteristics are shown
in Appendix C. These characteristics were used to create basic assumptions
about the text content of moves in score sheets.

The first step of the character segmentation process is to count overall
characteristics of moves in the score sheet – the average sum of black pixels,
the average width, and the average height. These values are used to determine
threshold values.

The core of the segmentation process is the evaluation of individual com-
ponents – which basically means to distinguish between three possibilities –
a component is stand alone character, the component is a noise, or a com-
ponent is a part of a character. The component evaluation consist of the
following steps:

1. Component removal – Parts that do not belong to the move must be
removed (parts that are from an upper move or a below move). Com-
ponents that start below the valid move area are removed.

35

4. Implementation

Figure 4.7: Character segmentation – score sheet B

2. Horizontal split – This step aims to split component which is touching
another character from below the line. The component higher than
a defined threshold is split based on the horizontal histogram.

3. Vertical merge – When one component is below the other component,
components are merged.

4. Vertical split – Components wider than a defined threshold are split
by vertical line based on the vertical histogram.

5. Noise removal – All components with a sum of black pixels below some
defined threshold are removed.

The result of the character segmentation process corresponding with score
sheet A is shown in Figure 4.6. The result of the character segmentation
process corresponding with score sheet B can be seen in Figure 4.7.

In the score sheet A, the example of over-segmenting occurs – in black 39
move, symbol D is segmented as two characters. It is caused by big difference
of its size compared to other characters.

In the second example with score sheet B symbols are of constant size,
so there is no over-segmenting, although the char e in the 4th white move is
segmented with the part of the line, which was incorrectly left behind by the
preprocessing step.

36

4.3. Score Sheet Conversion Process

Figure 4.8: LeNet-5 architecture

4.3.4 Character Classification

The CNN model was chosen for character classification. Three architectures
where tried – LeNet-5, costumized LeNet-5 and AlexNet.

LeNet was one of the first proposed architectures of a convolutional neural
network. Nowadays, it is considered as hello world in the machine learning
field. LeNet was originally designed for numbers from 0 to 9. There are several
versions of the original LeNet. The most used is LeNet-5. The architecture of
the LeNet-5 model can be seen in Figure 4.8.

The customized LeNet-5 model is taken from [37]. Accuracy on the MNIST
dataset is 99.7%. It is based on LeNet-5 architecture with the following im-
provements:

• Single 5× 5 filters are replaced by two stacked 3× 3 filters.

• A convolution with stride two pooling layers are replaced by convolution
with stride 2.

• Sigmoid is replaced by ReLU.

• Batch normalization and Dropout are added.

• More feature maps (channels) are added.

AlexNet is a convolutional neural network with eight layers. It was originally
designed to classify the colored images which could belong to one of 22000
categories. Therefore the used AlexNet has to be customized for gray-scale
images and smaller category sets. For the detailed explanation of AlexNet,
see the original paper [57].

The models were trained on digits 0-9, lower-case characters a-h, and
upper-case characters D, K, V, S, J, X, O from the EMNIST dataset [58]. EM-
NIST is the extension of the MNIST dataset containing all letters from the
Latin alphabet. There are also datasets which contains special symbols from
algebraic notation such as -, + and #. The decision was made not to train the
model on these symbols because, even though it is a convention, many players
do not bother with writing them.

37

4. Implementation

W B # W B # W B
1 d4 g6 21 K22 R87 41 Rg7f Kxg7
2 cR4 Bg7 22 Kd2 Nx5 42 Qc7f Kgg
3 Nc3 dg 23 N22 Rx2 43 Qx24 Q26
4 24 25 24 Rg1 Rx8 44 Ka3 xx8
5 N23 Nc6 25 Kc2 R87 45 Qe5 Kg7
6 d5 NdK 26 K83 Rg7 46 N235
7 B22 c5 27 Rch Bd7
8 OO Nx6 28 Qg1 NQ28
9 R2h Ob 29 c5 8xc5
10 84 85 30 xxc5 Bxa4
11 a3 N28 31 Ka2 dxc5
12 Bd3 x5 32 Bxc5 Bx5
13 Nxd4 5xd4 33 Bx28 5xd3
14 N22 x4 34 Bxg7 Qa4
15 x3 Rx7 35 Kx2 Qx5
16 a4 g5 36 Ka3 Kxg7
17 Bab f25 37 xc7 Kg6
18 Kx2 g4 38 2Kx4 2x84
19 Ngh B88 39 Qc1 NNa6
20 8gxg4 8xg4 40 K23 R88

Table 4.1: Character classification – score sheet A

The accuracy of CNN models often improves with the size of the dataset.
Data augmentation is used to expand the training part of the dataset. It is
a technique for generating new images by modifying the existing ones. The
modifying operation often includes shifting, flipping and zooming. [59]

The models were trained during 45 epoch with 64 batches. LeNet-5 and
AlexNet model architectures have to be slightly modified to fit the 23 classes
of characters that can score sheets written in algebraic notation contain. The
validation accuracy of models was following:

• LeNet-5 – 90.610%

• Customized LeNet-5 – 97.186%

• AlexNet – 96.975%

The customized LeNet-5 model was chosen because of its highest testing ac-
curacy. The summary of chosen model architecture is shown in Appendix
in Figure B.1. The comparison of the training loss vs. validation loss and
training accuracy vs. validation accuracy of the trained models is shown in
Appendix B.

38

4.3. Score Sheet Conversion Process

W B
1 e4 e6
2 d4 d5
3 Nd2 Nf6
4 f5 Nfd7
5 5d3 c5
6 c3 Nc5
7 Ne2 cxd4
8 cxdB f6
9 Kf4 Qxd4
10 1h5 Ke7
11 Ng3 bxQ3
12 exN6 Qx56
13 Qxh8 Kf7
14 Qh4 e5
15 Nb3 NbB
16 5d2 5xd3
17 Kxd2 7xb3
18 2xh3 NeB

Table 4.2: Character classification –
score sheet B

W B
1 e4 e6
2 d4 d5
3 Nd2 Nf6
4 f5 Nfd7
5 Bd3 c5
6 c3 Nc5
7 Ne2 cxd4
8 cxd5 f6
9 Kf4 Qxd4
10 Nh5 Ke7
11 Ng3 bxc3
12 exf6 Qxf6
13 Qxh8 Kf7
14 Qh4 e5
15 Nb3 Nb5
16 Bd2 Bxd3
17 Kxd2 Qxb3
18 Nxh3 Ne5

Table 4.3: Candidate moves – score
sheet B

The model returns all possible characters along with their probabilities.
The most probable prediction of individual segmented characters correspond-
ing with score sheet in Figure 4.6 are shown in Table 4.1. It is assumed that
characters in score sheets are written in Czech algebraic notation and then
translate to English algebraic notation, based on Table 1.2. The symbols in
Table 4.1 are in English algebraic notation. The green color indicates correctly
recognized characters; the red color indicates incorrectly recognized ones.

As can be seen in Table 4.1, even if the chars extraction is of a good
quality, the model has a problem with recognizing the cursive written symbols
as e, which is always misclassified as 2; then b, h and f which are usually
classified as 8, 2 or x. The possible cause of this behavior is that in English-
speaking countries, cursive writing is not so common. [60] This results in small
representation in the EMNIST dataset and that is why the cursive letters are
so poorly recognized.

The score sheet with only print handwritten characters can be seen in
Figure 4.7. From the corresponding Table 4.2 of predicted characters it is
clear that print handwritten characters provide better results. In the score
sheet there is also an example of mistake the player made – in move 11 he
wrote 3 instead of 6 (Ng3 should be Ng6 and hxg3 should be hxg6).

39

4. Implementation

1 # Game
2 [
3 # 1. white move
4 [
5 # array of prediction for the 1. character in 1. move
6 [(’d’, 0.9997) , (’x’, 0.0002) , ..., (’7’, 2.26e -09)],
7 # array of prediction for the 2. character in 1. move
8 [(’4’, 0.9992) , (’h’, 0.0003) , ..., (’O’, 1.53e -09)]
9],

10 # 1. black move
11 [
12 [(’g’, 0.9989) , (’8’, 0.0003) , ..., (’R’, 4.73e -09)],
13 [(’6’, 0.8080) , (’5’, 0.1313) , ..., (’4’, 3.16 -07)]]
14],
15 ,
16 # 45. move black
17 [
18 [(’K’, 0.9991) , (’x’, 0.0008) , ..., (’6’, 1.05e -06)],
19 [(’g’, 0.9850) , (’a’, 0.0120) , ..., (’7’, 1.84e -08)],
20 [(’7’, 0.9112) , (’1’, 0.0889) , ..., (’3’, 1.20 -07)]
21]
22 # 46. move white
23 [
24 [(’N’, 0.9981) , (’x’, 0.0010) , ..., (’6’, 1.23e -07)],
25 [(’2’, 0.9990) , (’x’, 0.0005) , ..., (’e’, 1.84e -08)],
26 [(’3’, 0.9212) , (’g’, 0.0724) , ..., (’c’, 1.10 -07)],
27 [(’5’, 0.9732) , (’B’, 0.0267) , ..., (’4’, 3.79e -11)]
28]
29]

Listing 4.1: Example of input to the game creation step – score sheet A

4.3.5 Game Creation

The goal of the Game creation step is to reconstruct the played game from
predicted characters. The shorten example of the input to this step corre-
sponding with the score sheet A is shown in Listing 4.1. As can be seen, the
input is in the form of a three-dimensional array – the outer array represents
the whole game, every move is represented as an two-dimensional array with
every classified character represented as an array of possible characters along
with their probabilities. The outputs and inputs to the individual steps of
OCR system are also shown in Figure 4.1.

For the purpose of this thesis, the term first-guess move is defined as
a string consisting of all most probable predicted characters in the move. The
first-guess moves are shown in Table 4.1 (score sheet A) and in Table 4.2 (score
sheet B).

The algorithm for game creation consists of three main steps – candidate
moves generation, game creation, and game correction, described in this sec-
tion.

40

4.3. Score Sheet Conversion Process

W B # W B # W B
1 d4 g6 21 Ka2 Rb7 41 Rg7 Kxg7
2 c4 Bg7 22 Kd2 Nf5 42 Qc7 Kg5
3 Nc3 d6 23 Na2 Ra2 43 Qxd4 Qxg1
4 d4 d5 24 Rg1 Rg8 44 Ka3 Rxd8
5 Ne3 Nc6 25 Kc2 Rg7 45 Qe5 Kg7
6 d5 Nd4 26 Kg3 Rg7 46 Nxg5
7 Ba2 c5 27 Rc1 Bd7
8 O-O Nf6 28 Qd1 Nxd8
9 Rh1 O-O 29 c5 Kxc5
10 g4 g5 30 Kxc5 Bxa4
11 a3 Na8 31 Ka2 dxc5
12 Bd3 f5 32 Bxc5 Bg5
13 Nxd4 exd4 33 Bxe8 Bxd3
14 Ng2 f4 34 Bxg7 Qa4
15 g3 Rd7 35 Kg2 Qd5
16 a4 g5 36 Ka3 Kxg7
17 Ba3 Bg5 37 Rc7 Kg6
18 Ka2 g4 38 Nxg4 Qxd4
19 Ng1 Bf8 39 Qc1 Nxb5
20 Qxg4 fxg4 40 Ke3 Rg8

Table 4.4: Candidate moves – score sheet A

Candidate moves generation
The goal of this step is to obtain syntactically correct moves ranked due to
their score based on the predicted characters. First-guess move M from all
first predicted characters m1, . . . ,mn is created. Levenshtein distance l with
modified operation cost is computed between M and all syntactically correct
moves Z1, . . . , Zn. The cost C of insert, delete and substitute operation is set
as follow:

Cins(mi) = 1, Cdel(mi) = 1− P (mi), Csub(mi, zi) = P (mi)− P (zi),

where P (mi) is the predicted probability of the char from first-guess move M
on position i and P (zi) is the probability of char from Z on position i. The
score s of the candidate move Z is computed as:

s(Z) =
∑n

i=1 P (mi)
n

− l(Z,M).

Candidate moves with highest score corresponding with score sheet A can be
seen in Figure 4.4. Candidate moves with highest score corresponding with
score sheet B are shown in Figure 4.3.

41

4. Implementation

W B # W B # W B
1 d4 g6 21 Ke2 Rb7 41 Ne8 Rh8
2 c4 Bg7 22 Ne8 Rh8 42 Ng7 Rg8
3 Nc3 d6 23 Ng7 Rg8 43 Ne8 Qa6
4 a4 a5 24 Rg1 Rb8 44 Ng7 Rf8
5 Nf3 Nf6 25 Bc2 Rb7 45 Ne8 Kd7
6 d5 Nb4 26 Rg3 Rb7 46 Ng7
7 Nd2 c5 27 Ne8 Rh8 47
8 Nb5 Nf6 28 Qg1 Qd8 48
9 Rb1 Qd7 29 Ng7 Rg8 49
10 g4 g5 30 Qxc5 bxa4 50
11 h3 Ng8 31 Ne8 dxc5 51
12 Nc7 Kg8 32 Ng7 Bf5 52
13 Ne8 Nh6 33 Ne8 Rh8 53
14 Nxg7 Rg8 34 Ng7 Rg8 54
15 f3 Ra7 35 Ne8 Rh8 55
16 e4 e5 36 Ng7 Ke7 56
17 Bd3 b5 37 Ne8 Rg8 57
18 Kf2 Rh8 38 Ng7 Rh8 58
19 Ne8 Rg8 39 Ne8 Qa8 59
20 Ng7 Nxg4 40 Ng7 Rg8 60

Table 4.5: Game creation – score sheet A

Game creation
The most likely move is to pick in every step of the game. When some move
is not predicted correctly, there is a high probability that the rest of the game
is going to be reconstructed incorrectly as can be seen in Table 4.5 where the
created game corresponds with score sheet A. To filter very bad moves, chess
engine stockfish was tried, but within a reasonable time limit (around 0.2s) it
returns nonsense values.

Some other methods for game creation were tried during the development
of the application, but the time complexity of the system with these attempts
was unmanageable. One of them was to construct tree with more possibilities
tried in steps where the score of a move is below some defined threshold. The
other was to fix the moves with scores higher than some specified threshold
and then fill the gap between the fix moves.

Candidate moves with information about the current main line are stored
and created game is presented to a user. The example of the application after
the score sheet upload, when the chessboard is return is shown in Figure D.5.
The examples of created game corresponding with score sheet B is shown in
Table 4.6 in first two columns.

42

4.3. Score Sheet Conversion Process

W B W B W B W B
1 e4 e6
2 d4 d5
3 Nd2 Nf6
4 e5 Nfd7
5 Bd3 c5
6 c3 Nc6
7 Ne2 cxd4
8 cxd4 f6
9 Nf4 Nxd4
10 Nh5 Ke7 Dh5 Ke7
11 Nf3 Rg8 Nf3 Rg8 Ng6 hxg6
12 exf6 Nxf6 exf6 Nxf6 exf6 Nxf6
13 Nh5 Kf7 Qxh7 Kf7 Qxh8 Kf7
14 Nxg7 e5 Qh4 e5 Qh4 e5
15 Nb3 Nb5 Nh3 Nb5 Nb3 Nb5 Bb4
16 Bd2 Rh8 Bd2 Rh8 Bd2 Be7 Bd2 Bxd2
17 Ne8 Rg8 Qxh8 Be7 Qh8 Qxh8 Kxd3 Naxb3
18 Ng7 Ne4 Qg8 Kxg8 Bxg6 Kg8 axb3 Ne4
19
20

Table 4.6: Game correction – score sheet B

Game correction
The user can correct wrong moves by moving piece on the board. After each
such a correction the game is recomputed. The example of corrections made
by user is shown in Table 4.6, corresponding to score sheet B. Three correction
were needed in this case to obtain the correct game. Firstly, the move 10.Nh5
was corrected to Dh5, then the move 11.Nf3 was changed to Ng6 and finally
the black 11th move Nb5 was corrected to Bb4.

43

Chapter 5
Evaluation

The evaluation of the system is introduced in this chapter. The created dataset
of score sheets is described in Section 5.1. The evaluation of the individual
steps of converting score sheets into the PGN file are presented in Sections 5.2 –
5.5. The time complexity of the system is described in Section 5.6. Finally, in
Section 5.7 possible improvements to increase the accuracy of the implemented
system are described.

5.1 Dataset

There is no public dataset with photos of score sheets. Therefore a dataset
for testing and evaluation was created. The dataset contains two tourna-
ments – Ricany-2020 and Ricany-2019 with 430 photos of score sheets and
corresponding PGN files. For better evaluation purposes, score sheets were
manually divided into four categories:

• A – Score sheets of good quality which do not contain any additional
information. Characters are not overlapping but can be slightly touch-
ing.

• B – Score sheets of medium quality. They can contain overlapping chars,
some scratches or additional information written by a player.

• C – Score sheets that are hardly readable by humans.

• L – Score sheets that are not in Czech algebraic notation.

The evaluation provided in this section is based on score sheets and the PGN
files from this dataset. There is no guarantee that the PGN file is complete
and does not contain any incorrectly transcripted move. Some errors in the
dataset were detected and corrected in the evaluation stage.

45

5. Evaluation

Figure 5.1: Predicted game length subtracted from PGN game length

5.2 Move Segmentation

The accuracy of move segmentation is evaluated in this section. The dif-
ference between the actual game length and parsed game length is shown
in Figure 5.1. The move segmentation is not language-dependent; therefore,
score sheets from all categories from tournament Ricany-2020 were used for
move segmentation evaluation. The total number of used score sheets is 273.
Factors that lead to incorrect move segmentation can be:

• Result and signature – The most common reason for the longer game
prediction is the result written right after moves. The result and signa-
ture part are then incorrectly considered as moves.

• Skipped move – Sometimes players forget to write down the move.
When they realize that, they leave empty cells and continue to write
the rest. The system could incorrectly recognize that as the end of the
game.

The graph also includes the detected 32 games that are not transcripted in
the entire length.

46

5.3. Character Segmentation

Figure 5.2: Move length

5.3 Character Segmentation

Character segmentation was evaluated with use of score sheets from category A
which contains 60 games segmented into 4264 moves. The difference between
the real move length and parsed move length is shown in Figure 5.2. Factors
that can cause incorrect move segmentation can be:

• Special symbols – Some people write special symbols (+, =, #) and
some do not – in the PGN file are symbols + and # always written.

• Additional information – Some players write some additional infor-
mation into the score sheet as a time spend on move, that can be wrongly
considered as a part of a move.

• Different characters size – The system depends on the proper size
of characters. When a player writes some characters significantly bigger
than others, the system tends to over-segment them.

• Overlapping characters – The system often fails to correctly segment
overlapping characters.

47

5. Evaluation

Figure 5.3: Character classification

5.4 Character Classification

Character classification was evaluated with use of score sheets from category
A which contains 60 games and is segmented into 4264 moves and 12224
characters. The graph of the position of the actual character in the array
of possible characters returned by a CNN model is shown in Figure 5.3. In
Figure 5.4 there is shown a confusion matrix of predicted and real chars.
Factors that can cause incorrect character classification can be:

• Cursive letters – The model fails to recognize handwritten cursive
letters such as b, e, f and h as describted in Section 4.3.4.

• Error in segmentation – The classification step depends on the pre-
vious step of char segmentation. Poorly segmented characters lead to
incorrect classification.

• Player’s mistake – Players sometimes write wrong move. The example
of this case was shown in Figure 4.7.

48

5.4. Character Classification

Figure 5.4: Confution matrix for char prediction

49

5. Evaluation

Figure 5.5: Move prediction

5.5 Move Prediction

The evaluation of the moves created by candidate moves generation is shown
in this section. The output of candidate moves generation step is an array of
moves sorted by their score. The position of the actual move in the candidate
move array is shown in Figure 5.5. The Levenshtein distance between the
actual move and first-guess move is in Figure 5.6. The reason for the bad
result of this step could happen by fact that when some character is predicted
wrongly but there are lots of other possibilities.

Hypothetical Example: The move Nb5 occurs in a game, and b is wrongly
classified as 3. It is clear that something went wrong – either the move was
segmented incorrectly and the move should be pawn move with the number
on the second position or 3 was missclasified. With the high classification
probability N and 5, the misclassification of 3 is more likely. But there are
still eight options that need to be taken into account – Na5, Nb5, . . . , Nh5.

50

5.5. Move Prediction

Figure 5.6: Levenshtein distance between the actual move and first-guess move

Figure 5.7: Time complexity

51

5. Evaluation

5.6 Time Complexity

The time complexity of individual steps was measured on 65 games with av-
erage 65.6 moves per game and 191.98 chars per game:

• Preprocessing – The average runtime of preprocessing step is around
3.4 seconds. The most expensive part of this step is the SIFT algorithm
that takes around 3 seconds. The time complexity of this step depends
only on the size of the template and the uploaded score sheet.

• Character segmentation – The complexity of the character segmen-
tation is given by the number of moves and characters. The average
runtime of this step is around 1.54 seconds.

• Character classification – The complexity of character classification
step is given by number of characters. The average runtime is around
4.4 seconds.

• Game creation – The game creation step runtime is around 4.4 seconds
and depends on a number of moves.

The full duration of process is around 14 seconds, the dependence of the
time complexity on the number of moves is shown in Figure 5.7. The time
complexity was measured on the notebook with 16GB RAM and 4-cores i7
8th Generation. The deployed application on pythonanywhere is significantly
slower.

5.7 Possible Improvements

With the system as complex as this, there is a place for many improvements
– whether functional ones or ones improving accuracy. Some suggestions are
introduced in this section.

• Multilingual – The actual version of the system supports only the
Czech algebraic notation. The model predicts the chars with respect to
Czech algebraic notation and then translates them into English algebraic
notation. The new model could be trained on chars that can occur in
other specific languages and add the translation between that language
and English algebraic notation to support more languages. In this case,
there would be an additional step added; the user would choose the
language of the score sheet before uploading it. Automatic recognition
would also be an option but would lead to lower accuracy.

• More score sheets uploaded – In the current version of the applica-
tion uploading only one score sheet is supported. The support for two
same score from both players from the same game sheets upload could
lead to better accuracy.

52

5.7. Possible Improvements

• Opening library – The chess game consists of three parts – opening,
middle game, and end game. Nowadays, the opening part is highly
theoretical, and players usually have some opening repertoire that they
usually know very well – sometimes, the known and analyzed position
goes even beyond the 20 moves. Games from a database could improve
the prediction of the moves in the opening part of the game. The games
in the database should be organized into a tree structure to optimize
searching time.

53

Conclusion

The goal of this thesis was to create a tool that would help players with
converting score sheets to digitalized form. The tool should allow uploading
a photo or a scan of the score sheet. After uploading, the tool should detect
the score sheet in the image, segment individual moves and convert them into
the algebraic notation with the possibility to correct wrongly classified moves
by the user. The user should also be allowed to download the game as a PGN
file.

All these requirements were successfully accomplished. The tool was im-
plemented as a web application that was deployed on a server. The user can
upload the score sheet then an application explores a chessboard along with
the game in algebraic notation. The user can replay the game on the chess-
board, correct wrong moves by moving pieces on the board and download the
game as the PGN file.

Three existing applications with the same goal were tried. Two of them
simplify the task by using the particular version of the score sheet. The
third application was available only as a mobile app and only for English
algebraic notation. For some specific cases they can be helpful, but they are
not sufficient for broader use.

Various approaches and the current state-of-the-art in the OCR were inves-
tigated to find the proper methods for developing the application. Along with
that, the dataset containing 430 photos of score sheets with corresponding
PGN files was created to evaluate the final application.

During the design and implementation of the application, the author of
this thesis had some ideas for improvements outside the scope of this thesis.
These improvements are mentioned at the end of the thesis for the future
extension of the application. With these improvements, the assumption is that
the application would be a valuable tool to optimize time spent on converting
score sheets into a PGN file.

55

Bibliography

[1] FIDE LAWS of CHESS [Online]. [cit. 2021-02-03]. Available from: https:
//www.fide.com/FIDE/handbook/LawsOfChess.pdf

[2] Smigielski, M. From chess score sheet to ICR with OpenCV
and image recognition [Online]. 2017 [cit. 2021-02-03]. Available
from: https://medium.com/@mareksmigielski/from-chess-score-
sheet-to-icr-with-opencv-and-image-recognition-f7bed2cc3de4

[3] Christensson, P. OCR Definition TechTerms [Online]. 2018 [cit. 2021-03-
03]. Available from: https://techterms.com/definition/ocr

[4] Islam, N.; Islam, Z.; et al. A Survey on Optical Character Recogni-
tion System. CoRR, volume abs/1710.05703, 2017, 1710.05703. Available
from: http://arxiv.org/abs/1710.05703

[5] Wazirali, R.; Slehat, S.; et al. Objective Quality Metrics in Correla-
tion with Subjective Quality Metrics for Steganography. 07 2015. Avail-
able from: https://www.researchgate.net/figure/Secret-message-
hidden-in-different-color-level-of-Lenna_fig3_287195029

[6] Digital images and image formats Universitetet I Oslo [Online]. [cit. 2021-
02-03]. Available from: https://www.uio.no/studier/emner/matnat/
math/MAT-INF1100/h08/kompendiet/images.pdf

[7] Image Thresholding OpenCV [Online]. [cit. 2021-02-03]. Avail-
able from: https://docs.opencv.org/master/d7/d4d/tutorial_py_
thresholding.html

[8] Otsu thresholding—image binarization HBY coding academic [On-
line]. 2019 [cit. 2021-03-05]. Available from: https://medium.com/
@hbyacademic/otsu-thresholding-4337710dc519

57

https://www.fide.com/FIDE/handbook/LawsOfChess.pdf
https://www.fide.com/FIDE/handbook/LawsOfChess.pdf
https://medium.com/@mareksmigielski/from-chess-score-sheet-to-icr-with-opencv-and-image-recognition-f7bed2cc3de4
https://medium.com/@mareksmigielski/from-chess-score-sheet-to-icr-with-opencv-and-image-recognition-f7bed2cc3de4
https://techterms.com/definition/ocr
1710.05703
http://arxiv.org/abs/1710.05703
https://www.researchgate.net/figure/Secret-message-hidden-in-different-color-level-of-Lenna_fig3_287195029
https://www.researchgate.net/figure/Secret-message-hidden-in-different-color-level-of-Lenna_fig3_287195029
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/images.pdf
https://www.uio.no/studier/emner/matnat/math/MAT-INF1100/h08/kompendiet/images.pdf
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/master/d7/d4d/tutorial_py_thresholding.html
https://medium.com/@hbyacademic/otsu-thresholding-4337710dc519
https://medium.com/@hbyacademic/otsu-thresholding-4337710dc519

Bibliography

[9] Bansal, K.; Kumar, R. K-Algorithm A Modified Technique for Noise Re-
moval in Handwritten Documents. CoRR, volume abs/1306.1462, 2013,
1306.1462. Available from: http://arxiv.org/abs/1306.1462

[10] Subudhi, R.; Sahu, B.; et al. A Novel Noise Reduction Method For OCR
System. 12 2013.

[11] Pulak Purkait, J. Optical Handwritten Character/Numeral Recognition.
Available from: https://www.isical.ac.in/˜vlrg/sites/default/
files/Pulak/Off-Line%20Handwritten%20OCR.pdf

[12] Morphological Image Processing. [Online]. [cit. 2021-03-06]. Avail-
able from: https://www.cs.auckland.ac.nz/courses/compsci773s1c/
lectures/ImageProcessing-html/topic4.htm

[13] Fisher, R.; Perkins, S.; et al. Pixel Connectivity. [Online]. 2003 [cit. 2021-
03-10]. Available from: https://homepages.inf.ed.ac.uk/rbf/HIPR2/
connect.htm

[14] Abu-Ain, W.; Abdullah, S. N. H. S.; et al. Skeletonization Algorithm
for Binary Images. Procedia Technology, volume 11, 2013: pp. 704–
709, ISSN 2212-0173, doi:https://doi.org/10.1016/j.protcy.2013.12.248,
4th International Conference on Electrical Engineering and Informat-
ics, ICEEI 2013. Available from: https://www.sciencedirect.com/
science/article/pii/S2212017313004027

[15] How to Get an 80% ROI over Your OCR Implementation docdigitizer [On-
line]. [cit. 2021-03-11]. Available from: https://www.docdigitizer.com/
2019/07/18/calculate-roi-of-ocr-initiatives/

[16] Hines, K. Learning to Read: Computer Vision Methods for Extracting
Text from Images. CapitalOne. [Online]. 2019 [cit. 2021-02-04]. Avail-
able from: https://www.capitalone.com/tech/machine-learning/
learning-to-read-computer-vision-methods-for-extracting-
text-from-images/

[17] Kaur, A.; Baghla, S.; et al. Study Of Various Character Segmentation
Techniques For Handwritten Off-Line Cursive Words: A Review. In-
ternational Journal of Advances in Science, Engineering and Technol-
ogy(IJASEAT) , pp. 154-158, Volume-3, Issue-3.

[18] Ptak, R.; Żygad lo, B.; et al. Projection–Based Text Line Segmentation
with a Variable Threshold. International Journal of Applied Mathematics
and Computer Science, volume 27, 03 2017, doi:10.1515/amcs-2017-0014.

[19] Brodowska, M. Oversegmentation methods for character segmentation
in off-line cursive handwritten word recognition : an overview. Schedae
Informaticae, volume 20, 2012: pp. 43–65.

58

1306.1462
http://arxiv.org/abs/1306.1462
https://www.isical.ac.in/~vlrg/sites/default/files/Pulak/Off-Line%20Handwritten%20OCR.pdf
https://www.isical.ac.in/~vlrg/sites/default/files/Pulak/Off-Line%20Handwritten%20OCR.pdf
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/connect.htm
https://homepages.inf.ed.ac.uk/rbf/HIPR2/connect.htm
https://www.sciencedirect.com/science/article/pii/S2212017313004027
https://www.sciencedirect.com/science/article/pii/S2212017313004027
https://www.docdigitizer.com/2019/07/18/calculate-roi-of-ocr-initiatives/
https://www.docdigitizer.com/2019/07/18/calculate-roi-of-ocr-initiatives/
https://www.capitalone.com/tech/machine-learning/learning-to-read-computer-vision-methods-for-extracting-text-from-images/
https://www.capitalone.com/tech/machine-learning/learning-to-read-computer-vision-methods-for-extracting-text-from-images/
https://www.capitalone.com/tech/machine-learning/learning-to-read-computer-vision-methods-for-extracting-text-from-images/

Bibliography

[20] Casey, R.; Lecolinet, E. A Survey of methods and strategies in character
segmentation. Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, volume 18, 08 1996: pp. 690 – 706, doi:10.1109/34.506792.

[21] Märgner, V.; Abed, H. Guide to OCR for Arabic Scripts. SpringerLink
: Bücher, Springer London, 2012, ISBN 9781447140726. Available from:
https://books.google.cz/books?id=1BASqp1ImRIC

[22] Nashwan, F. M. A.; Rashwan, M. A. A.; et al. A Holistic Technique
for an Arabic OCR System. Journal of Imaging, volume 4, no. 1, 2018,
ISSN 2313-433X, doi:10.3390/jimaging4010006. Available from: https:
//www.mdpi.com/2313-433X/4/1/6

[23] Choudhary, A. A Review of Various Character Segmentation Techniques
for Cursive Handwritten Words Recognition. Int J Inf Comput Technol,
2014, 4.6: 559-564.

[24] Ploetz, T.; Fink, G. Markov models for offline handwriting recognition:
A survey. IJDAR, volume 12, 12 2009: pp. 269–298, doi:10.1007/s10032-
009-0098-4.

[25] TAWDE, Gaurav Y.; KUNDARGI, Jayshree. An overview of feature
extraction techniques in ocr for indian scripts focused on offline hand-
writing. International Journal of Engineering Research and Applications,
2013, 3.1: 919-926.f.

[26] Vijay, P.; Yumnam, J. A study on method of feature extraction for Hand-
written Character Recognition. Indian Journal of Science and Technol-
ogy, volume 6, 03 2013: pp. 174–178.

[27] Wang, L. Support vector machines: theory and applications, volume 177.
Springer Science & Business Media, 2005.

[28] Harrison, O. Machine Learning Basics with the K-Nearest Neighbors Al-
gorithm. Towards Data Science. [Online]. 2018 [cit. 2021-04-03]. Available
from: https://towardsdatascience.com/machine-learning-basics-
with-the-k-nearest-neighbors-algorithm-6a6e71d01761

[29] The Ultimate Guide to Decision Trees for Machine Learning keboola [On-
line]. 2020 [cit. 2021-04-03]. Available from: https://www.keboola.com/
blog/decision-trees-machine-learning

[30] Himnashu, S. Activation Functions : Sigmoid, ReLU, Leaky ReLU and
Softmax basics for Neural Networks and Deep Learning. [Online]. 2019
[cit. 2021-04-03]. Available from: https://medium.com/@himanshuxd/
activation-functions-sigmoid-relu-leaky-relu-and-softmax-
basics-for-neural-networks-and-deep-8d9c70eed91e

59

https://books.google.cz/books?id=1BASqp1ImRIC
https://www.mdpi.com/2313-433X/4/1/6
https://www.mdpi.com/2313-433X/4/1/6
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761
https://www.keboola.com/blog/decision-trees-machine-learning
https://www.keboola.com/blog/decision-trees-machine-learning
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-neural-networks-and-deep-8d9c70eed91e

Bibliography

[31] Isaksson, M. Four Common Types of Neural Network Lay-
ers. Towards Data Science. [Online]. 2020 [cit. 2021-04-11]. Avail-
able from: https://towardsdatascience.com/four-common-types-
of-neural-network-layers-c0d3bb2a966c

[32] Stanford. Convolutional Neural Networks (CNNs / ConvNets) [On-
line]. 2021 [cit. 2021-04-15]. Available from: https://cs231n.github.io/
convolutional-networks/

[33] Deng, L. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, volume 29, no. 6,
2012: pp. 141–142.

[34] Digit Recognition using SVM with 98% accuracy [Online]. 2018 [cit. 2021-
04-15]. Available from: https://www.kaggle.com/sanesanyo/digit-
recognition-using-svm-with-98-accuracy

[35] k-NN for MNIST Classification Back-Prop [Online]. 2019 [cit. 2021-04-
03]. Available from: https://www.back-prop.com/deep_learning/knn/
mnist/2019/05/16/knn_classifier/

[36] BERNARD, Simon; ADAM, Sébastien; HEUTTE, Laurent. Using ran-
dom forests for handwritten digit recognition. In: Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007). IEEE,
2007. p. 1043-1047.

[37] Deotte, C. Accuracy=99.75% using 25 Million Training Images!! 25
Million Images! [0.99757] MNIST [Online]. 2018 [cit. 2021-02-03]. Avail-
able from: https://www.kaggle.com/cdeotte/25-million-images-0-
99757-mnist

[38] Bassil, Y.; Alwani, M. OCR Post-Processing Error Correction Algorithm
using Google Online Spelling Suggestion. CoRR, volume abs/1204.0191,
2012, 1204.0191. Available from: http://arxiv.org/abs/1204.0191

[39] Edward, M. Measure distance between 2 words by simple calcu-
lation Towards Data Science [Online]. 2018 [cit. 2021-03-05]. Avail-
able from: https://towardsdatascience.com/measure-distance-
between-2-words-by-simple-calculation-a97cf4993305

[40] Afli, H.; Qiu, Z.; et al. Using SMT for OCR Error Correction of His-
torical Texts. Portorož, Slovenia: European Language Resources As-
sociation (ELRA), May 2016, 962–966 pp. Available from: https://
www.aclweb.org/anthology/L16-1153

[41] Andreas, M. M. Simple OCR with Tesseract Towards Data Science [On-
line]. 2020 [cit. 2021-04-15].

60

https://towardsdatascience.com/four-common-types-of-neural-network-layers-c0d3bb2a966c
https://towardsdatascience.com/four-common-types-of-neural-network-layers-c0d3bb2a966c
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
https://www.kaggle.com/sanesanyo/digit-recognition-using-svm-with-98-accuracy
https://www.kaggle.com/sanesanyo/digit-recognition-using-svm-with-98-accuracy
https://www.back-prop.com/deep_learning/knn/mnist/2019/05/16/knn_classifier/
https://www.back-prop.com/deep_learning/knn/mnist/2019/05/16/knn_classifier/
https://www.kaggle.com/cdeotte/25-million-images-0-99757-mnist
https://www.kaggle.com/cdeotte/25-million-images-0-99757-mnist
1204.0191
http://arxiv.org/abs/1204.0191
https://towardsdatascience.com/measure-distance-between-2-words-by-simple-calculation-a97cf4993305
https://towardsdatascience.com/measure-distance-between-2-words-by-simple-calculation-a97cf4993305
https://www.aclweb.org/anthology/L16-1153
https://www.aclweb.org/anthology/L16-1153

Bibliography

[42] Rakshit, S.; Basu, S. Recognition of Handwritten Roman Script Using
Tesseract Open source OCR Engine. CoRR, volume abs/1003.5891, 2010,
1003.5891. Available from: http://arxiv.org/abs/1003.5891

[43] Flask. [Online]. [cit. 2021-04-15]. Available from: https:
//palletsprojects.com/p/flask/

[44] What is WSGI? [Online]. [cit. 2021-04-16]. Available from: https://
wsgi.readthedocs.io/en/latest/what.html

[45] A JavaScript library for building user interfaces React. [Online]. [cit. 2021-
04-16]. Available from: https://reactjs.org/

[46] What is PostgreSQL? [Online]. [cit. 2021-04-15]. Available from: https:
//aws.amazon.com/rds/postgresql/what-is-postgresql/

[47] About OpenCv. [Online]. [cit. 2021-04-13]. Available from: https://
opencv.org/about/

[48] Chandra, R. The What’s What of Keras and TensorFlow Keras and
TensorFlow [Online]. 2019 [cit. 2021-04-12]. Available from: https://
www.upgrad.com/blog/the-whats-what-of-keras-and-tensorflow/

[49] Glass, K. python-chess: a chess library for Python [Online]. 2014 [cit.
2021-04-20]. Available from: https://python-chess.readthedocs.io/
en/latest/

[50] Smart PNG and JPEG compression voordmedia. [Online]. [cit. 2021-04-
20]. Available from: https://tinypng.com/

[51] pythonanywhere. [Online]. [cit. 2021-04-20]. Available from: https://
www.pythonanywhere.com/

[52] Ning, M. SIFT(Scale-invariant feature transform) Towards Data
Science Upgrade [Online]. 2019 [cit. 2021-03-11]. Available from:
https://towardsdatascience.com/sift-scale-invariant-feature-
transform-c7233dc60f37

[53] Feature Matching with FLANN OpenCv. [Online]. [cit. 2021-03-11]. Avail-
able from: https://opencv-python-tutroals.readthedocs.io/en/
latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html

[54] Agarwal, S. Homography - And how to calculate it? [Online]. 2020
[cit. 2021-03-11]. Available from: https://medium.com/all-things-
about-robotics-and-computer-vision/homography-and-how-to-
calculate-it-8abf3a13ddc5

61

1003.5891
http://arxiv.org/abs/1003.5891
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://wsgi.readthedocs.io/en/latest/what.html
https://wsgi.readthedocs.io/en/latest/what.html
https://reactjs.org/
https://aws.amazon.com/rds/postgresql/what-is-postgresql/
https://aws.amazon.com/rds/postgresql/what-is-postgresql/
https://opencv.org/about/
https://opencv.org/about/
https://www.upgrad.com/blog/the-whats-what-of-keras-and-tensorflow/
https://www.upgrad.com/blog/the-whats-what-of-keras-and-tensorflow/
https://python-chess.readthedocs.io/en/latest/
https://python-chess.readthedocs.io/en/latest/
https://tinypng.com/
https://www.pythonanywhere.com/
https://www.pythonanywhere.com/
https://towardsdatascience.com/sift-scale-invariant-feature-transform-c7233dc60f37
https://towardsdatascience.com/sift-scale-invariant-feature-transform-c7233dc60f37
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_matcher/py_matcher.html
https://medium.com/all-things-about-robotics-and-computer-vision/homography-and-how-to-calculate-it-8abf3a13ddc5
https://medium.com/all-things-about-robotics-and-computer-vision/homography-and-how-to-calculate-it-8abf3a13ddc5
https://medium.com/all-things-about-robotics-and-computer-vision/homography-and-how-to-calculate-it-8abf3a13ddc5

Bibliography

[55] Singh, T. R.; Roy, S.; et al. A New Local Adaptive Thresholding Tech-
nique in Binarization. CoRR, volume abs/1201.5227, 2012, 1201.5227.
Available from: http://arxiv.org/abs/1201.5227

[56] 3.5 Million Chess Games Kaggle: Your Machine Learning and Data Sci-
ence Community [Online]. 2019 [cit. 2021-04-09]. Available from: https:
//www.kaggle.com/milesh1/35-million-chess-games

[57] Krizhevsky, A.; Sutskever, I.; et al. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing
systems, volume 25, 2012: pp. 1097–1105.

[58] Cohen, G.; Afshar, S.; et al. EMNIST: an extension of MNIST
to handwritten letters. 2017. Available from: http://arxiv.org/abs/
1702.05373

[59] Brownlee, J. How to Configure Image Data Augmentation in
Keras [Online]. 2019 [cit. 2021-04-09]. Available from: https:
//machinelearningmastery.com/how-to-configure-image-data-
augmentation-when-training-deep-learning-neural-networks/

[60] Berger, T. What We Lose With the Decline of Cursive edutopia [On-
line]. 2017 [cit. 2021-03-05]. Available from: https://www.edutopia.org/
article/what-we-lose-with-decline-cursive-tom-berger

62

1201.5227
http://arxiv.org/abs/1201.5227
https://www.kaggle.com/milesh1/35-million-chess-games
https://www.kaggle.com/milesh1/35-million-chess-games
http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-configure-image-data-augmentation-when-training-deep-learning-neural-networks/
https://www.edutopia.org/article/what-we-lose-with-decline-cursive-tom-berger
https://www.edutopia.org/article/what-we-lose-with-decline-cursive-tom-berger

Appendix A
Examples from dataset

63

A. Examples from dataset

Figure A.1: Category A – score sheet A

Figure A.2: Moves from PGN corresponding with examples from Category A
(score sheet A) and Category L

64

Figure A.3: Category A – score sheet B

Figure A.4: Moves from PGN corresponding with examples from Category A
(score sheet B)

65

A. Examples from dataset

Figure A.5: Category B

66

Figure A.6: Category C

67

A. Examples from dataset

Figure A.7: Category L

68

Appendix B
Model Comparison

69

B. Model Comparison

Figure B.1: Customized LeNet-5 model summary

70

Figure B.2: LeNet-5

71

B. Model Comparison

Figure B.3: Customized LeNet-5

72

Figure B.4: AlexNet

73

Appendix C
PGN game statistic

Figure C.1: Average length of move in game

75

C. PGN game statistic

Figure C.2: Length of move in game

Figure C.3: Distribution of characters in games

76

Appendix D
Examples of application

Figure D.1: Template upload

77

D. Examples of application

Figure D.2: Template upload – rotation

Figure D.3: Template upload – move area selection

78

Figure D.4: Template select

Figure D.5: Game conversion

79

Appendix E
Acronyms

PGN Portable Game Notation

FIDE Fédération Internationale des Échecs

OCR Optical Character Recognition

FEN Forsyth–Edwards Notation

RGB Red, Green, Blue

ROI Region of Interest

PSC Potential Segmentation Column

SVM Support Vector Machine

K-NN k-Nearest Neighbours

RF Random Forest

NN Neural Networks

CNN Convolutional Neural Networks

MNIST Modified National Institute of Standards and Technology database

WSGI Web Server Gateway Interface

OpenCV Open Source Computer Vision Library

SIFT Scale-Invariant Feature Transform

ORB Oriented FAST and Rotated BRIEF

FLANN Fast Library for Approximate Nearest Neighbors

EMNIST Extended MNIST

81

Appendix F
Contents of enclosed CD

readme.txt the file with CD contents description
dataset...................................... the file with score sheets
src.......................................the directory of source codes

readme.md.................................guideline to run the app
frontend source codes of frontend
backend....................................source codes of backend
notebooks..scripts
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

83

	Introduction
	Short Introduction to Chess
	Algebraic Notation
	Score sheet
	PGN format

	Existing Solutions
	Checklist Based Convertor
	Reine
	CheSScan
	Summary

	OCR
	Introduction to OCR
	Image Acquisition
	Preprocessing
	Image Binarization
	Noise Reduction
	Skeletonization
	Region of Interest

	Segmentation
	Holistic
	Explicit Segmentation
	Implicit Segmentation

	Feature Extraction
	Statistical
	Structural
	Global Transformations and Moments

	Character Classification
	Support Vector Machines (SVM)
	K-Nearest Neighbors (K-NN)
	Random Forests (RF)
	Convolution Neural Networks (CNN)
	Comparison of Classification Methods

	Postprocessing
	Manual Error Correction
	Lexicon-Based Error Correction
	Context-Based Error Correction

	Existing OCR Systems

	Implementation
	Technology
	Flask
	React
	PostgreSQL
	Libraries
	Pythonanywhere

	System Functionality
	Score Sheet Conversion Process
	Preprocessing
	Move Segmentation
	Character Segmentation
	Character Classification
	Game Creation

	Evaluation
	Dataset
	Move Segmentation
	Character Segmentation
	Character Classification
	Move Prediction
	Time Complexity
	Possible Improvements

	Conclusion
	Bibliography
	Examples from dataset
	Model Comparison
	PGN game statistic
	Examples of application
	Acronyms
	Contents of enclosed CD

