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Abstrakt

Tato diplomová práce se zabývá problematikou IoT malwaru a možnostmi jeho
detekce v poč́ıtačových śıt́ıch na úrovni monitoringu śıt’ových tok̊u. V práci
identifikujeme kĺıčové aspekty chováńı IoT malwaru a oddělěně prezentujeme
možnosti jejich řešeńı. Práce navrhuje nový př́ıstup pro detekce nakažených
zař́ızeńı za použit́ı kombinace śıt’ových indikátor̊u. Navrhovaná metoda byla
implementovaná ve formě softwarového prototypu, schopného zpracovávat
reálný śıt’ový provoz v NEMEA systému. Finálńı řešeńı bylo vyhodnoceno
na anonymizovaných záchytech a aktuálńıch vzorćıch malwaru.

Kĺıčová slova IoT malware, botnet, monitorováńı śıt’ových tok̊u, C&C ko-
munikace, detekce anomálíı
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Abstract

This master thesis deals with the problematics of IoT malware and the pos-
sibilities of its detection in computer networks using flow-based monitoring
concepts. We exhibit solutions for each of the identified critical aspects of
IoT malware network behavior separately. Furthermore, we propose a novel
method to discover infected devices using a combination of network indicators.
The proposed detection method was implemented in the form of a software
prototype capable of processing real network traffic as part of the NEMEA
system. The final solution was evaluated both on anonymized captures and
up-to-date malware samples.

Keywords IoT malware, botnet, flow monitoring, C&C communication,
anomaly detection
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Introduction

Internet of Things (IoT) is becoming incredibly popular even in the consumer
sector. Data [1] collected from 16 million user-initiated network scans show
that 71 % of North American households and 57 % of Western European
households have an IoT device. The majority of recognized devices imple-
ment a service on top of TCP or UDP transport protocols, leading with UPnP,
HTTP, and mDNS. Additionally, 7.1 % of the devices allow Telnet communi-
cation. Sadly, widespread brands of consumer-end IoT devices often comprise
significant security vulnerabilities.

Low-security standards, weak default credentials, and unpatched remote
code execution vulnerabilities lead to the rapid spread of IoT malware. Since
many IoT devices build their firmware on top of embedded Linux, we recognize
IoT malware as malicious Linux software targeting particular IoT devices.
Compared to other platforms, IoT malware analysis is still underestimated.
Historically, security companies were focused on other operating systems such
as Windows or Android, having already established anti-malware solutions. [2].

The primary goal of this thesis is to research the network behavior of preva-
lent IoT malware families and apply the acquired knowledge to design a mech-
anism automatically detecting IoT malware presence in computer networks.
We aim to raise the situational awareness of network monitoring operators,
identifying infected hosts, command-and-control (C&C) servers, or ongoing
attacks. The mechanism should be transformed into a software prototype
capable of processing real network traffic in NEMEA – modular, flow-based
network detection system maintained by CESNET.

The thesis is structured into six chapters. Chapter 1 discusses network
security monitoring concepts. It reviews methods of deep packet inspection,
pattern matching, application-layer monitoring, and IP flows. Chapter 2 in-
troduces prominent IoT malware families. Furthermore, it explains the au-
tomated IoT malware analysis procedures, which are later used to identify
critical points of malicious network behavior. Chapter 3 examines publicly
available IoT datasets and describes the process of custom dataset prepa-
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Introduction

ration. Chapter 4 proposes a method to detect infected IoT devices in com-
puter networks, targeting different aspects of IoT malware behavior separately.
Chapter 5 outlines the implementation and deployment of a proof-of-concept
detection system. Finally, Chapter 6 sums up the evaluation results on the
gathered IoT datasets, long benign captures provided by CESNET, and up-
to-date malware traffic supplied by Avast Software.

2



Chapter 1
Network Security Monitoring

This chapter discusses the current principles of network security monitoring
and its applications in network intrusion detection systems. We review tra-
ditional deep packet inspection (DPI) methods executed at the packet level,
introducing the concepts of pattern matching and signatures. After stating
the particular drawbacks of the DPI approach, we examine the monitoring
on the higher-level view of abstraction – IP flows. We describe flow-based
monitoring components, protocols, and recent expansions.

1.1 Deep Packet Inspection

DPI has many uses both in network monitoring and network security. Inter-
net Service Providers (ISPs) and network administrators are concerned about
their network’s efficiency and must implement bandwidth management to limit
certain types of internet traffic. The government may have requirements to see
into traffic for law enforcement and surveillance purposes. Companies must
have a way to enforce internal policies and monitor security incidents [3].
Considering security, DPI is a vital part of many network intrusion detection
systems (NIDS) that deal with application layer information. Utilizing DPI,
we analyze the packet header information and the payload to recognize any de-
sired patterns. We will further consider only open-source DPI NIDS – Snort1,
Suricata2 and Zeek3 – so we can assure ourselves of the applied principles and
algorithms.

1.1.1 Pattern Matching

Stages of a generic DPI architecture are shown in Figure 1.1. The second
to last step, detection or recognition of the packet payload, is distinctive to

1https://www.snort.org
2https://suricata-ids.org
3https://zeek.org/
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1. Network Security Monitoring

packet
capture

packet
decoding preprocessing detect ion act ion

signatures

Figure 1.1: A generic architecture of signature-based DPI system as de-
scribed [5]. Packets are captured, preprocessed, and matched against loaded
patterns. Everything results in the final action specified by the signature –
such as throwing an alert or dropping subsequent packets.

DPI. The basic approach to payload recognition is through sequence match-
ing, where popular matching algorithms such Aho-Corasick are used [3, 4].
Where string detections are not sufficient, regular expressions are typically
used. They are accepted with finite state automata, either non-deterministic
finite automata or deterministic finite automata. However, processing each
packet with regular expressions would significantly limit the system’s through-
put [3].

To speed up the evaluation, DPI engines do not match regular expressions
on all packets. Instead, they adopt a two-stage matching algorithm called
prefilter-based matching (see Figure 1.2. However, as noted by Wang et al. [4],
two major weak points in this approach exist:

• The prefilter-based matching is prone to wrong manual choice prefilter
multistrings. Improperly chosen prefilter string, a string that could be
immensely common in flowing network traffic, will cause that in the end,
most packets will also be evaluated with a subsequent regular expression.

• Two separate tasks – multistring matching and regular expression match-
ing, are redundant to some degree. When a regular expression is evalu-
ated, duplicate matching occurs for the corresponding string keyword.

To address these issues, Wang et al. [4] define a new matching engine
called Hyperscan. Hyperscan removes redundant operations by integrating
string matching as part of regular expression matching. The base technique
of this integration – decomposition-based matching – decomposes patterns into
a string and regular expressions that have to be matched in order. For the
automatic decomposition of regular expressions, the authors used graph-based
decomposition techniques. Moreover, all their algorithms are implemented to
leverage SIMD (Single Instructions Multiple Data) instructions of modern
CPUs. Hyperscan was also open-sourced4 and made available in Suricata and
Snort as an alternative pattern matching engine.

4https://github.com/intel/hyperscan
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1.1. Deep Packet Inspection

cont ent :  " AAA"
cont ent :  " BBB"
r egex:  " AAA[ 0- 9] { 1, 3} BBB"

cont ent :  " ZZZ"
r egex:  " ZZZ\ s+( X| Y) "

" ZZZ"

" AAA[ 0- 9] { 1, 3} BBB"

mult ist ring matching regex matching

" ZZZ\ s+( X| Y) "

" AAA"

signatures

Figure 1.2: Prefilter-based pattern matching [4] – one of available implemen-
tations in Snort and Suricata. In the first stage, engine runs fast multistring
matching (using e.g. Aho-Corasick algorithm). In the second stage, single
regular expression patterns are evaluated.

1.1.2 Signatures

Patterns or signatures describe specific characteristics of network communi-
cation [3, 6]. They can express typical network patterns of attack, malware
C&C channel, or peer-to-peer communication. Signatures can be created ei-
ther manually by domain experts or by using some rule-generating algorithms.
Nevertheless, to produce a new signature, the attack must be first recognized,
and there is a delay between spotting a specific malicious communication the
first time and creating its signature.

Languages for writing signatures tend to be system-specific. Nonetheless,
the format of Snort’s and Suricata’s signatures is similar, and in many cases,
the signatures can be converted from one system to another. Additionally,
their main principles and system architecture are the same. They differ in
lower-level implementations (such as Suricata leveraging multi-threading) [7].
Zeek also accepts its signatures (see Figure 1.3). On the contrary, it is com-
parably less dependent on the traditional ways of writing signatures. Its main
purpose lies in protocol recognition and custom domain-specific scripting lan-
guage [5]. Out-of-the-box, it generates more than 60 logs [8]. Apart from
protocol-related Zeek logs (dns.log, dhcp.log, ftp.log, http.log, etc.),
the most important logs are conn.log (summarizing TCP, UDP, and ICMP
connections), files.log (extracted downloaded files), and signatures.log
(logging matched signatures). The list of logs can be further broadened using
the mentioned Zeek scripting language.

Snort’s and Suricata’s signatures are both separated into a header and
a body. The header contains information about the decided action (rais-
ing an alert or dropping consequent packets), specification of a protocol, IP
addresses, ports, and direction. Suricata, compared with Snort, supports the
recognition of many application-level protocols (that are written in the header

5



1. Network Security Monitoring

signature malware-signature {
ip-proto == tcp
dst-port == 80
payload /.*malware/
event "Found malware string in payload!"

}

Figure 1.3: Zeek signature format allows defining regular expression to search
for particular content sequences.

alert tcp [!10.0.10.0/24, !10.0.20.0/24] any -> any 42 \
(content:"malware"; msg:"Found malware string in payload!")

Figure 1.4: Example signature compatible with Snort and Suricata. The
signature starts with an action, followed by a protocol, and two combinations
of IP addresses and ports. We see here that source IP addresses can also be
specified for example as list of negated IP ranges or with a special keyword
any.

part). The body is composed of several keywords and values. Suricata docu-
mentation [7] specifies separate keywords for each targeted protocol (such as
IP keywords, HTTP keywords, or DNS keywords) and meta-information key-
words (such as an alert message or signature id). Figure 1.4 shows an example
of a simple rule.

1.1.3 Application Layer Monitoring

DPI systems, in theory, are not limited either by the amount or the diversity of
application protocols to support. They are often extended with new protocol
parsers if the corresponding protocol poses valuable information. Popular
baseline choices for many tasks (including malware detection) are DNS, HTTP,
and TLS.

DNS

Domain Name System (DNS) is a mechanism providing names for different en-
tities (e.g., hosts or services) on the network and their translation [9]. Besides
header information, we can dig into four sections of DNS packets: question
section, answer section, authority section, and additional section [10]. The
question section, as the name suggests, describes the question to the DNS
server. Answer section, authority section, and additional section are all lists
of resource records. Each resource record consists of name, type, class, TTL,
length, and data. Eventually, we can filter out the resource record types we

6



1.1. Deep Packet Inspection

are interested in, such as IPv4 and IPv6 addresses (A and AAAA types), canon-
ical names (CNAME type), authoritative name servers (NS type), or additional
text information (TXT type).

DNS information can be used for domain blacklisting, although more in-
volved methods of DNS security were described. For example, in [11], au-
thors describe methodologies to detect botnets’ C&C using DNS query ac-
tivities. Their framework (Botnet Group Activity Detector) extracts both
query features and answer features from respective resource records, applies
lexicographical methods to distinguish text patterns, and finally compares the
domains’ similarities.

HTTP

Hypertext Transfer Protocol (HTTP) is a request-response type of protocol
that manipulates web resources [12]. Resources are addressed by their URI
(Uniform Resource Identifier), which are present in HTTP requests. Apart
from URI, HTTP requests contain request method, HTTP version, headers,
and encoded data [12]. In HTTP responses, we may be interested in the
status code, headers, and encoded data. HTTP monitoring poses benefits
of detecting anomalous User-Agents, malicious requests to vulnerable APIs,
or generic malware data present in HTTP payloads. All of this is usually
addressed by pattern matching mechanisms described earlier in this chapter.

TLS

Transport Layer Security (TLS) allows two endpoints to establish and use
a secure communication channel. This channel should provide authentication,
confidentiality, and integrity. Suppose we neglect the case where the monitor-
ing device intercepts TLS communication and acts as a man-in-the-middle.
In that case, the only part of TLS valid for a DPI system is the handshake
protocol. TLS handshake starts right after TCP three-way handshake, initi-
ated by the client with Client Hello message. The server responds with Server
Hello message if it can accept the client’s set of attributes. After Client Hello
and Server Hello messages, four attributes are agreed upon (protocol version,
session ID, cipher suite, and compression method). Then, the server sends its
certificate. Information up to this point is expected to be examined in a DPI
system.

TLS certificates may be collected and blacklisted if they are linked to ma-
licious activity (similarly to blacklisting IP addresses or domains). Another
method developed by Salesforce is JA3 and JA3S TLS fingerprinting [13],
which they open-sourced in 2017. It builds on the fact that different TLS
applications (clients or servers) may support a different set of attributes for
establishing a TLS connection. These attributes are extracted from Client
Hello and Server Hello messages, serialized, and hashed into JA3 and JA3S

7
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hashes correspondingly. Values extracted from Client Hello messages are ver-
sion, cipher suite, extension, elliptic curves, and elliptic curve point formats.
Values are concatenated into a column-separated string and hashed applying
the MD5 algorithm. The same goes for JA3S, but the values extracted from
Server Hello messages are only: version, cipher suite, and extensions.

1.1.4 Open-source Rulesets

Individual signatures are grouped into bigger rulesets. Rulesets must be fre-
quently updated to address new network security threats. Writing signatures
is a time-consuming task that also requires dedicated personnel to handle
false positives. Hence, it is commonly outsourced, and signatures are bought
like any other security product. We examined open-source Suricata rulesets,
assuming that the results would be similar for competing alternatives in Snort.

The biggest available ruleset is Emerging Threats5. Emerging Threats
ruleset is released by Proofpoint, embodying two different components – ET
PRO (paid feed) and ET OPEN (open-source). The latter is licensed un-
der the BSD license (most of the rules) and the GPLv2 license. It contains
rules for various categories such as malware, phishing, exploits, or malicious
User-Agents. ET OPEN contains in total more than 20 000 rules. The most
frequently used attributes in this ruleset can be seen in Table 1.1. Another
interesting ruleset, SSLBL6, is provided by abuse.ch. They gather information
about malicious TLS connections and produce blacklists for both the certifi-
cate fingerprints and JA3 fingerprints. Their list of malicious certificates is
regenerated every five minutes, updated with the newly acquired intelligence.
Their blacklist can be downloaded in the form of Suricata rules.

1.1.5 Disadvantages of DPI Approach

There exist disadvantages of using per-packet DPI methods in high-speed com-
puter networks. Firstly, DPI methods become problematic when the traffic
is encrypted. We mentioned the use case of monitoring TLS by extracting
information about certificates. Equally, it could be applied to get at least
some insights on the HTTPS traffic. Another approach would be intercepting
HTTPS traffic and effectively conducting a man-in-the-middle attack, pri-
marily feasible only in corporate networks where the company can enforce the
installation of certificates issued by their certificate authorities. We must also
take into account the continuous traffic encryption trend with protocols such
as DNS over HTTPS (DoH) [14] or QUIC [15]. Secondly, on the ISP backbone
with 100 Gbps bandwidth, packet processing software solutions are not viable,
and the processing is often accelerated in hardware using specialized network
interface cards.

5https://rules.emergingthreats.net/
6https://sslbl.abuse.ch/
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rules buffer
22 100 http.uri
8867 pkt_data
4963 file.data
3968 http.method
3418 http.request_body
2605 http.header_names
2353 dns.query
1789 http.user_agent
1234 http.header
859 http.host
499 tls.cert_subject
435 tls.sni

Table 1.1: Most frequent attributes used in ET OPEN Suricata rules. Note
that rules may use combination of attributes.

1.2 IP Flows

The concept of IP flows grants us higher-level views on network traffic, focusing
mainly on header information and meta-information. In comparison with the
DPI approach, which works on a packet level, in flow monitoring, we are
granted an aggregated abstraction called flow. This approach to network
security monitoring leads to a significant reduction of analyzed data [16].

An IP flow is defined as “a set of IP packets passing an observation point
in the network during a certain time interval, such that all packets belonging
to a particular flow have a set of common properties” [16, 17]. Such a set
of properties are commonly denoted as flow key. Typical values of a flow
key are source IP address, destination IP address, source port, destination
port, and IP protocol. This definition might also resemble the description
of a TCP connection, but note that the concept of IP flows was originally
meant as unidirectional – for each direction of traffic “flowing” (from source
to destination and vice versa), there are generated two individual flows [17].
Later, bidirectional flow records were defined for use cases where tracking
directions individually was not feasible. In such a case, modification of the flow
record cache must be made to identify and distinguish forward and backward
directions.

IP flow monitoring is widespread in high-speed computer networks for its
scalable architecture. Two of its necessary components are the flow exporter
and the flow collector. Those two have one-way communication over a sup-
ported flow export protocol. A generic architecture of the flow monitoring
process is described in Figure 1.5.

9



1. Network Security Monitoring

flow exporter
flow exporter

flow exporter
flow collector

packet
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and
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Figure 1.5: Generic flow monitoring architecture as presented in [16, 17]. Flow
exporter (1) captures and observes packets; (2) samples and filters packets if
necessary; (3) updates metered values or creates a new record in the flow
cache; (4) exports flow records over an export protocol. Flow collector pro-
cesses exported flow records coming from a scalable number of flow exporters.
Collected data is further stored and analyzed.

1.2.1 Export Protocols

In 1996, Cisco patented their flow export technology called NetFlow. Despite
now being used heavily for IP network monitoring, it was initially invented
for flow-based switching. Storing flow information in a so-called flow cache
allowed to decrease the time of forwarding decisions as they were only made
for the first packet of each flow. They later found out that the flow cache also
holds valuable information, and they designed NetFlow to export the data
stored inside the flow cache [16].

The two widely adopted NetFlow versions are NetFlow v5 and NetFlow v9,
the latter being a significant extension supporting IPv6, MPLS, VLANs, and
templates. Templates became a way to extend existing data formats and
define custom fields to export. The support of templates can also be found
in the second, more recent, flow export protocol – IPFIX. IPFIX was first
specified in 2008, taking the basis from the NetFlow v9, supporting many new
features such as a definition of structured data [16].

1.2.2 Exporter

Prior to flow exporter processing, there is sometimes considered a separated
packet observation phase, which puts timestamps on individual packets and
eventually does some sampling and filtering. Furthermore, we will assume
that the packet observation is part of an exporter.

In a flow exporter (also known as flow probe), incoming packets are aggre-
gated into flows, and in the form of flow records, their information is stored in
a flow cache. Values of flow records are from a set of elements – IPFIX calls
these elements Information Elements [16]. Traditionally Information Elements
came from the header fields of network and transport layers. Nowadays, In-
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formation Elements are not limited to any ISO/OSI layer (which means flow
security monitoring can also be application-aware similarly to the DPI ap-
proach as it will be further discussed in Section 1.2.4). We already mentioned
that some of the Information Elements are chosen as flow key values. During
packet processing and their aggregation into flows, the hash of the flow key is
calculated and looked up in the flow cache. Afterward, either a new record in
a flow cache is created, or the flow record’s values and counters are updated.

Flow record is exported in the following circumstances [17, 16]:

• Active timeout – The flow is still active, but it becomes longer than the
threshold for the maximum time duration of a flow. The flow record is
exported, and all its counters are reset within the flow cache.

• Inactive timeout – No packets belonging to this specific flow were cap-
tured for a period longer than the inactive (idle) threshold.

• End of the TCP connection – In the case of TCP, the flow record is
exported whenever we see FIN or RST flags, as those signal the termi-
nation of the TCP connection.

• Flow cache memory collision – Flow cache has clearly a limited size, and
recourses may get exhausted. Two different flows might have hash flow
key collisions, and we must either export one of the flow records or solve
it dynamically.

In [16], authors summarized both open-source and commercial flow ex-
porters. Classified them based on supported protocols, their options, flow
cache properties, and application-level awareness. Commercial solutions tend
to aim at high-speed computer networks. Typical network vendors such as
Cisco or Juniper have their commercial solutions. It is also worth mention-
ing Flowmon with their high-performance application-aware probes built on
top of COMBO cards with FPGA boards to support 100 Gbit/s networks.
In the category of open-source exporters, we will be most interested in ip-
fixprobe [18], bidirectional flow exporter, which is part of CESNET NEMEA
system. However, in Section 1.2.4 we will also look at other exporters and
their extensions that have been used in state-of-art flow analysis publications.

1.2.3 Collector

Flow collector receives exported flow records in NetFlow or IPFIX format. It
preprocesses the incoming flow data and stores them or sends them for further
analysis [16]. CESNET ipfixcol2 [19] is an implementation of a collector used
in the NEMEA system. It can process both NetFlow and IPFIX and is highly
extensible by plugins. As its preprocessing, it can anonymize IP addresses in
flow records. It allows four storage formats: (1) FDS (Flow Data Storage) file
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format for long-term storage, (2) JSON format, (3) Infstore (nfdump compat-
ible) format, and (4) UniRec. The last one is used throughout all plugins in
the NEMEA framework.

1.2.4 Extended IP Flows

We mentioned that NetFlow v9 and IPFIX both support templates. Thanks
to this template architecture, we can extend the basic functionality and infor-
mation contained within the exported flow records. RFC 5102 [20] describes
many properties of the IPFIX information model. Apart from apparent IP
and transport header fields, timestamps, and exported configuration; RFC
categorizes:

• Derived packet properties – Information Elements derived from individ-
ual packets. Namely, it is IP payload length (packet length starting after
the IP header), next hop IP addresses, BGP information, and MPLS in-
formation.

• Min-max flow properties – Results of minimum or maximum aggregate
functions computed over all packet properties – minimum and maximum
packet lengths, minimum and maximum TTL, etc.

• Per-flow counters – Integer values classified either as running counters
or delta counters. Delta counters are later being zeroed out after each
exporting process. Examples of counters are the total number of all
packets, delta counter of all packets, the total number of SYN packets,
the total number of PSH packets, etc.

It may also be desirable to extend flow monitoring to the application level.
Indeed, making the monitoring aware of selected application protocols grants
us additional valuable visibility and allows us to use known DPI techniques
in the aggregated flow-level view. However, extensions of IP flows are not
unified, and several open-source flow monitoring projects exist that extend IP
flows in their own way.

Cisco Joy [21] aims to help with data analysis in networking research and
security monitoring. It extracts data features and represents the features in
JSON format. It incorporates sequences of packet lengths and arrival times,
estimation of a byte probability distribution, and entropies. For application-
level protocols, it analyzes DNS (domain names, addresses, TTLs), TLS (ci-
pher suites, server certificate strings), and HTTP (header information plus
the first eight bytes of HTTP payload).

Already mentioned CESNET’s implementation of a bidirectional flow ex-
porter, ipfixprobe [18], extends IP flows through a plugin system. Each plugin
inherently also carries the basic fields of source and destination information
(MAC addresses, IP addresses, ports), timestamps of the first and the last
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packet, and, for both directions, number of packets, number of bytes, and
TCP protocol flags. Analogously to Cisco Joy, it can export sequential in-
formation about the first n packets. Its PSTATS plugin exports a sequence of
packet sizes, a sequence of timestamps, a sequence of packet directions, and
a sequence of TCP flags. Similar to Cisco Joy’s estimation of the distribution
of packet sizes, ipfixprobe can export histograms (using PHISTS plugin) of
packet sizes and packet inter-arrival times. From application-level protocols,
it supports DNS, TLS, HTTP, NTP, SIP, SMTP, SSDP. Moreover, it is being
actively developed (in the time period of writing this thesis, at least three new
plugins were released).

Another representant of bidirectional flow exporters is YAF [22] (Yet An-
other Flowmeter). Apart from some shared features with the previously de-
scribed exporters, YAF can calculate the entropy of the first n bytes of the
payload, recognize and label some specific applications. Besides, the applica-
tion recognition can be extended through regular expressions.

1.2.5 Flow-based Statistical Features

As mentioned for Cisco Joy and ipfixprobe, IP flows can carry generic val-
ues representing analytical information such as histograms of bytes or any
time-related information. From this information, we can extract features in-
dependent of our ability to understand the application layer, gaining insights
by eventually applying statistical or machine learning methods. Therefore, it
is also applicable to the analysis of encrypted traffic where traditional DPI
methods fail.

Authors of [23, 24] proposed a flow-based classification method for the
analysis of encrypted VPN and Tor traffic. In both cases, they were us-
ing only time-based features. Their features are generated from bidirectional
flows, where the direction is determined by the direction of the first incoming
packet. They compute mean, minimum, maximum, and standard deviation for
packet inter-arrival times (separately for arrival times of the forward traveling
packets, backward traveling packets, and all packets neglecting the direction).
They monitored active and idle states of the flow and computed their ratios.
Finally, they computed some fixed-time statistics such as the number of pack-
ets per second and the number of bytes per second. Their tool for flow-based
feature extraction, CICFlowMeter, is publicly available on GitHub7. In [25],
authors were training deep autoencoders for botnet anomaly detection based
on similar features. Furthermore, they added features calculated from packet
sizes and calculated correlation coefficients to address traffic periodicity. Sim-
ilar features were also used by authors of [26] used this approach to monitor
C&C traffic, showing that time-based features can distinguish C&C flows from
other background flows.

7https://github.com/ahlashkari/CICFlowMeter
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Chapter 2
IoT Malware

Malware (malicious software) is software generally causing harm, developed for
financial profit, cyber espionage, disruption, or educational purposes [10]. We
can distinguish malware based on its behavior into categories such as viruses,
worms, or backdoors. In the world of IoT malware, the dominating type of
malware is a botnet [2]. Botnets intend to create a large network of infected
devices (called bots or zombies), which are then controlled by a so-called
command-and-control (C&C) server [27]. Attackers manage C&C servers,
allowing their operators to send commands for individual actions. Botnet
implementation differs on the level of available commands, their functional-
ity, and the type of communication infrastructure. The two most common
purposes of IoT botnets are distributed denial-of-service (DDoS) attacks and
cryptocurrency mining. The range of desired behavior can be often extended
since it is practical for attackers to implement botnet commands to download
and execute any other payload. Infrastructure-wise, botnets can use existing
communication channels as a C&C (such as IRC); or implement their own
communication protocol – either client-server or peer-to-peer. This chapter
focuses on the history, development, and current state of IoT malware, its
analysis, and critical aspects of its network-related behavior.

2.1 IoT Botnet Families

The first large-scale comprehensive study of IoT malware was carried out by
researchers from Eurocom and Cisco [2] in 2018. The study researched more
than 10 000 unique malware samples using static and dynamic analysis. It
showed that although IoT malware is not as complex as Windows malware,
it is slowly adopting more advanced techniques. The samples are commonly
packed with UPX or its modifications. Moreover, reverse engineers must deal
with multiple non-x86 processor architectures (such as MIPS or ARM). Later
study [28] from the year 2020 presented research on IoT malware families
through their code similarity. The authors researched more than 93 000 sam-
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ples, trying to reconstruct malware families’ evolution and mutual relation-
ships. All samples were submitted to VirusTotal and labeled with AVClass
(a labeling tool to determine the most likely family name based on antivirus
detections). Their data shows that the three most dominating families are
Tsunami, Gafgyt, and Mirai. Further, we shortly introduce them together
with other important IoT malware families that have been emerging through-
out the years.

2.1.1 Tsunami

Tsunami [29] (also known as Kaiten) is one of the earliest IoT bots, but its
variants are still being deployed today. It is a DDoS capable bot using IRC as
its C&C communication protocol. It is written in C. Its source code is publicly
available online, which supports the development of new variants. They all
share the main functionality (DDoS and the way of contacting the C&C) [28].
Tsunami variants include Capsaicin (which adds new DDoS methods) or Am-
nesia (which adds sandbox detection capabilities).

2.1.2 Gafgyt

Gafgyt [29] (also known as Qbot or Bashlite) is an early DDoS capable bot.
It communicates over a custom text-based C&C protocol. Gafgyt initially
connects to one of the hard-coded IP addresses and announces itself to the
C&C. Then, it waits for incoming commands and executes them when re-
ceived. Gafgyt is also written in C. Variants differ in available DDoS methods
and other minor features such as killing other competitor bots (if the tar-
get device is already infected). Succeeding variants started reusing parts of
Mirai’s source code for IP address generation during the scanning phase [28].

2.1.3 Mirai

Mirai is known for its massive DDoS attacks in 2016, reaching 1 Tbps in
volume [30]. At that time, Mirai botnet had a steady population of up to
300 000 infected devices, consisting of DVRs, IP cameras, or routers [31]. After
several highly effective attacks, the Mirai author publicly shared the source
code on hackforums[.]net. Since then, it became the most influential IoT
botnet, with new variants appearing frequently. Mirai’s source code can be
divided into three parts: bot, loader, and the C&C [31].

The bot part is written in C, providing capabilities to scan Telnet, com-
municate with the C&C, and execute DDoS. The scanning module operates
via raw sockets. Connections are put in a designated connection table limited
to 128 entries by default, storing only the ones with valid SYN+ACK replies.
Interestingly, the scanning can be relatively easily detected because Mirai sets
the initial TCP sequence number equal to the scanned IP address instead of
randomly generating it [32].
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Mirai’s range of scanned (pseudo-randomly generated) IP addresses is lim-
ited by several blacklisted subnets (such as the U.S. Department of Defense).
After finding an open Telnet port, it tries to log in 10 times with randomly
chosen preconfigured credentials. On success, it reports IP address and cre-
dentials to the report server. This information is then used by a separate load
module that infects the devices [31]. When Mirai is connected to the target
device, it sends a specific command sequence to verify if it has access to a valid
Linux shell [32]:

enable
system
shell
sh
/bin/busybox MIRAI

Mirai’s C&C module is written in Golang. It opens two TCP ports for com-
munication with bots, admin, and operators. For bot communication, it im-
plements a simple binary protocol. New bots contact the C&C by sending
four bytes of data indicating ID string. It expects the bot to reach the C&C
again within 180 seconds. Otherwise, it closes the active TCP connection.
Bots regularly send two bytes to the C&C so it can keep track of all active
bots. The same port is also used by the admin, who is presented with a login
screen when initiating connecting with anything other than four bytes. The
second port serves as an API for sending attacks. Users can specify the num-
ber of bots to execute the attack, the attack’s type and duration, type-related
arguments, and target (IP address, list of IP addresses, or an IP range) [33].

2.1.4 Hajime

Hajime [34, 35] was discovered in the same year as Mirai by the Security
Research Group at Rapidity Networks. Compared to Mirai, it is more sophis-
ticated. Rather than using centralized C&C as previously described families,
it builds a peer-to-peer network to control and monitor its bots. Surprisingly,
Hajime has not executed any DDoS attacks, and it was speculated that Hajime
was actually deployed with no malicious intention by a whitehat hacker [35].
Right after infection of the device, it blocks commonly exploited ports so that
no other malware can infect the machine. Hajime has been distributed in two
modules: a peer-to-peer module and an attack module.

The peer-to-peer module adopts Distributed Hash Table (DHT) and
µTorrent Transport Protocol (uTP) protocols used in BitTorrent. Hajime
contains hard-coded bootstrap nodes in the initial config file, where it can
get information about other peers. Further, it searches regularly for new files
to download. In DHT, files are denoted by a key (for example, info_hash
– a hash of torrent’s metadata in BitTorrent). Hajime looks up its files by
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concatenating the current date with a hexadecimal representation of SHA-
1 of the file name, again hashing the concatenated version with SHA-1 [34].
Downloaded configuration and payload files are stored in a custom file format.
Also, Hajime encrypts its uTP communication with the RC4 stream cipher.

The scanning routine is similar to Gafgyt [34]. It spreads by randomly
scanning IP addresses, excluding particular prefixes on the internet. At the
beginning of its development, it was scanning only Telnet with a small dictio-
nary of default credentials. Upon successful connection, Hajime sends a com-
mand sequence similar to Mirai [34] to verify access to the Linux shell. The
scanning module was later being extended (remember that Hajime had an
opportunity to update individual parts of the botnet through the downloaded
configuration) to exploit CVE-2015-4464, CVE-2016-10372, CVE-2018-10561,
and CVE-10562.

2.1.5 Hide and Seek

In 2018, researchers from Bitdefender discovered another peer-to-peer botnet
called Hide and Seek [36, 37]. With its worm-like behavior, it was reported to
account for more than 30 000 infected devices [38], although now the botnet
does not seem to be active. It implements a custom peer-to-peer protocol.
Again, the bot can be divided into a peer-to-peer module and an attack mod-
ule.

Upon start, Hide and Seek either opens a random port or the one specified
via command-line arguments. The bot uses UDP to communicate a predefined
set of messages (see Table 2.1 for a summary of the supported messages). The
originally described binary came with 14 hard-coded IP addresses (12 of them
located in South Korea) as a predefined set of initial peers. New peers are
discovered by sending a peer request (˜ message). Target will randomly pick
a peer from its peer list and reply with a peer response (ˆ message). The
bot acquires information about configs by sending a config version request
(h message) to other peers. After receiving a reply (H message) with a larger
version value, it queries its peers for new data (m and y messages). Then, it
receives the requested data (Y message), verifies it with ECDSA, and adds
the data into the config cache (in case the requested file is a new config); or
saves the data to a disk and executes it (in case the requested file is a new
executable).

The scanning routine is similar to Mirai in that manner that it asyn-
chronously sends SYN packets via a raw socket (originally scanning ports
23, 2323, 9527, 80, and 8080) [36]. Interestingly, it implements multiple ap-
proaches to download payload to the infected machine. Firstly, it checks if
commands base64 and echo -e are valid on the scanned target system, and in
such case, the payload can be delivered as a base64 encoded string. Secondly,
it runs HTTP and TFTP servers to host the binaries by itself.
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command description
h config version request
H config version reply
m data request
y data chunk request
Y data chunk reply
˜ peer request
ˆ peer response
O acknowledgement
z report vulnerable device

Table 2.1: Summary of commands supported by Hide and Seek’s custom peer-
to-peer protocol [36, 37].

Later in 2018, Hide and Seek was getting updated with newly discovered
exploits, a persistence mechanism (using /etc/init.d or /etc/rc.d). In ad-
dition, among one of the distributed executables was cryptocurrency miner [37]
(based on the open-source project cpuminer-opt), mining Monero.

2.1.6 Torii

Although not as prevalent as other botnets, Torii demonstrates how IoT mal-
ware can further evolve and what new techniques it can adopt. In 2018,
researchers from Threat Intelligence Team at Avast described a newly aris-
ing botnet [39]. Torii’s victims are infected with a shell script that tries to
discover the device’s architecture and downloads the corresponding payloads
via HTTP or FTP. Torii has two stages. The first stage is a dropper, and its
sole purpose is to install another executable (the second stage) payload. Torii
tries to hide on the system by pseudo-randomly generating its location and
filename on the system. Next, it establishes persistence in six different ways
and executes its second stage.

The second stage has a hard-coded set of C&C domains operating on TCP
port 443. Despite the well-known port, it is not HTTPS traffic but a custom
protocol with multiple encryption layers. Communicated messages are first
encrypted with a simple XOR-based algorithm. Then, multiple messages are
formed into an “envelope” and encrypted with AES-128 with an additional
MD5 checksum to ensure message integrity [39]. Options controlled in the
commands sent by the C&C server are: downloading and storing new files,
executing shell commands, exfiltrating files to the target system, deleting spec-
ified files, and updating the C&C address.
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Figure 2.1: Typical automated malware analysis pipeline. The left side of the
figure shows incoming malware samples from various sources into a file queue
processed by a sandbox system.

2.1.7 Other Variants

Malware researchers frequently report new malware variants that either up-
date or extend the functionality of their predecessors. To comprehend the
concept of evolution and extensions of malware families, we can mention a few
of the variants. For instance, Fbot [40] with similar architecture to Mirai, yet
updating encryption mechanisms; Tor variants of Gafgyt [41] hiding its C&C
communication behind over 100 built-in Tor proxies; or Mozi that used DHT
in the same way as we have seen for Hajime, but alternatively incorporates new
vulnerabilities to scan, and instructions to conduct DDoS attacks, download
payloads, and execute commands.

2.2 Automated Malware Analysis

In the previous section, we talked about several IoT malware families. Anal-
ysis of actual malware samples is undoubtedly a time-consuming task. When
possible, we intent to automate malware analysis tasks to keep up with the
number of incoming malware samples. Automated malware analysis pipelines
incorporate both static and dynamic processing of malware samples, providing
binary, system, and network artifacts in various formats. Figure 2.1 describes
generic parts of the pipeline.

2.2.1 Acquiring Malware Samples

The prerequisite for IoT malware analysis is acquiring actual malware sam-
ples. This is usually achieved by deploying honeypots or by processing var-
ious threat intelligence feeds. Honeypots [42] are systems disguising them-
selves as real production systems (in our case, IoT devices), serving either as
a layer improving a company’s security (to lure adversaries) or as a research
tool. Different honeypots offer us various levels of interaction with adversaries.
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import "vt"

rule new_malicious_elf_cz {
condition:

vt.metadata.new_file and
vt.metadata.filetype == vt.FileType.ELF and
vt.metadata.submitter.country == "CZ" and
vt.metadata.analysis_stats.malicious > 10

}

Figure 2.2: An example of VirusTotal Livehunt rule. Triggering results for
new ELF files submitted from the Czech Republic with at least ten detections
from different antivirus scanners.

The usual way to classify honeypots is into three categories: low-interaction,
medium-interaction, and high-interaction honeypots. One example of an ac-
tively used honeypot project is Cowrie8. Cowrie is a medium-interaction to
a high-interaction honeypot. It emulates SSH and Telnet servers, providing
the adversary with an interactive shell and a simple filesystem. The whole
project is profoundly configurable: (1) the presented (fake) filesystem can be
altered to resemble the actual firmware of a particular device; (2) pre-login
and post-login banners (which may be used to identify the target operating
system) can be modified; (3) users can implement their own shell commands
(stdout responses) available to the adversary; (4) it is possible to predefine
accepted Telnet and SSH credentials.

From a threat intelligence feed standpoint, we must mention a popular
threat intelligence service VirusTotal9 which as its main component offers an
interface to scan potentially malicious files and URLs using more than 70
antivirus scanners. This way, it has extensive input of new malware samples
and allows its users to search (“live hunt”) for specific files by creating YARA10

rules. Using their vt YARA module, it is possible to incorporate VirusTotal
metadata such as detection names, number of detections, or country of origin.
An example of the VirusTotal hunting rule is shown in Figure 2.2.

Finally, there is an option to track peer-to-peer botnets. As was the case
for Hajime, Hide and Seek, and Mozi, researchers were able to understand
the underlying peer-to-peer communication, allowing them to prepare botnet
trackers. A tracker, in this context, is a program that disguises itself as a peer,
a valid infected device joining the network. It then parses captured botnet
commands, configurations, or newly dropped malicious payloads.

8https://github.com/cowrie/cowrie
9https://www.virustotal.com

10https://virustotal.github.io/yara
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2.2.2 Sandbox Analysis

Sandbox is a safe environment to run programs, usually built on top of a virtu-
alization platform and accompanied by additional analysis tools. LiSa (Linux
Sandbox) [10] is a multiplatform sandbox system targeting IoT malware. It
supplies automated static analysis, dynamic analysis, and network analysis of
ELF files. LiSa sandbox’s core consists of minimal Linux images, which are
emulated on five different processor architectures. A malware sample is exe-
cuted inside the Linux image while tracing system calls and recording network
traffic.

From the traced system call activity, we can reconstruct the executable’s
interaction with the system, giving us an overview of executed commands, the
number of processes, data sent to sockets, or files that have been manipulated
(opened, created, or deleted).

Network traffic is recorded in pcap format, which can then be analyzed by
any packet analyzer software (such as Wireshark). Besides, LiSa by itself im-
parts fundamental analysis of pcap files. It outputs statistics about accessed
ports, number of initiated connections with TCP SYN packets; it parses sev-
eral application-level protocols to reconstruct DNS queries, HTTP requests,
IRC messages, and Telnet data [10].

Both static artifacts and behavioral artifacts can be matched with YARA
rules. Well-written YARA rules can serve as a description of a specific malware
family. Additionally, we gain visibility inside the types of executables we are
running and the possibility to label all the output data appropriately.

2.3 Network Behavior

We reviewed what IoT malware families we know and how to get information
about their behavior in an automated manner. This section summarizes our
knowledge about the networking aspect of malware’s behavior. Consequently,
we can proceed with the design of specific detection mechanisms of the said
behavior in further chapters. From a higher-level perspective, a sequence
diagram of typical botnet behavior is illustrated in Figure 2.3. We identified
the major distinct categories we needed to focus on: the C&C communication
and any other control methods, scanning, infection, DDoS, and cryptocurrency
mining.

2.3.1 C&C Communication

Centralized C&C communication typically uses TCP as its underlying trans-
port protocol. Bots establish a connection with the C&C server, and this
connection can be many hours or days long. Bots tend to report themselves
periodically via so-called heartbeat messages. Note that heartbeat messages
do not have reason to change over time, so an isolated view of the messages will
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device file server C&C target

get  payload

init

heartbeat

heartbeat

DDoS command

infect ion

Figure 2.3: Sequence diagram of a typical (in the sense that almost 90 % of
bots are representatives of etheir Gafgyt, Mirai, or Tsunami families) botnet
communication [28]. For clarity, scanning of random endpoints on the internet
is not illustrated.

show low-entropy data with significant directional inter-arrival times. Other
than a heartbeat, bots C&C communication channel transmits bot commands.
The commands can trigger other actions such as scanning or DDoS. Com-
mands’ syntax differs significantly between different malware families and their
variants. Although it is possible to detect bot commands applying signatures
(and many such signatures exist in the ET OPEN ruleset), it is not a scal-
able solution because only minimal program changes are required to avoid
detection.
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2.3.2 Scanning and Infection

Internet scanning by itself is a broad subject. Public community is usually
familiar with two popular projects for port scanning - nmap11, and masscan12.
Using these scanning programs, attackers can quickly get informed about po-
tentially vulnerable devices with open targeted ports in the specified subnets.
Afterward, they will give this information to a custom exploiting module that
tries to infect the device. To merge these two operations into one, attackers
often develop their own scanning modules. They can be implemented as syn-
chronous or asynchronous routines; they might try to scan the whole internet
or try to be stealthy by slow scanning. The routines can be implemented as
part of the bot (introducing worm-like features), or attackers can run separate
scanning modules from their own ad hoc infrastructure.

After the scanning phase, there is an infection phase. The infection effort
shall be represented with many login attempts to Telnet and SSH servers.
Bots typically have predefined dictionaries of default passwords, which can
be adjusted to fit a particular device. Another popular attack vector is via
remote code execution (RCE) vulnerabilities. Malware authors can monitor
newly discovered vulnerabilities in exploit databases13 and adopt the presented
proof of concept exploits into their code. Mainstream botnets, independently
of the family, try to implement a similar (as large as possible) set of exploits
to enlarge the attack vector and further expand their botnet. To reflect the
current state of the exploits, we can take a look at the vulnerabilities exploited
by Mozi botnet [43] (see Table 2.2).

2.3.3 DDoS

Bots start attacking right after receiving the command from the C&C, effec-
tively disrupting the service’s availability if the botnet is large enough and the
target does not have any DDoS mitigation solution in place. Several types of
DDoS attacks are there to choose from, and the bots generally implement mul-
tiple distinct techniques. A flooding attack is the simplest example of a DDoS
attack. Its goal is to occupy the target’s bandwidth so that no legitimate user
can connect to the provided services. Prevalent types of flooding attacks are
UDP flood and ICMP flood because it is practicable to choose connectionless
protocols. Amplification attacks are another method for DDoS attacks, lever-
aging a request-response type of communication, where responses are ideally
much larger than the original request. In this case, an attacker sends spoofed
requests to a so-called reflector. The reflector sees as a source IP address
the DDoS target, sending the response data to it. Lastly, there are types
of DDoS attacks exploiting some specific properties of communication proto-

11https://github.com/nmap/nmap
12https://github.com/robertdavidgraham/masscan
13https://exploit-db.com
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target vulnerability type cve
Vacron NVR HTTP GET 2008-4873
Realtek SDK UPnP SOAP 2014-8361
Netgear R7000 and R6400 HTTP GET 2016-6277
Huawei HG532 UPnP SOAP 2017-17215
D-Link (multiple devices) HNAP SOAPAction 2015-2051
GPON HTTP GET 2018-10562
CCTV DVR (multiple brands) HTTP GET n/a
D-Link (multiple devices) UPnP SOAP n/a
Eir D1000 UPnP SOAP n/a
Netgear DGN1000 HTTP GET n/a
MVPower DVR HTTP GET n/a

Table 2.2: Vulnerabilities exploited by Mozi [43]. All mentioned vulnerabilities
are command injections vulnerabilities allowing the attacker to simply run any
command (conviniently downloading a malware and executing it).

cols. An example of this type of DDoS attack is a TCP SYN attack which
tries to exploit the implementation of a TCP three-way handshake, where the
server may exhaust its resources while waiting for ACK packets to finish the
connection setup [44].

DDoS methods presented in Mirai and its variants are configurable via
attack flags. Botnet operators can specify desired IP or TCP header fields
(such as TTL, TCP flags, or sequence numbers) or payload data. Apart
from generic UDP, SYN, or ACK floods, it can execute several target-specific
attacks, aiming, for instance, at HTTP services by generating many HTTP
requests, DNS servers by generating recursive DNS requests with random
data, Valve game servers by generating UDP packets on port 27015 with
"TSource Engine Query\x00" data [33].

2.3.4 Cryptocurrency Mining

Cryptocurrency mining is one of the ways to monetize an established botnet.
Undoubtedly, the most popular cryptocurrency within cryptomining malware
is Monero (XMR) [45]. Malicious users tend to use Monero for its privacy and
suitability for CPU mining. Monero is using Cryptonote as its Proof-of-Work
(PoW) algorithm. Cryptonote is designed to be more memory-demanding
than Hashcat (Bitcoin’s PoW), making mining on CPUs more efficient (and
less efficient on GPUs) [45].

We discussed that some botnets have the ability to download new executa-
bles and thus extend their functionality. We already mentioned cpuminer-opt
and its usage by Hide and Seek. Another example of an open-source miner
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{
"id": 1,
"jsonrpc": "2.0",
"method": "login",
"params": {

"login": "login",
"pass": "pass",
"agent": "XMRig/6.4.0 (Linux x86_64) libuv/1.38.1 gcc/9.3.0",
"algo": ["rx/0", "cn/2", "cn/r", "cn/fast", "cn/half", ...]

}
}

{
"jsonrpc": "2.0",
"method": "job",
"params": {

"blob": "0e0ec4fca5830675bce6dcfc...",
"job_id": "6423",
"target": "f3220000",
"height": 2331805,
"seed_hash": "51bad5e79425f972406e5826dc21...",
"next_seed_hash":""

}
}

Figure 2.4: Examples of Stratum messages. The upper message, containing
login information, appeared in the first packet of the established connection.
The lower message contains a job specification coming from the pool.

that is often downloaded and executed by the bot is xmrig14.
Rather than mining alone, bots join particular cryptomining pools. In

cryptomining pools, devices share their computational power to have as
a whole a higher probability to mine a new block and get the reward. Few
protocols to distribute work to individual contributors inside the pool exist;
however, at least for Monero, we recognize the popularity of the Stratum
protocol. Stratum uses TCP as its underlying transport protocol, and as
its payload, it sends JSON messages, which are by default sent in cleartext.
Figure 2.4 shows two example Stratum messages.

14https://github.com/xmrig/xmrig
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Chapter 3
Datasets

IoT network security domain lacks a ground truth up-to-date dataset. Prepa-
ration of such a dataset introduces many domain-specific problems [46]. Cre-
ators of the dataset need to choose the form of the data. Datasets can be
captured on the packet level (in the form of pcap), on the flow level, or in
some other form of structured data and metadata. Additionally, authors need
to deal with privacy if the data is not captured in a simulated or strictly con-
trolled environment. Raw data often contains private information and must
be thoroughly anonymized. In the specific case of IoT malware, creators must
also have access to malware samples and an environment to run the samples.
When collecting malware traffic, the environment tends to be artificial and
biased towards malicious data. The perfect dataset [46] would contain both
normal and malicious behavior over a long time. Since attacks are rare events,
the final dataset would be highly imbalanced [47] and the individual classes
would be distributed according to some measured or expected frequency.

3.1 UNSW IoT Traces

In [48], the authors studied the possibilities of machine learning methods con-
cerning IoT device classification tasks. As part of the research, they released
a dataset containing traffic (named by the authors as traffic traces) of 28
unique devices. The devices are divided into six categories: (1) cameras,
(2) controllers and hubs, (3) energy management devices, (4) appliances, (5)
healthcare devices, and (6) non-IoT devices such as laptops and smartphones.
All the devices were interconnected on a single LAN. Their MAC addresses
inherently define the devices’ labels that authors used for classification. The
traffic was captured using tcpdump, and the data is published in the form of
pcaps. Each pcap is 24 hours long, and at the time of writing, the dataset
contained 61 separably accessible pcaps. Further in the thesis, we will refer
to the said data as UNSW IoT Traces dataset.
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We processed the provided pcaps into flows using CESNET ipfixprobe
and labeled all flows as benign, as we do not need to discriminate any devices’
types. Moreover, we filtered out any communication between two devices on
the same LAN. The LAN traffic would not be generally visible by deployed
flow exporters; hence, we are strictly interested in communication with the
internet, possibly going through metering probes.

3.2 Aposemat IoT-23

Aposemat IoT-23 [49] is a dataset prepared by researchers at Stratosphere
Laboratory at CTU. This research group already published another better-
known dataset, called CTU-13 [50], which covered several Windows botnets.
On the other hand, IoT-23 focuses solely on IoT malware families. The
datasets are divided into captures, called scenarios (13 and 23 of them, re-
spectively). Each scenario consists of a pcap capture and other higher-level
data. In CTU-13, data is also represented in the form of bidirectional flows.
In IoT-23, we are given Zeek flows – specifically, modified versions of Zeek con-
nection files containing assigned labels. The main advantage of both datasets
is their length. Because the authors focus on malware’s long-term execution,
each scenario is, on average, several hours long.

The infected device in all IoT-23 malicious scenarios is a Raspberry Pi.
Summary of scenarios mentions several IoT malware families; namely, it is
Mirai, Torii, Gafgyt, Kenjiro, Okiru, Hakai, Hajime, Muhstik, and Hide and
Seek. The devices in benign scenarios are Amazon Echo, Philips Hue, and
Somfy smart lock.

According to the IoT-23 documentation [49], pcap files were manually ana-
lyzed by an analyst. The outcome of the said analysis was a set of rules used to
automate the labeling process. Final labels are presented in Zeek connection
logs. Labels are either generic (attack, benign, C&C, DDoS, FileDownload,
Heartbeat, and PartOfAHorizontalPortScan) or family-specific (Mirai, Okiru,
and Torii). A significant part of the flows is also labeled with a combination
of labels (such as C&C-Torii).

We dug deeper into all the scenarios to validate labeled C&C flows in
which we are primarily interested. We found out that the provided labels do
not match their explanations. One illustration of label inconsistency is the
second biggest scenario, CTU-IoT-Malware-Capture-17. 6834 flows in this
scenario are labeled as C&C-HeartBeat. IoT-23 documentation [49] states
that the C&C label “indicates that the infected device was connected to a C&C
server”, and the HearBeat label “indicates that packets sent on this connection
are used to keep track of the infected host by the C&C server”. However, all
labeled HeartBeat flows are all non-initiated connections, produced by 20 684
TCP SYN packets and 374 TCP RST packets.

The authors of the dataset were aware of this situation, as similarly labeled

28



3.3. Custom Dataset

connections are prevalent in the rest of the scenarios too. In their approach,
they considered unsuccessful connections to an inoperative server as valid C&C
traffic. However, we preferably want to discard all such connections as they,
apart from IP addresses, do not carry any information related to the malware
family. Hence, we first filtered the pcaps for potential C&C connections by IP
addresses and ports taken from the labeled Zeek connection logs; we extracted
successfully initiated connections using tshark; and, finally, we processed the
final pcaps with ipfixprobe.

3.3 Custom Dataset

To supplement the existing datasets, we decided to prepare our custom C&C
dataset. In the following sections, we describe its preparation procedure, so it
is reproducible even for new malware families and can serve as a solid baseline
for upcoming experiments.

3.3.1 Environment Setup

The backbone of our virtualized environment is libvirt15, a robust virtualiza-
tion API. Utilizing libvirt, we can easily create a virtual network for our guest
machines. In our situation, we need to prepare two guests – a C&C server
and a victim device. For the C&C server, we used Debian, but any Linux dis-
tribution having the prerequisite packages needed to run the C&C software
would be suitable. For the victim device, we decided to reuse the guest virtual
machines of the LiSa sandbox.

Setting up Debian under libvirt is a rather straightforward task. Following
the tutorial on Debian KVM wiki pages16, we set up XML configuration for
the C&C guest image. The difference with LiSa’s images is that we also need
to incorporate a separately compiled kernel and filesystem. To do this, we
define the os XML section:

<os>
<type arch='x86_64' machine='pc'>hvm</type>
<kernel>/lab/x86_64/images/bzImage</kernel>
<cmdline>root=/dev/vda</cmdline>
<boot dev='hd'/>

</os>

and the disk section:

15https://libvirt.org/
16https://wiki.debian.org/KVM
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Figure 3.1: Virtual lab environment network diagram.

<disk type='file' device='disk'>
<driver name='qemu' type='raw'/>
<source file='/lab/x86_64/images/rootfs.ext3'/>
<target dev='vda' bus='virtio'/>

</disk>

Configured guest machines are then connected within 10.0.42.0/24 net-
work, with all traffic sourced from this IP range being routed via VPN (see
network diagram in Figure 3.1).

3.3.2 Source Code Acquisition

Now, as we have the environment ready in place, the simplest way to fully
control the malware is to deploy it ourselves. Compared to running malware
samples captured in honeypots or downloaded from VirusTotal, compiling bots
ourselves gives us the power to simulate botnet activity without any harmful
actions. Besides, this way, we can quickly produce valid labels, annotating
bot commands, as we were the ones sending them.

We started by searching for leaked malware source codes. IoT botnet
threat landscape is ruled by script kiddies who tend to brag about their ac-
complishments publicly on the internet, so it does not take much time, and one
may find tutorials for setting up botnets, forum posts, videos, or Instagram
accounts dedicated to selling the botnet usage as a service.

We joined a few of their communities on Discord, started scraping channels
for attachments, and downloaded 70 different malware source codes. They
were all modifications of Gafgyt and Mirai. All released under different names,
advertised in the community as different “sources”. At some point in time,
most of these sources were private modifications sold to other botnet operators,
and they got leaked eventually after the source code was sold to enough people.
Modifications done in the acquired versions are mainly new scanning methods
to leverage publicly known exploits.
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A similar database of leaked botnet source codes was until recently avail-
able at Darknetleaks archive17. Fortunately, we have downloaded everything
present in the archive before its shutdown. Apart from other tools, scanners,
and some database dumps, it hosted 180 malware sources. Approximately the
same content has also been released by the Threatland group (whose Twitter
account got suspended soon after the release) on Github18.

3.3.3 Botnet Deployment

Since we found out that C&C communication is not the subject of modifica-
tions between versions, we did not have to deploy several versions of the same
botnet family. We picked one source from each category (1) Tsunami, (2)
Gafgyt, (3) Mirai. Each of those implements a distinct communication pro-
tocol; Tsunami is an example of an IRC bot; Gafgyt uses a simple text-based
protocol; Mirai implements a custom binary protocol.

Tsunami

To control IRC bots, we must set up an IRC server. Many tutorials dis-
tributed alongside Tsunami variants encourage using UnrealIRCd19, and they
also deliver its configuration files. Other sources distribute only one file (im-
plementation of the bot part) as it is evident that any IRC server would work.
After configuring and starting our IRC server, we must modify the bot source
code to point it there. We changed hard-coded definitions of the destination
port, channel, and server’s domain name within one file. Then, we just com-
piled the bot for the target architecture and transferred it onto the victim
device.

Gafgyt

Gafgyt’s server.c was compiled as-is. Additionally, we prepared login.txt
file to permit our operator to login and control the botnet. client.c must
have a hard-coded IP address of our server, so we changed that. We again
transferred the compiled bot onto the victim device and started the server
providing its arguments (bot port, number of threads, and C&C port).

Mirai

Original post at Hack Forums20 included an elaborate tutorial on how to set
up the bot. We followed the tutorial and configured C&C domain and port
in bot/table.c, which holds xor encoded entries of numerous values used

17darknetleaks[.]ru
18https://github.com/threatland/TL-BOTS
19https://www.unrealircd.org/
20hackforums[.]net
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throughout the program. We can use the included encoding tool to generate
table entries, but it is straightforward to do it by ourselves. Taking a closer
look at the source code, we see that both tools/enc.c and bot/table.c
contain a routine that uses hard-coded four bytes of table_key. The routine
iterates over each byte of our value and applies XOR for each byte of the
table_key. We are unsure if the author was hoping for some false sense of
security, but it is obvious that this routine can be simplified to an algorithm
with a key of the length of only one byte. Afterward, we set up a MySQL
database and created the necessary tables. Finally, we edited the correct
database details in cnc/main.go and we were ready to go.

3.3.4 Network Capture of Different Scenarios

We decided to start the malware in a controlled manner, filtering out its
scanning and exploiting capabilities. We were capturing the traffic in pcap
format using the tcpdump tool during all experiments, later processing them
with ipfixprobe to extract the necessary flow records.

Our dataset should cover most of the notable C&C behavior. We previ-
ously recognized C&C communication as C&C heartbeat and bot commands.
Thus, for each of the three prepared malware families, we define two scenarios
to capture both C&C communication components. Each scenario should have
multiple representatives to express its generic properties. We define a rep-
resentative unit as packets belonging to the TCP connection with the C&C
server within a five-minute time bin. Five minutes were selected because it is
a common value for active timeout inside NEMEA ipfixprobe exporters.

In the first scenario, we imagine the malware running in the background
with no received commands. This scenario includes the initiation of the TCP
connection to the C&C server, which is then continuing for one hour. Thus,
producing 12 representative groups of packets belonging to this scenario for
each malware family.

In the second scenario, we imagine the malware receiving commands from
its C&C server. We produced a representative group per command, per mal-
ware family. Representative groups of the second scenario consist of pack-
ets associated with the current command and heartbeat packets in the back-
ground. The position of command packets among background heartbeat pack-
ets is chosen arbitrarily because, in the real-world scenario, the timing of the
commands is tied to a random human action. Each family supports a different
number of commands. Gafgyt variant we deployed supporting four commands,
Tsunami and Mirai variants supporting both eight commands. Thus, in total,
this scenario has 20 representative groups.
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Chapter 4
Design

Previous chapters showed that there are many aspects of both network infras-
tructure monitoring and network behavior of IoT malware that must be taken
into account when designing any detection system. In this chapter, we first re-
view the design objectives that arose from the analysis of network monitoring
principles, applicable not only to the NEMEA system. We then introduce the
basic concepts of our design. We address the most important malware behav-
ioral aspects individually in separate sections. Finally, we propose a method
to detect infected IoT devices in a computer network using combinations of
network indicators.

4.1 Objectives

Motivated by the discussed characteristics of network monitoring and IoT mal-
ware, we state that the designed system should fulfill the following functional
requirements:

• It must be implemented as a flow-based solution, not relying upon exten-
sive packet capture, processing (extended) IP bidirectional flows. The
gravity of IP flow extension shall be defined by the available NEMEA
ipfixprobe plugins.

• It must be tolerant to nuances caused by high-speed network monitoring
infrastructure states. Both early export and direction mismatch must
be considered. Early export causes flows to be exported to the collector
before the configured active timeout because of resource exhaustion or
flow key hash collision. Thus, receiving less data in the exported flow.
Direction mismatch happens because the direction of bidirectional flow
is decided based on the first seen packet, disrupting our sense of which
endpoint initiated the communication.
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Figure 4.1: Top-level design. The proposed detection system receives collected
and aggregated flows. Unrelevant flows are filtered out to target only specific
monitored endpoints. Per device evaluation then happens for each time bin.
The system identifies infected devices and provides indicators to justify its
decision.

• It should be scalable enough to cope with a possibly growing number of
devices in the network.

• It should be appliable to both home network security monitoring and
ISP-level monitoring. Underlying principles must not depend on LAN
visibility.

• It should present interpretable results. Operators should distinguish
which aspect of the device’s behavior caused the alert. They should also
be able to understand the detection mechanism, so they are eventually
able to closely examine false positives.

• It could use statistical information of extended IP flows so that the
designed system introduces future-proof concepts when more and more
network traffic is going to be encrypted.

4.2 Conceptual Design

Figure 4.1 shows a top-level view diagram of our proposed design, compatible
with the stated functional requirements. The detection system is preceded by
a collector and an aggregation module, possibly receiving flows from multiple
flow exporters. We shall time aggregate flows to a uniform length to minimize
the effects of timeouts and flow cache hits. The sole system then consists
of flow filtering and a structure of detection modules that keep individual
devices’ detection results. Results are evaluated per time bin of fixed config-
urable length. The system thus provides a periodic output for each monitored
endpoint. Positive output (device’s infection) is also annotated with a set of
indicators.
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The structure of detection modules intends to target different malware’s
network behavior separately. This way, it is possible to choose an appropriate
technique and dataset for the specific problem. Although detection modules
do not have to build on top of any machine learning nor statistical methods,
we will adopt the terminology used in the machine learning field. Further,
we denote each detection module as a classifier in the form of ŷ = f(x);
ŷ being the predicted class, and x being a classifier-specific feature vector
derived from processed flows. We will stick to only two classes, thus solving
the binary classification problem. In our design, we combine the output of
different classifiers to make the final prediction.

4.3 C&C Communication

Regularity and low entropy of heartbeat messages, short bot commands, and
the fact that the C&C channel appeared to send only a few data over time mo-
tivated us to look at statistical approaches to distinguish C&C communication
apart from normal behavior. To assess our assumption that this communi-
cation can be indeed identified based on statistical information, we derived
a set of candidate features, analyzed C&C and benign traffic, and prepared
and evaluated a baseline model.

4.3.1 Feature Engineering

We derived a set of statistical features for the initial experiments. Derived
features were influenced by the features used for VPN and Tor detection by
Draper et al. [23, 24]. A list of the used features and their categorization can
be seen in Figure 4.2. Computed features are divided into five categories:

1. Basic traffic statistics represent the amount of traffic in bytes and pack-
ets belonging to a flow. Statistics are derived separately for the forward
direction, the backward direction, and the sum of both directions. All
statistics are normalized by the flow’s duration, thus referencing per-
second values.

2. TCP flags statistics provide information about the presence of individual
bits in TCP flags bitfield for the first n packets, their absolute counts,
and their ratios corresponding to all other appearing flags.

3. Packet length statistics express the sizes of the first n packets, producing
minimum, maximum, mean, and standard deviation for the complete set
of n packets and its forward and backward subsets (if any packets of each
direction happened to be in the first n packets).

4. Inter-arrival times statistics are derived from the timestamps of the
first n packets (and their subsets in the same way as for packet lengths
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Figure 4.2: List of derived features used for C&C classification experiments.
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statistics). Consecutive packets’ timestamps are subtracted, giving us
inter-arrival times. For forward and backward statistics, we account
only for consecutive packets in the stated direction. Again, we derive
the minimum, maximum, mean, and standard deviation of these values.

5. Normalized inter-arrival times statistics differ only in the way of rep-
resenting inter-arrival times. Instead of calculating exact inter-arrival
times between consecutive packets’ timestamps, we divide them into
two categories: short and long. Category membership is determined by
comparison with a fixed threshold of five seconds.

Extracted features were analyzed on the instances from our custom C&C
dataset, merged with benign instances from the UNSW IoT Traces dataset.
During data preparation, we first swapped all directions so that the monitored
endpoints act as sources of communication. In all previously analyzed cases
of C&C communication, it was initiated by the bot. This way, we also do
not have to worry about flows’ direction mismatch. In our data, we noticed
a few highly correlated features. Particularly, backward bytes rate, bytes
total rate, forward packets rate, and backward packets rate were all more
than 99 % correlated with packets total rate. Thus, for the model’s training,
the only features kept from the basic traffic statistics were packets total rate
and forward bytes rate. In addition, the maximum of all inter-arrival times
was in our case 99.9 % correlated with the forward inter-arrival times, and
thanks to our way of viewing the traffic with the bot as the source, we kept
only forward inter-arrival times.

4.3.2 Model Selection

Our primary concern for model selection is the model’s interpretability. Al-
though nowadays, there are many popular machine learning techniques based
on neural networks, they act rather like black-box models to their end users.
End users can hardly follow thousands or even millions of mathematical op-
erations and the corresponding learned weights used for predictions [51]. On
the other hand, the models we considered had either a simple mathematical
formulation or other means of extracting the prediction causes, which could
be followed in the case of unexpected behavior. Below, we summarize the
models we chose for experiments and evaluation.

Logistic Regression

Logistic regression is a linear model for binary classification tasks, also extend-
able to multiclass classification through a transformation using, for
instance, the one-vs-rest method. As might be expected, similarly to lin-
ear models for regression, it performs well if the data is linearly separable. In
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the logistic regression model, we first represent our data as weighted sums of
its features [51, 52]:

wTx = w0 + w1x1 + w2x2 + · · ·+ wnxn (4.1)

Consequently, we model the probability of a class by taking the weighted sum
as an argument of the logistic sigmoid function:

φ(z) = 1
1 + e−z

(4.2)

Note that the sigmoid function is a monotone function with limz→−∞ φ(z) = 0
and limz→+∞ φ(z) = 1. Therefore, the probability of target variable y being
equal to class 1 can be written as

P (y = 1|x,w) = 1
1 + e−wT x (4.3)

We compute the weights w by maximizing the log-likelihood function for the
training dataset, using optimization algorithms such as gradient ascent [52].

K-Nearest Neighbors

K-nearest neighbors (KNN) is a simple instance-based machine learning al-
gorithm. Instance-based learning algorithms memorize the training dataset.
In the case of KNN, the training dataset is used for predicting target values
of new instances by finding the closest training instances (neighbors) based
on the chosen distance metric. The predicted class is later determined by the
majority vote of these k neighbors [53, 52].

The choice of the distance metric depends on our instances’ domain. If
our instances are vectors of real numbers, it is common to use Mankowski
distances, resulting, for example, in the Manhattan distance for p = 1 or the
Euclidean distance for p = 2 [52]:

d
(
x(i), x(j)

)
= p

√∑
k

∣∣∣x(i)
k − x

(j)
k

∣∣∣p (4.4)

For the classification of network flows, KNN leads to a natural way of com-
paring observed flows with previously captured, already known, flows. End
users can interpret the classification results if they are familiar enough with
the training dataset since they can be presented with the actual list of an
instances’ neighbors.

Two properties of KNN may discourage us from using it. Firstly, with
a large enough dataset, the predictions get computationally expensive, con-
sidering we have to find neighbors for every prediction. However, we can
consider using some of the existing algorithms for approximate searches, such
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as kd-tree, that try to eliminate this complexity [53]. Secondly, KNN is heav-
ily affected by the so-called “curse of dimensionality”. With more features
(dimensions), the feature space becomes more sparse. In theory, to keep up
with the number of features, we would have to increase the size of our train-
ing dataset exponentially. Techniques for dimensionality reduction like PCA,
which address this issue, are not viable in our case because the original se-
mantics of the computed features would be lost [53, 52].

Decision Tree

Decision trees pose a very intuitive way to predict values. We make predictions
by asking a series of questions represented as a tree, going from the tree’s root
down to the leaf nodes, which carry the final classification labels. In practice,
binary decision trees are used to avoid combinatorial explosion with a growing
depth of the tree. Splitting decisions are made on one feature at a time. At
each split, we can either evaluate if a categorical feature is equal to the splitting
value or compare a real number feature to a splitting threshold [53, 52].

Because the construction of the optimal binary decision tree is an NP-
complete problem [54], in reality, decision tree learning algorithms work heuris-
tically. Generally, we start with all our training data in a single node, recur-
sively finding the best splits according to some improvement measures [53].
Below, we denote two commonly used measures: entropy (IH), and Gini im-
purity (IG) [52]:

IH(t) = −
c∑
i=1

pi log2 pi (4.5)

IG(t) = 1−
c∑
i=1

p2
i (4.6)

We also need to keep in mind the overfitting of the model. Decision tree
construction may lead to deep trees that perform well on the training set but
perform poorly on unseen data. This problem can be addressed by pruning the
constructed tree to reduce its depth or, more commonly, by having hyperpa-
rameters of the model limiting the splitting procedure (such as the maximum
depth of the tree) [53].

Although simple decision trees do not tend to be the best performing clas-
sifiers, their interpretability poses a significant advantage. We are able to
compose individual decision rules by proceeding from the root node, connect-
ing the splitting conditions with the conjunction operator, down to the leaf
node. We can also determine the feature importances and see which of our
features affect the prediction the most. Nevertheless, interpretability may get
more complicated if the decision tree is too deep and decision rules consider
many features [51].
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Random Forest and AdaBoost

Bagging and boosting are two conventional methods to create an ensemble
of multiple classifiers, random forest representing bagging algorithms and Ad-
aBoost representing boosting algorithms. Random forest builds a collection of
n decision trees. Each decision tree is trained on a subsample of the training
dataset taken randomly and with replacement. Besides, for each node, we se-
lect only d features to consider for the split. The final prediction of a random
forest is then a majority vote of all n decision trees [53, 52].

AdaBoost is an algorithm focusing on leveraging so-called weak learners.
Weak learners overtake easy-to-learn information respecting the problem, of-
ten with only slightly better performance than random guessing. Shallow de-
cision trees (such as decision stumps, decision trees with a depth equal to one)
are typical examples of weak learners. AdaBoost proposes that a linear com-
bination of differently focused weak learners can result in a well-performing
classifier. This is achieved using an iterative algorithm while manipulating the
distribution of weights for dataset instances. We start with a uniform distri-
bution. At each iteration, one weak learner is trained on the weighted dataset.
Then, we recompute the weights, and we put more emphasis on misclassified
instances. The maximum number of weak learners we want to generate is
specified as a hyperparameter. To get the final prediction, we compute the
weighted sum with a coefficients αt = 1

2 ln
(

1
εt
− 1

)
, inversely proportional to

weak learners’ weighted error rates εt [53, 52].

4.3.3 Baseline Model

To validate our set of features and to conduct experiments giving us imme-
diate results, we started with a baseline model. We chose logistic regression
because its simplicity allowed us to have low training times as the model’s
only hyperparameter we tuned was the regularization constant.

We wanted to explore if the proposed classifier can be trained solely on
the C&C instances from our custom dataset described in Section 3.3 so we
prepared a training dataset consisting of 54 instances labeled as C&C flows
and 5046 instances labeled as benign flows. Benign flows were extracted from
the first three days of the UNSW IoT Traces dataset.

Classification tasks of malicious events are typically class-imbalanced prob-
lems. Note that C&C instances accounted for about one percent of the training
dataset, reflecting the rarity of their occurrences in real data. The basic ap-
proach to deal with an imbalanced dataset is to use random undersampling
and oversampling, simply randomly choosing instances from the majority class
that should be removed and instances from the minority class that should be
replicated [55]. For oversampling, instead of replicating existing instances, we
used SMOTE algorithm, which generates synthetic instances by finding the
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nearest neighbors among the minority class and creating a new instance along
a line segment connecting two neighbors in the feature space [55].

The model’s pipeline incorporates SMOTE, feature standardization, and
logistic regression. As already said, we need to tune only the regularization
constant. We set up a routine evaluating multiple values for this hyperparam-
eter. The best hyperparameter was chosen based on the average ROC AUC
in k-fold cross-validation. During k-fold cross-validation, we split the training
datasets k times (in our case five times), use k− 1 splits for training, and the
last split for model evaluation. This procedure is repeated k times until all
splits have taken their round in evaluation part [52].

Thanks to the feature standardization, the absolute values of logistic re-
gression coefficients also represent the feature importances. As we anticipated,
packet length statistics and inter-arrival times statistics accounted for the most
influential features. Figure 4.3 shows empirical cumulative distribution func-
tions for the top six features.

To estimate the performance of the model, we prepared a testing dataset
consisting of 1776 C&C flows extracted from the IoT-23 dataset and 30 422
benign flows extracted both from the IoT-23 dataset and the UNSW IoT
Traces dataset. The merge of benign data was due to the low amount of
benign flows present in the IoT-23 dataset. We used a total of 12 days of
UNSW IoT Traces data (which were all different from the days used during
training).

See that the testing dataset is much larger compared to our training
dataset. Typically, we would like to use a more significant portion of the
data for training. However, we aspired to experiment if the model can per-
form well even though it was trained on a low amount of data (that could be in
the future captured regularly during sandbox analysis). Besides, we would like
to show that the model does not depend on the capture environment since the
training C&C data was prepared in our virtualized environment, and the test-
ing data was captured by IoT-23 creators on real infected devices. Table 4.1
shows multiple performance metrics for this model (for metrics descriptions,
refer to Section 6.1, where we further evaluate other models). The confusion
matrix in Figure 4.4 shows that we recorded 52 false positives (0.17 % of all
benign instances) and 80 false negatives (4.5 % of all C&C instances).

4.4 Anomaly Detection

After C&C traffic classification, we focused on DDoS and scanning detection.
Traffic patterns of scanning and DDoS discourage us from using the similar
flow classification approach described in the previous section. For example,
the scanning behavior will typically produce many flows, consisting of only one
packet. This flow by itself does not provide enough information to tell if it is
malicious or not. We propose a method based on time-series anomaly detection
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Figure 4.3: Empirical cumulative distribution functions showing how the top
six features influencing the logistic regression model can discriminate C&C
and benign classes.

metric value
accuracy 0.995 900
precision 0.970 251
recall 0.954 955
F1 score 0.962 543
ROC AUC 0.976 623

Table 4.1: Calculated performance metrics for the baseline model trained on
our custom C&C dataset and tested on the IoT-23 dataset.
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Figure 4.4: Confusion matrix of the baseline model. Rows display actual
classes of instances, columns display predicted classes. Percentages in cells
are normalized over the actual classes (rows).

that works on top of aggregated features extracted from the endpoints’ flows
within a certain time window.

4.4.1 Time Series

We plan to monitor four distinct univariate time series. All are derived from
per-endpoint aggregated features. Aggregation happens only for flows in the
outcoming direction; incoming flows are ignored. The four monitored features
are: (1) number of unique destination IP addresses, (2) number of unique
destination ports, (3) total sent packets, and (4) total sent bytes. We use
the number of destination IP addresses to search for horizontal scans. The
same goes for vertical scans with the number of destination ports. Total sent
packets and total sent bytes are meant to cover DDoS attacks.

We investigated the normal behavior of home devices. Examples of nor-
mal behavior for selected devices can be seen in Figure 4.5 and Figure 4.6. In
the said figures, we can observe the periodicity of IoT devices’ communication
compared to user communication on the laptop. Overall, IoT devices gener-
ated much less traffic and were contacting only a few external IP addresses.
Note that Amazon Echo contacted one to four IP addresses per five minutes,
and Belkin Switch was communicating with only one external IP address for
four hours straight.

We are convinced that knowing which device is which and monitoring
only those devices (which apparently have quite predictable behavior) would
make malicious anomaly detection easier. However, we must have in mind that
deployment should also be possible in ISP-level networks, where the monitored
endpoint represents the whole household. On the same dataset, we simulated
this view by aggregating the observed variables of all 19 devices (see Figure 4.7
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Figure 4.5: Unique destination IP addresses time series of four of the devices
present in the UNSW IoT Traces dataset. Unique IP addresses are aggregated
within five-minute time windows.

for comparison). If not said otherwise, we will be using this merged view of
all devices in our examples.

4.4.2 Forecasting

In principle, time series can be decomposed into a seasonal component, a trend
component, and a remainder component. One of the most popular mod-
els for time series forecasting, the Autoregressive integrated moving average
(ARIMA) model, covers the autocorrelations in the remainder component.
The autoregressive (AR) part introduces into the model a linear combination
of previous observations. The moving average (MA) similarly influences fore-
casts using past forecast errors. The integration part describes the degree
of the series’ differencing. As its main prerequisite, modeling with AR and
MA requires the time series to be stationary (time-invariant), so to use the
ARIMA model effectively, we need to know the trend levels and seasonality
of the series beforehand and differentiate them, respectively [56].

Achieving stationarity is not feasible because not knowing what device
is monitored, what is the device’s type, or if we can expect any seasonal-
ity. This fact would also complicate the maximum likelihood estimation of
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Figure 4.6: Total sent bytes time series of four of the devices present in the
UNSW IoT Traces dataset. Total sent bytes are aggregated within five-minute
time windows.
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Figure 4.7: Unique destination IP addresses and total sent bytes for the net-
work as a whole. Data was extracted from the first day of UNSW IoT Traces
dataset. Presented view aggregates in total of 19 devices which were part of
the same network during the network capture.
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the ARIMA’s parameters, which in our case must be done online, although
ARIMA can be represented as a state-space or Bayesian model to address the
online estimation. We preferably started with more manageable statistical
methods that could be used effectively for online forecasting with low perfor-
mance and memory footprint. Below, we introduce the considered forecasting
models.

Mean and Standard Deviation

If we can assume that the observations have the normal distribution, it may
be enough to compare the new observation with thresholds computed as the
sample mean (our prediction for the new observation) plus or minus a multiple
of the sample standard deviation. This strategy is sometimes called the three-
sigma rule [57] referring to:

FX(µ+ 3σ)− FX(µ− 3σ) = Φ(3)− Φ(−3) ≈ 0.9973 (4.7)

The detection module could have specified a different desired multiple of the
standard deviation; in our experiments, we used multiples of three and five.
We need to ensure the usage of numerically stable algorithms for incremental
calculation of sample mean and standard deviation. In [58], there are derived
numerically stable recurrent formulae for the mean and variance (this method
is also known as Welford’s algorithm [59]). The final formula for the mean is:

µn = µn−1 + 1
n

(xn − µn−1) (4.8)

For the incremental standard deviation, we first define Sn = nσ2
n. The recur-

rent formula for Sn (derived again in [58]) is:

Sn = Sn−1 + (xn − µn−1)(xn − µn) (4.9)

Finally, we can get the standard deviation as:

σn =
√
Sn
n

(4.10)

Quantiles

Similarly, for arbitrary distributions, we can set a threshold to particular esti-
mated quantiles. Methods for quantile estimation are generally based on one
of the three principles: (1) sampling the original observations using specialized
selection algorithms that try to achieve at most some precision requirement,
storing only a low amount of observations, (2) histogram algorithms with fixed
bins, providing absolute or relative accuracy, (3) leveraging clustering algo-
rithms, where collections of observations are divided into clusters, keeping
only cluster centroids information [60].
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In our design, we chose the t-digest [60] method, which belongs to the third
category. It keeps an efficient data structure estimating the cumulative dis-
tribution function, allowing us to determine the rank-based statistics. During
our experiments, we used 99 and 99.9 percentiles as thresholds.

Exponential Smoothing

Brown’s simple exponential smoothing [56] offers a trade-off between (1) the
next predicted value equal merely to the last observed value and (2) the pre-
dicted value equal to the average value. This trade-off is achieved by com-
puting a weighted average influenced by the smoothing parameter 0 ≤ α ≤ 1:

ŷt+1 = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + · · · (4.11)

written in recurrent form as:

ŷt+1 = αyt + (1− α)ŷt (4.12)

Simple exponential smoothing predicts only the level of time series. Exponen-
tial smoothing can also be extended to incorporate trend (Holt’s exponential
smoothing) and seasonality (Holt-Winters’ exponential smoothing) [56]. Nev-
ertheless, we made use only of the level predictions as a generic outline for
unknown time series. We dynamically compute the threshold based on expo-
nential smoothing prediction intervals as described in [61]. Denoting one-step
forecast error as:

et = yt − ŷt (4.13)

and estimating the standard deviation of forecast errors using the aforemen-
tioned Welford’s algorithm. Assuming the one-step forecast errors (e) have
the normal distribution, the prediction interval is given as [61]:

ŷt ± Zα/2σe (4.14)

Choice of α affects how much weight is assigned to more recent values and how
quickly the weight coefficients decrease looking to the past. Figure 4.8 shows
the thresholding for different values of alpha. We decided to use α = 0.1 to
enlarge the past values’ influence and achieve more smoothed predictions.

4.4.3 Detection Mechanism

Figure 4.9 demonstrates outcomes of the three proposed thresholding methods
on the total bytes sent aggregated within five-minute windows for the first
eight hours. The figure also shows that some of the spikes present in the
normal traffic exceed the thresholds. We considered two approaches to prevent
our thresholding methods from reporting regular traffic as malicious.
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Figure 4.8: Smoothing effects of different values of parameter α for Brown’s
simple exponential smoothing. All dashed series are generated from the
smoothed value plus five prediction error standard deviations.

As a minimal precaution, we combined the dynamic thresholds with a fixed
minimum threshold for each aggregated variable, stating the absolute minimal
values to be considered for an anomaly.

We also changed the granularity of our aggregations. Instead of aggregat-
ing per five-minute time window, we aggregate data five times per one-minute
time window, stating that we want to mark the traffic as potentially malicious
only if we register anomalies in more consecutive one-minute aggregations. In
Figure 4.10, these one-minute aggregation windows are used, and there are no
consecutive observations exceeding the thresholds.

4.5 Signature-based Detection

We recognize that some of the behavioral patterns we want to detect are
strictly deterministic. Moreover, they are often covered by existing projects,
signatures, or protocol parsers. This section briefly shows how we plan to reuse
existing network monitoring and threat intelligence knowledge to generate
other behavioral indicators from extended IP flows. All the following classi-
fiers could be eventually replaced by more complex deterministic or stochastic
methods representing the same indicators.

48



4.5. Signature-based Detection

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00

20000

40000

60000

80000

observations

mean + 5σ

99-quantil

SES + 5σe

Figure 4.9: Total sent bytes aggregated in five-minute time windows. Dis-
playing three different thresholding methods: (1) mean plus five standard
deviations, (2) 99 percentile, (3) Brown’s simple exponential smoothing plus
five prediction error standard deviations.
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Figure 4.10: Thresholding methods computed using one-minute time windows
aggregation. For clarity, the figure displays a close-up view with algorithms
already being in place for three hours.
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4.5.1 DHT

Some peer-to-peer botnets such as Hajime, or recently very prevalent Mozi,
use DHT protocol. Registering the presence of DHT communication can help
us detect these botnets, even though DHT by itself does not indicate a mali-
cious event. Based on the level of IP flows’ extension, we can realize one or
more of the following techniques: (1) detection of port 6881 on UDP transport
protocol, (2) detection of bootstrap node IP addresses, (3) detection of boot-
strap node domain names inside a DNS request, (4) payload inspection. Port
matching does not require us to extend IP flows and can be used to prefilter
the traffic. Besides, bootstrap nodes can be found published in public threat
intelligence feeds or acquired during malware analysis. For example, Mozi has
eight hard-coded bootstrap nodes [43]:

dht.transmissionbt.com:6881
router.bittorrent.com:6881
router.utorrent.com:6881
bttracker.debian.org:6881
212.129.33.59:6881
82.221.103.244:6881
130.239.18.159:6881
87.98.162.88:6881

We decided to continue with the last detection technique – repurposing ex-
isting payload signatures. ET OPEN ruleset has multiple signatures covering
different types of messages present in the BitTorrent DHT protocol. The for-
mat of the messages is described in [62]. Notice that all bencoded21 queries
start with an ASCII string d1:ad2:id20:, and this string is also present in the
available signatures. Thanks to this pattern being present at the beginning of
the first packet of the flow, it is easy to incorporate this detection mechanism
into an extended IP flow-based system sending only the first few bytes of the
first packets’ payload.

4.5.2 Monero Mining

Even though there were already presented machine learning methods to detect
cryptocurrency mining like the one in [63], for the sake of completeness, we
will outline some easy-to-implement detection principles the same way as for
DHT. As the first option, we can monitor domain requests, looking for the
presence of well-known Monero mining pools22. Nevertheless, malware authors
can register domains resolving to the IP addresses of mining pools to mitigate
such detections. More complete public list of cryptomining domains can be

21Bencoding is an encoding format used by BitTorrent [62].
22http://moneropools.com/
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found as part of the CoinBlockerLists23 project. At the time of writing, it lists
162 250 domains.

If we extend IP flows with the first few bytes, we can instead try to de-
tect the underlying Stratum protocol employed for communication between
the miner and the mining pool. ET OPEN signatures implement Stratum
detection by checking the exact subsequences present in the messages like:

|22|id|22 3A|
|22|jsonrpc|22 3A|
|22|method|22 3A 22|login|22|

4.5.3 Tor

Addressing malware variants with C&C servers hidden behind the Tor infras-
tructure, we verify the communication endpoints if any of them is registered
as Tor relay node. Various third-party services provide firewall-friendly lists
of Tor relays. However, some of them filter only Tor exit relays since some
admins want to block the incoming traffic to their services. On the other
hand, we are interested in entry relays, to which Tor clients connect as the
first hop. Fortunately, information about all the relays can be retrieved via
Onionoo24 REST API served by The Tor Project. Using this API, we keep an
updated list of active relays, in which we can search for the flow’s destination
IP address.

4.6 Combining Classifiers

Finally, as we have designed individual classifiers giving us indicators of differ-
ent malicious network traffic aspects, we would like to combine them to make
decisions as a whole. Motivation lies in the chances of lowering the probabil-
ity of false positives – assuming the two classifiers are not correlated, we can
express their joined probability as a product of the original probabilities. In
reality, this assumption presumably does not hold, and the joined probabili-
ties will be scattered somewhere between the original probabilities and their
product, still with a fair chance of improving the accuracy.

4.6.1 Informed Meta-Classifiers

Section 4.3.2 already described some approaches of combining classifiers into
ensembles. Compared to the random forest or AdaBoost, we are in a situ-
ation when we deal with more complicated underlying models, all working
on a different set of features. One possible method to deal with separately
targeted classifiers is stacking, where the outputs of underlying models are

23https://gitlab.com/ZeroDot1/CoinBlockerLists/
24https://metrics.torproject.org/onionoo.html
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Figure 4.11: Proposed way to combine individual indicators to trigger final
detections. Extendible system of n indicators processed by m meta-classifiers.

formed into a feature vector and consumed by a top-level classifier such as
logistic regression [52]. Unfortunately, the data our classifiers are processing
are so diverse that we can not simply prepare a training dataset to train the
top-level classifier.

Instead, since we already reviewed malwares’ behavioral characteristics
and the most prevalent malware families, we will combine classifiers in an
informed manner. Figure 4.11 illustrates the proposed design of combining
acquired indicators. In the design, indicators are processed by a set of custom
meta-classifiers. We propose two types of informed meta-classifiers – weighted
majority voting and Boolean expressions. Overall, this design is extensible so
that other flow-based classifiers could produce more indicators in the future.
Note that thanks to using Boolean expressions as a meta-classifier, classifiers
could also induce inherently benign indicators. In this case, the benign clas-
sifier would inform about a particular type of traffic that previously caused
false positives, and its output would be negated in the corresponding meta-
classifier.

4.6.2 Aggregation

Throughout this chapter, we described classifiers belonging to one of the two
general types (see their comparison in Figure 4.12). The anomaly detection
classifier aggregates features from the incoming flows by itself, and in every
time bin, it produces one indicator. Thus, its output can be processed as
is. On the other hand, C&C classifier and signature-based classifiers consume
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Figure 4.12: Combining two types of classifiers outputs: (1) one result per
time bin, (2) n results per time bin (one for each flow).

flows separately and only produce results for those flows. To unify the results,
we trigger all detections per time bin. Each time bin consists of several flows,
so the results are coming from per-flow classifiers must be aggregated. The
aggregate function should be selected based on the semantics of the respective
classifier. Typical aggregate functions such as minimum, maximum, average,
or count can be used. For the classifiers we designed, we selected the maximum
function. Therefore, the C&C classifier will return a positive result if any of
the endpoint’s flows is detected as a C&C flow.
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Chapter 5
Implementation

This chapter briefly describes the implementation portion of the thesis. The
central part of the implementation is a software prototype of a detection sys-
tem called BOTA (BOTnet Analyzer). BOTA realizes the principles designed
in the previous chapter inside a standalone system capable of processing ex-
tended IP flows produced in the NEMEA infrastructure. BOTA can be de-
ployed inside the NEMEA system or as a standalone tool to analyze both live
traffic or pcap files. Finally, we describe the implementation details and the
interface of a domain-specific library for exploratory data analysis called FET
(Feature Exploration Toolkit), prepared to assist us with data analysis and
feature engineering.

5.1 NEMEA Interface and Modules

NEMEA is an open-sourced framework, and its deployment takes the form
of multiple interconnected modules. Its modular design allows researchers to
prototype new modules without manipulating packet processing, reporting,
or system orchestration. Therefore, as developers, we can focus solely on
the module’s purpose (such as domain-specific filtering, detection, or data
analysis), even if we want to implement the module as a separate program [64].

Communication between modules is happening via the framework’s TRAP
(Traffic Analysis Platform) library. TRAP administers unidirectional inter-
faces. Each NEMEA module can use zero to multiple input and output inter-
faces. Processing starts either from a collector module (ipfixcol2) or directly
from an exporter (ipfixprobe) – depending on the deployment scale. Both
solutions have available outputs in UniRec format. NEMEA core is written
in the C programming language, and NEMEA modules can be implemented
in C, C++, or Python (as these are the languages with TRAP and UniRec
bindings) [64].

Detection modules are a subset of all available NEMEA modules. Their
findings are reported in IDEA (Intrusion Detection Extensible Alert) for-
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{
"Format": "IDEA0",
"ID": "936d03e6-662b-4ff0-bdc8-10238d2bcf45",
"DetectTime": "2021-01-01T14:05:00Z",
"WinStartTime": "2021-01-01T14:00:00Z",
"WinEndTime": "2021-01-01T14:05:00Z",
"Category": ["Intrusion.Botnet"],
"Description": "IoT Botnet",
"Source": [

{
"Type": ["Botnet"],
"IP4": ["62.240.165.127"],

}
]

}

Figure 5.1: IoT botnet alert in IDEA format. Among the mandatory fields,
we report the start and the end of the aggregation window, and the infected
device identification – IPv4, IPv6, or MAC address.

mat [65]. As underlying serialization protocol, IDEA uses JSON. Alerts con-
tain four mandatory fields – format version, ID, detection time, and category.
IDEA defines 12 categories and 41 subcategories. In our system’s implementa-
tion, the findings are reported as Intrusion.Botnet subcategory. Figure 5.1
shows an example of a generated IDEA alert.

5.2 BOTnet Analyzer

One of the main goals of this thesis was to create a software prototype. There-
fore, out of the three options of implementation languages supported by NE-
MEA (C, C++, and Python), we chose Python. Python’s versatility allowed
us to quickly prototype the first solution and experiment with pre-trained
machine learning models and data analysis modules we developed earlier.
In the following sections, we will describe BOTA’s modules and classes, its
deployment, and testing. Additional details of BOTA are provided in the
documentation that can be found either online25 or on the attached medium.

5.2.1 Implemented Modules

The system consists of six modules: collector, monitor, filter, endpoint, clas-
sifier, and anomaly. Representative classes are shown in Figure 5.2.

25https://docs.danieluhricek.cz/bota/
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Figure 5.2: Simplified class diagram, which omits few minor classes. Moni-
tor receives messages from collector, applies configured filter, and distributes
messages to corresponding endpoints. Endpoint forwards messages to the
classifiers based on their type, and applies meta-classification verdict rules.

Collector

Collector class is initialized with a set of TRAP interfaces and a callback func-
tion. It parses UniRec messages with the help of pytrap26 library. Collector
creates a thread for each of the TRAP interfaces, transforming received flow
records into an internal message format. Messages consist of message types
named after the plugin producing the flow record and its data. Additionally,
EOF messages are created to signal the end of the metering process. Collector
maps the flow record’s data is done so that the NEMEA logger (module for
storing flow records in CSV file) output is mimicked. Generated messages are
sent to the callback function in a critical section.

Monitor

Monitor is the main entry point of the BOTA system. Monitor receives mes-
sages and filters them either by IP address or MAC address. It registers the
endpoint if it is the first time it notices the endpoint’s traffic. It keeps track of
time aggregation windows with a fixed predefined interval. After the interval
has expired, it collects classification verdicts from the endpoints and reports

26https://pypi.org/project/nemea-pytrap/
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the results in two formats: (1) IDEA alert format, described in the previ-
ous section, (2) classification detail format. The latter consists of all positive
classification explanations – explanations differ based on the classifier trigger-
ing the decision. Moreover, Monitor synchronizes time between classifiers, as
time-related properties of the traffic may be critical for some of them (namely,
for the time-series anomaly classifier). Note that Monitor keeps track of the
time by inspecting timestamps in the processed flow records and does not
depend on the present time of operating.

Filter

All filtering classes are accessed via their apply method. Four types of filters
are implemented: (1) generic lists allowing the selection of any sortable fields
for prefiltering, (2) MAC address lists to prefilter endpoints on the home
network level where we have data link layer visibility, (3) IP address lists to
select smaller subsets of monitored endpoints, and (4) IP ranges to prefilter
more extensive networks in CIDR format.

Endpoint

IPEndpoint and MACEndpoint are two specializations of the Endpoint class
and are intended to be used with corresponding filtering classes. Endpoint dis-
tributes messages to classifiers according to message types. Tor and Anomaly
classifiers receive the messages generated by the basic plugin, DHT and Stra-
tum classifiers receive messages generated by the idpcontent plugin, and C&C
classifier receives pstats messages. Endpoint gathers classification results from
the underlying per-endpoint classifiers and constructs a verdict deciding the
endpoint’s maliciousness. Current implementation specifies three rules for
positive verdicts: (1) positive result from the C&C classifier and at least one
positive result from any of the Anomaly classifiers, (2) positive result from
the Tor classifier, and again, at least one positive result from the Anomaly
classifiers, (3) positive results from both DHT and Stratum classifiers.

Classifier

Classifiers have a unified interface for passing messages and two common at-
tributes: positive and reason, which represent the positiveness of the deci-
sion and classification explanation, respectively. All five classifier classes are
implemented in this module:

• DHTClassifier employs prefix match on the hexadecimal encoded data
inside idpcontent messages. The reported classification reason consists
of flow key and timestamps.
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• StratumClassifier matches a set of predefined patterns using the Aho-
Corasick algorithm from pyahorasick27 library. Next, the classifier checks
a set of Boolean AND rules to determine which patterns must be matched
together to trigger a positive decision. Apart from flow-related informa-
tion, the decision reason also contains the name of the matched rule.

• TorClassifier examines both source and destination IP addresses. It uses
an IPListFilter initialized with a preloaded list of Tor relays.

• CNCClassifier filters out flows with less than three packets or flows
shorter than 30 seconds. It then extracts features using the Feature
Exploration Toolkit (see Section 5.3) and makes a prediction with a pre-
trained model.

• AnomalyClassifier is a generic implementation for anomaly monitoring.
It is initialized with a message field to be monitored (e.g., bytes or
dst_ip) and an aggregate function (sum or unique). During prediction,
it also takes into account minimum thresholds which are stated in the
configuration file. Time processing is similar to the one present in the
Monitor class – current time is derived from the seen timestamps. The
data is aggregated in one-minute time windows.

Anomaly

Anomaly module contains classes related to time series modeling and anomaly
detection. This module is used by AnomalyClassifier mentioned in the previ-
ously described model. SimpleExpSmoothing is a class implementing Brown’s
simple exponential smoothing algorithm and could be eventually replaced with
any time series model with the same interface. SimpleExpSmoothing class is
using Welford class for online computation of prediction error variances.

5.2.2 Deployment

The main communication interface for BOTA is the same as for other NEMEA
modules – TRAP interfaces. Through them, BOTA can be interconnected
with any existing part of NEMEA. It can leverage the architecture of ipfixcol2
as a flow collector gathering IPFIX data coming from multiple flow probes,
analyze a single network interface using ipfixprobe, or process offline flow
records.

Two scripts were prepared for its demonstration; the first one serves to
monitor live traffic, the second to analyze pcap files. In both cases, scripts
use ipfixprobe to generate flow records, further aggregating pstats records
with NEMEA biflow aggregator. The scripts can also be easily accessed in-
side a provided Docker environment with preinstalled NEMEA and BOTA.

27https://pypi.org/project/pyahocorasick/
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The system accepts a configuration file in JSON format, defining configu-
ration sections for NEMEA, filters, TRAP interfaces, outputs, and models.
For the convenience of analyzing short network captures, a user can specify
prior knowledge about endpoints’. The prior knowledge is then simulated by
generating 300 observations from the Poisson distribution.

5.2.3 Testing

All modules were thoroughly tested. The project contains unit tests for every
class, covering 100 % of code statements. Tests for the Collector class depend
on the NEMEA traffic repeater module to send flow records from testing
TRAP files. Tests were implemented utilizing pytest28 library. Code coverage
was generated by Coverage29 tool. Refer to the provided documentation for
instructions on how to run the tests.

5.3 Feature Exploration Toolkit

During the data analysis process of flows produced by various ipfixprobe plu-
gins, we identified many repetitive tasks. Consequently, we decided to create
an extendable framework that would be helpful for future NEMEA projects.
The resulting framework, called FET (Feature Exploration Toolkit), aims to
minimize the reimplementation of common NEMEA preparation tasks, such
as data visualization, preprocessing, aggregation, or feature engineering.

5.3.1 Explorer

The central component of FET is the Explorer class. Explorer provides an API
similar to other data analysis and machine learning libraries, preprocessing
input data seamlessly. It helps to examine relationships between the target
variables and designed features in a typical exploratory data analysis fashion.
All visualizations are reached utilizing the Seaborn30 library. Apart from
visualizations and graphs, Explorer evaluates correlated features, estimates
feature importances by quickly fitting tree-based models, or grants access to
feature scores by computing, e.g., χ2 statistics.

5.3.2 Feature Modules

Explorer imports modules tied to particular ipfixprobe plugins. For the C&C
classifier, we implemented the pstats module. Pstats module and other mod-
ules for future ipfixprobe plugins have a common interface consisting of:

28https://docs.pytest.org
29https://coverage.readthedocs.io
30https://seaborn.pydata.org/

60

https://docs.pytest.org
https://coverage.readthedocs.io
https://seaborn.pydata.org/


5.3. Feature Exploration Toolkit

• Feature extraction function (extract_features), that processes pan-
das31 DataFrame and adds feature columns either in place or by return-
ing a new DataFrame.

• Exported list of all feature names (feature_cols). The pstats mod-
ule accounts for 48 features; all of them were already described in Sec-
tion 4.3.1.

• Directional processing function (swap_directions), that can either sim-
ulate or handle directional mismatches caused during flow metering.

• Time aggregation function (aggregate), that can aggregate shorter
flows, induced by early exporting of the flows into several minutes long
ones.

FET was adopted by other researchers from Network Monitoring Lab
(NETMON32) at CTU, working on diverse machine learning problems. More-
over, some of the adopters already implemented their own feature modules –
the bstats module for processing flow bursts statistics and the phists module
processing histograms of packet sizes and inter-arrival times. For more details
and examples, refer to FET’s documentation – online33 or on the attached
medium.

31https://pandas.pydata.org/
32https://netmon.fit.cvut.cz/
33https://docs.danieluhricek.cz/nemea-fet
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Chapter 6
Evaluation

This chapter presents the results obtained during the evaluation phase. First,
we define the evaluation metrics used throughout the sections. Then, we revisit
the topic of the C&C classifier and show the performance results of multiple
models trained and tuned on an enhanced dataset. The last two sections
describe the evaluation of the BOTA system as a whole. For the benign
part, we evaluate real-time in CESNET’s network – a national e-infrastructure
operator and an ISP of many Czech academic institutions. Finally, for the
malicious part, we show the detection results of up-to-date malware samples
supplied by Avast Software.

6.1 Performance Metrics

In section 4.3.3, we already worked with a few binary classification metrics
to support our design decisions. The same metrics will be used throughout
this chapter. The direct interpretation classification results can be shown in
a so-called confusion matrix. The binary classification confusion matrix is
a 2 × 2 matrix reflecting the number of instances per actual class and per
predicted class. Displayed values are denoted as true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN) [66].

Prediction accuracy (ACC) is the first assessed metric. Accuracy and its
complementary metric error (ERR = 1 − ACC) define how many percent of
samples were correctly classified or misclassified. Accuracy can be expressed
in terms of TP, TN, FP, FN, as [66]:

ACC = TP + TN

FP + FN + TP + TN
(6.1)

Accuracy can be misleading in the case of highly imbalanced datasets, where
positive instances are rare. Hence, we used accuracy combined with other
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metrics – precision (PRE), recall (REC), and F1-score (coupling both precision
and recall) [66]:

PRE = TP

TP + FP
(6.2)

REC = TP

FN + TP
(6.3)

F1 = 2× PRE ×REC
PRE +REC

(6.4)

Furthermore, solely for the C&C classifier model comparison and hyperpa-
rameter tuning, we used the Receiver Operator Characteristics (ROC) graphs
which visualize the model’s true positive rates with varying decision thresholds
and the derived metric – ROC Area Under the Curve (AUC) [66].

6.2 C&C Classifier

During the previously described design and experiment process, we used a train-
ing dataset consisting of our custom prepared C&C instances and three days
of the UNSW IoT Traces dataset and a testing dataset consisting of IoT-
23 C&C instances, IoT-23 benign instances, and 12 days of the UNSW IoT
traces dataset. To prepare and evaluate the final C&C classification model, we
further extended the dataset with anonymized benign data captured in CES-
NET’s network. The final dataset has a total of 149 270 instances – 147 374
benign instances and 1896 C&C instances. C&C instances account for a little
over one percent of the dataset. Table 6.1 reflects the diversity of the dataset
by capturing the distribution of destination ports.

60 % of the instances were used for training and 40 % for testing. Sim-
ilarly to the preparation of the baseline model, we incorporated a pipeline
involving oversampling with SMOTE, feature standardization, and a classi-
fier. We tuned the hyperparameters in a five-fold cross-validation procedure,
exhaustively searching and generating hyperparameter combinations. The
hyperparameters with the best average ROC AUC were selected. The model
was retrained on the entire training dataset and evaluated on 59 708 testing
instances. Table 6.2 shows the calculated performance metrics for each of
the models. The best performing model was AdaBoost (its confusion matrix
can be seen in Figure 6.1). The random forest also achieved comparable per-
formance. Decision tree and logistic regression both had significantly lower
precision caused by a large number of false positives.
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port count
443 50 096
80 28 243
5228 18 730
8080 7695
5222 6333
993 3939
50443 3838
22 3030
56700 2754
1935 1656

Table 6.1: The top 10 most common destination ports in the final dataset
used for the C&C classifier evaluation. Displayed ports cover 84.6 % of the
flows in the dataset. The remaining 15.4 % are distributed among more than
10 000 destination ports.

classifier accuracy precision recall F1-score ROC AUC
DT 0.989 17 0.531 85 0.982 22 0.690 05 0.985 74
LR 0.993 37 0.652 17 0.984 95 0.784 74 0.989 21
KNN 0.999 63 0.979 70 0.990 42 0.985 03 0.995 08
RF 0.999 80 0.998 61 0.984 95 0.991 73 0.992 47
AB 0.999 85 0.998 62 0.989 06 0.993 81 0.994 52

Table 6.2: Calculated performance metric for the following classifiers: decision
tree (DT), logistic regression (LR), k-nearest neighbors (KNN), random forest
(RF), and AdaBoost (AB).
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Figure 6.1: Confusion matrix of the final AdaBoost classifier.
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property value
flows 9 379 169
packets 481 148 442
packet sizes 229.86 GB
duration 39.163 hours

Table 6.3: Volumetric summaries of the CESNET capture.

positive result count
DHT 543
Tor 303
anomaly (packets) 31
anomaly (bytes) 14
anomaly (dst port) 6
anomaly (dst ip) 2

Table 6.4: Positive results for individual classifiers evaluated on the CESNET
capture.

6.3 CESNET Traffic

To verify if the proposed detection mechanism is viable in real scenarios pro-
ducing a minimum amount of false-positive alerts, we tested the BOTA sys-
tem on long flow captures in CESNET’s network. We selected a /24 subnet of
public IP addresses. Each such IP address can represent multiple endpoints
masqueraded behind NAT. Further properties of the capture are displayed in
Table 6.3. BOTA was able to process all flows in about four hours.

We noticed a total of 899 separate positive classifiers’ results, caused
mainly by µTorrent DHT users and by the presence of Tor IP relays; we ad-
ditionally noticed few positive anomaly results. Specific numbers of positive
results are listed in Table 6.4. We also examined 17 cases when more than one
classifier returned positive results (see Table 6.5 for their enumeration). How-
ever, no such combination of results was consistent with meta-classification
rules; therefore, they did not cause any alerts. The results we analyzed were
correct, and the detection algorithm behaved as expected.

6.4 Avast Malware Captures

Finally, we proceeded with the evaluation on actual malware samples. To
demonstrate the usability of the designed concept on current up-to-date ma-
licious traffic, we limited ourselves only to real-world malware samples that
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combination count
anomaly (bytes) + anomaly (packets) 13
anomaly (dst ip) + anomaly (dst port) 2
DHT + Tor 2

Table 6.5: Combinations of positive results on the CESNET capture. As might
be expected, anomaly results for sent bytes are correlated with the results for
sent packets. The same goes for the results of the unique destination IP
addresses and the unique destination ports.

were active in April 2021. The overall malware evaluation process can be
described as follows:

1. We downloaded an example list of 500 malware files, and their corre-
sponding short-term pcap captures provided by Avast Software. Se-
lected files had at least one hit by any static or behavioral YARA rule
indicating its potential maliciousness.

2. We created a subset of 105 pcaps sufficient for our needs. As might
be expected, not all pcaps contained necessary information – in various
cases, the C&C server was not active at the time of capture since C&C
servers accessed directly via their IP address can have a lifespan of only
a few days.

3. We manually annotated the network behavior present in the pcaps. The
initial analysis of pcaps was done using LiSa sandbox, which also has
the functionality to analyze pcaps, retrieve information about resolved
domains (potential C&C servers, mining pools, or DHT nodes), location
of IP addresses, or scanning anomalies.

4. Annotated pcaps were processed using BOTA’s pcap monitoring script.
We compared the detection results with annotations and manually val-
idated all detection reasons – compared the hosts detected as C&C
servers with the actual annotated C&C servers, confirmed anomaly coun-
ters, and closely inspected all flows detected by signature-based classi-
fiers.

6.4.1 C&C Classifier Results

For the C&C classifier, we got the results from 83 analyses – these 83 out of
105 analyses held active client-server C&C communication targeted by this
classifier. In the stated samples, there were 63 malware variants with binary
C&C protocol, 18 variants with custom text-based C&C protocol, and three
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variants using IRC. We were able to identify some previously described vari-
ants of Mirai and Gafgyt, such as Fbot or Airdropbot.

The classifier correctly detected 77 out of 83 C&C communication flows.
All variants using binary C&C protocols, primarily derived from Mirai, were
correctly identified. For text-based C&C protocols, 16 were correctly iden-
tified, and two were missed. The worst performance was measured for IRC-
based variants with only one positive detection. Nevertheless, we found this
behavior as expected because the evaluated pcaps contained mostly one eval-
uation window. In the case of IRC, the first window holds welcome mes-
sages and initialization compared to the heartbeat messages and commands
we wanted to detect, which would be present in later evaluation windows.

The classifier was able to generalize trained information and detect diverse
communication patterns. Out of 77 correctly identified variants, we observed
42 unique reassembled TCP streams. The most prevalent streams obeyed
the base Mirai implementation. Moreover, the classifier recognized 37 unique
C&C servers. The servers were in 48 pcaps accessed directly via their IP
addresses, and in the remaining 29 pcaps, the malware first resolved a C&C
domain.

Our findings indicate that statistical analysis of inter-arrival times, packet
lengths, payload correlation, or payload entropy is sensitive to TCP congestion
mechanisms, TCP retransmission, and TCP keep-alive packets. Such packets
can be filtered out to unify our view of the captured traffic. As a reference,
we can follow Wireshark’s implementation of TCP sequence and acknowledge
numbers analysis [67]. All of these issues are being resolved directly in the
pstats plugin of ipfixprobe exporter. Compared to the one used in this thesis,
the latest implementation analyzes packet lengths beginning after the trans-
port layer; it already eliminates zero-length packets and TCP retransmissions.
We encountered only one false positive in the whole evaluation dataset, and
it was caused by the handling of repeated flows that used the same port num-
bers. The evaluated version of ipfixprobe aggregated packets strictly by the
flow key, ignoring flow termination by TCP FIN. This particular issue was
also recently fixed, and ipfixprobe can distinguish such separate connections.

6.4.2 Anomaly Results

Scanning or DDoS was present in 95 of the analyzed pcaps. As was previously
mentioned, BOTA accepts the configuration of prior knowledge by stating
λ parameters for observations’ Poisson distributions. The prior configurations,
together with minimum anomaly thresholds, are listed in Table 6.6.

The algorithm correctly identified all anomalies. Besides, in all of the 95
cases, anomalies were reported for multiple observed values. Specific com-
binations of triggered anomalies can be seen in Table 6.7. Furthermore, we
examined how many prediction and threshold anomalies were registered in
consecutive one-minute windows. We configured a 500 seconds monitoring
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property value
λ (dst ip) 5
λ (dst port) 5
λ (packets) 30
λ (bytes) 1000
min threshold (dst ip) 20
min threshold (dst port) 20
min threshold (packets) 500
min threshold (bytes) 10 000

Table 6.6: Configuration of anomaly classifier used for the Avast malware
dataset evaluation. Endpoint represents only one host, with non-frequent
communication.

anomaly combination count
bytes + packets + dst ip 82
bytes + packets + dst ip + dst port 11
bytes + packets 2

Table 6.7: Combinations of positive results from different anomaly classi-
fiers. The most common combination expresses scanning routines. Anomalous
amounts of destination ports were reported thanks to many DHT peers. Two
pcaps triggering bytes and packets anomalies held only DDoS traffic.

observed min max median
dst ip 1008 314 924 20 860
dst port 45 119 75
packets 1481 421 768 27 397
bytes 117 420 21 807 800 1 425 700

Table 6.8: Minimum, maximum, and median of reported anomalous values.
Reported anomalous values are always the maxima of one-minute aggregations
among the overall decision window.

interval in our setup; therefore, anomaly classifiers could process up to eight
one-minute windows. In about 90 % of all reported anomalies, at least five
consecutive time windows exceeded both the prediction threshold (set by the
exponential smoothing prediction interval) and the minimum anomaly thresh-
old.
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6.4.3 Signature-based Classifiers Results

The evaluation dataset carried 10 Monero miners from unspecified IoT fami-
lies with a low number of antivirus detections at the time of evaluation. Their
captured pcaps contained unique TCP streams utilizing the Stratum protocol,
and the Stratum login rule correctly identified all of them. DHT traffic was
generated during the analyses of 11 samples, all belonging to the Mozi family.
All of them produced unique TCP streams, and again, all were correctly iden-
tified by the DHT classifier. None of the evaluated malware samples did use
Tor communication. However, some Tor relay nodes were randomly contacted
as part of the scanning; therefore, the Tor classifier returned a positive result.
This behavior may or may not be desired, and according to our preferences,
we could declare minimum thresholds for the number of packets, bytes, or flow
duration to narrow possible Tor detections.

6.4.4 Meta-Classifiers Discussion

In this thesis, we primarily targeted IoT malware families with client-server
C&C architecture via a meta-classifier incorporating both the C&C classifier
and the anomaly classifier. The evaluation confirmed that this meta-classifier
could be more narrow, leveraging that all positive anomaly results were ac-
companied by at least one more. Similarly, we could require more consequent
positive results for the one-minute windows. Overall, the combinations of
classification results are shown in Table 6.9.

From the resulting combinations, we are able to deduce new meta-classifier
functions. Mozi malware family triggered combinations of DHT and all four
measured anomalies – the anomalous number of destination ports due to its
numerous peers hosted on random ports and the remaining anomalous values
caused by its scanning routine. Generic Monero miners could also be detected
based on the Stratum protocol and triggered anomalies during the scanning.
Such new meta-classifier functions demonstrate the benefits of the proposed
detection architecture that can consume more independent indicators.
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combination count
cnc + anomaly (bytes + packets + dst ip) 52
cnc + anomaly (bytes + packets + dst ip) + tor 16
cnc + anomaly (bytes + packets) 2
cnc 8
dht + anomaly (bytes + packets + dst ip + dst port) 9
dht + anomaly (bytes + packets + dst ip + dst port) + tor 2
stratum + anomaly (bytes + packets + dst ip) 7
stratum + anomaly (bytes + packets + dst ip) + tor 3
anomaly (bytes + packets + dst ip) 6

Table 6.9: Combination of positive results on the Avast malware dataset.

71





Conclusion

This thesis focused on the problematics of IoT malware, analyzing its network
behavioral patterns and detection possibilities in flow-based monitoring sys-
tems. Current available IoT datasets were reviewed and supplemented with
custom C&C data produced in a controlled, virtualized environment. Further-
more, we designed, implemented, and tested the detection methods of various
aspects of IoT malware communication. A novel approach of combining previ-
ously acquired network indicators was presented, illustrating its extensibility
to cover the presence of new malware families. The final implementation is
able to process both live network traffic and network captures, leveraging the
existing parts of NEMEA.

As one of the main contributions of this thesis, we studied machine learn-
ing methods applied to extended IP flows to recognize IoT malware C&C
communication. We justified the feasibility of the proposed methodology and
selected features by fitting a baseline model to the custom C&C dataset, and
evaluating on the considerably more diverse IoT-23 dataset. The baseline
model achieved the accuracy of 99.5 % and the precision of 97 %. It correctly
classified malware families not used during the training phase, successfully
generalizing common aspects of the C&C communication. The final model
was trained and evaluated on parts of the joined dataset consisting of CES-
NET anonymized benign flows, UNSW IoT Traces benign flows, IoT-23 C&C
flows, and the C&C flows coming from our custom dataset. The best per-
forming model was AdaBoost with the accuracy of 99.9 % and the precision
of 99.8 %.

Further, we considered methods for online univariate anomaly detection,
selecting Brown’s simple exponential smoothing as a mere model for the sum of
sent bytes, the number of transmitted packets, unique contacted IP addresses,
and unique destination ports. The implemented generic algorithm utilizing
the models’ predictions correctly recognized anomalies pointing to malicious
scanning, DDoS, and, surprisingly, peer-to-peer behavior of the Mozi malware
family. In addition, both anomaly and C&C classifiers were accompanied by
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signature-based detections, matching on the first n bytes at the beginning of
the extended IP flow.

Our results clearly illustrate the potential of statistical data analysis in
a flow-based environment but also raise the question of how unpredictable
or faulty nuances in network traffic (such as TCP retransmission packets)
should be formally represented. Our findings motivated recent changes in the
CESNET ipfixprobe exporter, changing its definitions and implementation for
packets included in pstats plugin processing.

The extensible architecture of the proposed detection algorithm is open for
future research, leaving space for other indicators to be incorporated. Follow-
ing the same direction presented in this thesis, future studies could investigate,
for instance, the consequences of domain generation algorithms or exploita-
tion of HTTP services. Future research could also possibly dig deeper into
machine learning algorithms for text analysis applied to the first n bytes of
the flow produced by the idpcontent plugin, recognizing the unique properties
of IoT malware-specific application-layer payloads.
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Appendix A
Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BGP Border Gateway Protocol

C&C Command and Control

DDoS Distributed Denial of Service

DHT Distributed Hash Table

DNS Domain Name System

DPI Deep Packet Inspection

DVR Digital Video Recorder

ECDSA Elliptic Curve Digital Signature Algorithm

FPGA Field-Programmable Gate Array

FTP File Transfer Protocol

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IE Information Element

IP Internet Protocol

IPFIX IP Flow Information Export

IRC Internet Relay Chat
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A. Acronyms

ISP Internet Service Provider

JSON JavaScript Object Notation

MPLS Multiprotocol Label Switching

NIDS Network Intrusion Detection System

NTP Network Time Protocol

PCA Principal Component Analysis

RCE Remote Code Execution

SIMD Single Instruction, Multiple Data

SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

SSDP Simple Service Discovery Protocol

SSH Secure Shell Protocol

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TLS Transport Layer Security

TTL Time to Live

UDP User Datagram Protocol

URL Uniform Resource Locator

VLAN Virtual Local Area Network

VPN Virtual Private Network

XML Extensible Markup Language
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Appendix B
Evaluated Malware Samples

sha256
e07b81c2c2dec55e174cb3d50a59cdb0e605f2e64ac345e2b1bf5a20ae2ba38d
1feaa33de1f721891d3f7c9e2b3bb114f6d58205a802697a54be7e4814c4e0c8
2c0e69f96fb5e0eb71e6ad82aa54d1be78230bdbfb4869f0d50ea9624a002b87
3c9c18b43b098cf682d4c5223a582566e3f41293d3eb2c7ce978f66989231794
5444a17585311af11f280c5e064e91e78c270cb65f5c407262231e1e4b63d79c
494028ff917fb035b12104a3e3a930304b258093fc239c7833f99b8d23060b4d
8d5f9a3776a256af2b866799612bb2b3da0b0f07629ebeea16ec5c281eef2daf
31bfb20b0341bf36e7fef79b42b45261c878cbe88c38cef06f6cd58a4695a3e8
f2cd1d0cd5bf18e9b20016c5c578386e3e6fef7b16f74c766d335e78e8fd56c6
d42de972c530191f1a590104f59f5e55ecc7539caaa9693c45b709f4010c69f9
0dc15850d6952be4feb2f94d847a7f4358689ac155fe8cd8a5777772ab2f0312
564b8b112d12aa11225bb996955e0a869094c68b3b76ef1a2391d04d335d91a8
6ddb78a5799609f5ae439a3270e99e1cfb48f6b64a271449c29f9616c00bcd9c
00599ac9c323a6e8f87ecd9fbfe4177cf86e9fb59091644f8053512eea99d6e9
8f3448bc933f62d7f759961cfff976cd815c415fbfdd20c4d330bb33515ce54a
0558a580d1bdcfcf286e3c32b13cb42fdb81ca1fae9fb3f4db03063b28d07e7e
e6ebf6d2a4f171f54c49cdffd4ecdbb11b33a8d7e0a1e50fd63c97366194ee51
4dd3619f08167cabe2633db1cde531c44e3a997f4899e99f7b1d7d117e620394
4e19d1b15c549b8af5e26f0935fc7ced07c6b1eda47909e54f5d2f258b673431
664fd512e89d725b59ee155b3f8be9d43780418b2ef7c3d348e6e393f71f42a0
6ed60a13554666cc3189658e39d80445f02dd7766f222f98534fd375e30ce97b
c82d3546a604b06dc2b7fc810364a976acb2a1046e19d12110fb5772dae690a5
8f6b5f4825a24ce6434ffa1714948b0446273cf21e89b91bf0058fd479b21d28
8aa75fba9ba6816cb369a972df75ede8245d94d176c335451f427374e108607a
88b1d6dfb749136e753ef211a4542adfe0f60e636f44eedfa1593b6a305a6830
660b49db66697858effa367d89ffdba72cf1597eb0e3c8a29d9ca97b99734c07
d04f22f68e83834dd3a62408e87ac050bc1fd0ad5df078c203f41a1ca96e9c82
27aaca0d5fb7efecb8b940ef4a7b9bf621031da90217cc3aa918f22babf9a761
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927e7e925ce806e54936e31c8b3ddd18ffce40aa943d721e0e247c4c550ac54a
10fe7dc5da99cb200ac87a7c9e3141f9d2192e948032e5626bee7cd6f839f11d
eeaf0acc08318f0ac33a91492e4e6a54b6fd22e66bcbd769002e1164c67a7dc6
7345cf757c920b9ef9bcaaff82add6ff188827f442dc0eeee4145a576c1d837a
c9ae5c48e3f10a2a10d79fee0f6b9c2939b689b99ce51615bdef816bf0c1c1ee
72179ea91395cc99c030998885654e81186cf4461739ee1950a7a7d38f0c14ca
09e303e5bff760d22a19f870963f2caed2085ec402b617572ace7604acef8fce
fd0814b9ae83cf0e938efbbddab9a03811ee200bea3b92dc13e1722ab6ce2f21
17b68a6de7e964a6de915dbf26455e3685e5bd4c15d88b1a3aab61af59f5b1b6
eccc80ec056c711a86045324a6672804cd41377b4787b92521ac0c63c4dda3f9
49c1661f9f7a30b46a695633720572c5a644bcb913ff78bf87b1590637ff9fb1
c79a409842a83f2e2348406ee645b7608529bb6c3f81197ba311f8d932d09ffd
fe19a32b0ec4190e4445d1fcfa0949ac0385b3135b57d28d58d4ea98cb632841
dbea421f47b5f28202e3e45e74aafca5a18cfa37ee223cced5b4096ce9108067
3c97e3ea52da050ee8226bfec42b6a4b671aa6c38d0a16c630add523cdaf1bc0
3ea993da057a7fc1915045ffd1a5e49c77cd76e9cec9e0f2c19122b9965aaf6e
80c2e1aeda7e117028b7d3c519d1b5e1a911ef1b2d32dfa8411cdacd02eb239f
8af726da8d2c7d34188405f88f3f5e76803c8133d18bd5ceba8598b6a71c34f6
7b8f1a0f88301d761abed052b6cdc8a03c8ecd63737ce973059473292084f3d4
2ad9e0e6211378fe66479242dcb49ce74259e5fc9ffa6caac99cdd2b9a210088
d5248e90adc8d876521093af82784b8729bf72fbba7e886c2cd39f6b234cbfc0
97c4bee91c006d71052f91675fcd6c8c7db91ef435a61b6228ac1be3900c7730
78f6620d03c9df87bde82ca2445da9567cc84f02439010591a096fa5d662fc69
c1f9c066d5cbadf24d706ca6ce52eaedf8166058782d70f6f708ecd1be89c03b
030b0f2f1b0160140d435fdabb0c3276f122db1cd71775885d68f3127acd2d3d
8c1fac60bf303fad9cb7890f44e7a2a677e8d64c7c0df675cd97a3c8bfeaea16
7d5d1c2ed9dc2abd02d18e53004274392973d83f4e9b1013b4ea2b42c79f2a8e
fd3dd6371448fd73b65e467c2fef4b706102a177d3e52ed70ae272e58d6b01c0
637b84c391530200644ac364643b2db03da85b1ce0b5d916431837aff8270044
61ca2a5ed0add4bcc33e691e4f6e7f055950466a8abcabb38628069a33f86cbd
644a88d243277e377b73eaef7937c9b648328b1a006190cbedd075e4bbeb8835
ea44bf4f22cf5d26461049c3d3f9ea11bc2a7530e6c130402970ff9889294f15
1120cfd12e95f255317459c71c9f743f335482bb193db4afaae5238ae2110357
ed60f735a919a322e0eb135d0940b1f4ac2fbbe1db67bad4a27a5b3c63f8d6a2
4b08c9b9ee0ccdafe880211d9ff92dd0b0be0f452b333b5051a775c2ca01ecde
2a797ebdac7312b3943a241cfd9f176ebd37cea997b5f4c0b0b517e55b5c8928
61248f63c3bd9892c03a8353362ad9d6fc7a4fbc9349a53a4d659c66b0b1dd04
942aaef6466148193a9260117b75b6075ad81b3225fa564e89832429ff1b0f13
b08654590b66a89d94127adaeb6bc11d0bb38a4ec3a7cc60fe8fe46a29a7c638
c7c6b6bba7ba34bef589a686c3b0eb829f2170205bdff38611faf5d9e382e61e
7f5edbd292d9fb88d497a4181ff175fb5df20af38b749d4a9a3aa345e485336d
c92978a9472b12861042ddcc58c143462260a4a1ba1b0aab48bdc6368a2404f4
ed1ce8ed8591cb44d55e2c3c0e0d43721365c33be6788c10a623b92f57fab08c
7d2f03a8d436aaaa6dfd5d6750fa788f4661bede2ad34a3b9c1d72732f4d4af9
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c1966c1004a0ff46137b1fc1d0976e99bfaa9c20028cc211cd4ceddcf7542495
ca931d7a64c16b05cc8907d401a09daab9683f62027cbf32b5c0585ae5443b75
aa2ff8c7efe0e40a9e1ee9304d54a1cf0f18b40ba6acc0878b5e60773674ae36
f8ff4d17a07ef824f23849d4411d42f13c02f498d8c796d0d18340e63815f2ba
05e05f35659fbc399b36ba24a214350af7fe23633ccaba1501de559970bb8830
81c9b174569c6700dd61e4df01881ac8ff9deb655c8f97dd4ffc6f773677bb1b
d6b5588cc757ab593ac31f55b106c58af4655faa9ca29082cd3ef04bb7da9b0d
ba2992b2fe0f5ff029a2f5564f54d22c5ba1add6e40cbdcb961544f19ff1c960
22d6a7241c0c3447f465eec620280dd892c11e3061ae56b9415380d3822fabc8
490361159e507290deb9fdae40f016203d152bd52f657234a3f73a3f77cd1ec7
6f6ebf54afe9009ad678fefc955ed948f48ff123efefe5df43b44d77f7c7ef05
08e2148167d7ac0bbbce6e0bc60815f37e29d0294bf28d75289fa21d0eec1a94
8d9b27f19f8353f1e60b4767034335be49278c9ed30b4b9e6f148b0b3ebd0fd2
41d988f7ca1e2d497a47795696d0e36fae34fb0957a303f6465e8ac951ccb3aa
6ad3c95a28a80b0da79dca7e41b1f3ce356f82caaa65737b20327b106d7c6390
fe020fad14b609a09c2914e6173b5e576360c955295cc89168ba84515e992f8b
241d85e9725d1b7941fbdcbb149f83bc533fed3ba86448858c3aa8a4f453bd12
c964b238b7a17947a7a236d95baea6a8b5bd59463d5df2a8d6c2a3c77c255761
de263e5ad81bb5e2be7d57c7e201fe172108d987562a98897736d8c9235661a2
b33c47e31d50d47631094546df901e96e8a9672df9f4bf53662683b12aa4c41e
841b66e71b363a181435f83ee197c83c0176837cd87953236f4fc839279549d7
f4bdb5409052e0a5b7598def8ea7c95e0411b1acb08aecc903770df83fa81643
43c2d27c6745596a99f3a2749029d705a57674ec695ba37ec5118ce4a5366c58
03cf69e25416b174614bb46f3182169d8bb85c17988c496b215988b8264a8903
dc83806bfbe5f7b940e1c442fa7558f3e060388cd2c7640e4cd6fe2f5b2a5ecb
a141bc729d7a2ed71e959ae1ff248e8e18cb47ecaf4300bf67d5d09681d174e1
3c02d100ded37943b6ee89eebedb00e9860a21a5affc087c4ee72a4c1db91adb
fa2793fb83110466b25ed53cd8da070486fcb0383a2cb24ca2485168d1107862
95eae63247e46dbca8faa5df5dbedf32cb8aa40b35893548c4c878a43fc82b53
d5272ecb6c1d5eb7a190ffcee0f39e493f6c7020bcd1680f6ca92c2a05f4c00e
6d466b5d1b3ddda411c60ceb3db50a33c987b1f30d96d9662e2d7d2eb1757cd8
235e596f3450cd1b3cc783bb20471b3fc146d5f24bf9fd1f3d282e5a8bc76e8e
41dc3dfd217b301809afcf5098c32280bc2857ca9c693f3053a465687281237a
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Appendix C
Contents of Enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

bota..............BOTA implementation sources and documentation
fet.................FET implementation sources and documentation
notebooks......................... the directory of ipynb notebooks
thesis..............the directory of LATEX source codes of the thesis

data...................................................custom dataset
captures............................................. raw captures
flows .............................................. extracted flows

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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