
Instructions

The work aims to design and implement an algorithm for automatic recognition of immovable 

archaeological monuments hidden under the soil surface from color aerial photographs and lidar data 

based on vegetation cover changes. The underground remains of buildings, such as the Celtic opida, 

medieval fortresses, or modern era fortifications, locally change the subsoil layer's chemical 

composition and structure and affect the vegetation growth in their upper layer. Automatic detection 

of such archaeological sites will significantly speed up the difficult and time-consuming visual 

detection of aerial photographs. In multichannel multimodal data sources, such detection is 

impossible, and their automatic classification is the only option. The work's successful results will 

significantly impact the cataloging of hitherto unknown archaeological sites in the Czech Republic and 

will enable relevant publications in the professional press.
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Abstrakt

Podpovrchová nalezǐstě antropogenńıho p̊uvodu jsou často viditelná z leteckých
sńımk̊u ve formě změn vegetačńıho pokryvu. Tyto př́ıznaky vznikaj́ı rozd́ılnými
podmı́nkami pro r̊ust vegetace v souvislosti se změnou lokálńı chemické skladby
p̊udy, kterou podpovrchové objekty zp̊usobuj́ı. Tato práce se věnuje návrhu
a implemetaci metody, která je schopna tyto vegetačńı př́ıznaky detekovat
ve volně dostupných leteckých sńımćıch, poskytovaných mapovými portály
ve formě ortomap. Potenciál takovéto automatické detekce tkv́ı ve výrazném
urychleńı procesu objevováńı a katalogizace archeologických nalezǐst’.

Práce obsahuje stručný úvod do problematiky letecké archeologie a rešerši
state-of-the-art metod dálkového sńımáńı a automatické detekce se zaměřeńım
na postupy, u kterých je množstv́ı pozitivńıch př́ıklad̊u podobně omezené jako
v námi vytvořeném datasetu. Dále jsou popsány tři př́ıstupy k automatické
detekci, je vytvořen jejich návrh a následná implementace.

Na vytvořeném datasetu je provedeno experimentálńı testováńı navržených
metod. Pomoćı analýzy výsledk̊u jsme odvodili omezeńı jednotlivých př́ıstup̊u.
Prvńı i druhá metoda jsou založeny na detekci roh̊u a lineárńıch segment̊u
a jejich vzájemných prostorových vztah̊u. Třet́ı metoda, založena na tem-
plate matchingu vegetačńıch př́ıznak̊u přibližně známých tvar̊u s využit́ım
zobecněné Houghovy transformace, se ukázala jako nejperspektivněǰśı pro bu-
doućı využit́ı.

Kĺıčová slova letecká archeologie, detekce vegetačńıch př́ıznak̊u, zobecněná
Houghova transformace, zpracováńı obrazu
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Abstract

Subsurface deposits of anthropogenic origin are often visible from aerial pho-
tographs in the form of changes in vegetation cover. These crop marks arise
from different conditions for vegetation growth due to the changes in the local
chemical composition of the soil caused by subsurface objects. This thesis’s
objective is to design and implement a method that is able to detect these
crop marks in publicly available aerial images, provided by mapping services
in the form of orthomaps. Such a method could significantly speed up the
process of cataloging archaeological sites.

The work offers a brief introduction to the concept of aerial archaeology
and an overview of state-of-the-art methods of remote sensing and automatic
detection with focus mainly on procedures where the number of positive ex-
amples is similarly limited as our dataset, constructed in this work. Three
approaches to automatic detection are proposed, designed and implemented.

The proposed methods are experimentally tested on the assembled dataset.
The results are analyzed and the limitations of each approach are deduced.
Both the first and second approach is based on detection of corners and linear
segments and their spatial relations. The third approach, based on the tem-
plate matching of crop marks of approximately known shapes, utilizing the
generalized Hough transform algorithm yields the best results in crop mark
recognition and is most promising for future research.

Keywords aerial archaeology, crop mark detection, generalized Hough trans-
form, image processing
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(d) Březnoa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Harris corner detector: (a) results for LHC, (b) results for OHC. . 58
6.3 LHC: Cases of successful crop mark localization. . . . . . . . . . . 59
6.4 LHC: Most attempts ended unsuccessfully. . . . . . . . . . . . . . . 60
6.5 OHC: Cases of successful crop mark localization. . . . . . . . . . . 61
6.6 OHC: Corner orientation can be wrongly determined due to frag-

mentation in the original colour image (lower-left corner, orienta-
tion indicated by blue line). . . . . . . . . . . . . . . . . . . . . . . 62

6.7 OHC: Many sites were missed entirely due to undetected corners
or wrongly determined corner orientation. In image (a) 3 corners
are successfully detected, left upper corner remains undetected,
while right upper corner’s configuration is not suitable for the OHC
algorithm. In image (b) upper left corner is missed by the corner
detector and lower right corner coincides with the surroundings
and is filtered out during the pre-processing, remaining corners
and their orientations are detected correctly. . . . . . . . . . . . . 62
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Introduction

Crop marks, soil marks, and unusual terrain break lines have been widely
known to archaeologists as proxies for the identification of buried archaeolog-
ical remains [8].

To identify these features from air and space, different methods of remote
sensing have been explored ever since the end of World War II. It was then
when technological advances in two fields - air travel and photography - made
accurate documentation of the Earth’s surface possible for the first time. Ini-
tially, the remotely sensed data were made for different purposes, such as
strategic military and agricultural land planning, and were later re-purposed
as valuable sources for archaeological research [9].

Nowadays, the rapid technological advances in remote sensing, such as
space-borne and airborne high-resolution multispectral images and ground -
penetrating LiDAR sensors, are candidly utilized by researchers for archaeo-
logical purposes with great success [10, 11, 12]. However, because of the high
cost of specialized sensors, equipment, and flight-time, along with the time
needed for large area mapping, the focus has recently shifted again to publicly
available data [13, 14]. In recent years, commercial mapping services produce
data in an increasingly higher resolution, making the discovery of even small
archaeological sites and features possible. Given the lower cost of obtaining
and processing publicly available data, this practice of co-opting open data
for archaeological research will likely continue.

Motivation

Modern approaches to airborne archaeology rely on expensive surveying tech-
niques in preordained areas of archaeological interest. In recent years, many
mapping services started to provide satellite and aerial images in a resolu-
tion high enough to be useful for archaeological purposes. While this freely
available data has many limitations, exploiting its full potential may lead to
interesting results for archaeologists who currently must rely on either man-
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Introduction

ual processing of the available data or on their own costly surveillance. As
mapping services periodically update their data, it is becoming an important
source for the detection of sites that have been recently destroyed or covered
by new structures.

Objectives

The overall objective of this thesis is to survey the publicly available data
sources and subsequently design and implement a method for automatic recog-
nition of available examples of crop marks, indicating subsurface remains of
archaeological importance. Based on the research outlined in this work, we
would like to generalize the properties of available examples of human-made
crop marks and design and implement a method capable of automatic recogni-
tion of these positive examples, potentially expanding the method for detection
of yet undiscovered sites. Were this work to succeed, it has the potential to sig-
nificantly speed up the process of cataloging archaeological sites in the Czech
Republic as current methods rely on manual discovery and classification.

Contribution

The research part of this thesis offers the reader an introduction to currently
used aerial archaeology methods. We introduce publicly available data sources
that are suitable for inspection and could be potentially valuable base or
complementary inputs for the task of automatic site recognition. We analyze
methods and algorithms applicable to our task and the available data, and
we implement three such methods. The methods are tested on few positive
examples and comparatively evaluated.

Structure

This thesis is structured as follows. In chapter 1, key concepts are intro-
duced and the state of the art in the field of airborne archaeology is briefly
summarized. Chapter 2 provides an insight into what data sources suitable
for the task of automatic detection of archaeological features in the Czech
Republic are publicly available. The examples of positive cases available to
us are described. Chapter 3 offers a review of methods of image processing,
feature extraction, and classification considered for our task. In chapter 4,
the overview of each method is proposed and the tools, as well as the im-
plemented scripts, are described in chapter 5. In chapter 6, we describe the
conducted experiments and evaluate and discuss the results produced by our
implemented methods.
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Chapter 1
State of the Art

This chapter is focused on up-to-date methods of systematic discovery of sub-
surface archaeological remains.

1.1 Recently used techniques for detection of
archaeological remains from airborne data

Research made in recent years by Lesaponara et al. [11], Agapiou et al. [8, 15]
and Calleja et al. [12] and others [10] is predominantly focused on the exploita-
tion of high-resolution multispectral and multitemporal satellite data. Apart
from utilizing vegetation health indexes created for agricultural purposes, they
research new ways to combine false-color composites from available multispec-
tral satellite data to better identify crop and soil marks [8, 16, 10]. As con-
cluded from the above-mentioned literature, the detection process consists of
the following general steps:

1. Determination of the area of study, the scope is usually narrowed to a
smaller area of known historical significance.

2. Exploitation of literature and collection of publicly available and histor-
ical surveillance data to gain contextual information and to construct a
multitemporal dataset.

3. Re-screening of the area in key regions of interest.

4. Image enhancements, manual processing of the final dataset and discov-
ery of relics.

5. Analysis of results, ground-truthing.

Because crop marks, when visible, are usually characterized by a very
small spectral separability, the research is also focused on the effects different
phenological stages of vegetation growth have on the quality of archaeological
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research. Researchers note it is perhaps the most important factor to consider
when collecting data. The research made by Agapiou et al. [8] suggests that
the boot stage of the vegetation growth cycle, illustrated in Figure 1.1 as the
4th stage from the right, is the most ideal time period for crop mark detection.

Figure 1.1: Growth stages of small-grain cereals. Image sourced from [1].

1.2 Automatic site detection

Research with the objective to assess the possibility of automatically extract-
ing and mapping subtle archaeological features was conducted by Lasaponara
et al. [11]. The study was conducted in Hierapolis, Turkey and consisted of
two main steps: the unsupervized segmentation of high resolution multispec-
tral satellite images to extract non-homogenous regions, and the subsequent
classification of linear and rectangular features of archaeological interest. The
outcomes of their analysis were evaluated by a field survey and resulted in the
discovery of buried remains spanning from Imperial Roman to early Byzantine
times.

In 2014, Lei Luo et al. [14] proposed an automatic method for the ex-
traction of qanat1 tops from high-resolution satellite images available in the
Google Earth application. They used mathematical morphology for image
processing and circular Hough transform. While their research was limited to
only two sites, they reported a successful detection rates with their approach.

Kazimi et al. [17] recently proposed a hierarchical Convolutional Neural
Network (CNN) to classify archaeological objects in airborne laser scanning
data. The work focused on the detection of larger geological structures, such
as lakes, tracks and streams, caused by historical mining activity in the re-
gion. In the future the researchers hope to extend the detection outcome to
geometrically reconstruct the mining site in the region.

In 2019, Laundauer, Hesse [18] used a pre-trained CNN model and modified
it via transfer learning to detect charcoal kilns in airborne laser scanning data

1Type of underground aquaduct.
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with 80% detection rate. However, their dataset was for publicly available data
unusually detailed, with spatial resolution of 25 cm per pixel. Furthermore,
the researchers had more than 29, 000 of labeled, positive examples at their
disposal.

In 2019, Stott et al. [19] used publicly available airborne laser scanning
data to detect remnants of Viking ring fortresses across Denmark. Instead of
deep learning, they used their domain knowledge and filtered circular struc-
tures from the data via the circular Hough transform. To filter out large
numbers of false positives, a Random Forest model was trained with contex-
tual information data such as historical maps and names of local landmarks
dating to the 18th century. Eventually, they were able to identify several
known archaeological sites, as well as multiple sites of geological interest such
as glacial or meteorite craters.

1.3 Similar problems with applicable solutions

Aerial and satellite images are used for object detection across many applica-
tions. Most applications do not suffer from a lack of positive examples and as
such are able to utilize deep learning. For computer vision tasks where large
number of data is not available, the Canny edge detector, Hough transform
and Harris corner detector are widely used methods for the detection of reg-
ular shapes, mostly large structures such as roads and buildings [20, 21, 5].
That being said, we came across to mostly older research as on-going research
seems to be focused on the adaptability of small datasets for deep learning.

Particular is the work of Zingman et al. [6]. In 2016, they developed an
approach for detecting the rectangular shapes of live-stock enclosure ruins in
high-resolution remotely sensed images. While their objective is to search for
structures and not crop marks, there are many similarities in the presentation
of both objects. The ruins are usually composed of linear walls, of rectangular
shape and oftentimes incomplete or with only fragmented sides. Additionally,
the surrounding environment of the enclosure ruins is very similar to the com-
plex terrain surrounding crop marks, containing irrelevant structures such as
trees, trails and rocks. The authors also deal with the limiting issue of having
only few positive examples. While this approach would be only applicable to
detection of crop marks with strictly rectangular shapes, the authors are opti-
mistic that their approach could have comparably good results when applied
to other objects in rural areas.

5





Chapter 2
Data Acquisition

The area of study is introduced in section 2.1. In section 2.2 we provide an
explanation of key concepts of aerial surveying and data pre-processing. The
list of publicly available data sources and the means of acquisition of data
used in this work are described in section 2.3. Finally, the resulting dataset is
defined in section 2.4.

2.1 Area of study

Our process of data acquisition began with several examples of known sites
being provided to us by prof. PhDr. Martin Gojda, CSc., DSc. The initial
set contained 5 examples of sites, additional 8 examples were provided later,
during the process of implementation. The crop marks are clearly visible on
several online mapping services such as Mapy.cz and Google Maps:

• Ledčice, district Mělńık (N 50◦ 20′ 0.02′′, E 14◦ 16′ 42.21′′)

• Ctiněves, district Litoměřice (N 50◦ 22′ 33.29′′, E 14◦ 18′ 30.77′′)

• Černouček, district Litoměřice (N 50◦ 21′ 24.59′′, E 14◦ 18′ 2.88′′)

• Straškova, district Litoměřice (N 50◦ 21′ 45.26′′, E 14◦ 15′ 18.77′′)

• Straškovb, district Litoměřice (N 50◦ 21′ 55.86′′, E 14◦ 15′ 26.54′′)

• Hoř́ın, district Mělńık (N 50◦ 20′ 34.78′′, E 14◦ 27′ 24.19′′)

• Rakovice, district Ṕısek (N 49◦ 27′ 18.57′′, E 14◦ 3′ 38.51′′)

• Nechanice, district Hradec Králové (N 50◦ 14′ 27.24′′, E 15◦ 37′ 58.21′′)

• Hostinné, district Trutnov (N 50◦ 32′ 16.21′′, E 15◦ 41′ 59.73′′)

• Březnoa, district Mladá Boleslav (N 50◦ 21′ 59.72′′, E 13◦ 45′ 1.73′′)
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• Ćıtov, district Mělńık (N 50◦ 22′ 7.94′′, E 14◦ 24′ 7.37′′)

• Třeboutice, district Litoměřice (N 50◦ 32′ 6.03′′, E 14◦ 10′ 55.69′′)

• Vražkova, district Litoměřice (N 50◦ 22′ 46.08′′, E 14◦ 15′ 7.65′′)

Two additional sites from the area were added during the process of data
acquisition:

• Březnob, district Mladá Boleslav (N 50◦ 22′ 27.57′′, E 13◦ 44′ 8.04′′)

• Vražkovb, district Litoměřice (N 50◦ 22′ 37.15′′, E 14◦ 15′ 51.94′′)

2.2 Sources

2.2.1 High-resolution airborne imagery

Aerial photography or airborne imagery is the process of taking photographs
(of a planet’s surface) from an aircraft or another flying object such as un-
manned aerial vehicles (UAVs) or, historically, carrier pigeons [22]. Aerial
images are taken at lower altitudes and thus can, at a time, cover smaller ar-
eas than satellite images. For individual research, aerial photography is often
more suitable as it is more accessible and offers higher resolution.

Figure 2.1: Illustration of the scanning process. Image sourced from [2].
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Orthorectification

To remove the geometric and radiometric distortions in airborne images due
to variances in viewing angles and distance during the survey, the images are
transformed via a process called orthorectification [22]. The original images
are created with a significant overlap to make the process of aligning and
stitching of thousands of pictures into a seamless mosaic possible. To cor-
rect geometrical distortion caused by sudden changes in terrain height, the
orthorectification process is enhanced by digital terrain model (DTM). If no
such model is available, the process can be simplified to stitching of the edges
of each image. This process is called false-orthorectification, as the taller
structures, such as buildings or trees, retain a visible tilt, illustrated in Fig-
ure 2.2.

Figure 2.2: Orthorectification diagram. Image sourced from [3].

Color photography

The most common form of multispectral imagery is the visible spectrum color
image, mostly in the RGB color space. The images are made with RGB
sensors, sensitive to visible light, characterized by wavelengths between cca
400 and 700 nm. Each channel corresponds to one one-type sensor, resulting
in the composite image with 3 channels, each respectively depicts the red,
green a blue portions of the visible light spectrum [5]. The radiation with
slightly longer wavelengths, between cca 750 and 1400 nm, is part of the
near-infra red (NIR) waveband and is not visible to the human eye. However,
because the NIR spectral band is able to penetrate deeper into the vegetation,
near-infra red sensitive sensors are able to capture the state of vegetation
health in much better detail than the RGB sensors. This relationship and it’s
significance for aerial archaeology is described in more detail in the work by
G. J. Verhoeven [23].
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Since the optimum spectral region for positive crop mark detection in the
NIR waveband is considered to be between 700 and 800, several approaches
have been proposed to enhance the vegetation health in the form of pseudo-
color composites [8]. The NIR channel is usually presented as part of the
NIR-R-G false color composite picture, called the CIR image. As the NIR
spectrum replaces the red channel, blue channel is missing and the other two
channels are shifted, the CIR image looks characteristically red in regions of
healthy vegetation, as shown in Figure 2.3.

Figure 2.3: Comparison of RGB (left) and CIR (right) photography.

Widely used vegetation health indices are the Simple Ratio also called the
Ratio Vegetation Index (SR or RVI) and the Normalized Difference Vegetation
Index (NDVI) [8]. As ratios, they are invariant to differences in illumination
conditions. For cases where near-infra red sensors are not available, the al-
ternative Visible Atmospherically Resistant Index (VARI) has been used for
plant health assessment in agriculture. The indexes, which result in grayscale
false-color images, are presented in Equation 2.1.

RV I = NIR

R

NDV I = NIR−R
NIR+R

V ARI = G−R
G+R−B

(2.1)

2.2.2 Airborne laser scanning

The technique of airborne laser scanning (ALS) is well used for digital surface
model (DTM) generation. In recent years, light detection and ranging (Li-
DAR) technology made progress, due to its decreasing costs, across multiple
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industries as laser pulses are able to penetrate vegetation cover and capture
the true shape of the underlying relief. As such, it has the potential to uncover
long-hidden anthropogenic structures [24]. The data of lower density, acquired
by public service, can be lent to students by the Czech Office for Surveying,
Mapping and Cadastre (ČÚZK) [13].

2.2.3 Complementary data sources

To offer more context, other complementary data may be sourced, such as
regional maps, historical data and plans of land use. However, this approach
may be in general more practical for more narrowed research, focused on just
one or two sites. In this work we use the plans of land use (referred to as LU)
provided by ČÚZK to filter out irrelevant regions such as urban areas and
forests.

2.3 Data acquisition

In this work we considered these publicly available sources:

• Google Maps and Google Earth

• Mapy.cz

• The Czech Office for Surveying, Mapping and Cadastre

2.3.1 High-resolution aerial images

Google Maps and Google Earth services available online do not provide his-
torical photography, nor they provide the actual date of screening, vital to
determine the phenological stage of the vegetation cover. The desktop ver-
sion of Google Earth Pro2 provides historical airborne maps, but also does
not specify the date of screening. Moreover, the imagery in non-urban areas
is often in distorted form, obviously mixed from several image sources. For
these reasons both applications proved to be too limiting sources, unsuitable
for our task.

The images created by The Czech Office for Surveying, Mapping and
Cadastre3 are available for viewing via their web client Geoprohlizec4. The
images are already in orthorectified form and are updated every three, and
recently every two, years. The specific date of each screening is available in
the metadata for each map list of size 2× 2.5km. The spatial resolution of or-
thomaps made in between years 2017 and 2020 is 20 cm per pixel. Orthomaps
made prior to 2017 have spatial resolution of 25 cm or 50 cm per pixel.

2https://www.google.com/intl/cs/earth/
3https://www.cuzk.cz/
4https://ags.cuzk.cz/geoprohlizec/
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As the images provided by ČÚZK are mostly taken at times when crop
marks are not well defined, the orthomaps available via Mapy.cz proved to
be a more valuable source. The orthomaps publicly hosted at Mapy.cz were
created by the company GEODIS Brno since 2003 until 2015. Since then the
orthomaps have been provided by Topgis, s.r.o.5. Unfortunately, the specific
dates of screening are available only for screening made by the latter company,
and so until the year 2015 all dates are specified only in years. The most recent
orthomaps, viewed under the highest zoom setting, have a spatial resolution
of 12.5 cm per pixel, older maps were made with spatial resolution of 20 cm
or 50 cm per pixel.

The image data were acquired through web scraping and via the Web Map
Service standard. To ensure the RGB and CIR photography and the land
use maps align the images needed to be sourced under an unified coordinate
system. While the the WGS84 [25] is the standard used around the world and
in GPS devices, the Czech standard used for all geodesy purposes is the JTSK-
S [26] coordinate system. Therefore to prevent distortion, all coordinates were
first converted from the WGS84 standard to JTSK-S. The WMS service was
then used to download data from access points provided by ČÚZK6. Python
libraries pyproj7 and owslib8 were used for this task.

As the color images available from Mapy.cz are not freely accessible through
WMS, the data used in this work were acquired via the scraping of the map-
ping service website. The photography available at Mapy.cz is available for
use under the condition of listing the mapping service as source9. The wa-
termark remains intact in the original data and is only obscured by image
preprocessing. As the acquired images are already in an orthorectified form,
we manage to sidestep this otherwise crucial process.

2.3.2 ALS data

We were able to acquire 20 map lists of ALS data from the Czech State
Administration of Land Surveying and Cadastre. The area contains most of
our crop marks and so we could compare the resulting DTM to our images
sourced from mapping services. The DTM 5th generation is the latest digital
model of the Czech Republic, compiled from airborne laser scannings made in
years 2009 to 2013 and completed in 2016. While other DTMs were available
prior to 2016, the DTM 5G has the highest resolution yet. The prior model
DTM 4G is available in regular raster 5 × 5 m, while DTM 5G is provided
as triangulated irregular network (TIN) with resolution in places of up to 10

5https://www.topgis.cz/cs/letecke-snimkovani/
6Geoportal.cz - WMS access points
7https://pypi.org/project/pyproj/
8https://geopython.github.io/OWSLib/
9https://licence.mapy.cz/?doc=mapy_pu
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meters/pixel and has been pointed out as a valuable source for archaeologists
in recent years [13].

The data were lent to us as the original .XYZ files, containing cloud point
coordinates for each map list, 2.5 × 2km. The clouds were imported into a
geographic information system software10 and processed with interpolation
and TIN algorithms to create the final visualisation of the hill-shaded terrain
model.

Upon the inspection of the imported point clouds and rasterized output,
and comparison to our color images we concluded that the resolution of the
data in place of our positive examples is insufficient. Therefore, we decided not
to proceed with the data in our implementation. The rasterized DTM was fur-
ther inspected for other known archaeological sites of larger dimensions, which
were visible in the hill-shaded model and thus more suitable for detection by
means of ALS. Examples of the data cloud, rasterized DTM and comparison
to crop marks in the area are present in figure Figure 2.4 and Figure 2.5.

(a) ALS data points. (b) Crop mark. (c) Hill-shaded model.

Figure 2.4: Comparison of ALS data and crop mark visibility, Ctiněves site.
Data processed with QGIS.

2.3.3 Complementary data

The RGB orthomaps provided by ČÚZK were mostly created from images
where crop marks were not very well visible. The images were taken mostly
during late summer, when the crops were already fully grown. To utilize other
resources provided by ČÚZK, for each site, the CIR orthomaps and the land
use maps were also downloaded.

10QGIS, free and open-source system has been used for the purposes of this work. Avail-
able from https://qgis.org/en/site/.
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Figure 2.5: Larger structures are clearly visible. Crop mark (N 50◦ 24′ 12′′,
E 14◦ 13′ 41′′).

2.4 Dataset description

The final set of positive examples consists of 10 sites. In this section, the
data is described in terms of resolution and each site is described in terms of
dimensions and the date of screening.

The full dataset has been acquired and analysed before implementation as
full understanding of the data available and its properties has been crucial to
the later design of each algorithm.

2.4.1 Dimensions and dates

Our task requires we use the images with the best crop mark visibility. There-
fore, in addition to variable vegetation cover, most images in the final dataset
were taken at different times, under different conditions and with different
equipment. That resulted in inconsistent illumination, color and resolution.
As higher resolution airborne photography became available only in recent
years, some sites do not have the best resolution available for years when the
crop marks were more visible due to more ideal phenological stage of the vege-
tation cover. For this reason we decided not to use the highest available zoom
setting at Mapy.cz. Instead we used zoom 19, which is available at most sites
since screening in 2005. The final resolution of images from Mapy.cz corre-
sponds to circa 25 cm per pixel for sites screened in recent years by Topgis
s.r.o, and 50 cm per pixel for sites screened by GEODIS Brno. The orthomap
tiles available at Mapy.cz are sized 256 × 256 pixels. We decided to combine
16 tiles to create an image of size 1024 × 1024 pixels for each site. While we
could have used lower or higher number of tiles, the resulting image size allows
for multiple smaller marks to be present in one image (Černouček, Ctiněves)
while larger crop marks remain intact (Ledčice). In addition, the resulting
images are small enough so that the results of detection can be viewed com-
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Location Image ID Resolution [m] Mapy.cz RGB ČÚZK CIR
Černouček 1 0.5 2004-2006 19.5.2017
Ctiněves 3 0.25 22.5.2016 18.5.2017
Ctiněves 6 0.5 2004-2006 18.5.2017
Straškova 4 0.25 22.5.2016 19.5.2017
Ledčice 7 0.25 6.6.2015 19.5.2017
Březnoa 8 0.5 2004-2006 19.5.2017

Ćıtov 9 0.25 6.6.2015 18.5.2017
Straškovb 12 0.25 22.5.2016 19.5.2017
Vražkova 14 0.25 22.5.2016 19.5.2017
Březnob 16 0.5 2004-2006 19.5.2017
Vražkovb 19 0.25 22.5.2016 19.5.2017

Table 2.1: Dates of screening of each location in dataset.

fortably without excessive zooming. The dataset can be viewed in Figure E.1,
Figure E.2 and Figure E.3 in Appendix E, and is supplied in full resolution
on the medium enclosed to this work.

The resulting crop mark dimensions are anywhere from 54 to 279 pixels
in width and the wall thickness ranges from 4 to 12 pixels in images of size
1024×1024 pixels. The exact dimensions of each crop mark of interest are
shown in folder data/dimensions on the enclosed medium. The phenological
stages of the vegetation cover differ based on the chosen year and location.
The screening dates for each image in the data is listed in Table 2.1, the CIR
images screened in 2017 were chosen as they are the most recent and have the
highest resolution. Because of the final image dimensions and zoom that we
chose, we decided to not use examples near Třeboutice, Rakovice, Nechanice
and Hoř́ın shown in figure in Figure E.5 in Appendix E, as their much larger
dimensions make unified enhancements of crop marks in image pre-processing
impossible. Additionally, example near Hostinné was not visible in any aerial
images provided by free mapping services. To further narrow the scope of
this work, we eventually incorporated only crop marks with approximately
rectangular and circular shapes.

2.4.2 Irrelevant structures and negative examples

The final dataset of positive examples contain a large amount of noise from
large structures as roads and forests, harvester rails, transmission towers and
naturally caused crop marks. To test whether our algorithms are able to
correctly discriminate between valid archaeological sites and natural variations
in vegetation cover, the final dataset was supplemented with negative examples
of crop marks of presumably natural origin. The negative examples are shown
in Figure E.4 in Appendix E.
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Chapter 3
Methods

This chapter offers an overview of the methods considered, implemented, and
used to conduct experiments on the dataset.

3.1 Image pre-processing

Our collected data contain large amounts of noise and variation and as such,
image processing methods and techniques can be used to suppress the influence
of noise and irrelevant structures and also to balance the differences between
each location, resulting in a more homogenous dataset.

Throughout this work, a 2-dimensional gray-scale image is denoted as
scalar function

I[x, y] = i (3.1)

where i is the intensity of pixel with x, y coordinates. Multispectral images
in n-dimensional color space are denoted as

Ic[x, y] = [c1, c2, . . . , cn]T . (3.2)

3.1.1 Noise removal

Image smoothing is a technique that aims to suppress noise or high frequen-
cies in the input image. Noise can be introduced to the image in form of
image degradation through processing, i.e., artifacts caused during capture
or by compression. Alternatively, natural parts of the captured scene, such
as irrelevant structures or texture changes, can be considered noise as well,
and appropriate concealing of such features is desirable for better solving of a
computer vision task. As image smoothing employs the redundancy of data,
the technique is only helpful when the spatial resolution of the input image is
adequate.

One of the simplest and effective methods of noise filtration is a convolution
of the input image with a smoothing kernel. Operator ∗ denotes convolution,
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for 2D image I and convolution kernel G defined in its discreet form as:

(I ∗G)[x, y] =
∑
m

∑
n

I[m,n] ∗G[x−m, y − n]. (3.3)

Gaussian filter

The Gaussian smoothing kernel is widely used for random noise removal
and detail blending. The operation computes the value of each pixel as the
weighted sum of its neighbors, with direct neighbors having the most influ-
ence. The parameter σ, the standard deviation of the Gaussian distribution,
in combination with the kernel size regulates the strength of the final blur.
The Gaussian kernel is computed by approximating the 2D Gaussian function
to a discrete version [27]. Presented is the Gaussian function and an example
of a Gaussian kernel of size 3× 3 normalized to have a unit sum:

Gauss(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 (3.4)

HG = 1
16

1 2 1
2 4 2
1 2 1

 (3.5)

Median filter

The median filter, in the form of a sliding window, replaces each pixel with
the median intensity value of its neighbors. This non-linear technique, in com-
parison to the Gaussian smoothing, reduces the blurring of edges but is more
computationally demanding. The median value is not affected by individual
noise spikes in the region and as such is ideal for salt and pepper noise removal.
The blur can be applied in iterations to strengthen the smoothing effect while
preserving the window size [5].

(a) Input image I (b) Weighted kernel Gb (c) Filtered image

Figure 3.1: Edge-preserving bilateral filter, images sourced from [4].
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Bilateral filter

The bilateral filter is another edge-preserving non-linear method of image
smoothing [4]. The filter employs properties of Gaussian smoothing in combi-
nation with a function of pixel difference. For each pixel, the spatial Gaussian
smoothing kernel is weighted by the difference in intensities of the central
pixel and its neighbors. The weighting function returns low values for large
differences in intensities and vice versa, effectively suppressing the smoothing
in areas of presumed edges. The common function of pixel differences is the
Gaussian function. The process is illustrated in figure Figure 3.1. The filtering
operation can be defined as:

(I ∗Gb)[x, y] = W
∑
m

∑
n

I[m,n] ·G[x−m, y − n] · b(F [m,n]− F [x, y]) (3.6)

where W is the normalization factor:

W =
∑
m

∑
n

G[x−m, y − n] · b(F [m,n]− F [x, y]) (3.7)

and function b is the pixel similarity function. The Gaussian function is often
used. The impact can be set by tuning its standard deviation parameter σb:

b(s) = 1
2πσ2

b

· e
s2

2σ2
b (3.8)

The computational complexity of this operation is higher than that of
regular convolution, as the function of pixel intensity difference must be com-
puted separately for each pixel, and thus rendering common improvement
techniques, such as employing kernel separability or transformation to Fourier
domain space, non-applicable [4].

3.1.2 Thresholding

Thresholding is a simple segmentation technique that is used to separate re-
gions of fixed intensity from background by setting an intensity threshold τ .
The most basic form of thresholding is a global threshold applied to a grayscale
image and results in a binary output image:

Ithr[x, y] =
{

1, if I[x, y] > τ
0, otherwise (3.9)

Correct threshold selection is crucial for successful segmentation. However,
even in simple scenes, there are likely to be levels of intensities shared between
background and objects, leading to undesirable regions of misclassification.
Moreover, in many applications images are captured under sub-optimal con-
ditions resulting in non-uniform lighting. In cases as such, adaptive thresh-
olding is often used to compensate for different lighting conditions in different
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areas of an image. The threshold value is determined locally in a region of a
predetermined size, while the global level is controlled with parameter c. The
operation is shown in Equation 3.10, where ? denotes cross-correlation and G
is a Gaussian kernel.

Ithr[x, y] =
{

1, if I[x, y] > (τ(x, y)− c)
0, otherwise

τ(x, y) = (I ? G)[m,n] =
∑
x

∑
y

I[x, y] ·G[m+ x, n+ y]

(3.10)

3.1.3 Edge detection

Edges are defined as regions where the intensity of a grayscale image abruptly
changes. Edge accentuation or detection is often used to improve image inter-
pretation, as dominant contours are cleared of often less informative features
such as depth and color.

The Sobel operator belongs to a group of edge detecting operators based
on approximation of the first derivative of the image function. The operator
combines a noise suppressing smoothing operation with an estimation of the
first derivative for each pixel of the input image. The Sobel kernels sized 3×3
are presented in Equation 3.11; larger sizes are possible.

Hx =

1 0 −1
2 0 −2
1 0 −1

 , Hy =

 1 2 1
0 0 0
−1 −2 −1

 (3.11)

Often, only the vertical and horizontal kernels are used to detect horizon-
tal and vertical lines in an image. The resulting response image is defined
as Sn = I ∗Hn and combined gradient magnitude of the image can be com-
puted as I(x, y) =

√
S2
x(x, y) + S2

y(x, y) or I(x, y) = |Sx(x, y)|+ |Sy(x, y)| for
performance sake [5].

The Canny edge detector is one of the most used and reliable edge detec-
tors [28]. It is based on zero-crossings of the image function second derivative.
It is robust against noise and returns a binary image with detected edges’
widths of 1 pixel, regardless of the original dimension. The Canny edge de-
tection algorithm consists of multiple steps:

1. Noise reduction performed by smoothing the image with a Gaussian
kernel.

2. Estimate of local gradient magnitude and direction for each pixel.
Gradient direction is always perpendicular to the detected edge. This
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step may be performed by Sobel or alternative operator Hn in various
directions n.

3. Non-maximal suppression is performed to eliminate redundant edge
pixels, resulting in a thinned image. A true edge location is determined
by finding the local maximum by zero-crossing. The original image I is
convoluted with the operator Hn differentiated11 in the direction n, re-
sulting in the second derivative of the input image. The local maximum
is where the second derivative is 0.

4. Hysteresis thresholding using minimum and maximum threshold pa-
rameters. The lower (soft) threshold suppresses edges caused by noise
while the upper (hard) threshold is the lowest value of magnitude for
edge pixel to be considered correct. Edge pixels with magnitudes be-
tween thresholds are filtered by their adjacency to a true edge.

The quality of results acquired by the Canny detector is dependent on the
suitable determination of thresholds, as well as the scale of the derivation
kernel.

3.1.4 Principal component analysis

The principal component analysis, or PCA, is one of the most widely used
linear techniques used for dimensionality reduction in statistics and also in
image processing. The PCA operation transforms possibly correlated vari-
ables into a new set of uncorrelated variables called principal components.
The first principal component accounts for as much variability in the original
data as possible, and each subsequent component accounts for as much of the
remaining variability [5]. This property is used for two main purposes - for
transforming variables into uncorrelated space, or approximating dataset to
a lower-dimensional space while retaining key information. In the processing
of aerial images specifically for archaeological purposes, PCA is often used
to transform CIR or other multichannel space to grayscale with component
mixing to highlight specific conditions such as soil and crop marks [8].

The PCA is applied to normalized image data. Let X ∈ RN,M be a
representation of image Ic, whereN is the number of columns (image channels)
and M is the number of pixels in each channel. The empirical mean of each
channel is subtracted from the corresponding column of X and the covariance
matrix Σ is computed.

E[X•,n] = 1
M

M∑
m=1

Xm,n , for n = 1, .., N (3.12)

11Only the kernel needs to be differentiated again, in lieu of the image I, given the
differentiation property of convolution: (I ∗ G)′ = I ′ ∗ G = I ∗ G′ [29].
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Σ = (X − E[X])T (X − E[X]) (3.13)

The covariance matrix Σ ∈ RN,N is symmetric and positive definite and as
such is guaranteed to have real eigenvalues [5]. The associated eigenvectors
v1, v2, . . . , vN in matrix form are the basis vectors of the new vector space
of principal components. The original data X are then transformed from
N -dimensional vector space to a new N -dimensional vector space by multipli-
cation:

P = X · (v1, v2, . . . , vN )T (3.14)

To acquire the transformed data from matrix P to image representation,
the pixels of each utile principal component column must be ordered to a grid
of the original image Ic dimensions. The drawback of this method, as is the
case for any linear non-local transform, is that because each channel of the
processed image is flattened into a single row of pixels, the spatial information
and its importance is lost. The relations between neighboring pixels are not
taken into account, which means that significant outliers may affect the entire
resulting image [5].

3.1.5 Morphological operators

Mathematical morphology is an area of image analysis that operates on objects
in image as point sets and employs the properties of their connectivity and
shape. Its is widely used in applications where shape preservation is crucial,
such as microbiology or criminology. A binary input image I is represented
as a point set X = {(x, y)|∀x, y ∈ I[x, y] = 1}. The binary input image is
analyzed by a binary image of a certain shape, often rectangle, circle or linear
segment, called the structuring element (SE) and denoted B. This process
is called a morphological transformation and is denoted Ψ. Morphological
transformations are dual, meaning for each transformation Ψ(X) there is a
transformation Ψ′(X) such that:

Ψ(X) = (Ψ′(XC))C (3.15)

Dilation and erosion

Dilation and erosion are the primary morphological operators from which more
complex transformations are derived. Dilation operator ⊕ combines two sets
using vector addition and erosion is the dual transformation denoted 	 using
vector subtraction:

X ⊕B = {p ∈ E2 : p = x+ b, x ∈ X, b ∈ B}
X 	B = {p ∈ E2 : p+ b ∈ X for every b ∈ B}

(3.16)
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Opening and closing

While dilation and erosion transformations are dual, they are not inverse,
meaning, that dilation of an eroded picture with the same structuring element
does not yield the original picture. Instead, erosion followed by dilation creates
morphological transformation called opening, denoted ◦, and dilation followed
by erosion creates transformation called closing, denoted •.

X ◦B = (X 	B)⊕B
X •B = (X ⊕B)	B

(3.17)

Top hat

Top hat transformation is the result of the residue of morphological opening
as compared to the original image X:

Ψtophat(X) = X \ (X ◦B) (3.18)

The operation can be imagined as extraction of intensity peaks from the orig-
inal image, with their spatial scale determined by the morphological opening.
White top hat retrieves light objects on a dark background, a black top hat
does the opposite [5].

3.2 Local features

The process of finding local features, i.e. interest points, is the first stage
of many computer vision applications [30]. For rectangular object shapes,
locating corners and subsequent interest point analysis are often used in object
recognition and image matching. Corners can be located by using local feature
detectors. In this work, we analyze the possible contribution corner location
could have to the task of crop mark detection.

A corner in an image can be rather vaguely described as a region, where
two different dominant edge (gradient) directions meet. Edge detectors alone
cannot be used to determine corners in an image, as the gradient at the tip of
a corner is ambiguous. This property is employed by corner detectors [5].

3.2.1 Harris corner detector

The Harris corner detector is based on differences in intensity shifts in vertical
and horizontal directions. For grayscale image I, let Ix, Iy be image derivatives
in x, y directions. The cornerness measure, indicating the presence of a corner,
is measured for an image window w. Usually, an isotropic window, such as
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Gaussian kernel is selected [5]. The local second-moment matrix M , the same
size as w, is computed for each pixel of input image I:

Mx,y =
∑
x,y

w(x, y) ·
[
I2
x IxIy

IxIy I2
y

]
(3.19)

Matrix M is symmetric and positive semi-definite, meaning it has two real
eigenvalues λ1, λ2, in which the main modes of variations are reflected. [5]
Three cases can occur:

1. Both eigenvalues are small, which indicates a flat region.

2. One eigenvalue is large and the other small, indicating a ridge in one
direction.

3. Both eigenvalues are large, i.e. shift in any direction causes change,
which indicates a corner.

The properties can be summarized into a response function R, the corner-
ness measure, to differentiate corners from non-corners by setting an appro-
priate threshold. When eigenvalues λi are explicitly known, few alternative
measures R can be calculated:

R1 = λ2

R2 = λ1 · λ2
λ1 + λ2

R3 = λ1 · λ2 − λ1 + λ2

R4 = λ1 · λ2 − k · (λ1 + λ2)2 = det(M)− k · (trace(M))2

[31] (3.20)

The recommended value for parameter k differs across literature but is
usually set in interval [0.02, 0.2] [5]. The Harris detector shows to be robust
to noise and lighting variations and is shift and rotation invariant [32].

The classic Harris corner detector is intensity based but can be extended
to multispectral images. In their works Sirisha, Sandhya and Sebe, Weijer
conclude, that while most salient points are found using just intensity, the
added color information significantly improves corner distinctiveness and may
be used as a key descriptor in image matching algorithms. However, the in-
troduction of color can also lead to less stable results, as the detector becomes
less invariant to changes in illumination [31, 33].

The authors of [31] extend the Harris detector on RGB channel image,
while in [33] authors implement and test the detector for the opponent color
space and for the m-color ratio space. The opponent color space is defined as:

O1 = L the luminance component
O2 = G−R as the red-green channel
O3 = B − (G+R) as the blue-yellow channel

[34] (3.21)
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The color ratio system already incorporates the image derivatives and can be
used directly as input in the Harris cornerness matrix [33]. For standard RGB
image, the conversion is defined for channel pairs RG, RB and GB. The ratio is
computed for each direction x, y separately. Presented is the equation for one
resulting ratio channel in one direction, where x1, x2 denote two neighboring
image pixels:

ORG = Rx1Gx2

Rx2Gx1
[33] (3.22)

As corner detectors are, by definition, not very robust, large redundancies
are to be expected [5].

Non-maximum suppression In salient point and object detection algo-
rithms often classify multiple overlapping regions in place of a presumed point
or object discovery. To reduce the number of overlapping entities, a method
of non-maximum suppression is used to discard redundant entities. The exact
implementation differs in respects to the task at hand, but in principle the
method is as follows:

1. Each of presumed positives returned by a detection algorithm is evalu-
ated by appropriate quality function.

2. For each presumed positive inspect all adjacent or overlapping positives.

3. If the quality measure of any of the adjacent positives exceeds that of
the one under inspection, the inspected positive is marked for deletion.

4. When all overlapping regions have been inspected, all positives marked
for deletion are removed from the list of positives [5].

3.3 Hough transform

The Hough transform [35] (HT) is a widely used method of object detection
and location based on known shape and size [36]. In its original form, HT was
designed to detect lines and circles expressed in their parametric forms, and
later extended to detect any 2D shape given its full description in a form of a
template. It is robust in the presence of noise and additional structures and
is capable of recognizing even partial or slightly deformed shapes [5].

The method is based on transformation of the image I into a polar pa-
rameter space, i.e. an accumulator space or Hough space. The location of an
object in image I is determined by a voting mechanism, where each edge pixel
of image I corresponding with the given equation, is one vote in the accumu-
lator array. The final detection takes place by detecting local maxima in the
parameter space, as illustrated in Figure 3.3. Because the parameter space
usually has duplicate local maxima per shape, it is recommended to smooth
the accumulator array with a Gaussian kernel [37].
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Pre-requisities of the Hough transform algorithm:

• The input image I is to be pre-processed with an edge detector to extract
the outer contours of captured objects. Canny edge detector or Sobel
filter are often used for this task.

• The shape and size of a detected object is known and expressed as one
or multiple parametric equations.

(a) Input image I. (b) Hough space. (c) Detected lines.

Figure 3.2: Line detection via the Hough transform.

3.3.1 Hough transform for lines and circles

The parametric equations for a line and circle respectively are:

x · cos θ + y · sin θ = r

(x− a)2 + (y − b)2 = r2 (3.23)

For each edge pixel (xi, yi) in input image I, the polar coordinates r, θ
are derived and plotted to the Hough parameter space. In polar space, each
input point of I becomes a sinusoid curve. In case of a line detection, collinear
points in the input image I result in intersecting sinusoid curves in the pa-
rameter space. Therefore, peaks in the accumulator array correspond to lines
in the original image and the intensity of the peak directly corresponds to the
line length. In case of circles, where the parameters a, b are the coordinates
of the circle center and r is the radius, the accumulator space becomes 3 di-
mensional. Because with each added parameter, the accumulator space gains
an extra dimension, the original Hough transform becomes computationally
unsustainable for more complex shapes.
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3.3. Hough transform

3.3.2 Generalized Hough transform

To detect arbitrary shapes, the Hough transform was extended for boundaries
for which a parametric representation does not exist. The generalized Hough
transform [37] offers a solution as it incorporates a learning stage. Assuming
the shape, size and orientation of the object are known, a mask, or template
can be constructed.

Figure 3.3: Generalized Hough transform: construction of the R table. Image
obtained from [5].

During the learning stage, a reference table R which contains description
of the object is constructed. From a given reference point xR inside the
depicted shape, a line is constructed to every border point x of the object
shape. All border points (r, α), given by the angle α of the line (xR,x), and
the distance r of the border point from the reference point xR, are stored in
the R table as a function of the border direction φ(x). R table construction
is illustrated in Figure 3.3.2. Each border point x that has a significant
edge in the direction φ(x) has coordinates of a potential reference points
{x1 + r(φ) cos(α(φ)), x2 + r(φ) sin(α(φ))} [37]. Depending on the shape of the
boundary, there may be more than one (r, α) pair for every φ(x) and so the
R table format is:

φ1 (r1
1, α

1
1), (r2

1, α
2
1), . . . , (rn1

1 , αn1
1 )

φ2 (r1
2, α

1
2), (r2

2, α
2
2), . . . , (rn2

2 , αn2
2 )

. . . . . .
φk (r1

k, α
1
k), (r2

k, α
2
k), . . . , (r

nk
k , αnkk )

If the scale and rotation of the object vary, the number of parameters
increases from two (xR1 , xR2 ) to four with the additional orientation τ and
scale S parameters.
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With the constructed R table, the generalized Hough transform algorithm
is as follows:

1. Initialize an accumulator array A(x1, x2, τ, S) to zero.

2. For each pixel (x1, x2) from input image I, determine the edge direction
φ(x). For all potential reference points xR, increase accumulator for all
possible values of rotation and size change:

xR = {x1 + r(φ+ τ)S cos(α(φ+ τ)), x2 + r(φ+ τ)S sin(α(φ+ τ))}
A(xR, τ, S) = A(xR, τ, S) + 1

(3.24)

3. The locations of detected shapes are given by local maxima in the
smoothed accumulator array A.

The Hough transform, albeit computationally expensive for brute force
implementation, can search for multiple object occurrences in a single process,
and also is easily parallelizable, making it widely applied even in real-time
applications.

3.4 Rectangular enclosure detection

The detection of livestock enclosure remnants in high-resolution aerial images,
as proposed by Zingman, Lambert in [6]. Their approach is based on exten-
sive pre-processing of the input image, line segment detection via the Hough
transform, and subsequent grouping and evaluation of the resulting geometric
properties of nearby line configurations. As the process is described in great
detail in [38, 6], only a synopsis for guidance is provided in this text and
more details regarding implementation are offered in chapter 4 and chapter 5.
The algorithm (RE) was implemented and tested because it handles a task
much similar to the detection of crop marks. Like rectangular crop marks, the
ruins of livestock enclosures are composed of linear wall, often heavily frag-
mented, the angles between walls may due to design or deterioration deviate
from 90 or 180 degrees and one or more sides may be missing completely. The
authors work with satellite and aerial images of 0.5m resolution per pixel,
where the width of the linear segment of a ruin does not exceed 2 pixels. As
we have significantly higher resolution at our disposal, often needed to even
manually distinguish crop marks in vegetation, this approach may prove to
be impractical for our task. Nonetheless, the authors overcame some shared
complications with their approach, such as an amount of irrelevant structures
with much higher contrast than of the enclosures and very limited number of
positive examples.
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3.4. Rectangular enclosure detection

3.4.1 Extraction of ridge features and candidate points

The RE detection algorithm is based on finding approximately rectangular
shapes around selected candidate points in extensively processed image. First,
the authors use top hat morphological operator with a square SE to process the
original grayscale aerial photography. To enhance linear segments the authors
use their own Morphological Feature Contrast transformation (MFC) [39] with
a square SE. They follow it with ridge extraction by selecting a point-wise max-
imum from morphological openings with linear SE of a set length at different
orientations. This step enhances linear features in the image and suppresses
non-linear structures. The steps are described in algorithm 1. The MFC
operator for input set X and two SE of sizes r1, r2 is defined as:

Ψ+
MFC(X) = X − (X •Br1) ◦Br2

Ψ−MFC(X) = (X ◦Br1) •Br2 −X
ΨMFC = Ψ+

MFC + Ψ−MFC

(3.25)

Algorithm 1: Ridge extraction
Input: Grayscale image I, sizes of SE and list of angles for opening.
Output: Grayscale image I - binary map of ridge features.
I ← Ψtophat(I)
I ← ΨMFC(I)
openings← ∅
for a in angles do

openings← openings ∪ {I ◦Ba};
end
for (x,y) in I do

I(x, y) = max{o(x, y) | ∀ o ∈ openings};
end
return I

The authors propose using a local window placed at sparsely sampled can-
didate points, to help reduce the time and memory complexity of processing
all image data with Hough transform. The location of candidate points and
the size of the window is determined adaptively, such that in sparse areas
only couple points are located and the size the window size gets progressively
bigger. Vice versa, in areas with lot of ridge features, the candidate points
are denser. The sampling is performed on thinning of the ridge image comple-
ment and the point density is derived from the distance to the closest ridge.
Example is shown in Figure 3.4.
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(a) Skeleton of inverted ridge image. (b) Candidate points and ridges.

Figure 3.4: Rectangular enclosures: Sampled candidate points, colors inverted.

3.4.2 Graph representation and rectangularity measure

For window centered at every candidate point, line segments are extracted
by Hough transform, followed by linking and line approximation to merge
potentially fragmented ridge features. The authors encode linear segments
and their spatial relations into a graph G, where each node v is a linear
segment S(r, θ, l) and an existing edge between two nodes e(u, v) denotes a
valid connection between segments. A valid connection is defined as:

• Linear segments Sk, Sj are either approximately perpendicular or ap-
proximately parallel to each other.

• Extension of all linear segments in configuration forms nearly convex
contour.

Figure 3.5: Convexity constraint illustration. Image from [6].

To inspect the convexity constraint for each pair of segments, illustrated
in Figure 3.5, the authors propose pair-wise convexity function τ measuring
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the overlap of two segments in regard to the candidate point p0:

τ̃k,j = 1
lj

∑
1((p− p0)T · nk − rk)

τk,j = max(τ̃k,j , τ̃j,k)
(3.26)

Each clique Gc of a graph G corresponds to a valid configuration of linear
segments [6].

Valid configurations are evaluated by a rectangularity measure fR(Gc) and
the clique with the highest value is selected as optimal. Additional feature
fS(Gc) is proposed to quantify the configuration size [6]. During our testing,
we implemented an additional feature fD(Gc) meant to quantify the com-
pactness of the configuration, based on the idea that the sum of line segments
should not be much smaller than the lengths of presumed diagonals. Measures
are presented in Equation 3.27, points p1, p2 are the endpoint coordinates of
a segment and dist() denotes the distance between two points in Euclidean
space. Variable βk,j is the angle between two line segments and fcv, f90, f180
are mode functions described in [6].

fR(G) = (
E(G)∑
k,j

lkljf90(βk,j)fcv(τk,j) ·
E(G)∑
k,j

lkljf180(βk,j)fcv(τk,j))
1
4

fS(G) =
∑
j ljrj∑
j lj

fD(G) =
2 ∑

j lj∑
j dist(p0j , p1j) + dist(p0j , p2j)

(3.27)

The authors of the paper deduce the adjusted rectangularity feature f̂R,
referred to in this work as fRS as the optimal linear combination of the rectan-
gularity and size feature. Resulting configurations, each evaluated by feature
vector (fR, fS , fD), are used as data points for a chosen classification model,
to help discriminate detected rectangular features from irrelevant structures
and clutter [6].

3.5 Classification and evaluation

Two of the mentioned methods, RE and GHT, return one or more measures,
called features, that indicate the perceived quality of the detected region of
interest (ROI). Because we expect a large amount of false positives to be ex-
tracted, to determine whether the ROI contains a crop mark of archaeological
importance, a classifier is trained to help discriminate crop marks from noise.
This type of problem is known as a binary classification. This process of uti-
lizing classifier as the last step of the image processing approach is known as
object or pattern recognition [5].
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The role of a classifier is to assign an object to a class, based on the
object’s formal description in the form of a feature vector. The choice of the
most appropriate classifier for each task is dependent on the number of classes
and the amount and type of available features. Even so, various classifiers
have many properties in common. Most classifiers are utilized in two phases:
learning and classification. During the learning phase, the classifier is supplied
with a training set, subset of the complete dataset, with a known class for each
data point. During the learning phase the classifier optimizes its parameters
to be able to predict the true class for each data point with as low error rate as
possible. In the subsequent classification phase, the classifier is supplied data
without known class. The learned classifier proceeds to predict the class for
each data point. The approach to training utilized in this work and described
above is known as supervised learning. The classification models selected for
the purposes of this work are the Support Vector Machine (SVM) model and
Random Forest (RF) model.

3.5.1 Support Vector Machine

Support Vector Machine [40] is a popular choice of classifiers for dichotomic
linear classification problems. The classifier aims to maximize the margin
between two classes, by dividing them with an optimally placed discrimination
surface - a hyperplane in the n-dimensional feature space. The data points
from each class closest to the discriminating hyperplane are called support
vectors. We selected the SVM classifier as it aims to reduce the risk of over-
fitting, which is crucial for our small dataset. The SVM can be used when
features are continuous and standardized in interval [0, 1].

For a binary problem, let each feature vector be denoted x and the class
identifiers be denoted ω ∈ {−1, 1}. Let the discriminating hyper-plane and
the two parallel hyperplanes, maximizing the margin, be defined as:

w · x + b = 0
w · x + b = 1, w · x + b = −1

(3.28)

The constraint that guarantees that no data points are present between the
margins must be true for each data point xi:

ωi(w · xi + b) ≥ 1. (3.29)

To maximize the margin, that is to find the optimal solution, we need to
minimize ||w|| which leads to an optimization problem.

In most cases, the two classes cannot be linearly separable to which a
solution is to either tolerate some minimal misclassification rate or to employ
the so-called kernel trick. The idea behind the kernel trick is to transform
the feature vectors into a space in which a linear discrimination hyper-plane
can be determined. Example is provided in Figure 3.6. The resulting SVM
learning and classification stages are the following:
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1. Training: An appropriate non-linear kernel function k(xi, xj) must be
selected.

2. Training: The ||w|| subject to the constraint given in Equation 3.29 is
minimized by maximizing the kernel-modified Lagrange function with
respects to αi, with constraints ∑N

i αiωi = 0 and αi ≥ 0:

L(w, b, α) =
N∑
i

αi −
1
2

N∑
i,j

αiαjωiωjk(xi,xj) (3.30)

3. Training: The non-zero weights αi and corresponding support vectors
xi are stored.

4. Classification: For each data point x, compute the discrimination func-
tion f(x), using the support vectors xi ∈ SV and their corresponding
weights αi:

f(x) =
∑
i∈SV

αiωik(xi,x) + b (3.31)

(a) (b) (c)

Figure 3.6: SVM binary classification: (a) Example of optimal linear discrim-
ination, thick line denotes the discriminating hyper-plane, (b) case of linearly
non-separable classes in 1D, (c) application of the kernel trick to create a
linearly separable problem. Images sourced from [5].

Popular kernel functions are:

Polynomial kernel
k(xi,xj) = (xi · xj + 1)d (3.32)

Gaussian kernel
k(xi,xj) = e−

||xi−xj ||
2

2σ2 (3.33)
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Gaussian radial basis (RBF) kernel

k(xi,xj) = e−γ||xi−xj ||2 (3.34)

3.5.2 Random Forest

Random forest [41] is an ensemble classifier, consisting of a combination of
decision tree classifiers. Each decision tree in the ensemble is trained inde-
pendently on a randomly sampled subset of the training data. The prediction
result for each data point is determined by a majority vote. The random
sampling employed in the construction of the random forest results in better
robustness compared to a single decision tree classifier, which has the inclina-
tion to over-fit. As such the RF classifier is, with the right parameters, robust
to outliers and can be used with a mixture of categorical and numerical fea-
tures.

Decision tree is a simple and transparent classifier with a very well inter-
pretable structure. A decision tree classifier consists of internal split nodes,
corresponding to a decision rule, and leaf nodes, corresponding to a predicted
class. The tree structure is illustrated in Figure 3.7. The decision rule for each
node is determined for a single feature to maximize the information gain. The
process of building the decision tree is also its learning stage. Widely used
decision tree generating algorithm is ID3 [5].

Figure 3.7: Decision tree structure. Image from [5].

3.5.3 Cross-validation

Regardless which classification model is used, our resulting dataset must be
split into a training set, to train the model, and a validation set, for which
the classes will be predicted and will serve as our final outcome. The method
of cross-validation, or k-fold validation, ensures that prediction is made for all
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data points in dataset. Because our dataset is very limited, we use the leave-
one-out cross-validation method. The leave-one-out cross-validation refers to
a case when k = 1; one site is selected for classification, and the rest of the
dataset is used to train the model.

3.5.4 Evaluation

Given, how our research is limited by the low number of positive examples, it
is expected that commonly used methods of statistical evaluation will not be
applicable. On the other hand, the small size of our dataset makes manual
evaluation possible. Therefore, we will use the classifier of choice to possibly
remove falsely detected regions, and will evaluate the resulting outcome site
by site.
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Chapter 4
Design

This chapter presents the algorithms deducted from each method outlined
in chapter 3. We describe the general approach to the problem and outline the
process, step by step, for each algorithm. The parameters of each algorithm
and the problems we encountered with each method are further described
in chapter 6.

There are three general approaches we explore: corner based detection, lin-
ear segment based detection and template based detection. For each approach,
we discuss the inherent problems that may arise and present the methods of
validation and evaluation of the final results.

The general pipeline applied to each detection approach consists of three
steps: image pre-processing, detection phase and classification of detected
regions as valid or false alarms. The outcome of each phase can be saved
independently of the process, making each stage modular. We utilized this
quality in our implementation and experiments, as we test multiple approaches
to pre-processing, detection and classification.

Figure 4.1: General data flow of the crop mark detection algorithm.
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4.1 Corner based detection

The corner based detection is the most straightforward method presented in
this work. By design, it is only applicable to crop marks with defined corners,
which accounts for only half of our data set. We propose two approaches
to classification of the detected corners as regions of interest. The general
pipeline is illustrated in Figure 4.2.

Figure 4.2: General data flow of the corner based detection algorithm.

4.1.1 Image pre-processing and corner detection

The original Harris corner detector was developed for grayscale images. Our
input RGB image is converted to grayscale either by means of PCA, or by
utilising only the red channel of the original image. The red channel, referred
to as RED, was deemed suitable because pure green shades appear the darkest
and the yellow areas appear the lightest in the red channel. The topic is
discussed in more depth in a study by Gojda, O. et al. [42], focused on the pre-
processing of crop mark images. The grayscale imaged resulting from PCA
corresponds to the first principal component and is from now on referred
to as PC1. The differences in performance of each approach are discussed
in chapter 6.

For the color extended Harris corner detectors, the image was either left in
the original RGB form or converted to the opponent color space or the m-color
ratio space. The image pre-processing is focused on enhancement of contrast,
to bring out the often very faint outlines of crop marks. Additionally, bilateral
filter is used to smooth the areas between dominant edges. The pre-processing
is illustrated in Figure 4.3.

Harris corner detector

The resulting pre-processed images are used as input to either the grayscale
or color extended Harris corner detector.

A filtration of irrelevant regions is performed on the resulting corner set.
The map of land use is used as a binary mask to the input image, only allowing
areas designated to agricultural use. In addition, the CIR image is used to
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Figure 4.3: HC: Image pre-processing applied to the red channel.

filter out additional areas that do not contain vegetation. This step was found
helpful in case the site image contains newly build structures, not yet present
in the map of land use, or trails and unofficial roads. This step is performed
prior to the non-maximal suppression. The resulting set of corners is provided
as input to the two algorithms described in the following sections.

4.1.2 Detection with 4 corners

The detector described in this section presumes that rectangular crop marks
have all four corners intact. The detection is based on considering all possible
combination of 4 corner configurations and gradually filtering out non-valid
combinations. Each valid structure must meet several conditions:

• Each pair of corners must have at least partial edge between them.

• Each opposing lines must be roughly parallel and of similar lengths.

• Adjacent lines share one corner and must be roughly perpendicular.

The algorithm is referred to as LHC in further text and is proposed in
pseudo-code in algorithm 3 in Appendix D, the process is illustrated in Fig-
ure 4.4

4.1.3 Detection with 3 corners

In an ideal case, the corner detector would detect all 4 corners of a rectangular
crop mark. However, because we already know that many of our examples
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(a) Detected corners. (b) Lines between corners. (c) Final result.

Figure 4.4: Detection with 4 corners.

do not have all four corners intact12, we propose an alternative method that
requires only three corners to be detected. Because without a fourth corner
we cannot employ the parallelism constraint from the previous algorithm,
we propose an additional constraint in the form of corner orientation. This
constraint ensures, that neighboring corner orientations differ by roughly 90◦,
and that the angles of corners forming a diagonal are roughly opposite. In
addition to the corner detection performed by Harris corner detector, the
orientation of each detected corner must be defined. The corner orientation is
the angle of the vector from the corner coordinate to the intensity centroid in
the local neighborhood around the corner calculated using first order central
moment.

The algorithm is referred to as OHC in further text and is proposed in
pseudo-code in algorithm 4 in Appendix D, the process is illustrated in Fig-
ure 4.5

(a) Detected corners. (b) Lines between corners. (c) Final result.

Figure 4.5: Detection with 3 corners.

12Which might happen for variety of reasons. According to our dataset it can be at-
tributed either to disintegration of the subsurface remains, uneven vegetation planting or
additional noise in the area of the image.
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4.2 Linear segment based detection

The line segment based detection, referred to as the RE detection algorithm,
is adapted from the work of Zingman et al., initially presented in [38] and later
improved upon and reintroduced in [6]. The approach can be summarized in
5 steps, illustrated in Figure 4.6, where the detection phase is divided into
sequence of three steps.

Figure 4.6: General data flow of the RE algorithm.

4.2.1 Image pre-processing

The algorithm is applied to a grayscale image. Again, both the red channel
and the first principal component are compared in our experimental section
in chapter 6. The image pre-processing methods are used in the following
order:

Filtering with LU binary mask and CIR image is applied as the first step,
so that irrelevant features do not seep into the rest of the image during the
pre-processing. Contrast enhancement with parameters α = 2.5, β = −170 is
applied to the grayscale image and then several morphological transformations
are applied.

First, a white top hat operator is used to extract small detail from the
image. This extracted image containing small white details, is subtracted
from the original image, which results in suppression of noise present in the
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form of watermarks and other bright regions like plough furrows. Process is
illustrated in Figure 4.7.

(a) (b) (c)

Figure 4.7: RE: (a) PC1, enhanced contrast, (b) white top hat, (c) white noise
subtracted from (a).

After, a black top hat transformation is applied to extract dark regions cor-
responding to (positive) crop marks in the image and other features present.
The image is then tresholded to filter out faint debris and closing operator
is applied to better define the resulting shapes. Finally, histogram equaliza-
tion is applied to intensify the effects of the filtration. Process is illustrated
in Figure 4.8.

In the next step, line segment enhancement is applied as means to extract
line-like features from the image. The process is already described in algo-
rithm 1 in chapter 3. The minimal line length should be determined by this
point, as shorter segments are filtered out from the image.

(a) (b) (c)

Figure 4.8: RE: (a) black top hat and threshold, (b) morphological closing (c)
histogram equalization.
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4.2. Linear segment based detection

4.2.2 Detection

The detection stage of the RE algorithm is divided into three steps, each
explained in the following sections.

4.2.2.1 Candidate point extraction

If we were to analyze the configurations of linear segments in a sliding window
around each pixel in the image, the result would be very time consuming.
Because neighboring pixels would share the same line segments, the candidate
points can be sampled as a way to describe each relevant region of the image
without duplicates. The resulting analyzing window for each candidate point
is determined adaptively and is tunable with the sampling rate nsp and a
parameter window multiplier. The procedure to extract such sparse points
is based on the distances between the linear segments extracted in the pre-
processing stage:

Distance map is computed from the pre-processed image via the euclidean
distance transform. For each pixel the distance value is denoted D.

Skeletonization: The distance map is thinned, resulting in binary image,
where every point on the skeleton is the furthest distance away from the closest
segment.

Candidate point sampling is applied to the skeleton image in a row-wise
order. For each point in the skeleton a sampling distance ∆d is computed as:

∆d = 2 ∗ window multiplier ∗D
nsp

(4.1)

The resulting window size for each sampled candidate point can be further re-
stricted by setting thresholds on the distance value D. Additional structures
and regions are filtered from the image prior to line segment detection. Can-
didate points in those areas are also discarded. The outcome of this process
is illustrated in Figure 3.4 in chapter 3.

4.2.2.2 Linear segment detection

The linear segments are detected in a window around each candidate point.

Line detection via the Hough transform is applied to a window of size D ∗
window multiplier around each candidate point, and is followed by segment
linking to concatenate short lines of uniform orientation into longer segments.
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Graph construction is performed as described in chapter 3 by considering
each detected segment a node in a graph G. Only configurations with at least
3 sides, forming t – like shapes, are considered valid.

Example of line detection and resulting valid configurations is depicted
in Figure 4.9.

(a) (b)

Figure 4.9: RE: (a) detected and linked segments, (b) valid configurations.

4.2.2.3 Configuration ranking

In the last step of the detection phase, each valid configuration around each
candidate point is ranked with a rectangularity measure fR. Only the the
maximal cliques of each graph G, are kept. The resulting structure size mea-
sure fS and compactness measure fD are also computed.

The resulting feature vector for each valid configuration contains:

• The image coordinates x, y of the candidate point,

• rectangularity measure fR,

• structure size measure fS ,

• compactness measure fD,

• size - number of segments in the configuration.

The resulting data is saved for later classification.
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4.2.3 Classification

Classification is applied to the resulting dataset, when all available site images
are processed. For the purposes of evaluation we prepare a ground truth vari-
able for each point in our dataset. With a prepared dataset, we can employ
supervised learning, to predict a correct class for each datapoint by means of
cross-validation. SVM classifier is used for this task.

4.3 Template based detection

Template matching approach has previously been suggested as feasible by
Gojda O. et al. in [42] as the variation of crop mark shapes is limited. The
most common crop mark shapes in the area were described in work by [7] and
are illustrated in Figure 4.10. The most common shapes in our dataset belong
to groups A.1.1 and A.1.2.

Figure 4.10: Morphology of buried features in non-equivalent scale. Image
sourced from [7].

The template based detection utilizes the generalized Hough transform
to detect crop marks of approximately circular and rectangular shapes. The
algorithm, referred to as GHT, consists of extensive image pre-processing, a
detection phase, where a template is matched against the processed image
and multiple instances of the object can be retrieved, and a classification step,
that helps to filter out falsely detected shapes. The process is illustrated
in Figure 4.11.
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Figure 4.11: General data flow of the GHT algorithm.

4.3.1 Image pre-processing

The image pre-processing consists of several steps. The result is a binary image
prepared to be used as input for the generalized Hough transform algorithm.
The image is illustrated before and after the application of the Canny edge
detector in Figure 4.12.

(a) GHT: Processed image before edge de-
tection.

(b) GHT: Processed image after Canny
edge detection.

Figure 4.12: GHT: Image pre-processing.

The original RGB image I is converted to grayscale and once again, both
the red channel and the first principal component are compared in our exper-
imental section in chapter 6.
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If different parameter values are used for each input type, the values are
enclosed in Table 4.1. The first step of the pre-processing is contrast enhance-
ment, followed by the filtration of white noise. The white noise is extracted
by white top hat operation with square SE of size 4× 4 pixels. Median filter
is applied to smooth out the artifacts caused by the previous operation.

(a) (b)

Figure 4.13: GHT: (a) grayscale image, PC1, (b) enhanced contrast.

(a) (b) (c)

Figure 4.14: GHT: (a) white top hat, (b) white detail subtracted, (c) median
filter.

Adaptive threshold of size 37 × 37 pixels and constant C = 7 is applied
to the image. The edges are smoothed with one more pass of median filter
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RED PC1
contrast α 2.2 1.8
contrast β -150 -50

erosion SE size [px] 3 2

Table 4.1: Different parameter values for RED channel and PC1.

smoothing and the image is inverted. To preserve the original spatial resolu-
tion, erosion with square SE of size 3× 3 pixels is applied.

(a) (b) (c)

Figure 4.15: GHT: (a) adaptive threshold, (b) median filter, colors inverted,
(c) erosion .

Eventually, the image is filtered with a binary mask of land use, so that
only agricultural land is retrieved. As can be seen in Figure 4.16, the method
is not foolproof as certain areas are marked incorrectly in the map of land use.
Some additional noise is removed with information from the CIR imagery and
small blob-like features with area smaller than 50 pixels are detected and
removed from the image in the final step of pre-processing. This version of
the processed image is denoted P . The resulting image is resized to half-size
from 1024 × 1024 to 512 × 512 pixels. According to our tests this step did
not effect the detection rate in a negative way and significantly sped up the
process.

Before an image can be processed by the generalized Hough transform,
the image P is smoothed by Gaussian blur of size 9 × 9 pixels and σ = 1.6.
This step smooths out the edges of the wall ridges and the subsequent edge
detection results in more bar-like features, which leads to better detection
performance. The Canny edge detector is applied to the image, with the
following parameters: Sobel operator size is set to 3× 3 pixels and the lower
and upper hysteresis thresholds are set to 40 and 70.
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(a) (b) (c)

Figure 4.16: GHT: (a) LU map filtration, (b) CIR image filtration, (c) blob
filtration.

Rect. sides ratio Max. width Max. height Min. width Min. height
1.0 260 260 75 75
0.9 260 234 75 67
0.8 260 208 75 60
0.7 260 182 75 52
0.6 260 156 75 45

circle (diameter) 260 – 61 –

Table 4.2: Template sizes in pixels.

4.3.2 Templates

To keep the templates as generalized as possible, we used the perfect rectan-
gular and circular shapes of variable sizes and wall thickness.

The template sizes are disclosed in table Table 4.2. The dimensions are
halved accordingly when the processing image is resized. Values enclosed in
the table correspond to the original image resolution of 1024× 1024 pixels.

We experimented with single edged templates and skeletonized image as
is described in more detail in the final chapter, but double edged templates
proved to be much more robust when the crop mark shape deviates from the
ideal circle or rectangle.

4.3.3 Detection

To save time, the detection was not run for each combination of size and
rotation. Instead the circular shape was not rotated at all, and the rectangular
template was rotated by a step size ∆3◦ in range [0◦, 90◦) in case of a square
and in interval [0◦, 180◦) otherwise.

Because the wall thickness does not change in direct proportion to the
crop mark size, we propose a solution to resize the template but keep the wall
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(a) (b)

Figure 4.17: Template examples. Dimensions (w×h or r, thickness) in pixels,
colors inverted. (a) Rectangular template (130× 78, 7), (b) Circular template
(49, 5).

thickness relatively unchanged. Creating a new template for each permissible
scale would be very time consuming as we could no longer utilize the par-
allelized version of the generalized Hough transform to its full potential. It
would also mean more memory must be reserved to accommodate the extra
template files. As a compromise, we run the general Hough Transform in
phases, as shown in pseudo-code in algorithm 2 in Appendix D.

A threshold τ needs to be set on the accumulator value, to determine the
retrieval rate of the algorithm. The value of this threshold is further discussed
in chapter 6. The retrieved matches were saved to a JSON file, for subsequent
classification. The following data are saved for each match:

• Image coordinates (x, y) of the center of the template in the input image,

• Hough accumulator value,

• template type (rectangle or circle),

• template scale,

• template rotation,

• exact template dimensions.

4.3.4 Classification

The final process of object recognition is performed by binary classification
with a Random Forest classifier. Before the process of additional feature ex-
traction, non-maximum suppression is applied on the resulting set of retrieved
ROIs, with the accumulator value used as the deciding factor.

The following features are further extracted for each datapoint:

• accum scale: scale adjusted accumulation value.
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• white: the number of white pixels in the retrieved region in the processed
image P

• overlap: the number of pixels in the image P overlapping with the tem-
plate image with the ridge filled.

• noise: the complement to overlap in the region. The number of white
pixels in P not covered by the filled in template.

• overlap noise: overlap to noise ratio.

• noise scale: adjusted noise to scale ratio. smaller templates are expected
to have higher noise statistics and vice versa.

The ground truth is determined for each datapoint, before the classifier
can be trained. The ground truth is determined by a binary mask prepared
in advance for each site. If the matched template overlaps the mask from at
least 60% the match is considered correct.
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Chapter 5
Implementation

This chapter describes which tools and libraries were used for realisation of
the proposed methods and briefly presents the implemented solutions. The
created or modified source files are enclosed to this work and located in folder
src/code as presented in Appendix C. The remainder of this chapter aspires
to introduce the source codes, at least to the extent, to enable possible future
attempts at experiment reproduction.

5.1 Development tools and libraries

The majority of this work was implemented in Python, version 3.9.1, using the
PyCharm IDE. Most of the since discarded early experiments were conducted
in JupyterLab by Project Jupyter13, as it offers interactive development en-
vironment that allows for fast prototyping. The remainder of this work was
implemented in C++, mostly in the form of making modifications to existing
source codes. CMake, version 3.20, and Visual Studio 15 2017 were used to
compile and build all *.cpp programs.

Available image processing libraries OpenCV14, version 4.0, and scikit-
image15 were gladly used in the process of implementation. Pandas16 library
has been used to handle datasets in the classification phases of our methods.
Finally, the machine learning library scikit-learn17 was used to deploy and
train the classification models.

In addition to the mentioned, libraries NumPy18, SciPy19, Matplotlib20 and

13https://jupyter.org/
14https://opencv.org/
15https://scikit-image.org/
16https://pandas.pydata.org/
17https://scikit-learn.org/stable/
18https://numpy.org/
19https://www.scipy.org/
20https://matplotlib.org/
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5. Implementation

Seaborn21 were used throughout most of the implementation for both basic
and high-level mathematical operations, multi-dimensional array operations
and data analysis. The Python library os is used to read, write or execute
files from a script.

For our limited dataset, the storage, needed to handle data between pro-
grams in an organized fashion, was realised by utilizing the JSON file format.

5.2 Image pre-processing

Most of the image pre-processing for each method is handled in module In-
put, implemented in script Input.py in folder code/Other. The script utilizes
libraries NumPy, OpenCV, scikit-image and os.

5.3 Corner based detection

The algorithms OHC and OHL as well as the Harris corner detectors are
implemented in HarrisCornerDetection.py and the supplementary file Line.py.
Image pre-processing and the detection is executed from the file hc loader.py.

5.4 Linear segment based detection

The applicable source files are in the src/RectangularEnclosures folder. The
folder contains a file re loader.py used to execute the entire process. Candi-
date point sampling, and segment detection is handled by the class RECan-
didatePoints, graph representation of the detected configurations and graph
operations are handled in the REGraph class. The classification phase is
implemented in the REClassifier class. All classes are saved under the corre-
sponding names in the RectangularEnclosures folder.

5.5 Template based detection

The applicable source files are in the code/GHT folder. The detection phase of
the algorithm is implemented in the module HoughTransform implemented in
HoughTransform.py. After the original RGB images are processed by Input.py,
the detection is run from the file Matcher.py.

Initially, for better integration into the project, and also as means to un-
derstand the method fully, the generalized Hough transform was implemented
from scratch in Python22. As such the solution is included in the source codes

21https://seaborn.pydata.org/
22To the author’s knowledge a readily available solution does not exists in scikit-image,

OpenCV or any other widely used image processing library.
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5.6. Other enclosed scripts

under the folder code/GHT, but unfortunately, even after partial paralleliza-
tion of the algorithm, the implementation proved to be much too slow to
conduct our experiments in an effective way. Therefore, we came back to uti-
lizing the parallelized implementation in C++ written by Matěj Sedláček23,
initially written for the task of tortoise recognition. The implementation must
have been modified and extended by several features:

• All input parameters are loaded from a JSON file, prepared by Hough-
Transform.py module.

• Instead of just the best match, the program returns more instances of
successful template localization, based on the threshold parameter τ .

• Program saves each successful localization to a JSON file which is further
processed by Loader.ipynb.

The code is also included in the folder and credited accordingly. The classifi-
cation phase has been handled in a Jupyter Notebook files Loader.ipynb and
Classifier.ipynb.

5.6 Other enclosed scripts

File Other/Spectra.py contains code to convert CIR and RGB photography
into false-color composites NDVI and RVI, however as the CIR data acquired
from ČÚZK were not taken during a more appropriate season for our task,
the scripts ended up unused. Script Other/WMSClient.py was used to acquire
current and archive orthomaps in RGB and CIR form as well as the maps of
land use.

23sedlacek@utia.cas.cz
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Chapter 6
Experiments and results

The overall goal of this chapter is to present the experiments conducted with
each method on our dataset and to describe the process of evaluation. For each
method, the exact parameters for the algorithm are enclosed and subsequently
the process of experimental application to our dataset is described. The results
are analyzed, after which the limitations of each approach are deduced.

Examples of each experiment outcome are provided only for illustration in
the text, as the figures need to be large and are very space-consuming. The
full results are provided in folder data on the enclosed medium. The final
section of this chapter is dedicated to the discussion of the general results
presented in this work.

6.1 Corner-based detection methods

The experiments conducted with the two corner-based methods, algorithms
LHC and OHC, are described in this section.

(a) (b) (c)

Figure 6.1: Red channel Harris corner detection: (a) Černouček (b) Ledčice
(d) Březnoa.
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6.1.1 Image pre-processing and corner detection

The algorithms were initially tested on the grayscale images in the forms of
the red channel RED and the first principal component PC1 (as were the
rest of the methods). Because the results of corner detection on the grayscale
images were sub-optimal, as shown in Figure 6.1, the color extended Harris
detectors for RGB, opponent color, and ratio color spaces were implemented.

(a) (b)

Figure 6.2: Harris corner detector: (a) results for LHC, (b) results for OHC.

The results for the color extended corner detector were generally better, in
terms of corner retrieval, than that of the grayscale input, shown in Figure F.1
in Appendix F. Even so, many crop mark corners were still left undetected,
especially if a non-zero threshold was applied to the cornerness measure (or
measures) in hopes of retaining only the more dominant corners and suppress-
ing the amount of irrelevant points.

In another experiment, we tried to apply the original intensity-based Har-
ris corner detector on the pre-processed images retrieved from the template
matching method described in section 4.3 of chapter 4. The motivation behind
this decision was that the pre-processed image is in binary form with sharp
edges, therefore weak gradient response is not an issue. Additionally, the pre-
processing is designed to suppress noise while retaining the original crop mark
shape, and thus the total amount of detected corners would be lower, making
the subsequent detection faster and possibly more precise. Examples of the
resulting corner detection are shown in Figure 6.2.
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Apart from the cornerness threshold, a parameter for the non-maximum
suppression must be set to define minimum allowed distance between two
peaks. Ideally, this parameter would be set to the expected minimum distance
value between two corners of a crop mark. In practice, this decision allows
for true corners to remain undetected, when in close proximity of false corner
caused by unfiltered noise that yields a higher cornerness measure value. This
may not pose such a problem for the LHC algorithm, but the false corners
most likely also have an orientation not corresponding with the true corner
of a nearby crop mark. In such a case the OHC algorithm is unusable. Upon
several experiments with different values of cornerness measure threshold, it
was determined the threshold set to 0 returned the best results.

6.1.2 Detection with 4 corners

The detection of crop marks by the LHC algorithm was largely unsuccessful.
As was noted before, the detection of all four corners, with a general setting
applied to our entire dataset, proved to be a very challenging task. In the
end only two or three crop marks were consistently detected by the algorithm
with one parameter setting, shown in Figure 6.3. Any attempts made at
including more crop marks resulted in large numbers of false positives, as
shown in Figure 6.4, concluding the method is very sensitive to noise and
parameter tuning. For the best run of the LHC algorithm, as determined
by our experiments, the parameters were set to the following values. The
minimal and maximal distance between corners was set to 30 and 240 pixels.
The maximum allowed deviation from line parallelism was set at 25◦ and at
15◦ for deviation from line perpendicularity. At least 60 percent of an edge
between two corners must be intact for a line to be considered valid.

(a) (b) (c)

Figure 6.3: LHC: Cases of successful crop mark localization.
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(a) (b) (c)

Figure 6.4: LHC: Most attempts ended unsuccessfully.

6.1.3 Detection with 3 corners

Algorithm OHC, which requires only 3 corners, did not improve the detection
rate by a large margin, as only 3 or 4 crop marks were consistently retrieved,
as shown in Figure 6.5. The advantage that was gained by allowing one of
four corners to be missed by the detection phase was, as per our experiments,
effectively offset by the additional corner orientation constraint. As can be
seen in Figure 6.6, even when the corresponding corner is detected, it is not
guaranteed the original shape has not already been degraded in the original
site image to such an extent that the detected corner orientation is skewed.
Examples of problematic sites are shown in Figure 6.7.

The minimal and maximal distance between corners was set to 30 and 270
pixels. The maximum allowed deviation of corner orientation from orienta-
tion of the presumed diagonal was set at 30◦, as it is understood that more
elongated rectangles will deviate more. The maximum allowed deviation for
line perpendicularity was set at 20◦. At least 85 percent of an edge between
two corners must be intact. From our testings, the constraint placed on the
completeness of the two adjacent edges was very effective in the reduction of
false positives.

6.2 Linear segment based detection

Out of the three proposed methods, the RE algorithm was the least experi-
mented with, as it was almost completely applicable to our task in its original
form. The following section describes the parameter settings that were used
to achieve our best results with the method.
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(a) (b)

(c) (d)

Figure 6.5: OHC: Cases of successful crop mark localization.

6.2.1 Image pre-processing and valid configuration detection

The parameters as described in this section were experimentally selected by
manual evaluation to maximize the number of detected crop marks. The
following parameters were set during the pre-processing stage. The white top
hat square SE size was set to 3 × 3 pixels. The following black top hat was
applied with square SE of size 15× 15 pixels. The pixels with intensity lower
than 20 are suppressed to 0 with thresholding. The sizes of the morphological
closing square SEs were eventually set to 1 pixel for dilation, effectively leaving
the image unchanged, and 3 × 3 pixels for erosion. The MFC operator is
applied with structuring elements of size 3× 3 and 10× 10 pixels. The linear
segments were enhanced by the composite opening with linear SE set to 30
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Figure 6.6: OHC: Corner orientation can be wrongly determined due to frag-
mentation in the original colour image (lower-left corner, orientation indicated
by blue line).

(a) (b)

Figure 6.7: OHC: Many sites were missed entirely due to undetected corners or
wrongly determined corner orientation. In image (a) 3 corners are successfully
detected, left upper corner remains undetected, while right upper corner’s
configuration is not suitable for the OHC algorithm. In image (b) upper
left corner is missed by the corner detector and lower right corner coincides
with the surroundings and is filtered out during the pre-processing, remaining
corners and their orientations are detected correctly.

pixels and rotated in increments of 5◦. The proposed thresholding after the
segment enhancing algorithm is not applied, thus the threshold is set to 0.

Following the pre-processing stage, the candidate points were sampled with
the following parameters: The window multiplier parameter is set to 1.8 with
the sampling rate parameter nsp set to 5. All candidate points having a
distance smaller than 10 or greater than 170 pixels were discarded, which
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limits the distances between opposing walls of the detected structure.
The segment detection was conducted with the Hough transform, and all

lines with minimum length of 20 pixels were detected. The often fragmented
segments were linked together if the gap between two endpoints was less than
30 pixels and the angles differed by less than 10 degrees.

The angle constraint βk,j was set to 15◦ and the convexity measure thresh-
old applied to τk,j was set to 0.4.

After the application of the detection on the red channel image RED and
the first principal component composite PC1, it was determined the algorithm
returned better results for the red channel. Initially, as shown in Figure 6.8,
the pre-processing applied to the RED image tended to detect less linear ridges
in the line segment enhancement step described in algorithm 1, which in turn
leads to less segments that are potentially detrimental to the next step in the
algorithm – the candidate point sampling which is strongly dependent on the
successful suppression of noise.

After the following parameters were changed for the pre-processing of PC1
image, the results became comparable to those of the red channel, shown also
in Figure 6.8. The white top hat square SE size was changed from 3 pixels to 4,
the dilation SE size in the morphological closing operation was also increased
from one to two pixels and new threshold on segment enhancement was set to
60, instead of 0.

The number of retrieved points for each input is shown in Table 6.1.

Retrieved NFP NTP

PC1 439 421 18
RED 293 271 22

Table 6.1: RE: Retrieval rates.

Compactness measure Many of the detected configurations consisted of
small segments placed far apart. Because many of such configurations were
attributed to the remains of irrelevant structures such as plough furrows, we
implemented the compactness measure fD defined in Equation 3.27 in hopes
of better discrimination of these sparse configurations from true crop marks,
that tended to be more compact. Examples of the ranked configurations are
shown in Figure 6.9, where the intensity of the red channel intensity of each
valid configuration indicating square is set to 200fD.

Overall, we were able to retrieve 7 unique rectangular crop marks with the
PC1 dataset and 6 using the red channel.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: RE: site Ctiněvesa PC1 (a) and RED (b) after segment enhance-
ment. PC1 (d) and RED (e) after valid configuration detection. PC1 (c)
after segment enhancement and (f) valid configuration detection with new
parameters. Size of rectangle around each candidate point indicates size of
rectangularity measure fR.

(a) Černouček (b) Ledčice (c) Vražkova

Figure 6.9: RE: Examples of ranked configurations, PC1 input.

6.2.2 Classification

Before the classification, the ground truth was determined for each data point.
Because of how limited is our dataset, the training and evaluation of the SVM
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model was conducted as leave-one-out cross-validation. The regularisation pa-
rameter C of the classifier was set to 1.0 and the default RBF kernel was used.
The model validation on our small dataset did not result in any statistically
significant metrics for reporting. Similar to the work of Zingman et al. in [6],
the method was evaluated based on the feature’s ability to discriminate crop
marks from irrelevant structures. We conducted this experiment by setting
the parameter class weight on the classifier. Therefore, we set the parameter
class weight to such a high value for the true class, that none of our retrieved
true positives were misclassified, and focused on the number of remaining false
positives NFP . NFP and NTP are, respectively, the numbers of false positives
and true positives.

As can be seen from Table 6.2, the classification helped to significantly
reduce the false positive rate and it can be expected that with the inclusion
of additional data, the results would be further improved. Furthermore, the
compactness measure fD proposed in this work improved the classification
results, to those with only the original two features, as the rate of false positives
was significantly reduced.

(fR, fS , fD) (fR, fS)
dataset class weight NFP NTP NFP NTP

PC1 0.99 16 18 30 18
PC1 0.98 1 16 15 15
PC1 0.95 0 10 4 13
RED 0.99 37 22 50 22
RED 0.98 29 22 42 22
RED 0.95 9 22 30 22
RED 0.90 9 22 23 22
RED 0.85 7 21 22 22

Table 6.2: RE: Retrieval rates with all features included.

The experimental results of the classification are presented in Figure F.2,
Figure F.3 and Figure F.4 for the PC1 input and in Figure F.5, Figure F.6
and Figure F.7 for the RED input in Appendix F.

6.3 Template-based detection

The experiments conducted with the template-based detection method are
described in this chapter.

6.3.1 Image pre-processing

In this section, we describe what led to the final form of pre-processing of
grayscale images in the forms of the red channel RED and the first principal
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component PC1. The complete process of the image pre-processing, including
parameters, was already described in chapter 4. Therefore, this chapter fo-
cuses on several experiments that were conducted before arriving at the final
solution.

The process was initially influenced by the pre-processing applied in the
work by Zingman et al. [38] and used in the RE algorithm. In first stages, the
generalized Hough transform was applied to the ridge image acquired from
RE and processed by the Canny edge detector. The problem of this approach
was two-fold. First, that the pre-processing used in RE detection heavily al-
ters the original wall thickness. Secondly, the pre-processing understandably
does not enhance circular shapes. It became obvious that the same level of
abstraction, applied in the RE algorithm, will not work in the GHT algorithm.
Therefore more gentle approach focused on very gradual changes to the image
was developed. The best sequence we have found is already described in sec-
tion 4.3 of chapter 4, however, few other approaches were also considered, as
is outlined below.

Skeletonization We briefly experimented with application of the GHT al-
gorithm to image that resulted from the skeletonization of the image P . The
idea behind the step was to minimize the amount of noise. While most resid-
ual noise in the image was in the form of blobs or fragmented speckles and
resulted in tiny dots and lines after the skeletonization, the crop mark skele-
tonization resulted in comparably long lines. Unfortunately, the double ridge,
which we found to be a valuable feature, was lost during this process. After
the application of the detection algorithm, it became clear that the results
will be inferior to the initial process. The skeletonized image P is shown as
example (b) in Figure 6.10.

(a) Processed image (b) Skeleton (c) Blob filtration

Figure 6.10: Experiments with image pre-processing, colors inverted.
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Blob filtration The blob filtration described as the last step of the pre-
processing was the most recent addition to the GHT algorithm. It did not sig-
nificantly change the generalized Hough transform retrieval rate, but slightly
improved the final detection result, as many of the features used in the clas-
sification are derived from the pre-processed image P .

VARI The VARI index from Equation 2.1 in chapter 3 was not eventually
used. While the results seemed interesting at first, the ratio yielded less stable
results during the pre-processing phase. The VARI ratio retained some crop
marks better than the red channel, but it performed worse when it came to
filtration of lines caused by furrow ploughs and in many cases missed the entire
patch containing a crop mark. The comparison of RED, PC1 and the VARI
images is presented in Figure 6.11.

(a) (b) (c)

(d) (e) (f)

Figure 6.11: Red channel (a,d), PC1 (b,e) and VARI (c,f) before and after
pre-processing.

6.3.2 Templates

At first, the algorithm was tested with a template of near-exact copy of each
crop mark shape, to make sure the algorithm is correctly implemented. Even-
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tually, the template sizes and shapes became more and more generalized. As
one of the future goals of our research is to automatically detect yet undis-
covered crop marks, the successful detection with a generalized templates in
both shape and sizing is desirable. Therefore, we finally decided to use only
templates of double-ridged rectangles and circles.

The wall ratios of the rectangles was initially very incremental, but even-
tually we realized that the high number of ratios resulted in many duplicates
in regions already retrieved with a different template. For the template sizes
we used, the ratios in the set {0.6, 0.7, 0.8, 0.9, 1.0} were sufficient. Were the
spatial resolution of the crop marks larger in relation to the image size, we
would probably have to employ a higher number of sizes and shapes.

The size of the ridge, or the wall thickness, depends on the type of pre-
processing. Eventually, we settled on the value of 6 pixels (in the original
image size). As explained in chapter 4, this ridge changes only slightly with
the changing template size, depending on the number of phases. In our exper-
iments we used 4 phases for rectangular templates and 3 phases for circular
templates. The total number of scales between the maximum and minimum
template dimensions was set to 40 for both template types.

6.3.3 Singlepass vs. region of interest detection

The algorithm in its final form runs the generalized Hough transform on the
entire input image. Because after filtration many parts of the image are ef-
fectively empty, we developed a method that would first extract regions con-
taining compact structures. Those regions would then be used as the input
to the generalized Hough transform.

The motivation behind this idea is two-fold. First, very large structures
(such as the borders where two fields meet) would be filtered out during this
process and would not be subject to the detection, possibly reducing the false
alarm rate. Second, the resulting detection would be significantly faster, be-
cause for each detected ROI, much smaller than the entirety of the original
image, we could only use templates of the corresponding sizes.

To extract the compact structures, dilation operator with round SE the
size of 15 pixels was applied to the processed image P to connect fragmented
structures. Dominant contours were detected in the image and enclosed in a
bounding rectangle. Rectangles larger than 500 pixels, smaller than 50 pixels
or with side ratio smaller than 0.4 were filtered out. The resulting rectangles
were used to filter out ROIs from the original processed image before the
dilation.

Since the process of ROI detection did not work well on heavily fragmented
crop marks, as it would divide them into two or more separate ROIs, we
decided not to pursue this approach further. Example is shown in Figure 6.12.
The algorithm in its final form runs the generalized Hough transform on the
entire input image.

68



6.3. Template-based detection

(a) (b)

Figure 6.12: (a) correctly filtered crop mark region, Ctiněvesa (b) fragmented
crop mark is divided into multiple regions, Březnoa

6.3.4 Hough accumulator threshold value

The threshold value was strongly dependent on the amount of filtration we
conducted on the input image. For higher value of the threshold the Hough
transform could miss some fragmented or misshapen crop marks. For too low
value the algorithm would lose precision and retrieve too many false positives.
This is known as the precision-recall trade-off. In our case, the goal is to
retrieve as much crop marks as possible, while allowing for a higher rate of
false positives to be retrieved and later filtered out in the classification stage.
Eventually, we settled on the value τ = 1.1 for rectangular template shapes
and blob filtered images for both PC1 and RED input. For circular shapes
τ = 1.0 proved to be a good value for circular crop marks that were almost
fully intact, like the two in site Černouček. The threshold needed to be lowered
to 0.8 to retrieve fragmented shapes like the one in Vražkovb.

6.3.5 Classification

The following section focuses on the discrimination of crop marks of archaeo-
logical significance from mistakenly retrieved locations. Employing the leave-
one-out cross-validation process with the total of 14 sites, the Random Forest
classifier was trained with the following experimentally found parameters:

• The number of decision trees in the ensemble: n estimators = 50

• Maximum depth of each decision tree: m depth = 3

• Positive class importance: class weight = 0.98

Initially, the model was trained on data retrieved by both rectangular and
circular templates. However, the model was better trained with each template
type individually, so the template type feature became obsolete. Presented
below are the results for each type of template.
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Rectangular templates The Table 6.3 contains the numbers of matches
retained by the generalized Hough transform followed by non-maximal sup-
pression. The last column indicates how many sites that contain positive
examples were retrieved, ideally we would want all sites with rectangular crop
marks retrieved. While the processed red channel without the additional blob
filtration retained the most positive examples, the quite random classifica-
tion results showed, that the retained matches were not specific enough to
successfully train the model.

Model Retrieved NFP NTP Sites retrieved
PC1 blob filtered τ = 1.1 140 128 12 9
RED blob filtered τ = 1.1 101 87 14 9
PC1 blob filtered τ = 1.2 26 19 7 6
RED blob filtered τ = 1.2 28 19 9 7

PC1 unfiltered τ = 1.1 103 190 13 8
RED unfiltered τ = 1.1 248 227 21 10

Table 6.3: Rectangular templates: Retrieval rates for the Hough transform.

Circular templates As for the previous case the best results overall were
acquired with the PC1 blob filtered dataset.

Summary The best results in this work were reached with the pre-processing
described in chapter 4 with the additional blob filtration. The PC1 proved
to be a better resource than the red channel. The best case of crop mark
detection before and after object recognition with Random Forest is shown

Model Retrieved NFP NTP Sites retrieved
PC1 blob filtered τ = 0.8 77 59 18 9
RED blob filtered τ = 0.8 65 42 23 10
PC1 blob filtered τ = 0.9 41 29 12 8
RED blob filtered τ = 0.9 36 18 18 10
PC1 blob filtered τ = 1.0 17 9 8 7
RED blob filtered τ = 1.0 16 6 10 7

PC1 unfiltered τ = 0.8 84 61 23 10
RED unfiltered τ = 0.8 54 33 21 10
PC1 unfiltered τ = 0.9 39 25 14 8
RED unfiltered τ = 0.9 27 13 14 10
PC1 unfiltered τ = 1.0 19 9 10 7
RED unfiltered τ = 1.0 9 1 8 5

Table 6.4: Circular templates: Retrieval rates for the Hough transform.
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in its entirety in Figure F.8, Figure F.9, Figure F.10, Figure F.11 and Fig-
ure F.12 for rectangular templates and Figure F.13, Figure F.14, Figure F.15,
Figure F.16 and Figure F.17 in Appendix F, for circular templates. We man-
aged to successfully detect 7 rectangular crop marks with the GHT algorithm
applied with rectangular templates. Using circular templates the algorithm
successfully detected 6 circular shapes, 7 if crop mark in site Březnob could
be considered a circular shape, in addition to few rectangular crop marks.

6.4 Discussion

Throughout the process the thesis completion, the lack of available data was
a known obstacle. For that reason, the commonly used methods of systematic
measurement and statistical evaluation are not applicable. In the following
text the advantages and limitations of the implemented methods are discussed.

6.4.1 Summary

The most obvious limitation of the corner based methods is the fact, that well
defined corners are sparse in our examples of crop marks, but are otherwise
well defined around irrelevant structures such as trees or plough rails. Only
when much of the additional noise was filtered out, by the same pre-processing
sequence used in the template based method, were we able to significantly
lower the amount of retrieved false positives. Even then, the method did not
return very good results, as only the most clearly defined crop marks were
detected. Overall, the OHC algorithm performed slightly better than LHC,
since it was easier to detect just 3 corners per crop mark, however improve-
ments still need to be made in the way the corner orientation is determined.
Overall, the corner based methods are evaluated as unsuitable for the task of
crop mark detection from orthomaps based on our testings.

For the RE algorithm, the introduced compactness measure has shown
good performance discriminating crop marks from other structures in addition
to the original rectangularity and structure size measures. While there is
surely still room for improvement in the classification stage of the method, the
main limiting factor of the algorithm is its detection phase. Unlike the results
reported from the author of the original method, we encountered significantly
more noise in the processed data, than the original paper [6] suggested. The
reason behind it might be that the spatial resolution of our data is much
higher than that of the satellite imagery used in the original. Additionally,
arable land already contains many linear structures by design, be it borders
between two neighboring fields or rails caused by industrial farming methods.

The RE algorithm is, unlike the third proposed method, difficult to gen-
eralize for other shapes than those of imperfect rectangles. In the future, it
may be co-opted for the detection of shapes illustrated in group A2.2. in Fig-
ure 4.10, however it’s usability for the crop mark detection is otherwise limited.
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The GHT algorithm is by a large margin the most successful method pro-
posed in this work. The classifier shows good performance on data retrieved
with a rectangular template and higher accumulator threshold value.

The Hough transform with a circular template, retrieved a significant
amount of rectangular shaped crop marks, which can be mostly attributed
to the lower threshold used on the accumulator value, and requires additional
experiments to be conducted.

In the future, it could be worth to experiment with a greater variety of
template shapes and higher threshold values. While this approach would be
very computationally expensive, it would allow us to attempt the detection of
more uniquely shaped marks, such as are the evenly distributed dots caused
by stake pits visible in site Straškova or the bastion shaped remnants in the
unused site Hoř́ın, as well as significantly fragmented shapes as are the unde-
tected circles in sites Straškovb and Ćıtov.

Unlike the previous methods, the GHT algorithm is not limited to rect-
angular shapes but can be applied to any predefined shape. Our experiments
suggest that the lack of prior knowledge of the exact shape and size of a de-
tected crop mark can be to a certain extent mitigated with a large number of
slightly varied templates, nonetheless, it comes at a price in terms of additional
computation.

6.4.2 Future improvements

The work that was done within the boundaries of this thesis serves more as
a stepping stone for future research than as a standalone and complete topic.
From the proposed methods, only one yielded results promising enough, to
be built and improved upon. However, the experiments were conducted on
an extremely small dataset, with a very limited amount of negative examples.
In future work, the author would plan to extend the dataset to the full area
around Ř́ıp, without site cherry-picking, so that the algorithm can be properly
tested and evaluated on a sufficient amount of data, which was something
that could not be achieved in such a short amount of time. In the meantime,
further development of the implementation process is desirable, as the current
state was created for fast prototyping but not processing of large amounts of
data. Improvements can be also made in further exploration of the effects of
different ratios of spectral bands on crop mark detection, as this work offers
only a very brief introduction into the problematic. Were we able to access
CIR images from a more suitable vegetation season, it is possible the initial
image pre-processing would yield better results.

The initial aspiration that inspired this thesis was the possibility of con-
ducting multi-modal detection on multiple sources of data. As we could not
access enough quality data for this task, the thesis’ scope was significantly
limited. However, because of the popularity of land surveillance and open
data is on the rise, and the gradually decreasing price of high-resolution spec-
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tral and radar sensors, it may be only a question of a couple of years until
more suitable data becomes available. If it will come to that, we intend to
utilize the research and experience gained through the work conducted on this
project.

Until then, the problem with a lack of data may be possibly solved with
data augmentation, which could lead to the possibility of deep learning. This
option was not sufficiently explored in this work and will be the next step in
the author’s work.

6.4.3 Contribution of this work

In conclusion, this work may serve as a proof of concept for the fact that crop
marks have the potential to be automatically detected from publicly available
aerial images. Because we were very limited by the number of positive exam-
ples available to us, more systematic methods of data pre-processing, object
recognition, and evaluation were traded for a very experiential approach to
the task.
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Conclusion

In this thesis, we provided a brief overview of the state-of-the-art methods of
remote sensing and automatic detection in relation to aerial archaeology. We
conducted research into the publicly available data sources and used accord-
ing to our research the most suitable data to construct a dataset. Methods
of image processing, feature extraction, and classification considered for our
task were reviewed and three approaches were designed and implemented. We
experimentally tested each algorithm on our dataset and comparatively eval-
uated their results. The limitations of methods were described and further
discussed. The implemented GHT algorithm showed good performance in the
detection of the crop marks in our limited dataset and as such is evaluated as
the most promising of the presented methods for future improvement. While
we can conclude that crop marks have the potential to be automatically de-
tected from publicly available aerial images, further assessment with a larger
dataset is necessary.
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Appendix A
Basic Notation and Conventions

I grayscale image in function or matrix form

Ic multispectral image in function or matrix form

Ix, Iy derivatives of image I in x, y directions

x, y image coordinates

τ threshold

σ standard deviation

R real numbers

Σ covariance matrix

Ψ Morphological transformation

XC complement of a set X

A \B set of A elements which are not in B

A ∪B union of sets A and B

S(r, θ, l) linear segment of length l, orientation θ and distance r from candi-
date point

G graph

Gc clique in graph G

E(G) set of all edges in graph G

V (G) set of all nodes in graph G

e(u, v) edge between nodes u, v ∈ V (G)

|| . || norm of a matrix
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Appendix B
Acronyms

The following list contains explanation of used abbreviations.

ALS Airborne laser scanning

CIR Color infra-red image

ČÚZK The Czech Office for Surveying, Mapping and Cadastre

DTM Digital terrain model

LiDAR Light detection and ranging

GHT Generalized Hough transform, refers to one of the developed methods

HC Harris corner detector

MFC Morphological feature contrast

NIR Near-infra red

OHC 3-corner based detection algorithm

LHC 4-corner based detection algorithm

RE Rectangular enclosures detection algorithm

RGB Red, green and blue image channels

ROI Region of interest

SE Structuring element

TIN Triangulated irregular network

UAV Unmanned aerial vehicle

WMS Web map service

85





Appendix C
Contents of enclosed flash disk

readme.txt.......................the file with disk contents description
data.....................................the directory with image data
src.......................................the directory of source codes

code........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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Appendix D
Algorithms

Algorithm 2: GHT: New template is generated for each phase.
Input:
· Processed image I,

· number of phases φ,

· max and min template dimensions (a, b),(am, bm),

· list of permissible template rotations r.

· wall thickness t.

Output: Matrix X of feature vectors.
i← 0
coef ← (a−amφ , b−bmφ )
X ← ∅
while i < φ do

temp dim← (a, b)− i ∗ coef
template← createTemplate(temp dim, t)
i← i+ 1
temp dimmin ← (a, b)− i ∗ coef
X.append(runGHT (I, template, r, temp dimmin))

return X
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D. Algorithms

Algorithm 3: Corner based detection: LHC algorithm
Input:
· Image I,

· pre-processed image P contains edges between corners,

· corners - list of detected, each corner defined by coordinates and
orientation as (x,y),

· min length, max length - interval of valid line lengths,

· δr - allowed deviation for line parallelism,

· δp - allowed deviation for line perpendicularity.

Output: Image I with rectangles superimposed in locations of
detected crop marks.

valid lines← ∅, parallel lines← ∅
foreach C1, C2 ∈ corners do

if dist(C1, C2) ∈ [min length,max length]
and edge (C1, C2) exists in P then

valid lines← (C1, C2)

foreach A, B in valid lines do
if |angle(A,B)| < δr or |angle(A,B)| − 180◦ < δr then

parallel lines← (A,B)

for (A,B) in parallel lines do
for (C,D) in parallel lines \ (A,B) do

if lines share all corners then
if 90◦ − δp < |angle(A′, B′)| < 90◦ + δp foreach
A′ ∈ (A,B), B′ ∈ (C,D) then
I ← rectangle(A,B,C,D)

return I
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Algorithm 4: Corner based detection: OHC algorithm
Input:
· Image I,

· pre-processed image P contains edges between corners,

· corners - list of detected, each corner defined by coordinates and
orientation as (x,y,o),

· min length, max length - interval of valid line lengths,

· δp - allowed deviation for line perpendicularity,

· δd - allowed deviation for corners on diagonal.

Output: Image I with triangles superimposed in locations of
detected crop marks.

valid lines← ∅, perpendicular lines← ∅
foreach C1, C2 ∈ corners do

if dist(C1, C2) ∈[min length, max length]
and 90◦ − δp < |C1.o− C2.o| < 90◦ + δp
and edge exists in P then

valid lines← (C1, C2)

foreach (C1, C2), (C2, C3) in valid lines do
if 180◦ − δd < |C1.o− C3.o| < 180◦ + δd then

I ← ((C1, C2), (C2, C3))
return I
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Appendix E
Sites
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E. Sites

(a) Černouček (b) Straškova

(c) Ctiněvesa (d) Ctiněvesb

Figure E.1: Positive examples: part 1/3
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(a) Ledčice (b) Březnoa

(c) Ćıtov (d) Vražkova

Figure E.2: Positive examples: part 2/3
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E. Sites

(a) Březnob (b) Vražkovb

(c) Straškovb

Figure E.3: Positive examples: part 3/3
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(a) (b)

(c) (d)

Figure E.4: Negative examples.
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E. Sites

(a) Hoř́ın (b) Nechanice

(c) Rakovice (d) Třeboutice

Figure E.5: Unused sites.
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Appendix F
Experiments

(a) (b) (c)

(d) (e) (f)

Figure F.1: Color extended Harris corner detector: (a,d) RGB, (b,e) ratio
color space (corners projected onto RGB image), (c,f) opponent color space.
Threshold for corner selection is set to 0.
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F. Experiments

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure F.2: RE classification results: PC1 input with class weight parameter
set to (a) .99 (b) .98 (c) .95, Part 1/3
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure F.3: RE classification results: PC1 input with class weight parameter
set to (a) .99 (b) .98 (c) .95, Part 2/3
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F. Experiments

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure F.4: RE classification results: PC1 input with class weight parameter
set to (a) .99 (b) .98 (c) .95, Part 3/3
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure F.5: RE classification results: RED input with class weight parameter
set to (a) .99 (b) .98 (c) .90, Part 1/3
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F. Experiments

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure F.6: RE classification results: RED input with class weight parameter
set to (a) .99 (b) .98 (c) .90, Part 2/3
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure F.7: RE classification results: RED input with class weight parameter
set to (a) .99 (b) .98 (c) .90, Part 3/3
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F. Experiments

Figure F.8: GHT with rectangular templates: PC1 blob filtered dataset before
(blue) and after (red) classification.
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Figure F.9: GHT with rectangular templates: PC1 blob filtered dataset before
(blue) and after (red) classification.
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F. Experiments

Figure F.10: GHT with rectangular templates: PC1 blob filtered dataset
before (blue) and after (red) classification.
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Figure F.11: GHT with rectangular templates: PC1 blob filtered dataset
before (blue) and after (red) classification.
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F. Experiments

Figure F.12: GHT with rectangular templates: PC1 blob filtered dataset
before (blue) and after (red) classification.
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Figure F.13: GHT with circular templates: PC1 blob filtered dataset before
(blue) and after (red) classification.
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F. Experiments

Figure F.14: GHT with circular templates: PC1 blob filtered dataset before
(blue) and after (red) classification.
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Figure F.15: GHT with circular templates: PC1 blob filtered dataset before
(blue) and after (red) classification.
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F. Experiments

Figure F.16: GHT with circular templates: PC1 blob filtered dataset before
(blue) and after (red) classification.
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Figure F.17: GHT with circular templates: PC1 blob filtered dataset before
(blue) and after (red) classification.
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