
5/6/2021 ProjectsFIT

https://projects.fit.cvut.cz/theses/171/assignment-print 1/1

Instructions

Study algorithms for modular inversion from publications [1] and [2].

Express their computational complexity and compare them with the complexity of other algorithms

found in publications that cite them.

From the acquired knowledge, try to find a suitable recommendation for modifying the binary

algorithms [1] and [2] for modular inversion to improve their computational complexity.

 
[1] R. Lórencz, New algorithm for classical modular inverse, International Workshop on Cryptographic

Hardware and Embedded Systems, 57-70, Springer, Berlin, Heidelberg, 2002.

[2] R. Lórencz, J. Hlaváč: Subtraction-free Almost Montgomery Inverse algorithm. Information

Processing Letters, Volume 94, Issue 1, 2005, Pages 11-14, ISSN 0020-0190.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 8 January 2020 in Prague.

Assignment of master’s thesis

Title: Complexity analysis of binary algorithms for modular inversion

Student: Bc. Ivana Trummová

Supervisor: prof. Ing. Róbert Lórencz, CSc.

Study program: Informatics

Branch / specialization: Computer Security

Department: Department of Information Security

Validity: until the end of summer semester 2020/2021

Master’s thesis

Complexity analysis of binary algorithms
for modular inversion

Bc. Ivana Trummová

Department of Information Security

Supervisor: prof. Ing. Róbert Lórencz, CSc.

May 6, 2021

Acknowledgements

Firstly, I would like to thank my supervisor prof. Ing. Róbert Lórencz, CSc.
for his time and safe space to think about new ideas and for many pieces of
advice.
I also thank my friends Tomáš and Jan for helping me with algebra and
programming, and my partner Lukáš, without whom I would not be able to
finish.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
c© 2021 Ivana Trummová. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Trummová, Ivana. Complexity analysis of binary algorithms for modular in-
version. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2021.

Abstrakt

Modulárńı inverze je operace, která se v moderńı vědě a technice hojně využ́ıvá
– zejména v kryptografii. Existuje v́ıce zp̊usob̊u, jak modulárńı inverzi naj́ıt,
a hledáńı ideálńıho zp̊usobu stále neńı u konce. V této práci představujeme
analýzu složitosti vybraných algoritmů a některé z nápad̊u z relevantńı litera-
tury, jak tyto algoritmy vylepšit.

Kĺıčová slova Modulárńı inverze, Montgomeryho modulárńı inverze, složitost,
modulárńı aritmetika.

Abstract

Modular inverse is a widely used operation in modern science and technology,
particularly in cryptography. There are many ways how to find modular in-
verse of an integer and the research to find the ideal one is still active. In this
work, we present a complexity analysis of several chosen algorithms and some
of the ideas about improving them drawn from relevant literature.

vii

Keywords Modular inverse, Montgomery modular inverse, complexity, mod-
ular arithmetic.

viii

Contents

Introduction 1
Motivation . 1
Use of modular inverse . 1
Goal of the thesis . 1
Organization of the chapters . 2

1 Theoretical background 3
1.1 Basic concepts . 3
1.2 Modular arithmetic and Galois fields 4
1.3 Montgomery modular inverse 5
1.4 Computational complexity . 7
1.5 Algorithm zoo . 8

1.5.1 Euclid’s Algorithm . 8
1.5.2 Extended Euclid’s Algorithm 9
1.5.3 Binary Algorithm . 10
1.5.4 Penk’s Algorithm . 12
1.5.5 Montgomery Algorithm 12
1.5.6 Almost Montgomery algorithm (Kaliski) 15
1.5.7 Subtraction free AMI 16
1.5.8 Left Shift Algorithm . 17

2 Proposal of a proof of Left shift algorithm correctness 19
2.1 Example on particular values 21

ix

3 Research on the topic 23
3.1 Further work . 23

3.1.1 Lai . 23
3.1.2 Hars . 24
3.1.3 Shivashankar . 25
3.1.4 Choi . 25
3.1.5 Wu . 26
3.1.6 Liu . 26

3.2 Ideas to follow up . 28

4 Tao Wu algorithm 29
4.1 Proposed corrections of Tao Wu’s algorithm 31

4.1.1 Odd value divided by two 31
4.1.2 Value out of range in third branch 31
4.1.3 Final correction of the output 32

5 Complexity analysis 35
5.1 Algorithms . 35
5.2 Operations . 36

5.2.1 Shift . 36
5.2.2 Addition, subtraction 37
5.2.3 Zero comparisons . 38
5.2.4 Operations on counters 38

5.3 Methodology . 38
5.4 Results . 39

5.4.1 Classical Modular algorithms 39
5.4.2 Montgomery Modular algorithms 40

5.5 Complexity comparison . 42
5.6 Suggestions for future work . 44

6 Conclusion 45

Bibliography 47

A Counting the operations 49

B Corrections of Tao Wu algorithm 57

x

B.1 Illustration of the correction I 57
B.2 Illustration of the correction II 59

C Acronyms 63

xi

List of Tables

5.1 Operations . 37
5.2 A1 – Penk’s algorithm . 39
5.3 A3 – Left shift algorithm . 40
5.4 A6 – Tao Wu’s algorithm . 40
5.5 A2P1 – Montgomery’s algorithm, Phase I 41
5.6 A4 – Almost Montgomery Algorithm (with subtractions) 41
5.7 A5 – Almost Montgomery Algorithm (without subtractions) 42
5.8 A7 – Optimized Montgomery algorithm 42
5.9 A2P2 – Montgomery’s algorithm, Phase II 43
5.10 Means: Algorithms A1–A7 . 43

A.1 Operations . 49

B.1 Tao Wu’s algorithm – correction I 58
B.2 Tao Wu’s algorithm – incorrect run 59
B.3 Tao Wu’s algorithm – correct run 61
B.4 Tao Wu’s algorithm – Phase II (incorrect) 61
B.5 Tao Wu’s algorithm – Phase II (correct) 62

xiii

Introduction

Motivation

In cryptography, most of the current widely used algorithms depend on the
same or similar mathematical principals, such as discrete mathematics, in
particular finite fields and modular arithmetic. In many applications, the
speed of the computation is a crucial parameter of the quality of an algorithm.
In other cases, for mobile devices, the power consumption may be the key
quality to look for in algorithms. Therefore we aim to simplify the methods
that we know and try to come up with solutions that are still proved to ensure
a correct output, but spend less time and energy in order to do it.

Use of modular inverse

Multiplicative inverse in a Galois field is an operation that is useful in various
cryptographic algorithms. The most known usage is probably RSA encryption,
where the inverse is computed during the decipherment phase [1]. Also, it is
used in certain digital signature systems [2], in computing point operations
on elliptic curves defined over a Galois field [3, 4], or in addition-subtraction
chain [5, 6].

Goal of the thesis

There are various methods for computing modular inverse of an element in
a finite field. The most naive approach is the use of Extended Euclid’s al-

1

Introduction

gorithm, where the inverse appears as a by-product of “searching” for the
greatest common divisor of two relatively prime numbers (which is 1). Other
algorithms, such as Binary Euclid’s algorithm, Penk’s algorithm, and Mont-
gomery’s algorithm, evolved from the basic concept of Euclid.

In 2002, professor Lórencz published a paper [7] called New Algorithm
for Classical Modular Inverse. He proposed an algorithm that is based on
binary Euclid’s algorithm, but instead of using right shifts, additions and
subtractions, he focuses on minimizing the number of operations that cost
more time and effort of the processing unit. The proposed algorithm uses left
shifts (which are used to realize multiplication by two) as a basic idea. The
purpose of this work is to revisit these algorithms, research relevant literature,
search for an eventual improvements and propose a complexity analysis.

Organization of the chapters

The initial chapter Theoretical background (1) covers basic definitions and
mathematical concepts which are necessary for the reader to understand the
topic. The second part of this chapter called Algorithm Zoo (1.5) covers a fam-
ily of algorithms computing modular inverse – from basic Extended Euclid’s
algorithm to newer methods.

In the second chapter (2), an idea of Lórencz’s Left shift algorithm is
described.

In chapter 3 called Research on the topic, there is an overview of the
existent literature and publications that cite from [7] and [8]. Several papers
are mentioned and we talk about optimization ideas.

Chapter 4 – Tao Wu algorithm proposes a detailed look into Tao Wu’s
paper [9] about a simplified version of Left shift algorithm.

The last chapter (5), Complexity analysis, contains a statistical analysis of
operations used by simulated algorithms.

2

Chapter 1
Theoretical background

This section covers basic concepts and mathematical definitions needed for a
comfortable reading of the text, and it also defines the terminology used in
the work. Most of these concepts are a part of algebra and modular (residual)
arithmetic and are paraphrased from [10] and [11].

Let I denote the set of all integers.

1.1 Basic concepts

Definition 1.1.1. Divisibility
Let a, b ∈ I, a < b. We say that a divides b (and write a | b) if b = ac for
some c ∈ I.

Definition 1.1.2. Greatest common divisor
Let a, b ∈ I. Then there is at least one integer c, c > 0, which divides both a

and b (1 has always this property). The greatest integer that divides both a

and b is called greatest common divisor of a and b, or gcd(a, b).

Definition 1.1.3. Prime numbers
Integer p is prime, if there are no other integers that divide p other than 1
and p itself.

Definition 1.1.4. Co-primality
Two integers a, b are co-prime or relatively prime, if their gcd(a, b) = 1.

3

1. Theoretical background

1.2 Modular arithmetic and Galois fields

Definition 1.2.1. Bézout’s coefficients
For any a, b ∈ I, there exists their greatest common divisor gcd(a, b) ∈ I, and
two coefficients u, v ∈ I (Bézout’s coefficients) that hold

gcd(a, b) = a · u + b · v (1.1)

In the literature, this claim is called the Bézout’s theorem. The theorem
and identity 1.1 are key elements for computing modular inverse by Extended
Euclid’s algorithm (shown later).

Definition 1.2.2. Congruence modulo
Let a, b, m ∈ I, m > 1. Then a is congruent to b modulo m (we write a ≡ b

(mod m)) if m | (a− b). Congruence modulo m is an equivalence relation, so
it has properties of symmetry, reflexivity and transitivity.

Definition 1.2.3. Ring, commutative ring, ring with identity
Let R be a set with 0, and operations addition (+) and multiplication (·).
Then (R, +, ·) is called a ring if, for all a, b, c ∈ R it holds:

Associativity a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c

Commutativity of addition a + b = b + a

Zero Special element 0 has property 0 + a = a + 0 = a

Additive inverse For every a there exists element −a such that a + (−a) = 0

Distributivity (a + b) · c = a · b + a · c

Additionally, if a · b = b ·a for any a, b ∈ R, the ring R is called a commutative
ring.
If there is element 1 ∈ R with the property a · 1 = 1 · a = a for every a ∈ R,
then the ring R is called a ring with identity.

Definition 1.2.4. Multiplicative inverse
Let R be a commutative ring with identity, 0 6= 1, a ∈ R. A multiplicative
inverse of a is a−1 ∈ R, which holds a · a−1 = a−1 · a = 1.

4

1.3. Montgomery modular inverse

Definition 1.2.5. Field, finite field, Galois field
A commutative ring with identity R, where 0 6= 1 and for every a 6= 0 ∈ R
there is a multiplicative inverse, is called a field.
If a field has a finite number of elements, it is called a finite field.
A field that contains q elements (where q is a power of a prime number) is
called Galois field. It is denoted GF(q).

We will only focus on GF(p), p is a prime number greater than 2. When
we say we compute or search for modular inverse of an element, we mean
multiplicative inverse of this element in GF(p), there p is the modulus.

1.3 Montgomery modular inverse

Let Im = {0, 1, 2, . . . , m− 1}, m ∈ I, m > 1.

Definition 1.3.1. Least non-negative residue
Each integer a ∈ I is congruent modulo m to exactly one element of set Im.
This creates a map | · |m : I 7→ Im defined as |a|m = r, 0 ≤ r < m and a ≡ r.
Integer r is called the least non-negative residue of a modulo m. The map has
these important properties:
If a, b, m ∈ I and m > 1:

1. |a|m is unique.

2. |a|m = |b|m if and only if a ≡ b (mod m).

3. |k ·m|m = 0 for every k ∈ I.

Definition 1.3.2. Montgomery domain
The Montgomery representation of a residue |a|m ∈ I is defined as integer
|b|m = |a ·R|m, where R ∈ I is a radix co-prime to m, R > m.
In our case, R is a power of 2.

Definition 1.3.3. Addition and subtraction in Montgomery domain
Let us have |a|m, |b|m, |c|m ∈ Im and their Montgomery representations |a ·
R|m, |b·R|m, |c·R|m ∈ Im. Then we define addition and subtraction as follows:∣∣| a ·R|m + |b ·R|m

∣∣
m

= |c ·R|m ⇐⇒
∣∣ |a|m + |b|m

∣∣
m

= |c|m∣∣| a ·R|m − |b ·R|m ∣∣
m

= |c ·R|m ⇐⇒
∣∣ |a|m − |b|m ∣∣

m
= |c|m

5

1. Theoretical background

Definition 1.3.4. Montgomery multiplication
As opposed to addition and subtraction, which can be performed in the same
way as in integer domain, multiplication in Montgomery domain needs an
extra step. Since we multiply two elements, both of which are multiples of R,
the product has to be divided by one R to stay in the Montgomery domain.

∣∣| a ·R|m · |b ·R|m · |R−1|m
∣∣
m

= |c ·R|m ⇐⇒
∣∣ |a|m · |b|m ∣∣

m
= |c|m

From now on, suppose R = 2n.

Definition 1.3.5. Montgomery multiplication algorithm
Let a = |a ·R|m and b = |b ·R|m denote the Montgomery representations. Let
a = (an−1an−2 . . . a0)2, where a is in base 2 with a0 =LSB. Let 0 ≤ b < m.
Basic Montgomery multiplication algorithm goes as follows:

IN: a, b, m, n

OUT: |abR−1|m

1. s := 0, i := 0

2. while (i < n):

3. x := x + aib

4. x := (x + x0m)/2)

5. i := i + 1

6. if (x ≥ m):

7. x := x−m

8. return x = |abR−1|m

Once we have the Montgomery representations of our integers, this algo-
rithm is very efficient. The important feature to notice is that a multiplication
and division by 2 is performed, which is a very simple operation.

6

1.4. Computational complexity

Definition 1.3.6. Montgomery modular inverse
Let a, p ∈ I , a ∈ [1, p − 1]. Montgomery modular inverse of a or MMI(a) is
defined as an integer b ∈ [1, p− 1] such that

b ≡ a−12n (mod p) (1.2)

where a is relatively prime to p and n = dlog2 pe.

Definition 1.3.7. Almost Montgomery inverse
In some algorithms, an intermediate result called Almost Montgomery inverse
of an integer a modulo prime p is calculated:

AMI(a) ≡ a−12k (mod p),

where a ∈ [1, p − 1], p is a prime and k ∈ [n, 2n] is the number of iterations
performed.
As authors of [8] mention in the paper:

MMI(a) ≡ AMI(a) · 2n−k ≡ a−12n (mod p).

Once we get Almost Montgomery inverse as an intermediate result, the
algorithm can either use a second phase to go back to integer domain (which is
shown later in 1.5), or by multiplying by 2, we can quickly get the Montgomery
representation of the inverse. This might be useful if we want to continue to
work with the value – the properties of Montgomery domain allow us to quickly
multiply or use different methods.

1.4 Computational complexity

Definition 1.4.1. Big O notation
Let N denote the set of natural numbers. If f, g are two functions from
N to N , then we say that f = O(g) if there exists a constant c such that
f(n) ≤ c · g(n) for sufficiently large n.

7

1. Theoretical background

1.5 Algorithm zoo

There are plenty of approaches and methods of of computing modular inverse.
In mathematics, a problem is often solved by transformation of the original
task to another. The first idea of how to efficiently compute modular inverse
(better than guessing) was to obtain it as a by-product of computing the
greatest common divisor of two integers. Therefore we have to begin with the
Euclid’s algorithm.

1.5.1 Euclid’s Algorithm

Euclid’s algorithm is a method for computing the greatest common divisor
(gcd) of two integers without having to factorize them. It is one of the most
basic algebraic algorithms that we know of, having its origin in ancient Greece
(about 300 BC). Most of the modern modular inverse algorithms are based on
this method. The algorithm is based on two properties of greatest common
divisor. For any integers a, b:

gcd(a, 0) = |a|; (1.3)

gcd(a, b) = gcd(b, a (mod b)). (1.4)

In order to find the greatest common divisor, we would repeatedly substitute
the larger of two values by the remainder of their division, until we reach zero.
At that point, the other value is equal to their gcd. The Euclid’s algorithm
goes as follows:

• IN: integers a, b, a > b

• OUT: gcd(a, b)

• While (b 6= 0):
r = a (mod b)
a = b

b = r

• Return a = gcd(a, b).

8

1.5. Algorithm zoo

Definition 1.5.1. Let a be an integer. Then L(a) indicates the number of
digits in particular base (length).

Time complexity of Euclid’s algorithm is O((n−d+1)m) ≤ O(nm), where
n = L(a), m = L(b), d = L(gcd(a, b)). Full proof is in [12]. The algorithm
halts with the correct output because of the equations 1.3 and 1.4, which are
relevant in every Euclidean domain (definition and description of Euclidean
domain are in [10]).

1.5.2 Extended Euclid’s Algorithm

This is the first method by which we actually can find the multiplicative inverse
of an element of finite field. The key piece of knowledge is Bézout’s theorem.
The Extended Euclid’s algorithm goes as follows:

• IN: integers a, b, a > b

• OUT: gcd(a, b) and coefficients u, v that hold 1.1.

• a0 = a, u0 = 1, v0 = 0;
a1 = b, u1 = 0, v1 = 1;
ai+1 = r, ui+1 = ui−1−uiq, vi+1 = vi−1− viq,, where q, r are chosen
to satisfy

ai−1 = aiq + r, r < ai. (1.5)

If ai+1 = 0, return ai = 1, u := ui, v := vi.

Based on equation 1.1, we can use this algorithm for finding the modular
inverse in case gcd(a, b) = 1, which is always true for two co-prime integers.
Then, using the Bézout’s theorem, we have

a · u = 1− b · v ≡ 1 (mod b) (1.6)

Since b is the modulus, (−b · v) ≡ 0 (mod b) and this leaves u as an inverse of
a (mod b).

Time complexity is the same as in the case of Euclid’s algorithm. The
only difference in every step is several additions and subtractions, and their
asymptotic complexity is lower or the same as division.

9

1. Theoretical background

1.5.3 Binary Algorithm

The binary version of the previous algorithm was designed for implementation
– we wanted to avoid integer division, because that is a complex operation.
This version uses division by two, that can be realized just by shifting the
bits to the right and changing there position by one place. The correctness is
ensured by these equations (as Knuth writes in [13]):
Let a, b be positive integers. Then

gcd(a, b) = 2gcd(a/2, b/2) (1.7)

for a, b both even,
gcd(a, b) = gcd(a/2, b) (1.8)

for a even and b odd,

gcd(a, b) = 2gcd(|a− b|, b), (1.9)

a− b is even, |a− b| < max(a, b) (1.10)

for a, b both odd.

Proof. Let a, b be integers. Then we can write

a = pk1
1 · p

k2
2 · . . . · pkm

m , b = pl1
1 · p

l2
2 · . . . · pln

n ,

where ki, li ≥ 0 for i = 0, . . . , n. By definition 1.1.2 we can write

gcd(a, b) = p
min(k1,l1)
1 · pmin(k2,l2)

2 · . . . · pmin(kn,ln)
n .

(1.7) Since a, b are both even, we can write a = 2 · a′, b = 2 · b′ for integers
a′ = a/2, b′ = b/2.

We have to prove that gcd(2a′, 2b′) divides 2gcd(a′, b′) and vice versa.
Let c = gcd(2a′, 2b′). Since c | 2a′, there exists an integer x that holds
2a′ = cx, and since c | 2b′, there exists an integer y that holds 2b′ =
cy. 2 is a common divisor of 2a′, 2b′, so there is an integer z with the
property c = 2z. We can write 2a′ = 2zx and 2b′ = 2zy, from which
we get a′ = zx, b′ = zy, and z is a common divisor of a′, b′, therefore
z | gcd(a′, b′). Hence c = 2z | 2 · gcd(a′, b′).

Reversely, gcd(a′, b′) | a′, b′, so 2 · gcd(a′, b′) divides both 2a′ and 2b′,
thus it has to divide their common divisor.

10

1.5. Algorithm zoo

(1.8) Let us consider the factorization of a, b mentioned above. The greatest
common divisor of even a and odd b must be odd by the definition and
must be the same even if we divide a by two, because in the factorization,
the minimal exponent of 2 is 0.

(1.9) Validity of this equation follows the fact that

gcd(a, b) = gcd(a, b− qa)

for any integer q. This holds because any common divisor of a and b is
a divisor of both a and a − qb, and, conversely, any common divisor of
a and a− qb must divide both a and b. See [13].

�

Given two positive integers a and b, the binary algorithm finds their great-
est common divisor. This algorithm is described and analyzed more in depth
in [13].

IN positive integers a, b

OUT gcd(a, b)

1. Find the power of two. Set k ← 0, u ← a, v ← b. Repeatedly set
k ← k + 1, u← a/2, v ← v/2, zero or more times until one of the values
u, v is odd

2. Initialize. If u is odd, set t← −v and go to 4, otherwise set t← u

3. Halve t. Set t← t/2

4. Is t even? If t is even, go back to 3

5. Reset max(u, v). If t > 0, set u← t, otherwise set v ← −t

6. Subtract. Set t← u−v. If t 6= 0, go back to 3. Otherwise the algorithm
terminates with u · 2k, which is the desired gcd.

11

1. Theoretical background

1.5.4 Penk’s Algorithm

As we saw in the binary version of the Euclid’s algorithm, many steps of
the computation can be transformed and executed by different operations.
The general idea is to avoid any operation that would be costly in terms of
computational complexity, such as integer division. As a result, many methods
rely on a heavier use of cheaper operations such as shifting the bits to the right
(division by two) or to the left (multiply by two).

One of the ways to compute the modular inverse efficiently is a right-shift
approach. This right-shift algorithm 1 is attributed to M. Penk and uses the
Euclidean method as a base (see [13]) – a version from [7] is presented.

As Lai writes in [14], there are several main elements that keep the struc-
ture the same. The main while loop with a conditional test for v resembles
the original Euclidean test for b. The three main branches in the loop (line
4, 9 and 14 in 1) represent all the cases which happen for values u, v and the
ways this algorithm proceeds with them according to the equations 1.7, 1.8,
1.9 – these relations are used to avoid integer division. The if conditions after
the main loop (lines 24, 26) are used as corrections to output a result that is
in the right interval.

Output consists of r, the modular inverse, and k, the number of halvings
of u and v.

1.5.5 Montgomery Algorithm

Montgomery algorithm consists of two phases – the first one uses the Mont-
gomery domain to compute an intermediate result – Almost Montgomery in-
verse (output y in algorithm 2). The fact that this method uses another
algebraic structure gives us the benefit of fewer operations. On the other
hand, the downside is that a second phase is needed to convert the output
back to the integer domain using multiple shifts (divisions by two) and offsets
by module p (additions).

The key difference between Montgomery and the previous Penk’s classical
algorithm is that the Montgomery computes the Almost Montgomery inverse
quickly, but needs extra time for the correction phase.

12

1.5. Algorithm zoo

Algorithm 1: Penk
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1] and k, where r = a−1 (mod p),

and n ≤ k ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 k = 0
3 while v > 0 do
4 if u is even then
5 if r is even then
6 u := u/2, r := r/2, k := k + 1
7 else
8 u := u/2, r := (r + p)/2, k := k + 1

9 else if v is even then
10 if s is even then
11 v := v/2, s := s/2, k := k + 1
12 else
13 v := v/2, s := (s + p)/2, k := k + 1

14 else
15 x := (u− v)
16 if x > 0 then
17 u := x, r := r − s
18 if r < 0 then
19 r := r + p

20 else
21 v := −x, s := s− r
22 if s < 0 then
23 s := s + p

24 if r > p then
25 r := r − p

26 if r < 0 then
27 r := r + p

28 return r, k

13

1. Theoretical background

Algorithm 2: Montgomery – Phase I
Input: a ∈ [1, p− 1] and p
Output: y ∈ [1, p− 1] and k, where y = a−12k (mod p),

and n ≤ k ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 k = 0
3 while v > 0 do
4 if u is even then
5 u := u/2, s := 2s, k := k + 1
6 else if v is even then
7 v := v/2, r := 2r, k := k + 1
8 else
9 x := (u− v)

10 if x > 0 then
11 u := x/2, r := r + s, s := 2s, k = k + 1
12 else
13 v := −x/2, s := r + s, r := 2r, k = k + 1

14 if r > p then
15 r := r − p

16 return y = p− r, k

Algorithm 3: Montgomery – Phase II
Input: y ∈ [1, p− 1], p and k from Phase I
Output: y ∈ [1, p− 1], where r = a−1 (mod p), and 2k from Phase I

1 for i = 1 to k do
2 if r is even then
3 r := r/2
4 else
5 r := (r + p)/2

6 return r and 2k

14

1.5. Algorithm zoo

1.5.6 Almost Montgomery algorithm (Kaliski)

Algorithm 4 is very similar to Montgomery algorithm 2, but the output is
slightly different – this method also computes Almost Montgomery inverse,
but less amount of loop iterations is used and k is smaller than in algorithm
2. This version is proposed by Kaliski and published in [8] – it doesn’t contain
the second phase, but we may assume it is the same, since the output here is

o ≡ a−12k (mod p), n− 1 ≤ k ≤ 2n.

Algorithm 4: AMI with subtractions
Input: a ∈ [1, p− 1] and p
Output: o ∈ [1, p− 1] and k, where o = a−12k (mod p),

and n− 1 ≤ k ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 k = 0
3 while 1 do
4 if u is even then
5 u := u/2, s := 2s

6 else if v is even then
7 v := v/2, r := 2r

8 else
9 x := (u− v), y = r + s

10 if x = 0 then
11 return o = s, k

12 if CARRY (x) = 1 then
13 u := x/2, r := y, s := 2s

14 else
15 v := −x/2, s := y, r := 2r

16 k = k + 1

15

1. Theoretical background

1.5.7 Subtraction free AMI

In [8], Lórencz and Hlaváč propose a modification of the Kaliski’s version
of Almost Montgomery algorithm 4. The main difference is that algorithm
5 uses addition instead of subtraction, and as shown later in the statistical
analysis, it brings a slight improvement regarding the number of operations –
this method avoids the operation of negation completely. Just as the method
above, this algorithm’s output is AMI(a), and second phase is needed for
computation of the classical modular inverse of a.

Algorithm 5: Subtraction-free AMI
Input: a ∈ [1, p− 1] and p
Output: o ∈ [1, p− 1] and k, where o = a−12k (mod p),

and n− 1 ≤ k ≤ 2n
1 u := −p, v := a, r := 0, s := 1
2 k = 0
3 while 1 do
4 if u is even then
5 u := u/2, s := 2s

6 else if v is even then
7 v := v/2, r := 2r

8 else
9 x := (u + v), y = r + s

10 if x = 0 then
11 return o = s, k

12 if CARRY (x) = 0 then
13 u := x/2, r := y, s := 2s

14 else
15 v := x/2, s := y, r := 2r

16 k = k + 1

16

1.5. Algorithm zoo

1.5.8 Left Shift Algorithm

The Left shift algorithm is the proposed new method to effectively compute
the classical modular inverse in [7] (New Algorithm for Modular Inverse).

The main approach was to avoid the drawbacks of the algorithms that use
right shifts (algorithms 1, 2). Both of these algorithms are using operations
additions and subtractions and this algorithm is designed with the intention of
limited use of addition and subtraction, and rather uses bigger amount of left
shifts. Algorithm 6 keeps the variables u, v (that represent the master thread)
aligned to the left – so when a subtraction is performed, it clears the leading
bit(s) (MSB). Shifting the variables to the left is performed in the main while
loop, where the condition checks if u or v still can shift to the left. When both
variables are aligned, a subtraction (or addition in case one of different signs)
is performed.

17

1. Theoretical background

Algorithm 6: Left-Shift Algorithm
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 (mod p), c−u, c−v

and 0 < c−v + c−u ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 c−u = 0, c−v = 0
3 while (u 6= ±2c−u & v 6= ±2c−v) do
4 if (un, un−1 = 0) or (un, un−1 = 1& OR (un−2, . . . , u0) = 1) then
5 if (c−u ≥ c−v) then
6 u := 2u, r := 2r, c−u := c−u + 1
7 else
8 u := 2u, s := s/2, c−u := c−u + 1

9 else if (vn, vn−1 = 0) or (vn, vn−1 = 1& OR (vn−2, . . . , v0) = 1)
then

10 if (c−v ≥ c−u) then
11 v := 2v, s := 2s, c−v := c−v + 1
12 else
13 v := 2v, r := r/2, c−v := c−v + 1

14 else
15 if (vn = un) then
16 oper = ”− ”
17 else
18 oper = ” + ”
19 if (c−u ≤ c−v) then
20 u := u oper v, r := r oper s

21 else
22 v := v oper u, s := s oper r

23 if (v = ±2c−v) then
24 r := s, un := vn

25 if (un = 1) then
26 if (r < 0) then
27 r := −r

28 else
29 r := p− r

30 if (r < 0) then
31 r := r + p

32 return r, c−u, and c−v

18

Chapter 2
Proposal of a proof of Left shift

algorithm correctness

In [7], there is a mathematical proof that Left shift algorithm (algorithm 6)
halts within a finite number of steps and with correct output. The proof
operates with the master part of the computation (variables u, v). In this
chapter, I would like to propose an alternative point of view on the correctness
and try to describe the way how the algorithm operates – and cover also the
slave part of the computation, variables r, s and their relation to the correct
output.

There are two key equations that values hold throughout the algorithm
and are useful to understand the structure of the method and how the results
are computed.

u

2d
≡ r · a (mod p) (2.1)

v

2d
≡ s · a (mod p) (2.2)

where d = min(c−u, c−v) and a, p is the input pair of integer and prime
modulus.

Theorem 1. Algorithm 6 holds equations 2.1 and 2.2 in every step of the main
loop.

Proof. The proof is trivial for the initial step. On lines 1 and 2, we initialize
values the following way:

u0 := p, v0 := a, r := 0, s := 1, c−u := c−v := 0.

19

2. Proposal of a proof of Left shift algorithm correctness

The two equations then look like this:
p

20 ≡ 0 · a (mod p)

a

20 ≡ 1 · a (mod p)

During the main while loop there are three possibilities of what could
happen to the values. Either one of the values is shifted to the left (ii), or an
operation of addition or subtraction is applied to them (i).

Suppose that after i-th iteration of the loop equations 2.1 and 2.2 hold for
values ui, vi, ri, si, and di.

1. In the case of performing subtraction, value di is not changed, and with-
out loss of generality suppose c−u ≤ c−v (we can suppose that since
neither c−u nor c−v is changed in this branch). Then we have

ui+1 ≡ ui−vi ≡ ri·a·2di−si·a·2di ≡ (ri−si)·2di ≡ (ri+1)·a·2di (mod p)

and therefore
ui+1
2di
≡ ri+1 · a (mod p),

and since di = di+1, equation 2.1 still holds, and 2.2 remains untouched.
We can use the same justification in the case of performing an addition
– we just used basic principals of modular arithmetic.

2. In the case of performing shifting branches (suppose u is shifted to the
right, in case of shifting v the discussion would be the same), we have

ui+1 := 2ui, c−ui+1 := c−ui + 1.

Depending on c−ui and c−vi, there are two possibilities. Firstly suppose
c−ui ≥ c−vi, then we have ri+1 := 2ri and since c−vi stays the same
(this value is not changed in the u-shifting branch), di+1 = di. Equation
2.2 remains untouched in this scenario as well, and we have

ui+1
2di+1

≡ 2ui

2di
≡ 2ri · a ≡ ri+1 · a (mod p).

The last case is when c−ui < c−vi. When we shift u in this case, c−ui

is the minimum of two counters and is increased, so di+1 = di + 1 and
si+1 := si/2. The first equation now looks like this:

ui+1
2di+1

≡ 2ui

2di+1 ≡ ri · a ≡ ri+1 · a (mod p).

20

2.1. Example on particular values

The second equation also holds:

vi+1
2di+1

≡ vi

2di+1 ≡
si

2 · a ≡ si+1 · a (mod p).

�

2.1 Example on particular values

Here, the idea of the proof is showed on particular values. Let us have (a, p) =
(10, 13); the initialization step is:

u0 := 13, v0 := 10, r := 0, s := 1, c−u := c−v := 0.

In the table below, we have the example of the calculation (the same as in
[7]).

l operations values of registers tests
0 u(0) = (13)10 = (01011.)2 u(0) 6= ±20

v(0) = (10)10 = (01010.)2 v(0) 6= ±20

r(0) = (0)10 = (00000.)2

s(0) = (1)10 = (00001.)2

1 u(1) = u(0) − v(0) u(1) = (3)10 = (00011.)2 u(1) 6= ±20

v(1) = (10)10 = (01010.)2 v(1) 6= ±20

r(1) = r(0) − s(0) r(1) = (−1)10 = (11111.)2

s(1) = (1)10 = (00001.)2

2 u(2) = 4u(1) u(2) = (12)10 = (011.00)2 u(2) 6= ±22

v(2) = (10)10 = (01010.)2 v(2) 6= ±20

r(2) = 4r(1) r(2) = (−4)10 = (111.00)2

s(2) = (1)10 = (00001.)2

3 u(3) = (12)10 = (011.00)2 u(3) 6= ±22

v(3) = v(2) − u(2) v(3) = (−2)10 = (11110.)2 v(3) 6= ±20

r(3) = (−4)10 = (111.00)2

s(3) = s(2) − r(2) s(3) = (5)10 = (00101.)2

4 u(4) = (12)10 = (011.00)2 u(4) 6= ±22

v(4) = 4v(3) v(4) = (−8)10 = (110.00)2 v(4) 6= ±22

r(4) = r(3)/4 r(4) = (−1)10 = (11111.)2

s(4) = (5)10 = (00101.)2

21

2. Proposal of a proof of Left shift algorithm correctness

5 u(5) = u(4) + v(4) u(5) = (4)10 = (001.00)2 u(5) = 22

r(5) = r(4) + s(4) r(5) = (4)10 = (00100.)2

For l = 0, equations 2.1 and 2.2 look like this in the beginning:

13
20 ≡ 0 · 0 (mod 13)

10
20 ≡ 1 · 10 (mod 13)

The next iteration l = 1 corresponds to the case (i) – performing subtraction.
Value d1 = 0 remains unchanged, and we have

u1
2d0
≡ 3

20 ≡ −1 · 10 (mod 13) ≡ r1 · a (mod p),

whereas the second equation remains untouched. Iteration l = 2 shows the
case (ii). In this case, two left shifts were performed on u, and because v has
not been shifted yet, d = 0, so we have

u2
2d2
≡ 4u1

2d1
≡ 12

20 ≡ 4 · (−1) · 10 ≡ 4r1 · a ≡ r2 · a (mod 13).

For l = 3, we have once again the case (i), where u is subtracted from v.

v3
2d2
≡ −2

20 ≡ 5 · 10 (mod 13) ≡ s3 · a (mod p),

and for l = 4, we have again two left shifts applied on v – so now d = 2.

v4
2d4
≡ 4v3

2d3+2 ≡
−8
22 ≡ 5 · 10 ≡ s4 · a (mod 13).

u4
2d4
≡ u3

2d3+2 ≡
12
22 ≡ (−1) · 10 ≡ r4 · a (mod 13).

Last iteration l = 5 is addition:

u5
2d5
≡ 4

22 ≡ (4) · 10 ≡ r5 · a (mod 13).

Then the loop ends, because loop condition is satisfied: u5 = 22 and we already
have the result from the last equation for l = 5 saved in variable r.

22

Chapter 3
Research on the topic

There are currently 55 articles, theses and papers that cite Lorencz’s work [7],
and 7 publications that cite paper [8]. The vast majority of them only cite
the paper as one of many resources or as a literature for further reading, or
usually as an example of previous work in the field. However, some of them
take the paper more into consideration and focus more on the analysis of the
Left-shift algorithm. These are the papers we will focus on.

3.1 Further work

3.1.1 Lai

In 2004, Gerald Lai published Analysis of Modular Inverse GF(p) Implementa-
tions [14]. His paper examines five classical modular (or Montgomery) inverse
algorithms in GF (p). In his words, he attempted to study the evolution of
modular inversion methods and to trace key areas of improvement efficiency
of hardware improvement.

This paper is not an experimental study. Lai does not implement the
algorithms or count the operations, but he dives deep into explaining the steps
in the methods and their evolution. He suggests a way how to understand
individual steps and operations, and describes how the modern algorithms
transformed from binary extended Euclidean algorithm in order to be more
efficient and cost less.

Regarding Lorencz’s Left-shift algorithm, Lai notes this:
‘(. . .) benchmark results that show algorithmic performance do not nec-

23

<https://scholar.google.com/scholar?cites=2091823704758004976&as_sdt=2005&sciodt=0,5&hl=cs>

3. Research on the topic

essarily reflect hardware implementation performance and costs for the same
algorithm. For example, the number of addition and subtraction operations
is indicative of how often the arithmetic units are active for the payload of
computations. While this may be useful for certain power usage estimations,
it does not provide a complete picture of the hardware costs in building the
design. If the delay is essential, the critical path of a particular hardware can
be the limiting factor and hence, different implementations of the arithmetic
units can be applied to offset the effects of carry propagation.’

3.1.2 Hars

In 2006, Laszlo Hars presented improved algorithms for computing classical
modular inverse of large integers, without multiplications of any kind [15].
He included Lorencz’s algorithm and he also added a comparison between
improved algorithms.

Hars proposes a justification, where he explains the way how the Left
shift algorithm was created. Then he suggests an improvement (or speedup
technique) for the Left shift algorithm in part 3.2.2. Best left shift: algorithm
LS3.

Apart from describing the Left shift algorithm, Hars also writes about
possible improvements of right shift algorithm, where he introduces a plus-
minus trick that helps decrease the length of operands and speeds up the
process.

The plus-minus trick is a modification often used for the right shift algo-
rithm: if u and v are odd, check if u + v has 2 trailing 0 bits, otherwise we
know that u− v does. In the former case, if u + v is of the same length as the
larger of them, the right shift operation reduces the length by 2 bits from this
larger length, otherwise by only one bit. It means that the length reduction
is sometimes improved, so the number of iterations decreases.

This plus-minus trick does not work for the Left shift algorithm, because
the addition never clears the MS bit (and the shifts are only to the left, so we
would like to clear these bits on the left). A subtraction could, on the other
hand, clear one or more MS bits (if u and v are close), or we could try 2u− v

or 2v − u if these values are closer. Hars proposes an improved algorithm
called LS3 – after 3 possible reductions above. With the knowledge of a few

24

3.1. Further work

MS bits one could determine which one of the three reductions will give the
largest amount of decrease in length of the operands.

Also, in the conclusion of his paper, he writes about further optimizations
of the algorithm – how to speed it up a little further. When u and v become
short, a table lookup could speed up the finishing calculations. If only one
of them becomes small (short), or there is a large difference between u and
v, we could perform a different algorithmic step which would be best for the
particular computing platform. However, Hars also notes that all of the ideas
would be only quite small improvement of speed.

3.1.3 Shivashankar

Shivashankar [16] discusses the implementation of all three algorithms in [7].
Regarding Left shift algorithm, he describes the implementation in several
parts and adds hardware design.

The Left shift algorithm is divided into logic units by variables. There
is a part for counters c−v and c−u, for the operands u, v, r, and s and the
last bit is for the final computation of the output (after the main while loop).
Although there is no new idea of an optimization in Shivashankar’s paper, the
hardware designs could be of use in further exploration.

3.1.4 Choi

In 2015, Choi published an analysis of three modular inverse algorithms per-
formance [17]. He compares right shift algorithm (RS), Left shift algorithm
(LS – 6) and Eucleidean modular inverse (EM). The basic concepts of the
three algorithms are as follows. LS aligns variables u and v to the left, sub-
tracts the smaller number of u and v from the bigger, substitutes the bigger
number with the result, repeats alignment, subtraction and substitution. RS
performs right shift alignment, and EM performs division instead of alignment
and subtraction.

The analysis has been done in the following way: The authors implemented
all of the three algorithms and stated this for the measuring part:

‘(. . .) To analyze the processing time of each algorithm, one or both of the
shift and subtraction operations should be taken into account. Since shift op-
erations are sometimes performed in a row without subtraction for alignment,

25

3. Research on the topic

shift operations are be performed on every clock cycle; while subtraction op-
erations are selectively performed. This means that analysis on the processing
speed is done by just counting shift operations, and the number of subtrac-
tion operations are not considered for performance analysis unlike software
implementation.’

Since the Left shift algorithm is designed in such a way that it minimises
the use of additions and subtractions and uses larger amount of shifts instead,
in this analysis, RS shows the best performance, and uses less synthesised
area then LS and EM. Although by Choi’s analysis RS shows to be the best in
terms of performance, the analysis apparently doesn’t take into consideration
that a shift operation applied by itself is much cheaper than a shift followed
by a subtraction.

3.1.5 Wu

In a paper from Tao Wu [9], he proposes a new version of Lórencz’s algorithm,
he calls it “Simplified algorithm”. This algorithm was similar to the original,
with small tweaks, and it deserved a more complex analysis, therefore a whole
chapter is dedicated to this paper.

3.1.6 Liu

In 2017, Liu and collective published a paper [18] that focuses on efficiently
computable endomorphisms in elliptic curves. They develop several optimiza-
tions of different algorithms, including an optimization of Montgomery Mod-
ular inverse algorithm. Their algorithm is optimized for pseudo-Mersenne
primes.

Definition 3.1.1. Pseudo-Mersenne prime is a prime of the form

p = 2m − k,

where k is an integer for which

0 < |k| < 2bm/2c.

If k = 1, then p is a Mersenne prime (and m must necessarily be a prime). If
k = −1 , then p is called a Fermat prime (and m must necessarily be a power
of two).

26

3.1. Further work

Algorithm consists of two phases. In the beginning of Phase I, two addi-
tions are performed (Algorithms 4 and 5 also work with this step, but inside
the if-else block). Then, in if-else block, according to the sign flag of x = u+v,
variables {u, v, r, s, k} are updated. The new building brick is the operation
DET (x) – trailing zero detection. Function DET (x) counts how many bits
of x are zeroes (starting from LSB), in other words how many times x can be
divided by two (right-shifted) without loss of information. Operations � and
� denote shifting to the right or left by a particular number of bits. Right and
left shifts are not executed one per each iteration, but variables are shifted by
the number of trailing zeros (lines 11, 13, 15, 17). The core idea is to remove
all trailing zeros of (u + v) in every iteration, which keeps u and v always odd
so that (u + v) converges to zero very quickly.

Algorithm 7: Optimized Montgomery algorithm for 2n − c

Input: a ∈ [1, 2n) and is odd, and p > 2, n-bit prime, precomputed
T = 2−2n (mod p)

Output: r ∈ [1, 2n), where r = a−1 (mod p)
1 \\ Phase I
2 u := −p, v := a, r := 0, s := 1
3 k = 0
4 while 1 do
5 x := (u + v)
6 y := (r + s)
7 tlzx := DET (x)
8 if x = 0 then
9 break;

10 else if x < 0 then
11 u := x� tlzx

12 r := y
13 s := s� tlzx

14 else
15 v := x� tlzx

16 s := y
17 r := r � tlzx

18 k := k + tlzx

19 \\ Phase II
20 s = s · 22n−k (mod p)
21 s = s · T (mod p)

27

3. Research on the topic

3.2 Ideas to follow up

One of the main goals of this work is to try to find suitable recommendations
for simplification, optimization or decrease of computational complexity of
classical or Montgomery modular inverse algorithms.

The first idea appears in the publication [15] from Hars. He introduces
a variation of plus-minus trick for LS algorithm. Then he proposes various
optimizations that could increase the speed a little bit e.g. using a table
lookup when values u, v become short enough.

Tao Wu implemented the idea into the Simplified Left shift algorithm.
This idea, unfortunately, doesn’t bring desired simplification, as explained in
the next chapter.

The most interesting idea seems to be the trailing zeros detection proposed
by Liu in [18]. The downside of the particular design of Algorithm 7 is that
it does not ensure the correct or effective run and result for even integers on
the input. However, this fact doesn’t mean that the trailing zero detection
couldn’t be a part of design of another, correct algorithm computing modular
inverse.

28

Chapter 4
Tao Wu algorithm

In [9] Tao Wu proposes a simplified version of the Left shift algorithm. He
divides it into two phases (8, 9). Main difference between the algorithm 6
and this simplified version is that Tao Wu has left out two if-then-else blocks
and substituted them by only the second of the two branches. The conditions
from lines 5–9 and 11–15 in 6 are replaced by lines 5 and 7 in 8. The second
main difference is that the first phase 8 doesn’t output the modular inverse,
but it gives us only values r, c−v that satisfy equation below:

r · 2c−v (mod p) ≡ a−1 (mod p) (4.1)

Computing of the final modular inverse is implemented in Phase II, which we
can see in 9.

Although it appears that this algorithm computes classical modular inverse
with less conditions and therefore less operations, it does not ensure correct
output if we stick to the exact version proposed in the article. The problematic
part of the algorithm is line 5 in algorithm 8. Since an if-then-else block has
been omitted, there is no guarantee whether value s is even (In algorithm 6,
we use right shift only if s or r is even, and that is achieved by comparing the
amount of left shifts, hence the c−u, c−v tests). It may happen that s = ±1
(or r = ±1 on line 7), and we end up with undefined value: s/2 = 1/2, but we
are not in rational numbers. Since the operation “division by two” is realized
by right shift, the “desired” output in this case is zero, but that means loss of
information and incorrect output of the algorithm. An example with values
a = 4, p = 13 is presented below in appendix B. Phase 1 ends with results

29

4. Tao Wu algorithm

[r, c−v] = [12, 2]. Phase 2 now computes y = r · 2c−v (mod p) = 11 6= 10,

which would in this case be the correct output.

Algorithm 8: Tao Wu – Phase I
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 (mod p), c−u, c−v

and 0 < c−v + c−u ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 c−u = 0, c−v = 0
3 while (u 6= ±2c−u & v 6= ±2c−v) do
4 if (un, un−1 = 0) or (un, un−1 = 1& OR (un−2, . . . , u0) = 1) then
5 u := 2u, s := s/2, c−u := c−u + 1
6 else if (vn, vn−1 = 0) or (vn, vn−1 = 1& OR (vn−2, . . . , v0) = 1)

then
7 v := 2v, r := r/2, c−v := c−v + 1
8 else
9 if (vn = un) then

10 oper = ”− ”
11 else
12 oper = ” + ”
13 if (c−u ≤ c−v) then
14 u := u oper v, r := r oper s

15 else
16 v := v oper u, s := s oper r

17 if (v = ±2c−v) then
18 r := s, un := vn, c−v := c−u

19 if (un = 1) then
20 if (r < 0) then
21 r := −r

22 else
23 r := p− r

24 if (r < 0) then
25 r := r + p

26 return r, c−u, and c−v

30

4.1. Proposed corrections of Tao Wu’s algorithm

Algorithm 9: Tao Wu – Phase II
Input: r, c−v, p from Phase 1
Output: y = r · 2c−v (mod p) = a−1 (mod p)

1 for i = 1 to c−v do
2 r = 2r if r ≥ p then
3 r := r − p

4 return y := r

4.1 Proposed corrections of Tao Wu’s algorithm

The original objective was to compare algorithms 6 and 8, 9 to decide which
is less complex and show if any progress has been made, but we can see that
in case of algorithm by Tao Wu, there is no guarantee of a correct output
(however, for some inputs, it does work). In order to have something relevant
to compare, a few corrections had to be made.

4.1.1 Odd value divided by two

There are three parts where one need to patch algorithm 8 to make it work
correctly. As stated in [14], checking for evenness or oddness is done very
easily by checking the least significant bit. However, on line 5 and 7 there is
no such check that the divided number is even. To avoid a division of an odd
number or shifting one to the right, we added a check (lines 6–8, 11–13). If
the value is even, the division (right shift) is performed. Otherwise, modulus
is added to current value and the value is offset, and since modulus is always
an odd prime, we can then divide an even number by two. The calculation
remains unchanged, because all the operations are performed modulo p, since
we compute in GF (p). With such correction we can avoid losing information
and preserving the correctness of the computation.

4.1.2 Value out of range in third branch

The other problem can be the operation of addition or subtraction in the third
branch. In some cases it may happen that (possibly due to the solution of
division by two) the absolute value of the result of the operation is larger than
module p, so we added a line there as well that ensures that the result is in

31

4. Tao Wu algorithm

the correct bounds – between 1 and p.

4.1.3 Final correction of the output

Finally, a patch has been added to the end of Phase 2. In some cases, we need
to add a final correction that puts the output between 1 and p, that leads to
another check. We can see the final functioning algorithm (10, 11). Added
corrections are green.

32

4.1. Proposed corrections of Tao Wu’s algorithm

Algorithm 10: Tao Wu with corrections – Phase I
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 (mod p), c−u, c−v

and 0 < c−v + c−u ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 c−u = 0, c−v = 0
3 while (u 6= ±2c−u & v 6= ±2c−v) do
4 if (un, un−1 = 0) or (un, un−1 = 1& OR (un−2, . . . , u0) = 1) then
5 u := 2u, c−u := c−u + 1
6 if s is odd then
7 s := s + p
8 s := s/2
9 else if (vn, vn−1 = 0) or (vn, vn−1 = 1& OR (vn−2, . . . , v0) = 1)

then
10 v := 2v, c−v := c−v + 1
11 if r is odd then
12 r := r + p
13 r := r/2
14 else
15 if (vn = un) then
16 oper = ”− ”
17 else
18 oper = ” + ”
19 if (c−u ≤ c−v) then
20 u := u oper v, r := r oper s
21 if (r > p) or (r < −p) then
22 r := r (mod p);

23 else
24 v := v oper u, s := s oper r
25 if (s > p) or (s < −p) then
26 s := s (mod p);

27 if (v = ±2c−v) then
28 r := s, un := vn, c−v := c−u

29 if (un = 1) then
30 if (r < 0) then
31 r := −r

32 else
33 r := p− r

34 if (r < 0) then
35 r := r + p

36 return r, c−u, and c−v
33

4. Tao Wu algorithm

Algorithm 11: Tao Wu with corrections – Phase II
Input: r, c−v, p from Phase I
Output: y = r · 2c−v (mod p) = a−1 (mod p)

1 for i = 1 to c−v do
2 r = 2r
3 if r ≥ p then
4 r := r − p

5 if r < 0 then
6 r := r + p

7 return y := r

34

Chapter 5
Complexity analysis

The main goal of my thesis was to express the computational complexity of
algorithms in publications [7] and [8] and compare them with algorithms found
in publications that cite them. In [7], Lórencz compared algorithms 1, 2 and
6. In this chapter, this comparison is extended and new algorithms are added
and analyzed.

5.1 Algorithms

Algorithms used in the comparison were implemented in C language and sim-
ulated the sequence of performed operations by design in above-mentioned
papers. All of the operations applied on the variables and numbers of loop
iterations were counted. The simulations were executed repeatedly for all
primes p < 214 = 16384 and all a ∈ (1, p) for each p. In total, each algorithm
was executed for 14580841 different input pairs. For the algorithm 7 (Opti-
mized Montgomery, A7), the statistics cover only 14393301 correct outputs
(which is 98.71% from the whole dataset). In section 5.4, we can see maximal,
minimal and average numbers of uses of each operation.

All of the algorithms that were implemented and analyzed are mentioned
also below in the short overview. Also, for better orientation, algorithm are
labeled A1–A7 in this chapter.

A1 Penk’s algorithm (1) – classical modular inverse algorithm. To check
which operations were counted, see 12.

35

5. Complexity analysis

A2 Montgomery algorithm (2, 3) – consists of two phases (A2P1, A2P2),
which were considered both separately (for comparing with Almost Mont-
gomery algorithms and Optimized Montgomery algorithm) and together
(for comparing with classical algorithms). See also 13, 14.

A3 Lórencz’s algorithm (6) – left shift approach, classical modular inverse
algorithm. See 15.

A4 Kaliski’s Algorithm (4) – Almost Montgomery Inverse algorithm. Needs
a second phase (5.4.2). See 16.

A5 Subtraction Free AMI (5) – Almost Montgomery Inverse algorithm,
version without subtractions. Needs a second phase (5.4.2). See 17.

A6 Tao Wu algorithm (10, 11) – corrected version of Tao Wu’s “Simplified”
Left shift algorithm. See also 18, 19.

A7 Optimized Montgomery algorithm (7) – algorithm proposed in [18],
optimized for pseudo-Mersenne primes. Does not ensure correct outputs
for even numbers. Needs a second phase (5.4.2). See 20.

5.2 Operations

In the table 5.2.1, there is an overview of the operations counted in the statis-
tics. Detailed breakdown of counted operations is in the appendix A. There
are several classes of operations separated by the complexity.

5.2.1 Shift

Since all the registers hold values in base 2, shifting or moving bits to the
left corresponds to multiplying the value by two, and shifting to the right
is division by two. This operation is very cost-effective, because it can be
implemented very easily.

Let x be a value that consists of n bits where x0 is LSB. Lower index ()2

denotes the base 2.

x = (xn−1, xn−2, . . . x0)2

36

5.2. Operations

Value x shifted to the left and to the right:

2x = (xn−2, . . . x0, 0)2

x/2 = (0, xn−1, xn−2, . . . x1)2

Since the LSB or MSB are cleared away during shifts, one has to check whether
the operation makes sense and if it will be performed correctly. When right
shift is applied to odd value, a bit of information will be lost and the output
won’t be correct. If left shift is applied to a value that is too big, it can
overflow.

Table 5.1: Operations

name label operation comment
addition add a + b

subtraction sub a− b

greater than /
less than test test a > b; a < b realized by subtraction

negation neg a = −a needs addition (2’s complement)

shift shift a� 1; a� 1; left and right shift, usually
multiplying or division by 2

zero comparison zero a > 0, a == 0 checking zero flag
evenness even 2|a even or odd – checking LSB
while loop loop loop condition number of loop iterations
counter
incrementation k k + + counter incrementation

5.2.2 Addition, subtraction

The complexity of both addition and subtraction depends on the length of
numbers that are added together or subtracted from each other. One has to
take into consideration each digit and the operation cannot be easily simpli-
fied because of the carry bit. As described in [12], asymptotic complexity of
addition is

O(max(m, n)),

where m, n are numbers of digits of the two values. Subtraction falls into the
same complexity category. The operation test (comparison less than, greater
than) is considered to be equivalent operation, because it usually is realized by
subtraction (and checking the sign flag afterwards). Since all the algorithms

37

5. Complexity analysis

work with 2’s complement code for the negative value, operation neg (negation
of a number) is realized by inverting the bits and adding 1, so the complexity
is the same as for an addition.

5.2.3 Zero comparisons

Comparing an integer with zero, checking the sign or checking whether a value
is even or odd takes only one bit or flag to look for. Therefore these operations
are way faster than addition or subtraction.

5.2.4 Operations on counters

Even though throughout the run of the algorithms we use operations such as
addition (more precisely incrementation by one) and testing the size of the
counters, these operations fall into a different complexity category, because
their size is logarithmic compared to the actual values that we work with.
Therefore, these operations were not added to the statistics. The only number
which is interesting to see, is the k value in Montgomery algorithm – this is
the number of iterations in the second phase.

5.3 Methodology

When choosing the best algorithm, the criteria are the following:

1. The algorithm has to output correct results for all inputs.

2. The algorithm executes (on average) the least amount of expensive op-
erations (additions, subtractions, tests and negations).

3. If more than one algorithms meet the first two criteria, the less overall
operations the better.

When we compare the classical methods with Montgomery methods, we have
to consider the need of a second phase that transforms the intermediate Almost
Montgomery inverse into classical one. In the table, we compare means of all
above-mentioned algorithms with each other, and algorithms A2, A4, A5 and
A7 are including the operations in the second phase.

38

5.4. Results

5.4 Results

In tables shown throughout this section, we can see the results of counting the
operations presented above. The most informative row is the average number
of use of each operation – mean. Then, for a complete overview of how the data
look like, there is standard deviation (std), minimal (min) and maximal (max)
number of uses within one algorithm run, and rows 25%, 50%, 75% denote the
quartiles, 50% being the median. We can use these rows (especially median)
to check whether it is approximately equal to mean, to know how well mean
describes the dataset.

5.4.1 Classical Modular algorithms

Classical Modular algorithm are A1, A3 and A6. By looking into the first
table, we see data describing runs of Penk’s right shift method. There is rather
heavy use of checking evenness of the values, and operations of subtraction
and addition together are in average used over 30 times.

Table 5.2: A1 – Penk’s algorithm

add sub test neg shift zero even loop

mean 14.24 20.16 – 5.13 36.16 20.16 65.04 28.16
std 3.34 2.94 – 1.49 4.71 2.94 6.37 2.48
min 2 4 – 1 4 4 11 5
25% 12 18 – 4 32 18 61 27
50% 14 20 – 5 36 20 66 28
75% 16 22 – 6 40 22 69 30
max 38 28 – 13 52 28 91 39

Statistics regarding the Left shift algorithm in A3 confirm the experimen-
tal part of Lórencz’s study [7]. We see larger amount of shifts (on average
over 40 during an instance), whereas a significant decrease of using additions,
subtractions (around 18 altogether) and complete avoidance of using other
operations, that would be of significant cost.

In A6 we can see results for Tao Wu algorithm. The intended goal of Tao
Wu in [9] was to simplify Left Shift algorithm, however, as discussed in chapter
about Tao Wu’s algorithm, the proposed method wasn’t correctly designed.
For the sake of comparing the complexity, a series of corrections were made

39

5. Complexity analysis

Table 5.3: A3 – Left shift algorithm

add sub test neg shift zero even loop

mean 7.72 10.53 – – 41.12 – – 29.69
std 3.49 3.56 – – 6.56 – – 5.02
min 0 2 – – 0 – – 1
25% 6 8 – – 38 – – 27
50% 8 10 – – 42 – – 31
75% 10 12 – – 46 – – 33
max 24 28 – – 48 – – 44

Table 5.4: A6 – Tao Wu’s algorithm

add sub test neg shift zero even loop

mean 18.2 15.84 28.88 9.12 51.76 10.63 20.56 29.69
std 4.96 4.23 5.64 2.3 8.08 1.57 3.28 5.02
min 0 2 2 1 0 0 0 1
25% 15 13 25 8 48 10 19 27
50% 18 16 29 9 54 11 21 31
75% 22 19 33 11 58 12 23 33
max 3 36 52 20 60 12 24 44

and statistics of the operations describe the corrected version. The numbers
of used operations, each being a lot higher then those in A3, show, that this
approach doesn’t appear to be simpler – it’s the other way around. On one
hand, this table doesn’t prove that Tao Wu’s idea is useless and that it can’t
lead us to an improvement. On the other hand, the incorrectness of his design
indicates that it might be better to go another way.

5.4.2 Montgomery Modular algorithms

In this section, we compare four algorithms (A2, A4, A5, A7) that are com-
puting Almost Montgomery inverse as an intermediate result, all of which
need second phase in order to return to classical modular inverse. The second
phase is the same for all of them, since it is only division by a particular power
of two.

The only difference between A2P1 and A4 is that A2P1 executes one more
iteration. When x = u − v is zero, A4 (and also A5) halts right away, but

40

5.4. Results

Table 5.5: A2P1 – Montgomery’s algorithm, Phase I

add sub test neg shift zero even loop k

mean 10.08 10.08 – 5.13 38.16 29.16 33.75 19.08 19.08
std 1.47 1.47 – 1.49 4.71 1.47 3.84 2.36 2.36
min 2 2 – 1 6 2 6 3 3
25% 9 9 – 4 34 9 31 17 17
50% 10 10 – 5 38 10 34 19 19
75% 11 11 – 6 42 11 36 21 21
max 14 14 – 13 54 14 53 27 27

A2P2 proceeds to case x ≤ 0 and executes line 13 in 2:

v = −x/2, s = r + s, r = 2r, k = k + 1.

This corresponds to slightly different results: By average, A2P1 executes two
more shifts, one more negation and k is greater by 1. Also, Montgomery’s
algorithm compares to zero much more – on average 29 times in contrast to
19 times in A4 and A5.

Table 5.6: A4 – Almost Montgomery Algorithm (with subtractions)

add sub test neg shift zero even loop k

mean 10.08 10.08 – 4.13 36.16 19.16 33.75 19.08 18.08
std 1.47 1.47 – 1.49 4.71 2.94 3.84 2.36 2.36
min 2 2 – 0 4 3 6 3 2
25% 9 9 – 3 32 17 31 17 16
50% 10 10 – 4 36 19 34 19 18
75% 11 11 – 5 40 21 36 21 20
max 14 14 – 12 52 27 53 27 26

Algorithm A5 appears to be slightly better than A4 – this has been already
proved in [8] and this analysis confirms that fact. A4 uses, apart of the same
amount of additions and subtractions (on average 10.08 + 10.08, opposed to
20.16 additions in A5), over 4 more negations (A5 doesn’t need any). The
rest of the table is the same – and this corresponds to the speedup described
in [8].

When looking at the results from Optimized Montgomery algorithm (A7),
we see similar average values as in the other algorithms – a little more ad-
ditions, testing evenness, less shifts. The biggest drawbacks of algorithm A7

41

5. Complexity analysis

Table 5.7: A5 – Almost Montgomery Algorithm (without subtractions)

add sub test neg shift zero even loop k

mean 20.16 – – – 36.16 19.16 33.75 19.08 18.08
std 2.94 – – – 4.71 2.94 3.84 2.36 2.36
min 4 – – – 4 3 6 3 2
25% 18 – – – 32 17 31 17 16
50% 20 – – – 36 19 34 19 18
75% 22 – – – 40 21 36 21 20
max 28 – – – 52 27 53 27 26

are that the method is not applicable to all of the inputs – some of the in-
puts where integer a is even don’t output the correct results. The data also
show that some of the even inputs, even though the output was correct, show
absurdly high amounts of used operations – we see the maximum of 1024
additions or 1023 zeros (these values were counted when the input pair was
(a, p) = (2, 1021)). We see from the values of quartiles that only a minority
of runs are this ineffective, but it is still a flaw.

Table 5.8: A7 – Optimized Montgomery algorithm

add sub test neg shift zero even loop k

mean 23.83 – – – 32.29 22.82 11.91 11.91 16.15
std 8.65 – – – 2.08 8.04 7.73 7.73 2.94
min 6 – – – 0 5 3 3 0
25% 20 – – – 28 19 10 10 14
50% 22 – – – 32 21 11 11 16
75% 26 – – – 36 25 13 13 18
max 1024 – – – 50 1023 512 512 25

5.5 Complexity comparison

In the table below, we can see the comparison of means of every above-
mentioned algorithm. Lines corresponding to Montgomery algorithms (A2,
A4, A5, A7) are increased by the number of operations used in Phase II (ta-
ble 5.4.2).

Phase II ensures that intermediate value AMI(a) = a−12k is transformed
back to a−1, which is done by division by two with occasional addition of the

42

5.5. Complexity comparison

Table 5.9: A2P2 – Montgomery’s algorithm, Phase II

add sub test neg shift zero even loop k

mean 9.56 – – – 19.08 – 19.08 19.08 19.08
std 2.54 – – – 2.36 – 2.36 2.36 2.36
min 1 – – – 3 – 3 3 3
25% 8 – – – 17 – 17 17 17
50% 9 – – – 19 – 19 19 19
75% 11 – – – 21 – 21 21 21
max 25 – – – 27 – 27 27 27

prime module. Phase II in A7 is described in [18] as two multiplications:

s = s · 22n−k,

s = s · T,

where s is the register with AMI(a) and T = 2−2n is a precomputed number.
However, we can also write

s = s · (22n−kT) = s · 22n−k−2n = s · 2−k,

which in the end requires the same amount of the operations as Phase II of
other algorithms.

Table 5.10: Means: Algorithms A1–A7

add sub test neg sum shift zero even loop k

A1 14.24 20.16 – 5.13 39.53 36.16 20.16 65.04 28.16 –
A2 20.04 10.08 – 5.13 35.25 57.24 29.16 52.83 19.08 19.08
A3 7.72 10.53 – – 18.25 41.12 – – 29.69 –
A4 20.04 10.08 – 4.13 34.25 55.24 19.16 52.83 19.08 18.08
A5 30.12 – – – 30.12 55.24 19.16 52.83 19.08 18.08
A6 18.2 15.84 28.88 9.12 72.04 51.76 10.63 20.56 29.69 –
A7 33.39 – – – 33.39 51.37 22.82 33.45 14.37 16.03

The results we focus on are in the column sum – that is the total number
of complex operations (additions, subtractions, test and negations) used in
respective algorithms. Firstly, we have to disqualify algorithm A7 from the
race for the fact that it doesn’t output correct values for all even numbers.
Algorithm A6 has the worst numbers, mainly because of the corrections that

43

5. Complexity analysis

have been done. On the other side of the charts, algorithm A3 has the best
results of executed operation from all of the simulated algorithms.

5.6 Suggestions for future work

As every thesis, this one has its limitations. Firstly, not all algorithms that
compute modular inverse are based on Euclid’s algorithm. My research didn’t
cover those which are not – some of them are mentioned in an overview in
[19].

Regarding Tao Wu’s algorithm and corrections made in order to make
it work correctly, the patches were made with the objective of correctness –
effectivity is way harder to achieve. However, with more time and resources
it may be possible to find a way how to use his idea and make less time-
consuming patches.

In chapter 2 a general idea of Left shift algorithm is described. A future
work might find a minimal number of operations needed to compute a classical
modular inverse and a mathematical proof.

The complexity analysis in chapter 5 show us only a basic summary of
properties of studied algorithms. A more complex study could show us whether
some of the algorithms is more suitable for a particular type of inputs. Also,
some patches could be done to the Optimized Montgomery algorithm to get
correct outputs for every input.

44

Chapter 6
Conclusion

The main goal of this thesis was to study algorithms for modular inversion,
mainly those published in [7] and [8], express their computational complex-
ity and compare them with other algorithms found in publications that cite
them, then try to find a suitable recommendation for modifying the binary
algorithms to improve their complexity.

Overview and description of all the studied algorithms is in 1.5. All pub-
lications that cite papers [7] and [8] have been researched and two possible
improved algorithm have been found (Tao Wu’s algorithm in [9], Liu’s Opti-
mized Montgomery algorithm in [18]) and analyzed.

During the analysis of Tao Wu’s algorithm I have discovered several critical
problems with proposed algorithm and proposed corrections and patches for
the algorithm to output the correct result 4.

A comparison and complexity analysis of all the above-mentioned algo-
rithms was carried out and the results were analyzed in chapter 5. Lórencz’s
Left shift algorithm has been proved to have executed the least amount of
expensive operations.

There are several thoughts about where to go next that appeared during
during working on the thesis – trailing zero detection from [18], plus-minus
trick and lookup table from [15]. These could be the next steps to explore in
future research.

45

Bibliography

[1] Rivest, R. L.; Shamir, A.; et al. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, volume 21,
no. 2, 1978: pp. 120–126.

[2] Fips, P. 186-2. digital signature standard (dss). National Institute of Stan-
dards and Technology (NIST), volume 20, 2000: p. 13.

[3] Koblitz, N. Elliptic curve cryptosystems. Mathematics of computation,
volume 48, no. 177, 1987: pp. 203–209.

[4] Menezes, A. J. Elliptic curve public key cryptosystems, volume 234.
Springer Science & Business Media, 1993.

[5] Koç, C. K. High-radix and bit recoding techniques for modular exponen-
tiation. International Journal of Computer Mathematics, volume 40, no.
3-4, 1991: pp. 139–156.

[6] Eǧecioǧlu, Ö.; Koç, Ç. K. Exponentiation using canonical recoding. The-
oretical Computer Science, volume 129, no. 2, 1994: pp. 407–417.

[7] Lórencz, R. New algorithm for classical modular inverse. In International
Workshop on Cryptographic Hardware and Embedded Systems, Springer,
2002, pp. 57–70.

[8] Lórencz, R.; Hlaváč, J. Subtraction-free almost Montgomery inverse algo-
rithm. Information processing letters, volume 94, no. 1, 2005: pp. 11–14.

47

Bibliography

[9] Tao, W. Proof and Improvement of Shantz’s Modular Division and
Lórencz’s Modular Inverse Algorithms. DEStech Transactions on Com-
puter Science and Engineering, , no. cmsam, 2018.

[10] Stanovský, D. Základy algebry. Matfyzpress, 2010.

[11] Hlaváč, J. Hardware Implementation of Algorithms for Computations in
Finite Fields. Dissertation thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2010.

[12] Stanovský, D.; Barto, L. Poč́ıtačová algebra. Matfyzpress, 2011.

[13] Knuth, D. E. Art of computer programming, volume 2: Seminumerical
algorithms. Addison-Wesley Professional, 2014.

[14] Lai, G. Analysis of modular inverse gf (p) implementations. IEEE Trans.
Inform. School Of Electrical Engineering And Computer Science, Oregon
State University, Corvallis, Oregon, volume 97331, 2004.

[15] Hars, L. Modular inverse algorithms without multiplications for crypto-
graphic applications. EURASIP Journal on Embedded Systems, volume
2006, no. 1, 2006: p. 032192.

[16] Shivashankar, N. Design and Analysis of Modular Architectures for an
RNS to Mixed Radix Conversion Multi-processor. Dissertation thesis,
University of Cincinnati, 2014.

[17] Choi, P.; Kong, J.-T.; et al. Analysis of hardware modular inversion
modules for elliptic curve cryptography. In 2015 International SoC Design
Conference (ISOCC), IEEE, 2015, pp. 313–314.

[18] Liu, Z.; Großschädl, J.; et al. Elliptic curve cryptography with efficiently
computable endomorphisms and its hardware implementations for the
internet of things. IEEE Transactions on Computers, volume 66, no. 5,
2016: pp. 773–785.

[19] Hu, Z.; Dychka, I.; et al. The analysis and investigation of multiplicative
inverse searching methods in the ring of integers modulo M. International
Journal of Intelligent Systems and Applications, volume 8, no. 11, 2016:
p. 9.

48

Appendix A
Counting the operations

In this chapter, all algorithms that were used in the experimental part are
described and all the operation that were counted are labeled by colour. Only
the operations in the main while loop are counted. In the table A, the opera-
tions that are held in regard are shown. Operations that were counted in the
statistics are distinguished by colour.

Table A.1: Operations

name label operation comment
addition add a + b

subtraction sub a− b

greater than /
less than test test a > b; a < b realized by subtraction

negation neg a = −a needs addition (2’s complement)

shift shift a� 1; a� 1; left and right shift, usually
multiplying or division by 2

zero comparison zero a > 0, a == 0 checking zero flag
evenness even 2|a even or odd – checking LSB
while loop loop loop condition number of loop iterations
counter
incrementation k k + + counter incrementation

49

A. Counting the operations

Algorithm 12: Penk
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1] and k, where r = a−1 (mod p),

and n ≤ k ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 k = 0
3 while v > 0 do
4 if u is even then
5 if r is even then
6 u := u/2, r := r/2, k := k + 1
7 else
8 u := u/2, r := (r + p)/2, k := k + 1

9 else if v is even then
10 if s is even then
11 v := v/2, s := s/2, k := k + 1
12 else
13 v := v/2, s := (s + p)/2, k := k + 1

14 else
15 x := (u− v)
16 if x > 0 then
17 u := x, r := r − s
18 if r < 0 then
19 r := r + p

20 else
21 v := −x, s := s− r
22 if s < 0 then
23 s := s + p

24 if r > p then
25 r := r − p

26 if r < 0 then
27 r := r + p

28 return r, k

50

Algorithm 13: Montgomery – Phase I
Input: a ∈ [1, p− 1] and p
Output: y ∈ [1, p− 1] and k, where y = a−12k (mod p),

and n ≤ k ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 k = 0
3 while v > 0 do
4 if u is even then
5 u := u/2, s := 2s, k := k + 1
6 else if v is even then
7 v := v/2, r := 2r, k := k + 1
8 else
9 x := (u− v)

10 if x > 0 then
11 u := x/2, r := r + s, s := 2s, k = k + 1
12 else
13 v := −x/2, s := r + s, r := 2r, k = k + 1

14 if r > p then
15 r := r − p

16 return y = p− r, k

Algorithm 14: Montgomery – Phase II
Input: y ∈ [1, p− 1], p and k from Phase I
Output: y ∈ [1, p− 1], where r = a−1 (mod p), and 2k from Phase I

1 for i = 1 to k do
2 if r is even then
3 r := r/2
4 else
5 r := (r + p)/2

6 return r and 2k

51

A. Counting the operations

Algorithm 15: Left-Shift Algorithm
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 (mod p), c−u, c−v

and 0 < c−v + c−u ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 c−u = 0, c−v = 0
3 while (u 6= ±2c−u & v 6= ±2c−v) do
4 if (un, un−1 = 0) or (un, un−1 = 1& OR (un−2, . . . , u0) = 1) then
5 if (c−u ≥ c−v) then
6 u := 2u, r := 2r, c−u := c−u + 1
7 else
8 u := 2u, s := s/2, c−u := c−u + 1

9 else if (vn, vn−1 = 0) or (vn, vn−1 = 1& OR (vn−2, . . . , v0) = 1)
then

10 if (c−v ≥ c−u) then
11 v := 2v, s := 2s, c−v := c−v + 1
12 else
13 v := 2v, r := r/2, c−v := c−v + 1

14 else
15 if (vn = un) then
16 oper = ”− ”
17 else
18 oper = ” + ”
19 if (c−u ≤ c−v) then
20 u := u oper v, r := r oper s

21 else
22 v := v oper u, s := s oper r

23 if (v = ±2c−v) then
24 r := s, un := vn

25 if (un = 1) then
26 if (r < 0) then
27 r := −r

28 else
29 r := p− r

30 if (r < 0) then
31 r := r + p

32 return r, c−u, and c−v

52

Algorithm 16: AMI with subtractions
Input: a ∈ [1, p− 1] and p
Output: o ∈ [1, p− 1] and k, where o = a−12k (mod p),

and n− 1 ≤ k ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 k = 0
3 while 1 do
4 if u is even then
5 u := u/2, s := 2s

6 else if v is even then
7 v := v/2, r := 2r

8 else
9 x := (u− v), y = r + s

10 if x = 0 then
11 return o = s, k

12 if CARRY (x) = 1 then
13 u := x/2, r := y, s := 2s

14 else
15 v := −x/2, s := y, r := 2r

16 k = k + 1

53

A. Counting the operations

Algorithm 17: Subtraction-free AMI
Input: a ∈ [1, p− 1] and p
Output: o ∈ [1, p− 1] and k, where o = a−12k (mod p),

and n− 1 ≤ k ≤ 2n
1 u := −p, v := a, r := 0, s := 1
2 k = 0
3 while 1 do
4 if u is even then
5 u := u/2, s := 2s

6 else if v is even then
7 v := v/2, r := 2r

8 else
9 x := (u + v), y = r + s

10 if x = 0 then
11 return o = s, k

12 if CARRY (x) = 0 then
13 u := x/2, r := y, s := 2s

14 else
15 v := x/2, s := y, r := 2r

16 k = k + 1

54

Algorithm 18: Tao Wu with corrections – Phase I
Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 (mod p), c−u, c−v

and 0 < c−v + c−u ≤ 2n
1 u := p, v := a, r := 0, s := 1
2 c−u = 0, c−v = 0
3 while (u 6= ±2c−u & v 6= ±2c−v) do
4 if (un, un−1 = 0) or (un, un−1 = 1& OR (un−2, . . . , u0) = 1) then
5 u := 2u, c−u := c−u + 1
6 if s is odd then
7 s := s + p
8 s := s/2
9 else if (vn, vn−1 = 0) or (vn, vn−1 = 1& OR (vn−2, . . . , v0) = 1)

then
10 v := 2v, c−v := c−v + 1
11 if r is odd then
12 r := r + p
13 r := r/2
14 else
15 if (vn = un) then
16 oper = ”− ”
17 else
18 oper = ” + ”
19 if (c−u ≤ c−v) then
20 u := u oper v, r := r oper s
21 if r > p then
22 r := r − p;

23 else
24 v := v oper u, s := s oper r
25 if s > p then
26 s := s− p;

27 if (v = ±2c−v) then
28 r := s, un := vn, c−v := c−u

29 if (un = 1) then
30 if (r < 0) then
31 r := −r

32 else
33 r := p− r

34 if (r < 0) then
35 r := r + p

36 return r, c−u, and c−v
55

A. Counting the operations

Algorithm 19: Tao Wu with corrections – Phase II
Input: r, c−v, p from Phase I
Output: y = r · 2c−v (mod p) = a−1 (mod p)

1 for i = 1 to c−v do
2 r = 2r
3 if r ≥ p then
4 r := r − p

5 if r < 0 then
6 r := r + p

7 return y := r

Algorithm 20: Optimized Montgomery algorithm for 2n − c

Input: a ∈ [1, 2n) and is odd, and p > 2, n-bit prime, precomputed
T = 2−2n (mod p)

Output: r ∈ [1, 2n), where r = a−1 (mod p)
1 \\ Phase I
2 u := −p, v := a, r := 0, s := 1
3 k = 0
4 while 1 do
5 x := (u + v)
6 y := (r + s)
7 tlzx := DET (x)
8 if x = 0 then
9 break;

10 else if x < 0 then
11 u := x� tlzx

12 r := y
13 s := s� tlzx

14 else
15 v := x� tlzx

16 s := y
17 := r � tlzx

18 k := k + tlzx

19 \\ Phase II
20 s = s · 22n−k (mod p)
21 s = s · T (mod p)

56

Appendix B
Corrections of Tao Wu

algorithm

B.1 Illustration of the correction I

This is an example of a run of algorithm 8 for input values (a, p) = (4, 13).
This example illustrates the problem with no check whether values r, s are
divisible by two when they are shifted to the right. As a result, there is a loss
of information.

In the table below, we see that the computation runs into a problem in
3rd iteration (l = 3), where s is divided by two although it is equal to 1. If
we allow the right shift, we will end up with an incorrect step of calculation.
The variable l denotes number of the current iteration of while loop. RS(x)
denotes the operation of right shift of a value x.

s(3) = s(2)/2 = RS((1)10) = RS((00001)2) = (00000)2 = (0)10

In the next iteration (l = 4), the error propagates and at the end of the loop
we have

r = r(4) + p = (−1)10 + (13)10 = (12)10

instead of
r = r(4) + p = (−8)10 + (13)10 = (5)10.

57

B. Corrections of Tao Wu algorithm

Table B.1: Tao Wu’s algorithm – correction I

l operations values of registers tests
0 u(0) = (13)10 = (01101)2 u(0) 6= ±20

v(0) = (4)10 = (00100)2 v(0) 6= ±20

r(0) = (0)10 = (00000)2

s(0) = (1)10 = (00001)2

1 u(1) = (13)10 = (01101)2 u(1) 6= ±20

v(1) = 2v(0) v(1) = (8)10 = (01000)2 v(1) 6= ±21

r(1) = r(0)/2 r(1) = (0)10 = (00000)2

s(1) = (1)10 = (00001)2

2 u(2) = u(1) − v(1) u(2) = (5)10 = (00101)2 u(2) 6= ±20

v(2) = (8)10 = (01000)2 v(2) 6= ±21

r(2) = r(1) − s(1) r(2) = (−1)10 = (11111)2

s(2) = (1)10 = (00001)2

3 u(3) = 2u(2) u(3) = (10)10 = (01010)2 u(3) 6= ±21

v(3) = (8)10 = (01000)2 v(3) 6= ±21

r(3) = (−1)10 = (11111)2

s(3) = s(2)/2 s(3) = (0)10 = (00000)2

4 u(4) = u(3) − v(3) u(4) = (2)10 = (00010)2 u(4) = ±21

v(4) = (8)10 = (01000)2

r(4) = r(3) − s(3) r(4) = (−1)10 = (11111)2

s(4) = (0)10 = (00000)2

r = r(4) + p r = (12)10 = (01100)2

In Phase II (algorithm 9), the computation goes as follows (cv = 1):

y(0) = r = 12

y = y(1) = 2y(0) − p = 24− 13 = 11

but correctly it should be this computation:

y(0) = r = 5

y = y(1) = 2y(0) = 10

We see, that 10 is the correct output: 10 ∗ 4 = 1 (mod p).

58

B.2. Illustration of the correction II

B.2 Illustration of the correction II

Tables in this section illustrate the correct and incorrect run of the algorithm
(8) – with and without the correction in the second branch. For example, this
effects the computation of modular inverse for (a, p) = (68, 347). The first
table shows the run before adding the correction. The algorithm starts to
work incorrectly at l = 12.

Table B.2: Tao Wu’s algorithm – incorrect run

l operations values of registers tests
0 u(0) = (347)10 = (0101011011.)2 u(0) 6= ±20

v(0) = (68)10 = (0001000100.)2 v(0) 6= ±20

r(0) = (0)10 = (0000000000.)2

s(0) = (1)10 = (0000000001.)2

1 u(1) = (347)10 = (0101011011.)2 u(1) 6= ±20

v(1) = 4v(0) v(1) = (272)10 = (01000100.00)2 v(1) 6= ±22

r(1) = r(0)/4 r(1) = (0)10 = (0000000000.)2

s(1) = (1)10 = (0000000001.)2

2 u(2) = u(1) − v(1) u(2) = (75)10 = (0001001011.)2 u(2) 6= ±22

v(2) = (272)10 = (01000100.00)2 v(2) 6= ±22

r(2) = r(1) − s(1) r(2) = (−1)10 = (1111111111.)2

s(2) = (1)10 = (0000000001.)2

3 u(3) = 4u(2) u(3) = (300)10 = (01001011.00)2 u(3) 6= ±22

v(3) = (272)10 = (01000100.00)2 v(3) 6= ±22

r(3) = (−1)10 = (1111111111.)2

s(3) = s(2)/4 s(3) = (87)10 = (0001010111.)2

4 u(4) = u(3) − v(3) u(4) = (28)10 = (0000011100.)2 u(4) 6= ±22

v(4) = (272)10 = (01000100.00)2 v(4) 6= ±22

r(4) = r(3) − s(3) r(4) = (−88)10 = (1110101000.)2

s(4) = (87)10 = (0001010111.)2

5 u(5) = 16u(4) u(5) = (448)10 = (011100.0000)2 u(5) 6= ±22

v(5) = (272)10 = (01000100.00)2 v(5) 6= ±22

r(5) = (−88)10 = (1110101000.)2

s(5) = s(4)/16 s(5) = (244)10 = (0011110100.)2

Continued on next page

59

B. Corrections of Tao Wu algorithm

Table B.2 – continued from previous page
6 u(6) = (448)10 = (0111000000.)2 u(6) 6= ±26

v(6) = v(5) − u(5) v(6) = (−176)10 = (1101010000.)2 v(6) 6= ±22

r(6) = (−88)10 = (1110101000.)2

s(6) = s(5) − r(5) s(6) = (332)10 = (0101001100.)2

7 u(7) = (448)10 = (0101011011.)2 u(7) 6= ±26

v(7) = 2v(6) v(7) = (−352)10 = (101010000.0)2 v(7) 6= ±23

r(7) = r(6)/2 r(7) = (−44)10 = (1111010100)2

s(7) = (332)10 = (0101001100.)2

8 u(8) = (448)10 = (0101011011.)2 u(6) 6= ±26

v(8) = v(7) + u(7) v(8) = (96)10 = (0001100000.)2 v(8) 6= ±23

r(8) = (−44)10 = (1111010100)2

s(8) = s(7) + r(7) s(8) = (288)10 = (0101001100.)2

9 u(9) = (448)10 = (0101011011.)2 u(9) 6= ±26

v(9) = 4v(8) v(9) = (384)10 = (01100000.00)2 v(9) 6= ±25

r(9) = r(8)/4 r(9) = (−11)10 = (1111010100)2

s(9) = (288)10 = (0101001100.)2

10 u(10) = (448)10 = (0111000000.)2 u(10) 6= ±26

v(10) = v(9) − u(9) v(10) = (−64)10 = (1111000000.)2 v(6) 6= ±25

r(10) = (−11)10 = (1111010100)2

s(10) = s(9) − r(9) s(10) = (299)10 = (0100101011)2

11 u(11) = (448)10 = (0101011011.)2 u(11) 6= ±26

v(11) = 4v10) v(11) = (−256)10 = (11000000.00)2 v(11) 6= ±27

r(11) = r(10)/4 r(11) = (84)10 = (0001010100)2

s(11) = (299)10 = (0100101011)2

12 u(12) = u(11) + v(11) u(12) = (192)10 = (0011000000)2 u(12) 6= ±26

v(12) = (−256)10 = (11000000.00)2 v(12) 6= ±27

r(12) = r(11) + s(11) r(12) = (383)10 = (0101111111)2

s(4) = (299)10 = (0100101011)2

13 u(13) = 2u(12) u(13) = (384)10 = (011000000.0)2 u(13) 6= ±27

v(13) = (−256)10 = (11000000.00)2 v(13) 6= ±27

r(13) = (383)10 = (0101111111)2

s(13) = s(12)/2 s(13) = (323)10 = (0101000011)2

Continued on next page

60

B.2. Illustration of the correction II

Table B.2 – continued from previous page
14 u(14) = u(13) + v(13) u(14) = (128)10 = (0010000000.)2 u(14) = ±27

v(14) = (−256)10 = (11000000.00)2 v(14) 6= ±27

r(14) = r(13) + s(13) r(12) = (706)10 = (0011000010)2

s(14) = (323)10 = (0101000011)2

Table B.3: Tao Wu’s algorithm – correct run

l operations values of registers tests
12c u(12) = u(11) + v(11) u(12) = (192)10 = (0011000000)2 u(12) 6= ±26

v(12) = (−256)10 = (11000000.00)2 v(12) 6= ±27

r(12) (mod p) r(12) = (36)10 = (0000100100)2

s(4) = (299)10 = (0100101011)2

13c u(13) = 2u(12) u(13) = (384)10 = (011000000.0)2 u(13) 6= ±27

v(13) = (−256)10 = (11000000.00)2 v(13) 6= ±27

r(9) = (36)10 = (0000100100)2

s(13) = s(12)/2 s(13) = (323)10 = (0101000011)2

14c u(14) = u(13) + v(13) u(14) = (128)10 = (0010000000.)2 u(14) = ±27

v(14) = (−256)10 = (11000000.00)2 v(14) 6= ±27

r(14) = r(13) + s(13) r(12) = (12)10 = (0000001100)2

s(14) = (323)10 = (0101000011)2

Here, the table illustrates the run of the second phase and the difference
between output values.

Table B.4: Tao Wu’s algorithm – Phase II (incorrect)

l operations values of registers tests
II r(0) r(0) = (706)10

r(1) = 2r(0) − p r(1) = (1065)10

r(2) = 2r(1) − p r(2) = (1783)10

r(3) = 2r(2) − p r(3) = (3219)10

r(4) = 2r(3) − p r(4) = (6091)10

r(5) = 2r(4) − p r(5) = (11835)10

r(6) = 2r(5) − p r(6) = (23323)10

r(7) = 2r(6) − p r(7) = (−18890)10

61

B. Corrections of Tao Wu algorithm

Table B.5: Tao Wu’s algorithm – Phase II (correct)

l operations values of registers tests
II r(0) r(0) = (12)10

r(1) = 16r(0) r(1) = (192)10

r(2) = 2r(1) − p r(2) = (37)10

r(3) = 4r(2) − p r(3) = (148)10

62

Appendix C
Acronyms

LSB least significant bit

MSB most significant bit

gcd greatest common divisor

MMI Montgomery modular inverse

AMI Almost Montgomery inverse

readme.txt the file with CD contents description
src.......................................the directory of source codes
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

63

	Introduction
	Motivation
	Use of modular inverse
	Goal of the thesis
	Organization of the chapters

	Theoretical background
	Basic concepts
	Modular arithmetic and Galois fields
	Montgomery modular inverse
	Computational complexity
	Algorithm zoo
	Euclid's Algorithm
	Extended Euclid's Algorithm
	Binary Algorithm
	Penk's Algorithm
	Montgomery Algorithm
	Almost Montgomery algorithm (Kaliski)
	Subtraction free AMI
	Left Shift Algorithm

	Proposal of a proof of Left shift algorithm correctness
	Example on particular values

	Research on the topic
	Further work
	Lai
	Hars
	Shivashankar
	Choi
	Wu
	Liu

	Ideas to follow up

	Tao Wu algorithm
	Proposed corrections of Tao Wu's algorithm
	Odd value divided by two
	Value out of range in third branch
	Final correction of the output

	Complexity analysis
	Algorithms
	Operations
	Shift
	Addition, subtraction
	Zero comparisons
	Operations on counters

	Methodology
	Results
	Classical Modular algorithms
	Montgomery Modular algorithms

	Complexity comparison
	Suggestions for future work

	Conclusion
	Bibliography
	Counting the operations
	Corrections of Tao Wu algorithm
	Illustration of the correction I
	Illustration of the correction II

	Acronyms

